1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "devlink.h"
9 #include "port.h"
10 #include "ice_eswitch.h"
11 #include "ice_fw_update.h"
12 #include "ice_dcb_lib.h"
13 #include "ice_sf_eth.h"
14 
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 	char buf[128];
18 	struct ice_orom_info pending_orom;
19 	struct ice_nvm_info pending_nvm;
20 	struct ice_netlist_info pending_netlist;
21 	struct ice_hw_dev_caps dev_caps;
22 };
23 
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33 
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 	u8 dsn[8];
37 
38 	/* Copy the DSN into an array in Big Endian format */
39 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40 
41 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43 
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 	struct ice_hw *hw = &pf->hw;
47 	int status;
48 
49 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 	if (status)
51 		/* We failed to locate the PBA, so just skip this entry */
52 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 			status);
54 }
55 
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 	struct ice_hw *hw = &pf->hw;
59 
60 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63 
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 	struct ice_hw *hw = &pf->hw;
67 
68 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 		 hw->api_min_ver, hw->api_patch);
70 }
71 
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 	struct ice_hw *hw = &pf->hw;
75 
76 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78 
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 	struct ice_orom_info *orom = &pf->hw.flash.orom;
82 
83 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 		 orom->major, orom->build, orom->patch);
85 }
86 
87 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 			  struct ice_info_ctx *ctx)
90 {
91 	struct ice_orom_info *orom = &ctx->pending_orom;
92 
93 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 			 orom->major, orom->build, orom->patch);
96 }
97 
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101 
102 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104 
105 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 			 struct ice_info_ctx *ctx)
108 {
109 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110 
111 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 			 nvm->major, nvm->minor);
114 }
115 
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119 
120 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122 
123 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127 
128 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131 
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 	struct ice_hw *hw = &pf->hw;
135 
136 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138 
139 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143 
144 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147 
148 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153 
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157 
158 	/* The netlist version fields are BCD formatted */
159 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 		 netlist->major, netlist->minor,
161 		 netlist->type >> 16, netlist->type & 0xFFFF,
162 		 netlist->rev, netlist->cust_ver);
163 }
164 
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168 
169 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171 
172 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 			     struct ice_info_ctx *ctx)
175 {
176 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177 
178 	/* The netlist version fields are BCD formatted */
179 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 			 netlist->major, netlist->minor,
182 			 netlist->type >> 16, netlist->type & 0xFFFF,
183 			 netlist->rev, netlist->cust_ver);
184 }
185 
186 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 			       struct ice_info_ctx *ctx)
189 {
190 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191 
192 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195 
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198 	u32 id, cfg_ver, fw_ver;
199 
200 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 		return;
202 	if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 		return;
204 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206 
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 		return;
211 	snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213 
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217 
218 /* The combined() macro inserts both the running entry as well as a stored
219  * entry. The running entry will always report the version from the active
220  * handler. The stored entry will first try the pending handler, and fallback
221  * to the active handler if the pending function does not report a version.
222  * The pending handler should check the status of a pending update for the
223  * relevant flash component. It should only fill in the buffer in the case
224  * where a valid pending version is available. This ensures that the related
225  * stored and running versions remain in sync, and that stored versions are
226  * correctly reported as expected.
227  */
228 #define combined(key, active, pending) \
229 	running(key, active), \
230 	stored(key, pending, active)
231 
232 enum ice_version_type {
233 	ICE_VERSION_FIXED,
234 	ICE_VERSION_RUNNING,
235 	ICE_VERSION_STORED,
236 };
237 
238 static const struct ice_devlink_version {
239 	enum ice_version_type type;
240 	const char *key;
241 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 	running("fw.mgmt.api", ice_info_fw_api),
247 	running("fw.mgmt.build", ice_info_fw_build),
248 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 	running("fw.app.name", ice_info_ddp_pkg_name),
252 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 	fixed("cgu.id", ice_info_cgu_id),
257 	running("fw.cgu", ice_info_cgu_fw_build),
258 };
259 
260 /**
261  * ice_devlink_info_get - .info_get devlink handler
262  * @devlink: devlink instance structure
263  * @req: the devlink info request
264  * @extack: extended netdev ack structure
265  *
266  * Callback for the devlink .info_get operation. Reports information about the
267  * device.
268  *
269  * Return: zero on success or an error code on failure.
270  */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271 static int ice_devlink_info_get(struct devlink *devlink,
272 				struct devlink_info_req *req,
273 				struct netlink_ext_ack *extack)
274 {
275 	struct ice_pf *pf = devlink_priv(devlink);
276 	struct device *dev = ice_pf_to_dev(pf);
277 	struct ice_hw *hw = &pf->hw;
278 	struct ice_info_ctx *ctx;
279 	size_t i;
280 	int err;
281 
282 	err = ice_wait_for_reset(pf, 10 * HZ);
283 	if (err) {
284 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 		return err;
286 	}
287 
288 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 	if (!ctx)
290 		return -ENOMEM;
291 
292 	/* discover capabilities first */
293 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 	if (err) {
295 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 			err, ice_aq_str(hw->adminq.sq_last_status));
297 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 		goto out_free_ctx;
299 	}
300 
301 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 		if (err) {
304 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 				err, ice_aq_str(hw->adminq.sq_last_status));
306 
307 			/* disable display of pending Option ROM */
308 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 		}
310 	}
311 
312 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 		if (err) {
315 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 				err, ice_aq_str(hw->adminq.sq_last_status));
317 
318 			/* disable display of pending Option ROM */
319 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 		}
321 	}
322 
323 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 		if (err) {
326 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 				err, ice_aq_str(hw->adminq.sq_last_status));
328 
329 			/* disable display of pending Option ROM */
330 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 		}
332 	}
333 
334 	ice_info_get_dsn(pf, ctx);
335 
336 	err = devlink_info_serial_number_put(req, ctx->buf);
337 	if (err) {
338 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 		goto out_free_ctx;
340 	}
341 
342 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 		enum ice_version_type type = ice_devlink_versions[i].type;
344 		const char *key = ice_devlink_versions[i].key;
345 
346 		memset(ctx->buf, 0, sizeof(ctx->buf));
347 
348 		ice_devlink_versions[i].getter(pf, ctx);
349 
350 		/* If the default getter doesn't report a version, use the
351 		 * fallback function. This is primarily useful in the case of
352 		 * "stored" versions that want to report the same value as the
353 		 * running version in the normal case of no pending update.
354 		 */
355 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 			ice_devlink_versions[i].fallback(pf, ctx);
357 
358 		/* Do not report missing versions */
359 		if (ctx->buf[0] == '\0')
360 			continue;
361 
362 		switch (type) {
363 		case ICE_VERSION_FIXED:
364 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 			if (err) {
366 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 				goto out_free_ctx;
368 			}
369 			break;
370 		case ICE_VERSION_RUNNING:
371 			err = devlink_info_version_running_put_ext(req, key,
372 								   ctx->buf,
373 								   DEVLINK_INFO_VERSION_TYPE_COMPONENT);
374 			if (err) {
375 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
376 				goto out_free_ctx;
377 			}
378 			break;
379 		case ICE_VERSION_STORED:
380 			err = devlink_info_version_stored_put_ext(req, key,
381 								  ctx->buf,
382 								  DEVLINK_INFO_VERSION_TYPE_COMPONENT);
383 			if (err) {
384 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
385 				goto out_free_ctx;
386 			}
387 			break;
388 		}
389 	}
390 
391 out_free_ctx:
392 	kfree(ctx);
393 	return err;
394 }
395 
396 /**
397  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
398  * @pf: pointer to the pf instance
399  * @extack: netlink extended ACK structure
400  *
401  * Allow user to activate new Embedded Management Processor firmware by
402  * issuing device specific EMP reset. Called in response to
403  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
404  *
405  * Note that teardown and rebuild of the driver state happens automatically as
406  * part of an interrupt and watchdog task. This is because all physical
407  * functions on the device must be able to reset when an EMP reset occurs from
408  * any source.
409  */
410 static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)411 ice_devlink_reload_empr_start(struct ice_pf *pf,
412 			      struct netlink_ext_ack *extack)
413 {
414 	struct device *dev = ice_pf_to_dev(pf);
415 	struct ice_hw *hw = &pf->hw;
416 	u8 pending;
417 	int err;
418 
419 	err = ice_get_pending_updates(pf, &pending, extack);
420 	if (err)
421 		return err;
422 
423 	/* pending is a bitmask of which flash banks have a pending update,
424 	 * including the main NVM bank, the Option ROM bank, and the netlist
425 	 * bank. If any of these bits are set, then there is a pending update
426 	 * waiting to be activated.
427 	 */
428 	if (!pending) {
429 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
430 		return -ECANCELED;
431 	}
432 
433 	if (pf->fw_emp_reset_disabled) {
434 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
435 		return -ECANCELED;
436 	}
437 
438 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
439 
440 	err = ice_aq_nvm_update_empr(hw);
441 	if (err) {
442 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
443 			err, ice_aq_str(hw->adminq.sq_last_status));
444 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
445 		return err;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * ice_devlink_reinit_down - unload given PF
453  * @pf: pointer to the PF struct
454  */
ice_devlink_reinit_down(struct ice_pf * pf)455 static void ice_devlink_reinit_down(struct ice_pf *pf)
456 {
457 	/* No need to take devl_lock, it's already taken by devlink API */
458 	ice_unload(pf);
459 	rtnl_lock();
460 	ice_vsi_decfg(ice_get_main_vsi(pf));
461 	rtnl_unlock();
462 	ice_deinit_dev(pf);
463 }
464 
465 /**
466  * ice_devlink_reload_down - prepare for reload
467  * @devlink: pointer to the devlink instance to reload
468  * @netns_change: if true, the network namespace is changing
469  * @action: the action to perform
470  * @limit: limits on what reload should do, such as not resetting
471  * @extack: netlink extended ACK structure
472  */
473 static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)474 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
475 			enum devlink_reload_action action,
476 			enum devlink_reload_limit limit,
477 			struct netlink_ext_ack *extack)
478 {
479 	struct ice_pf *pf = devlink_priv(devlink);
480 
481 	switch (action) {
482 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
483 		if (ice_is_eswitch_mode_switchdev(pf)) {
484 			NL_SET_ERR_MSG_MOD(extack,
485 					   "Go to legacy mode before doing reinit");
486 			return -EOPNOTSUPP;
487 		}
488 		if (ice_is_adq_active(pf)) {
489 			NL_SET_ERR_MSG_MOD(extack,
490 					   "Turn off ADQ before doing reinit");
491 			return -EOPNOTSUPP;
492 		}
493 		if (ice_has_vfs(pf)) {
494 			NL_SET_ERR_MSG_MOD(extack,
495 					   "Remove all VFs before doing reinit");
496 			return -EOPNOTSUPP;
497 		}
498 		ice_devlink_reinit_down(pf);
499 		return 0;
500 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
501 		return ice_devlink_reload_empr_start(pf, extack);
502 	default:
503 		WARN_ON(1);
504 		return -EOPNOTSUPP;
505 	}
506 }
507 
508 /**
509  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
510  * @pf: pointer to the pf instance
511  * @extack: netlink extended ACK structure
512  *
513  * Wait for driver to finish rebuilding after EMP reset is completed. This
514  * includes time to wait for both the actual device reset as well as the time
515  * for the driver's rebuild to complete.
516  */
517 static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)518 ice_devlink_reload_empr_finish(struct ice_pf *pf,
519 			       struct netlink_ext_ack *extack)
520 {
521 	int err;
522 
523 	err = ice_wait_for_reset(pf, 60 * HZ);
524 	if (err) {
525 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
526 		return err;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  * ice_get_tx_topo_user_sel - Read user's choice from flash
534  * @pf: pointer to pf structure
535  * @layers: value read from flash will be saved here
536  *
537  * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
538  *
539  * Return: zero when read was successful, negative values otherwise.
540  */
ice_get_tx_topo_user_sel(struct ice_pf * pf,uint8_t * layers)541 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
542 {
543 	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
544 	struct ice_hw *hw = &pf->hw;
545 	int err;
546 
547 	err = ice_acquire_nvm(hw, ICE_RES_READ);
548 	if (err)
549 		return err;
550 
551 	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
552 			      sizeof(usr_sel), &usr_sel, true, true, NULL);
553 	if (err)
554 		goto exit_release_res;
555 
556 	if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
557 		*layers = ICE_SCHED_5_LAYERS;
558 	else
559 		*layers = ICE_SCHED_9_LAYERS;
560 
561 exit_release_res:
562 	ice_release_nvm(hw);
563 
564 	return err;
565 }
566 
567 /**
568  * ice_update_tx_topo_user_sel - Save user's preference in flash
569  * @pf: pointer to pf structure
570  * @layers: value to be saved in flash
571  *
572  * Variable "layers" defines user's preference about number of layers in Tx
573  * Scheduler Topology Tree. This choice should be stored in PFA TLV field
574  * and be picked up by driver, next time during init.
575  *
576  * Return: zero when save was successful, negative values otherwise.
577  */
ice_update_tx_topo_user_sel(struct ice_pf * pf,int layers)578 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
579 {
580 	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
581 	struct ice_hw *hw = &pf->hw;
582 	int err;
583 
584 	err = ice_acquire_nvm(hw, ICE_RES_WRITE);
585 	if (err)
586 		return err;
587 
588 	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
589 			      sizeof(usr_sel), &usr_sel, true, true, NULL);
590 	if (err)
591 		goto exit_release_res;
592 
593 	if (layers == ICE_SCHED_5_LAYERS)
594 		usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
595 	else
596 		usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
597 
598 	err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
599 				      sizeof(usr_sel.data), &usr_sel.data,
600 				      true, NULL, NULL);
601 exit_release_res:
602 	ice_release_nvm(hw);
603 
604 	return err;
605 }
606 
607 /**
608  * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
609  * @devlink: pointer to the devlink instance
610  * @id: the parameter ID to set
611  * @ctx: context to store the parameter value
612  *
613  * Return: zero on success and negative value on failure.
614  */
ice_devlink_tx_sched_layers_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)615 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
616 					   struct devlink_param_gset_ctx *ctx)
617 {
618 	struct ice_pf *pf = devlink_priv(devlink);
619 	int err;
620 
621 	err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
622 	if (err)
623 		return err;
624 
625 	return 0;
626 }
627 
628 /**
629  * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
630  * @devlink: pointer to the devlink instance
631  * @id: the parameter ID to set
632  * @ctx: context to get the parameter value
633  * @extack: netlink extended ACK structure
634  *
635  * Return: zero on success and negative value on failure.
636  */
ice_devlink_tx_sched_layers_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)637 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
638 					   struct devlink_param_gset_ctx *ctx,
639 					   struct netlink_ext_ack *extack)
640 {
641 	struct ice_pf *pf = devlink_priv(devlink);
642 	int err;
643 
644 	err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
645 	if (err)
646 		return err;
647 
648 	NL_SET_ERR_MSG_MOD(extack,
649 			   "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
650 
651 	return 0;
652 }
653 
654 /**
655  * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
656  *                                        parameter value
657  * @devlink: unused pointer to devlink instance
658  * @id: the parameter ID to validate
659  * @val: value to validate
660  * @extack: netlink extended ACK structure
661  *
662  * Supported values are:
663  * - 5 - five layers Tx Scheduler Topology Tree
664  * - 9 - nine layers Tx Scheduler Topology Tree
665  *
666  * Return: zero when passed parameter value is supported. Negative value on
667  * error.
668  */
ice_devlink_tx_sched_layers_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)669 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
670 						union devlink_param_value val,
671 						struct netlink_ext_ack *extack)
672 {
673 	if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
674 		NL_SET_ERR_MSG_MOD(extack,
675 				   "Wrong number of tx scheduler layers provided.");
676 		return -EINVAL;
677 	}
678 
679 	return 0;
680 }
681 
682 /**
683  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
684  * @pf: pf struct
685  *
686  * This function tears down tree exported during VF's creation.
687  */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)688 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
689 {
690 	struct devlink *devlink;
691 	struct ice_vf *vf;
692 	unsigned int bkt;
693 
694 	devlink = priv_to_devlink(pf);
695 
696 	devl_lock(devlink);
697 	mutex_lock(&pf->vfs.table_lock);
698 	ice_for_each_vf(pf, bkt, vf) {
699 		if (vf->devlink_port.devlink_rate)
700 			devl_rate_leaf_destroy(&vf->devlink_port);
701 	}
702 	mutex_unlock(&pf->vfs.table_lock);
703 
704 	devl_rate_nodes_destroy(devlink);
705 	devl_unlock(devlink);
706 }
707 
708 /**
709  * ice_enable_custom_tx - try to enable custom Tx feature
710  * @pf: pf struct
711  *
712  * This function tries to enable custom Tx feature,
713  * it's not possible to enable it, if DCB or ADQ is active.
714  */
ice_enable_custom_tx(struct ice_pf * pf)715 static bool ice_enable_custom_tx(struct ice_pf *pf)
716 {
717 	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
718 	struct device *dev = ice_pf_to_dev(pf);
719 
720 	if (pi->is_custom_tx_enabled)
721 		/* already enabled, return true */
722 		return true;
723 
724 	if (ice_is_adq_active(pf)) {
725 		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
726 		return false;
727 	}
728 
729 	if (ice_is_dcb_active(pf)) {
730 		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
731 		return false;
732 	}
733 
734 	pi->is_custom_tx_enabled = true;
735 
736 	return true;
737 }
738 
739 /**
740  * ice_traverse_tx_tree - traverse Tx scheduler tree
741  * @devlink: devlink struct
742  * @node: current node, used for recursion
743  * @tc_node: tc_node struct, that is treated as a root
744  * @pf: pf struct
745  *
746  * This function traverses Tx scheduler tree and exports
747  * entire structure to the devlink-rate.
748  */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)749 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
750 				 struct ice_sched_node *tc_node, struct ice_pf *pf)
751 {
752 	struct devlink_rate *rate_node = NULL;
753 	struct ice_dynamic_port *sf;
754 	struct ice_vf *vf;
755 	int i;
756 
757 	if (node->rate_node)
758 		/* already added, skip to the next */
759 		goto traverse_children;
760 
761 	if (node->parent == tc_node) {
762 		/* create root node */
763 		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
764 	} else if (node->vsi_handle &&
765 		   pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
766 		   pf->vsi[node->vsi_handle]->vf) {
767 		vf = pf->vsi[node->vsi_handle]->vf;
768 		if (!vf->devlink_port.devlink_rate)
769 			/* leaf nodes doesn't have children
770 			 * so we don't set rate_node
771 			 */
772 			devl_rate_leaf_create(&vf->devlink_port, node,
773 					      node->parent->rate_node);
774 	} else if (node->vsi_handle &&
775 		   pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
776 		   pf->vsi[node->vsi_handle]->sf) {
777 		sf = pf->vsi[node->vsi_handle]->sf;
778 		if (!sf->devlink_port.devlink_rate)
779 			/* leaf nodes doesn't have children
780 			 * so we don't set rate_node
781 			 */
782 			devl_rate_leaf_create(&sf->devlink_port, node,
783 					      node->parent->rate_node);
784 	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
785 		   node->parent->rate_node) {
786 		rate_node = devl_rate_node_create(devlink, node, node->name,
787 						  node->parent->rate_node);
788 	}
789 
790 	if (rate_node && !IS_ERR(rate_node))
791 		node->rate_node = rate_node;
792 
793 traverse_children:
794 	for (i = 0; i < node->num_children; i++)
795 		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
796 }
797 
798 /**
799  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
800  * @devlink: devlink struct
801  * @vsi: main vsi struct
802  *
803  * This function finds a root node, then calls ice_traverse_tx tree, which
804  * traverses the tree and exports it's contents to devlink rate.
805  */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)806 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
807 {
808 	struct ice_port_info *pi = vsi->port_info;
809 	struct ice_sched_node *tc_node;
810 	struct ice_pf *pf = vsi->back;
811 	int i;
812 
813 	tc_node = pi->root->children[0];
814 	mutex_lock(&pi->sched_lock);
815 	for (i = 0; i < tc_node->num_children; i++)
816 		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
817 	mutex_unlock(&pi->sched_lock);
818 
819 	return 0;
820 }
821 
ice_clear_rate_nodes(struct ice_sched_node * node)822 static void ice_clear_rate_nodes(struct ice_sched_node *node)
823 {
824 	node->rate_node = NULL;
825 
826 	for (int i = 0; i < node->num_children; i++)
827 		ice_clear_rate_nodes(node->children[i]);
828 }
829 
830 /**
831  * ice_devlink_rate_clear_tx_topology - clear node->rate_node
832  * @vsi: main vsi struct
833  *
834  * Clear rate_node to cleanup creation of Tx topology.
835  *
836  */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)837 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
838 {
839 	struct ice_port_info *pi = vsi->port_info;
840 
841 	mutex_lock(&pi->sched_lock);
842 	ice_clear_rate_nodes(pi->root->children[0]);
843 	mutex_unlock(&pi->sched_lock);
844 }
845 
846 /**
847  * ice_set_object_tx_share - sets node scheduling parameter
848  * @pi: devlink struct instance
849  * @node: node struct instance
850  * @bw: bandwidth in bytes per second
851  * @extack: extended netdev ack structure
852  *
853  * This function sets ICE_MIN_BW scheduling BW limit.
854  */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)855 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
856 				   u64 bw, struct netlink_ext_ack *extack)
857 {
858 	int status;
859 
860 	mutex_lock(&pi->sched_lock);
861 	/* converts bytes per second to kilo bits per second */
862 	node->tx_share = div_u64(bw, 125);
863 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
864 	mutex_unlock(&pi->sched_lock);
865 
866 	if (status)
867 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
868 
869 	return status;
870 }
871 
872 /**
873  * ice_set_object_tx_max - sets node scheduling parameter
874  * @pi: devlink struct instance
875  * @node: node struct instance
876  * @bw: bandwidth in bytes per second
877  * @extack: extended netdev ack structure
878  *
879  * This function sets ICE_MAX_BW scheduling BW limit.
880  */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)881 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
882 				 u64 bw, struct netlink_ext_ack *extack)
883 {
884 	int status;
885 
886 	mutex_lock(&pi->sched_lock);
887 	/* converts bytes per second value to kilo bits per second */
888 	node->tx_max = div_u64(bw, 125);
889 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
890 	mutex_unlock(&pi->sched_lock);
891 
892 	if (status)
893 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
894 
895 	return status;
896 }
897 
898 /**
899  * ice_set_object_tx_priority - sets node scheduling parameter
900  * @pi: devlink struct instance
901  * @node: node struct instance
902  * @priority: value representing priority for strict priority arbitration
903  * @extack: extended netdev ack structure
904  *
905  * This function sets priority of node among siblings.
906  */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)907 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
908 				      u32 priority, struct netlink_ext_ack *extack)
909 {
910 	int status;
911 
912 	if (priority >= 8) {
913 		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
914 		return -EINVAL;
915 	}
916 
917 	mutex_lock(&pi->sched_lock);
918 	node->tx_priority = priority;
919 	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
920 	mutex_unlock(&pi->sched_lock);
921 
922 	if (status)
923 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
924 
925 	return status;
926 }
927 
928 /**
929  * ice_set_object_tx_weight - sets node scheduling parameter
930  * @pi: devlink struct instance
931  * @node: node struct instance
932  * @weight: value represeting relative weight for WFQ arbitration
933  * @extack: extended netdev ack structure
934  *
935  * This function sets node weight for WFQ algorithm.
936  */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)937 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
938 				    u32 weight, struct netlink_ext_ack *extack)
939 {
940 	int status;
941 
942 	if (weight > 200 || weight < 1) {
943 		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
944 		return -EINVAL;
945 	}
946 
947 	mutex_lock(&pi->sched_lock);
948 	node->tx_weight = weight;
949 	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
950 	mutex_unlock(&pi->sched_lock);
951 
952 	if (status)
953 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
954 
955 	return status;
956 }
957 
958 /**
959  * ice_get_pi_from_dev_rate - get port info from devlink_rate
960  * @rate_node: devlink struct instance
961  *
962  * This function returns corresponding port_info struct of devlink_rate
963  */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)964 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
965 {
966 	struct ice_pf *pf = devlink_priv(rate_node->devlink);
967 
968 	return ice_get_main_vsi(pf)->port_info;
969 }
970 
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)971 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
972 				     struct netlink_ext_ack *extack)
973 {
974 	struct ice_sched_node *node;
975 	struct ice_port_info *pi;
976 
977 	pi = ice_get_pi_from_dev_rate(rate_node);
978 
979 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
980 		return -EBUSY;
981 
982 	/* preallocate memory for ice_sched_node */
983 	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
984 	if (!node)
985 		return -ENOMEM;
986 
987 	*priv = node;
988 
989 	return 0;
990 }
991 
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)992 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
993 				     struct netlink_ext_ack *extack)
994 {
995 	struct ice_sched_node *node, *tc_node;
996 	struct ice_port_info *pi;
997 
998 	pi = ice_get_pi_from_dev_rate(rate_node);
999 	tc_node = pi->root->children[0];
1000 	node = priv;
1001 
1002 	if (!rate_node->parent || !node || tc_node == node || !extack)
1003 		return 0;
1004 
1005 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1006 		return -EBUSY;
1007 
1008 	/* can't allow to delete a node with children */
1009 	if (node->num_children)
1010 		return -EINVAL;
1011 
1012 	mutex_lock(&pi->sched_lock);
1013 	ice_free_sched_node(pi, node);
1014 	mutex_unlock(&pi->sched_lock);
1015 
1016 	return 0;
1017 }
1018 
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1019 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1020 					    u64 tx_max, struct netlink_ext_ack *extack)
1021 {
1022 	struct ice_sched_node *node = priv;
1023 
1024 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1025 		return -EBUSY;
1026 
1027 	if (!node)
1028 		return 0;
1029 
1030 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1031 				     node, tx_max, extack);
1032 }
1033 
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1034 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1035 					      u64 tx_share, struct netlink_ext_ack *extack)
1036 {
1037 	struct ice_sched_node *node = priv;
1038 
1039 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1040 		return -EBUSY;
1041 
1042 	if (!node)
1043 		return 0;
1044 
1045 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1046 				       tx_share, extack);
1047 }
1048 
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1049 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1050 						 u32 tx_priority, struct netlink_ext_ack *extack)
1051 {
1052 	struct ice_sched_node *node = priv;
1053 
1054 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1055 		return -EBUSY;
1056 
1057 	if (!node)
1058 		return 0;
1059 
1060 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1061 					  tx_priority, extack);
1062 }
1063 
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1064 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1065 					       u32 tx_weight, struct netlink_ext_ack *extack)
1066 {
1067 	struct ice_sched_node *node = priv;
1068 
1069 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1070 		return -EBUSY;
1071 
1072 	if (!node)
1073 		return 0;
1074 
1075 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1076 					tx_weight, extack);
1077 }
1078 
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1079 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1080 					    u64 tx_max, struct netlink_ext_ack *extack)
1081 {
1082 	struct ice_sched_node *node = priv;
1083 
1084 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1085 		return -EBUSY;
1086 
1087 	if (!node)
1088 		return 0;
1089 
1090 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1091 				     node, tx_max, extack);
1092 }
1093 
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1094 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1095 					      u64 tx_share, struct netlink_ext_ack *extack)
1096 {
1097 	struct ice_sched_node *node = priv;
1098 
1099 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1100 		return -EBUSY;
1101 
1102 	if (!node)
1103 		return 0;
1104 
1105 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1106 				       node, tx_share, extack);
1107 }
1108 
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1109 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1110 						 u32 tx_priority, struct netlink_ext_ack *extack)
1111 {
1112 	struct ice_sched_node *node = priv;
1113 
1114 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1115 		return -EBUSY;
1116 
1117 	if (!node)
1118 		return 0;
1119 
1120 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1121 					  node, tx_priority, extack);
1122 }
1123 
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1124 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1125 					       u32 tx_weight, struct netlink_ext_ack *extack)
1126 {
1127 	struct ice_sched_node *node = priv;
1128 
1129 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1130 		return -EBUSY;
1131 
1132 	if (!node)
1133 		return 0;
1134 
1135 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1136 					node, tx_weight, extack);
1137 }
1138 
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1139 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1140 				  struct devlink_rate *parent,
1141 				  void *priv, void *parent_priv,
1142 				  struct netlink_ext_ack *extack)
1143 {
1144 	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1145 	struct ice_sched_node *tc_node, *node, *parent_node;
1146 	u16 num_nodes_added;
1147 	u32 first_node_teid;
1148 	u32 node_teid;
1149 	int status;
1150 
1151 	tc_node = pi->root->children[0];
1152 	node = priv;
1153 
1154 	if (!extack)
1155 		return 0;
1156 
1157 	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1158 		return -EBUSY;
1159 
1160 	if (!parent) {
1161 		if (!node || tc_node == node || node->num_children)
1162 			return -EINVAL;
1163 
1164 		mutex_lock(&pi->sched_lock);
1165 		ice_free_sched_node(pi, node);
1166 		mutex_unlock(&pi->sched_lock);
1167 
1168 		return 0;
1169 	}
1170 
1171 	parent_node = parent_priv;
1172 
1173 	/* if the node doesn't exist, create it */
1174 	if (!node->parent) {
1175 		mutex_lock(&pi->sched_lock);
1176 		status = ice_sched_add_elems(pi, tc_node, parent_node,
1177 					     parent_node->tx_sched_layer + 1,
1178 					     1, &num_nodes_added, &first_node_teid,
1179 					     &node);
1180 		mutex_unlock(&pi->sched_lock);
1181 
1182 		if (status) {
1183 			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1184 			return status;
1185 		}
1186 
1187 		if (devlink_rate->tx_share)
1188 			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1189 		if (devlink_rate->tx_max)
1190 			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1191 		if (devlink_rate->tx_priority)
1192 			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1193 		if (devlink_rate->tx_weight)
1194 			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1195 	} else {
1196 		node_teid = le32_to_cpu(node->info.node_teid);
1197 		mutex_lock(&pi->sched_lock);
1198 		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1199 		mutex_unlock(&pi->sched_lock);
1200 
1201 		if (status)
1202 			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1203 	}
1204 
1205 	return status;
1206 }
1207 
ice_set_min_max_msix(struct ice_pf * pf)1208 static void ice_set_min_max_msix(struct ice_pf *pf)
1209 {
1210 	struct devlink *devlink = priv_to_devlink(pf);
1211 	union devlink_param_value val;
1212 	int err;
1213 
1214 	err = devl_param_driverinit_value_get(devlink,
1215 					      DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1216 					      &val);
1217 	if (!err)
1218 		pf->msix.min = val.vu32;
1219 
1220 	err = devl_param_driverinit_value_get(devlink,
1221 					      DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1222 					      &val);
1223 	if (!err)
1224 		pf->msix.max = val.vu32;
1225 }
1226 
1227 /**
1228  * ice_devlink_reinit_up - do reinit of the given PF
1229  * @pf: pointer to the PF struct
1230  */
ice_devlink_reinit_up(struct ice_pf * pf)1231 static int ice_devlink_reinit_up(struct ice_pf *pf)
1232 {
1233 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
1234 	int err;
1235 
1236 	err = ice_init_hw(&pf->hw);
1237 	if (err) {
1238 		dev_err(ice_pf_to_dev(pf), "ice_init_hw failed: %d\n", err);
1239 		return err;
1240 	}
1241 
1242 	/* load MSI-X values */
1243 	ice_set_min_max_msix(pf);
1244 
1245 	err = ice_init_dev(pf);
1246 	if (err)
1247 		goto unroll_hw_init;
1248 
1249 	vsi->flags = ICE_VSI_FLAG_INIT;
1250 
1251 	rtnl_lock();
1252 	err = ice_vsi_cfg(vsi);
1253 	rtnl_unlock();
1254 	if (err)
1255 		goto err_vsi_cfg;
1256 
1257 	/* No need to take devl_lock, it's already taken by devlink API */
1258 	err = ice_load(pf);
1259 	if (err)
1260 		goto err_load;
1261 
1262 	return 0;
1263 
1264 err_load:
1265 	rtnl_lock();
1266 	ice_vsi_decfg(vsi);
1267 	rtnl_unlock();
1268 err_vsi_cfg:
1269 	ice_deinit_dev(pf);
1270 unroll_hw_init:
1271 	ice_deinit_hw(&pf->hw);
1272 	return err;
1273 }
1274 
1275 /**
1276  * ice_devlink_reload_up - do reload up after reinit
1277  * @devlink: pointer to the devlink instance reloading
1278  * @action: the action requested
1279  * @limit: limits imposed by userspace, such as not resetting
1280  * @actions_performed: on return, indicate what actions actually performed
1281  * @extack: netlink extended ACK structure
1282  */
1283 static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1284 ice_devlink_reload_up(struct devlink *devlink,
1285 		      enum devlink_reload_action action,
1286 		      enum devlink_reload_limit limit,
1287 		      u32 *actions_performed,
1288 		      struct netlink_ext_ack *extack)
1289 {
1290 	struct ice_pf *pf = devlink_priv(devlink);
1291 
1292 	switch (action) {
1293 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1294 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1295 		return ice_devlink_reinit_up(pf);
1296 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1297 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1298 		return ice_devlink_reload_empr_finish(pf, extack);
1299 	default:
1300 		WARN_ON(1);
1301 		return -EOPNOTSUPP;
1302 	}
1303 }
1304 
1305 static const struct devlink_ops ice_devlink_ops = {
1306 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1307 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1308 			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1309 	.reload_down = ice_devlink_reload_down,
1310 	.reload_up = ice_devlink_reload_up,
1311 	.eswitch_mode_get = ice_eswitch_mode_get,
1312 	.eswitch_mode_set = ice_eswitch_mode_set,
1313 	.info_get = ice_devlink_info_get,
1314 	.flash_update = ice_devlink_flash_update,
1315 
1316 	.rate_node_new = ice_devlink_rate_node_new,
1317 	.rate_node_del = ice_devlink_rate_node_del,
1318 
1319 	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1320 	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1321 	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1322 	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1323 
1324 	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1325 	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1326 	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1327 	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1328 
1329 	.rate_leaf_parent_set = ice_devlink_set_parent,
1330 	.rate_node_parent_set = ice_devlink_set_parent,
1331 
1332 	.port_new = ice_devlink_port_new,
1333 };
1334 
1335 static const struct devlink_ops ice_sf_devlink_ops;
1336 
1337 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1338 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1339 			    struct devlink_param_gset_ctx *ctx)
1340 {
1341 	struct ice_pf *pf = devlink_priv(devlink);
1342 
1343 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
1344 
1345 	return 0;
1346 }
1347 
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1348 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1349 				       struct devlink_param_gset_ctx *ctx,
1350 				       struct netlink_ext_ack *extack)
1351 {
1352 	struct ice_pf *pf = devlink_priv(devlink);
1353 	bool roce_ena = ctx->val.vbool;
1354 	int ret;
1355 
1356 	if (!roce_ena) {
1357 		ice_unplug_aux_dev(pf);
1358 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1359 		return 0;
1360 	}
1361 
1362 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
1363 	ret = ice_plug_aux_dev(pf);
1364 	if (ret)
1365 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1366 
1367 	return ret;
1368 }
1369 
1370 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1371 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1372 				 union devlink_param_value val,
1373 				 struct netlink_ext_ack *extack)
1374 {
1375 	struct ice_pf *pf = devlink_priv(devlink);
1376 
1377 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1378 		return -EOPNOTSUPP;
1379 
1380 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
1381 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1382 		return -EOPNOTSUPP;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1389 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1390 			  struct devlink_param_gset_ctx *ctx)
1391 {
1392 	struct ice_pf *pf = devlink_priv(devlink);
1393 
1394 	ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
1395 
1396 	return 0;
1397 }
1398 
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1399 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1400 				     struct devlink_param_gset_ctx *ctx,
1401 				     struct netlink_ext_ack *extack)
1402 {
1403 	struct ice_pf *pf = devlink_priv(devlink);
1404 	bool iw_ena = ctx->val.vbool;
1405 	int ret;
1406 
1407 	if (!iw_ena) {
1408 		ice_unplug_aux_dev(pf);
1409 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1410 		return 0;
1411 	}
1412 
1413 	pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
1414 	ret = ice_plug_aux_dev(pf);
1415 	if (ret)
1416 		pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
1417 
1418 	return ret;
1419 }
1420 
1421 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1422 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1423 			       union devlink_param_value val,
1424 			       struct netlink_ext_ack *extack)
1425 {
1426 	struct ice_pf *pf = devlink_priv(devlink);
1427 
1428 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1429 		return -EOPNOTSUPP;
1430 
1431 	if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
1432 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1433 		return -EOPNOTSUPP;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1440 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1441 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1442 
1443 /**
1444  * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1445  * @mode: local forwarding for mode used in port_info struct.
1446  *
1447  * Return: Mode respective string or "Invalid".
1448  */
1449 static const char *
ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)1450 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1451 {
1452 	switch (mode) {
1453 	case ICE_LOCAL_FWD_MODE_ENABLED:
1454 		return DEVLINK_LOCAL_FWD_ENABLED_STR;
1455 	case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1456 		return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1457 	case ICE_LOCAL_FWD_MODE_DISABLED:
1458 		return DEVLINK_LOCAL_FWD_DISABLED_STR;
1459 	}
1460 
1461 	return "Invalid";
1462 }
1463 
1464 /**
1465  * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1466  * @mode_str: local forwarding mode string.
1467  *
1468  * Return: Mode value or negative number if invalid.
1469  */
ice_devlink_local_fwd_str_to_mode(const char * mode_str)1470 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1471 {
1472 	if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1473 		return ICE_LOCAL_FWD_MODE_ENABLED;
1474 	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1475 		return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1476 	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1477 		return ICE_LOCAL_FWD_MODE_DISABLED;
1478 
1479 	return -EINVAL;
1480 }
1481 
1482 /**
1483  * ice_devlink_local_fwd_get - Get local_fwd parameter.
1484  * @devlink: Pointer to the devlink instance.
1485  * @id: The parameter ID to set.
1486  * @ctx: Context to store the parameter value.
1487  *
1488  * Return: Zero.
1489  */
ice_devlink_local_fwd_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1490 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1491 				     struct devlink_param_gset_ctx *ctx)
1492 {
1493 	struct ice_pf *pf = devlink_priv(devlink);
1494 	struct ice_port_info *pi;
1495 	const char *mode_str;
1496 
1497 	pi = pf->hw.port_info;
1498 	mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1499 	snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * ice_devlink_local_fwd_set - Set local_fwd parameter.
1506  * @devlink: Pointer to the devlink instance.
1507  * @id: The parameter ID to set.
1508  * @ctx: Context to get the parameter value.
1509  * @extack: Netlink extended ACK structure.
1510  *
1511  * Return: Zero.
1512  */
ice_devlink_local_fwd_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1513 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1514 				     struct devlink_param_gset_ctx *ctx,
1515 				     struct netlink_ext_ack *extack)
1516 {
1517 	int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1518 	struct ice_pf *pf = devlink_priv(devlink);
1519 	struct device *dev = ice_pf_to_dev(pf);
1520 	struct ice_port_info *pi;
1521 
1522 	pi = pf->hw.port_info;
1523 	if (pi->local_fwd_mode != new_local_fwd_mode) {
1524 		pi->local_fwd_mode = new_local_fwd_mode;
1525 		dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1526 		ice_schedule_reset(pf, ICE_RESET_CORER);
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 /**
1533  * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1534  * @devlink: Unused pointer to devlink instance.
1535  * @id: The parameter ID to validate.
1536  * @val: Value to validate.
1537  * @extack: Netlink extended ACK structure.
1538  *
1539  * Supported values are:
1540  * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1541  * "prioritized" - local_fwd traffic is prioritized in scheduling.
1542  *
1543  * Return: Zero when passed parameter value is supported. Negative value on
1544  * error.
1545  */
ice_devlink_local_fwd_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1546 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1547 					  union devlink_param_value val,
1548 					  struct netlink_ext_ack *extack)
1549 {
1550 	if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1551 		NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1552 		return -EINVAL;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int
ice_devlink_msix_max_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1559 ice_devlink_msix_max_pf_validate(struct devlink *devlink, u32 id,
1560 				 union devlink_param_value val,
1561 				 struct netlink_ext_ack *extack)
1562 {
1563 	struct ice_pf *pf = devlink_priv(devlink);
1564 
1565 	if (val.vu32 > pf->hw.func_caps.common_cap.num_msix_vectors)
1566 		return -EINVAL;
1567 
1568 	return 0;
1569 }
1570 
1571 static int
ice_devlink_msix_min_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1572 ice_devlink_msix_min_pf_validate(struct devlink *devlink, u32 id,
1573 				 union devlink_param_value val,
1574 				 struct netlink_ext_ack *extack)
1575 {
1576 	if (val.vu32 < ICE_MIN_MSIX)
1577 		return -EINVAL;
1578 
1579 	return 0;
1580 }
1581 
ice_devlink_enable_rdma_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1582 static int ice_devlink_enable_rdma_validate(struct devlink *devlink, u32 id,
1583 					    union devlink_param_value val,
1584 					    struct netlink_ext_ack *extack)
1585 {
1586 	struct ice_pf *pf = devlink_priv(devlink);
1587 	bool new_state = val.vbool;
1588 
1589 	if (new_state && !test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1590 		return -EOPNOTSUPP;
1591 
1592 	return 0;
1593 }
1594 
1595 enum ice_param_id {
1596 	ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1597 	ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1598 	ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1599 };
1600 
1601 static const struct devlink_param ice_dvl_rdma_params[] = {
1602 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1603 			      ice_devlink_enable_roce_get,
1604 			      ice_devlink_enable_roce_set,
1605 			      ice_devlink_enable_roce_validate),
1606 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1607 			      ice_devlink_enable_iw_get,
1608 			      ice_devlink_enable_iw_set,
1609 			      ice_devlink_enable_iw_validate),
1610 	DEVLINK_PARAM_GENERIC(ENABLE_RDMA, BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1611 			      NULL, NULL, ice_devlink_enable_rdma_validate),
1612 };
1613 
1614 static const struct devlink_param ice_dvl_msix_params[] = {
1615 	DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MAX,
1616 			      BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1617 			      NULL, NULL, ice_devlink_msix_max_pf_validate),
1618 	DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MIN,
1619 			      BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1620 			      NULL, NULL, ice_devlink_msix_min_pf_validate),
1621 };
1622 
1623 static const struct devlink_param ice_dvl_sched_params[] = {
1624 	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1625 			     "tx_scheduling_layers",
1626 			     DEVLINK_PARAM_TYPE_U8,
1627 			     BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1628 			     ice_devlink_tx_sched_layers_get,
1629 			     ice_devlink_tx_sched_layers_set,
1630 			     ice_devlink_tx_sched_layers_validate),
1631 	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1632 			     "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1633 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1634 			     ice_devlink_local_fwd_get,
1635 			     ice_devlink_local_fwd_set,
1636 			     ice_devlink_local_fwd_validate),
1637 };
1638 
ice_devlink_free(void * devlink_ptr)1639 static void ice_devlink_free(void *devlink_ptr)
1640 {
1641 	devlink_free((struct devlink *)devlink_ptr);
1642 }
1643 
1644 /**
1645  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1646  * @dev: the device to allocate for
1647  *
1648  * Allocate a devlink instance for this device and return the private area as
1649  * the PF structure. The devlink memory is kept track of through devres by
1650  * adding an action to remove it when unwinding.
1651  */
ice_allocate_pf(struct device * dev)1652 struct ice_pf *ice_allocate_pf(struct device *dev)
1653 {
1654 	struct devlink *devlink;
1655 
1656 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1657 	if (!devlink)
1658 		return NULL;
1659 
1660 	/* Add an action to teardown the devlink when unwinding the driver */
1661 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1662 		return NULL;
1663 
1664 	return devlink_priv(devlink);
1665 }
1666 
1667 /**
1668  * ice_allocate_sf - Allocate devlink and return SF structure pointer
1669  * @dev: the device to allocate for
1670  * @pf: pointer to the PF structure
1671  *
1672  * Allocate a devlink instance for SF.
1673  *
1674  * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1675  */
ice_allocate_sf(struct device * dev,struct ice_pf * pf)1676 struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1677 {
1678 	struct devlink *devlink;
1679 	int err;
1680 
1681 	devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1682 				dev);
1683 	if (!devlink)
1684 		return ERR_PTR(-ENOMEM);
1685 
1686 	err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1687 	if (err) {
1688 		devlink_free(devlink);
1689 		return ERR_PTR(err);
1690 	}
1691 
1692 	return devlink_priv(devlink);
1693 }
1694 
1695 /**
1696  * ice_devlink_register - Register devlink interface for this PF
1697  * @pf: the PF to register the devlink for.
1698  *
1699  * Register the devlink instance associated with this physical function.
1700  *
1701  * Return: zero on success or an error code on failure.
1702  */
ice_devlink_register(struct ice_pf * pf)1703 void ice_devlink_register(struct ice_pf *pf)
1704 {
1705 	struct devlink *devlink = priv_to_devlink(pf);
1706 
1707 	devl_register(devlink);
1708 }
1709 
1710 /**
1711  * ice_devlink_unregister - Unregister devlink resources for this PF.
1712  * @pf: the PF structure to cleanup
1713  *
1714  * Releases resources used by devlink and cleans up associated memory.
1715  */
ice_devlink_unregister(struct ice_pf * pf)1716 void ice_devlink_unregister(struct ice_pf *pf)
1717 {
1718 	devl_unregister(priv_to_devlink(pf));
1719 }
1720 
ice_devlink_register_params(struct ice_pf * pf)1721 int ice_devlink_register_params(struct ice_pf *pf)
1722 {
1723 	struct devlink *devlink = priv_to_devlink(pf);
1724 	union devlink_param_value value;
1725 	struct ice_hw *hw = &pf->hw;
1726 	int status;
1727 
1728 	status = devl_params_register(devlink, ice_dvl_rdma_params,
1729 				      ARRAY_SIZE(ice_dvl_rdma_params));
1730 	if (status)
1731 		return status;
1732 
1733 	status = devl_params_register(devlink, ice_dvl_msix_params,
1734 				      ARRAY_SIZE(ice_dvl_msix_params));
1735 	if (status)
1736 		goto unregister_rdma_params;
1737 
1738 	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1739 		status = devl_params_register(devlink, ice_dvl_sched_params,
1740 					      ARRAY_SIZE(ice_dvl_sched_params));
1741 	if (status)
1742 		goto unregister_msix_params;
1743 
1744 	value.vu32 = pf->msix.max;
1745 	devl_param_driverinit_value_set(devlink,
1746 					DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1747 					value);
1748 	value.vu32 = pf->msix.min;
1749 	devl_param_driverinit_value_set(devlink,
1750 					DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1751 					value);
1752 
1753 	value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
1754 	devl_param_driverinit_value_set(devlink,
1755 					DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
1756 					value);
1757 
1758 	return 0;
1759 
1760 unregister_msix_params:
1761 	devl_params_unregister(devlink, ice_dvl_msix_params,
1762 			       ARRAY_SIZE(ice_dvl_msix_params));
1763 unregister_rdma_params:
1764 	devl_params_unregister(devlink, ice_dvl_rdma_params,
1765 			       ARRAY_SIZE(ice_dvl_rdma_params));
1766 	return status;
1767 }
1768 
ice_devlink_unregister_params(struct ice_pf * pf)1769 void ice_devlink_unregister_params(struct ice_pf *pf)
1770 {
1771 	struct devlink *devlink = priv_to_devlink(pf);
1772 	struct ice_hw *hw = &pf->hw;
1773 
1774 	devl_params_unregister(devlink, ice_dvl_rdma_params,
1775 			       ARRAY_SIZE(ice_dvl_rdma_params));
1776 	devl_params_unregister(devlink, ice_dvl_msix_params,
1777 			       ARRAY_SIZE(ice_dvl_msix_params));
1778 
1779 	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1780 		devl_params_unregister(devlink, ice_dvl_sched_params,
1781 				       ARRAY_SIZE(ice_dvl_sched_params));
1782 }
1783 
1784 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1785 
1786 static const struct devlink_region_ops ice_nvm_region_ops;
1787 static const struct devlink_region_ops ice_sram_region_ops;
1788 
1789 /**
1790  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1791  * @devlink: the devlink instance
1792  * @ops: the devlink region to snapshot
1793  * @extack: extended ACK response structure
1794  * @data: on exit points to snapshot data buffer
1795  *
1796  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1797  * the nvm-flash or shadow-ram region.
1798  *
1799  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1800  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1801  * interface.
1802  *
1803  * @returns zero on success, and updates the data pointer. Returns a non-zero
1804  * error code on failure.
1805  */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1806 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1807 				    const struct devlink_region_ops *ops,
1808 				    struct netlink_ext_ack *extack, u8 **data)
1809 {
1810 	struct ice_pf *pf = devlink_priv(devlink);
1811 	struct device *dev = ice_pf_to_dev(pf);
1812 	struct ice_hw *hw = &pf->hw;
1813 	bool read_shadow_ram;
1814 	u8 *nvm_data, *tmp, i;
1815 	u32 nvm_size, left;
1816 	s8 num_blks;
1817 	int status;
1818 
1819 	if (ops == &ice_nvm_region_ops) {
1820 		read_shadow_ram = false;
1821 		nvm_size = hw->flash.flash_size;
1822 	} else if (ops == &ice_sram_region_ops) {
1823 		read_shadow_ram = true;
1824 		nvm_size = hw->flash.sr_words * 2u;
1825 	} else {
1826 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1827 		return -EOPNOTSUPP;
1828 	}
1829 
1830 	nvm_data = vzalloc(nvm_size);
1831 	if (!nvm_data)
1832 		return -ENOMEM;
1833 
1834 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1835 	tmp = nvm_data;
1836 	left = nvm_size;
1837 
1838 	/* Some systems take longer to read the NVM than others which causes the
1839 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1840 	 * this by breaking the reads of the NVM into smaller chunks that will
1841 	 * probably not take as long. This has some overhead since we are
1842 	 * increasing the number of AQ commands, but it should always work
1843 	 */
1844 	for (i = 0; i < num_blks; i++) {
1845 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1846 
1847 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1848 		if (status) {
1849 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1850 				status, hw->adminq.sq_last_status);
1851 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1852 			vfree(nvm_data);
1853 			return -EIO;
1854 		}
1855 
1856 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1857 					   &read_sz, tmp, read_shadow_ram);
1858 		if (status) {
1859 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1860 				read_sz, status, hw->adminq.sq_last_status);
1861 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1862 			ice_release_nvm(hw);
1863 			vfree(nvm_data);
1864 			return -EIO;
1865 		}
1866 		ice_release_nvm(hw);
1867 
1868 		tmp += read_sz;
1869 		left -= read_sz;
1870 	}
1871 
1872 	*data = nvm_data;
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1879  * @devlink: the devlink instance
1880  * @ops: the devlink region to snapshot
1881  * @extack: extended ACK response structure
1882  * @offset: the offset to start at
1883  * @size: the amount to read
1884  * @data: the data buffer to read into
1885  *
1886  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1887  * read a section of the NVM contents.
1888  *
1889  * It reads from either the nvm-flash or shadow-ram region contents.
1890  *
1891  * @returns zero on success, and updates the data pointer. Returns a non-zero
1892  * error code on failure.
1893  */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1894 static int ice_devlink_nvm_read(struct devlink *devlink,
1895 				const struct devlink_region_ops *ops,
1896 				struct netlink_ext_ack *extack,
1897 				u64 offset, u32 size, u8 *data)
1898 {
1899 	struct ice_pf *pf = devlink_priv(devlink);
1900 	struct device *dev = ice_pf_to_dev(pf);
1901 	struct ice_hw *hw = &pf->hw;
1902 	bool read_shadow_ram;
1903 	u64 nvm_size;
1904 	int status;
1905 
1906 	if (ops == &ice_nvm_region_ops) {
1907 		read_shadow_ram = false;
1908 		nvm_size = hw->flash.flash_size;
1909 	} else if (ops == &ice_sram_region_ops) {
1910 		read_shadow_ram = true;
1911 		nvm_size = hw->flash.sr_words * 2u;
1912 	} else {
1913 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1914 		return -EOPNOTSUPP;
1915 	}
1916 
1917 	if (offset + size >= nvm_size) {
1918 		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1919 		return -ERANGE;
1920 	}
1921 
1922 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1923 	if (status) {
1924 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1925 			status, hw->adminq.sq_last_status);
1926 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1927 		return -EIO;
1928 	}
1929 
1930 	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1931 				   read_shadow_ram);
1932 	if (status) {
1933 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1934 			size, status, hw->adminq.sq_last_status);
1935 		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1936 		ice_release_nvm(hw);
1937 		return -EIO;
1938 	}
1939 	ice_release_nvm(hw);
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1946  * @devlink: the devlink instance
1947  * @ops: the devlink region being snapshotted
1948  * @extack: extended ACK response structure
1949  * @data: on exit points to snapshot data buffer
1950  *
1951  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1952  * the device-caps devlink region. It captures a snapshot of the device
1953  * capabilities reported by firmware.
1954  *
1955  * @returns zero on success, and updates the data pointer. Returns a non-zero
1956  * error code on failure.
1957  */
1958 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1959 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1960 			     const struct devlink_region_ops *ops,
1961 			     struct netlink_ext_ack *extack, u8 **data)
1962 {
1963 	struct ice_pf *pf = devlink_priv(devlink);
1964 	struct device *dev = ice_pf_to_dev(pf);
1965 	struct ice_hw *hw = &pf->hw;
1966 	void *devcaps;
1967 	int status;
1968 
1969 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1970 	if (!devcaps)
1971 		return -ENOMEM;
1972 
1973 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1974 				  ice_aqc_opc_list_dev_caps, NULL);
1975 	if (status) {
1976 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
1977 			status, hw->adminq.sq_last_status);
1978 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
1979 		vfree(devcaps);
1980 		return status;
1981 	}
1982 
1983 	*data = (u8 *)devcaps;
1984 
1985 	return 0;
1986 }
1987 
1988 static const struct devlink_region_ops ice_nvm_region_ops = {
1989 	.name = "nvm-flash",
1990 	.destructor = vfree,
1991 	.snapshot = ice_devlink_nvm_snapshot,
1992 	.read = ice_devlink_nvm_read,
1993 };
1994 
1995 static const struct devlink_region_ops ice_sram_region_ops = {
1996 	.name = "shadow-ram",
1997 	.destructor = vfree,
1998 	.snapshot = ice_devlink_nvm_snapshot,
1999 	.read = ice_devlink_nvm_read,
2000 };
2001 
2002 static const struct devlink_region_ops ice_devcaps_region_ops = {
2003 	.name = "device-caps",
2004 	.destructor = vfree,
2005 	.snapshot = ice_devlink_devcaps_snapshot,
2006 };
2007 
2008 /**
2009  * ice_devlink_init_regions - Initialize devlink regions
2010  * @pf: the PF device structure
2011  *
2012  * Create devlink regions used to enable access to dump the contents of the
2013  * flash memory on the device.
2014  */
ice_devlink_init_regions(struct ice_pf * pf)2015 void ice_devlink_init_regions(struct ice_pf *pf)
2016 {
2017 	struct devlink *devlink = priv_to_devlink(pf);
2018 	struct device *dev = ice_pf_to_dev(pf);
2019 	u64 nvm_size, sram_size;
2020 
2021 	nvm_size = pf->hw.flash.flash_size;
2022 	pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
2023 					    nvm_size);
2024 	if (IS_ERR(pf->nvm_region)) {
2025 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
2026 			PTR_ERR(pf->nvm_region));
2027 		pf->nvm_region = NULL;
2028 	}
2029 
2030 	sram_size = pf->hw.flash.sr_words * 2u;
2031 	pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
2032 					     1, sram_size);
2033 	if (IS_ERR(pf->sram_region)) {
2034 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
2035 			PTR_ERR(pf->sram_region));
2036 		pf->sram_region = NULL;
2037 	}
2038 
2039 	pf->devcaps_region = devl_region_create(devlink,
2040 						&ice_devcaps_region_ops, 10,
2041 						ICE_AQ_MAX_BUF_LEN);
2042 	if (IS_ERR(pf->devcaps_region)) {
2043 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
2044 			PTR_ERR(pf->devcaps_region));
2045 		pf->devcaps_region = NULL;
2046 	}
2047 }
2048 
2049 /**
2050  * ice_devlink_destroy_regions - Destroy devlink regions
2051  * @pf: the PF device structure
2052  *
2053  * Remove previously created regions for this PF.
2054  */
ice_devlink_destroy_regions(struct ice_pf * pf)2055 void ice_devlink_destroy_regions(struct ice_pf *pf)
2056 {
2057 	if (pf->nvm_region)
2058 		devl_region_destroy(pf->nvm_region);
2059 
2060 	if (pf->sram_region)
2061 		devl_region_destroy(pf->sram_region);
2062 
2063 	if (pf->devcaps_region)
2064 		devl_region_destroy(pf->devcaps_region);
2065 }
2066