1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip switch driver main logic
4  *
5  * Copyright (C) 2017-2024 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/dsa/ksz_common.h>
10 #include <linux/export.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/platform_data/microchip-ksz.h>
15 #include <linux/phy.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/if_hsr.h>
20 #include <linux/irq.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/micrel_phy.h>
26 #include <net/dsa.h>
27 #include <net/ieee8021q.h>
28 #include <net/pkt_cls.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_common.h"
32 #include "ksz_dcb.h"
33 #include "ksz_ptp.h"
34 #include "ksz8.h"
35 #include "ksz9477.h"
36 #include "lan937x.h"
37 
38 #define MIB_COUNTER_NUM 0x20
39 
40 struct ksz_stats_raw {
41 	u64 rx_hi;
42 	u64 rx_undersize;
43 	u64 rx_fragments;
44 	u64 rx_oversize;
45 	u64 rx_jabbers;
46 	u64 rx_symbol_err;
47 	u64 rx_crc_err;
48 	u64 rx_align_err;
49 	u64 rx_mac_ctrl;
50 	u64 rx_pause;
51 	u64 rx_bcast;
52 	u64 rx_mcast;
53 	u64 rx_ucast;
54 	u64 rx_64_or_less;
55 	u64 rx_65_127;
56 	u64 rx_128_255;
57 	u64 rx_256_511;
58 	u64 rx_512_1023;
59 	u64 rx_1024_1522;
60 	u64 rx_1523_2000;
61 	u64 rx_2001;
62 	u64 tx_hi;
63 	u64 tx_late_col;
64 	u64 tx_pause;
65 	u64 tx_bcast;
66 	u64 tx_mcast;
67 	u64 tx_ucast;
68 	u64 tx_deferred;
69 	u64 tx_total_col;
70 	u64 tx_exc_col;
71 	u64 tx_single_col;
72 	u64 tx_mult_col;
73 	u64 rx_total;
74 	u64 tx_total;
75 	u64 rx_discards;
76 	u64 tx_discards;
77 };
78 
79 struct ksz88xx_stats_raw {
80 	u64 rx;
81 	u64 rx_hi;
82 	u64 rx_undersize;
83 	u64 rx_fragments;
84 	u64 rx_oversize;
85 	u64 rx_jabbers;
86 	u64 rx_symbol_err;
87 	u64 rx_crc_err;
88 	u64 rx_align_err;
89 	u64 rx_mac_ctrl;
90 	u64 rx_pause;
91 	u64 rx_bcast;
92 	u64 rx_mcast;
93 	u64 rx_ucast;
94 	u64 rx_64_or_less;
95 	u64 rx_65_127;
96 	u64 rx_128_255;
97 	u64 rx_256_511;
98 	u64 rx_512_1023;
99 	u64 rx_1024_1522;
100 	u64 tx;
101 	u64 tx_hi;
102 	u64 tx_late_col;
103 	u64 tx_pause;
104 	u64 tx_bcast;
105 	u64 tx_mcast;
106 	u64 tx_ucast;
107 	u64 tx_deferred;
108 	u64 tx_total_col;
109 	u64 tx_exc_col;
110 	u64 tx_single_col;
111 	u64 tx_mult_col;
112 	u64 rx_discards;
113 	u64 tx_discards;
114 };
115 
116 static const struct ksz_mib_names ksz88xx_mib_names[] = {
117 	{ 0x00, "rx" },
118 	{ 0x01, "rx_hi" },
119 	{ 0x02, "rx_undersize" },
120 	{ 0x03, "rx_fragments" },
121 	{ 0x04, "rx_oversize" },
122 	{ 0x05, "rx_jabbers" },
123 	{ 0x06, "rx_symbol_err" },
124 	{ 0x07, "rx_crc_err" },
125 	{ 0x08, "rx_align_err" },
126 	{ 0x09, "rx_mac_ctrl" },
127 	{ 0x0a, "rx_pause" },
128 	{ 0x0b, "rx_bcast" },
129 	{ 0x0c, "rx_mcast" },
130 	{ 0x0d, "rx_ucast" },
131 	{ 0x0e, "rx_64_or_less" },
132 	{ 0x0f, "rx_65_127" },
133 	{ 0x10, "rx_128_255" },
134 	{ 0x11, "rx_256_511" },
135 	{ 0x12, "rx_512_1023" },
136 	{ 0x13, "rx_1024_1522" },
137 	{ 0x14, "tx" },
138 	{ 0x15, "tx_hi" },
139 	{ 0x16, "tx_late_col" },
140 	{ 0x17, "tx_pause" },
141 	{ 0x18, "tx_bcast" },
142 	{ 0x19, "tx_mcast" },
143 	{ 0x1a, "tx_ucast" },
144 	{ 0x1b, "tx_deferred" },
145 	{ 0x1c, "tx_total_col" },
146 	{ 0x1d, "tx_exc_col" },
147 	{ 0x1e, "tx_single_col" },
148 	{ 0x1f, "tx_mult_col" },
149 	{ 0x100, "rx_discards" },
150 	{ 0x101, "tx_discards" },
151 };
152 
153 static const struct ksz_mib_names ksz9477_mib_names[] = {
154 	{ 0x00, "rx_hi" },
155 	{ 0x01, "rx_undersize" },
156 	{ 0x02, "rx_fragments" },
157 	{ 0x03, "rx_oversize" },
158 	{ 0x04, "rx_jabbers" },
159 	{ 0x05, "rx_symbol_err" },
160 	{ 0x06, "rx_crc_err" },
161 	{ 0x07, "rx_align_err" },
162 	{ 0x08, "rx_mac_ctrl" },
163 	{ 0x09, "rx_pause" },
164 	{ 0x0A, "rx_bcast" },
165 	{ 0x0B, "rx_mcast" },
166 	{ 0x0C, "rx_ucast" },
167 	{ 0x0D, "rx_64_or_less" },
168 	{ 0x0E, "rx_65_127" },
169 	{ 0x0F, "rx_128_255" },
170 	{ 0x10, "rx_256_511" },
171 	{ 0x11, "rx_512_1023" },
172 	{ 0x12, "rx_1024_1522" },
173 	{ 0x13, "rx_1523_2000" },
174 	{ 0x14, "rx_2001" },
175 	{ 0x15, "tx_hi" },
176 	{ 0x16, "tx_late_col" },
177 	{ 0x17, "tx_pause" },
178 	{ 0x18, "tx_bcast" },
179 	{ 0x19, "tx_mcast" },
180 	{ 0x1A, "tx_ucast" },
181 	{ 0x1B, "tx_deferred" },
182 	{ 0x1C, "tx_total_col" },
183 	{ 0x1D, "tx_exc_col" },
184 	{ 0x1E, "tx_single_col" },
185 	{ 0x1F, "tx_mult_col" },
186 	{ 0x80, "rx_total" },
187 	{ 0x81, "tx_total" },
188 	{ 0x82, "rx_discards" },
189 	{ 0x83, "tx_discards" },
190 };
191 
192 struct ksz_driver_strength_prop {
193 	const char *name;
194 	int offset;
195 	int value;
196 };
197 
198 enum ksz_driver_strength_type {
199 	KSZ_DRIVER_STRENGTH_HI,
200 	KSZ_DRIVER_STRENGTH_LO,
201 	KSZ_DRIVER_STRENGTH_IO,
202 };
203 
204 /**
205  * struct ksz_drive_strength - drive strength mapping
206  * @reg_val:	register value
207  * @microamp:	microamp value
208  */
209 struct ksz_drive_strength {
210 	u32 reg_val;
211 	u32 microamp;
212 };
213 
214 /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
215  *
216  * This values are not documented in KSZ9477 variants but confirmed by
217  * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
218  * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
219  *
220  * Documentation in KSZ8795CLX provides more information with some
221  * recommendations:
222  * - for high speed signals
223  *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
224  *      2.5V or 3.3V VDDIO.
225  *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
226  *      using 1.8V VDDIO.
227  *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
228  *      or 3.3V VDDIO.
229  *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
230  *   5. In same interface, the heavy loading should use higher one of the
231  *      drive current strength.
232  * - for low speed signals
233  *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
234  *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
235  *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
236  *   4. If it is heavy loading, can use higher drive current strength.
237  */
238 static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
239 	{ SW_DRIVE_STRENGTH_2MA,  2000 },
240 	{ SW_DRIVE_STRENGTH_4MA,  4000 },
241 	{ SW_DRIVE_STRENGTH_8MA,  8000 },
242 	{ SW_DRIVE_STRENGTH_12MA, 12000 },
243 	{ SW_DRIVE_STRENGTH_16MA, 16000 },
244 	{ SW_DRIVE_STRENGTH_20MA, 20000 },
245 	{ SW_DRIVE_STRENGTH_24MA, 24000 },
246 	{ SW_DRIVE_STRENGTH_28MA, 28000 },
247 };
248 
249 /* ksz88x3_drive_strengths - Drive strength mapping for KSZ8863, KSZ8873, ..
250  *			     variants.
251  * This values are documented in KSZ8873 and KSZ8863 datasheets.
252  */
253 static const struct ksz_drive_strength ksz88x3_drive_strengths[] = {
254 	{ 0,  8000 },
255 	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
256 };
257 
258 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
259 				       unsigned int mode,
260 				       const struct phylink_link_state *state);
261 static void ksz_phylink_mac_config(struct phylink_config *config,
262 				   unsigned int mode,
263 				   const struct phylink_link_state *state);
264 static void ksz_phylink_mac_link_down(struct phylink_config *config,
265 				      unsigned int mode,
266 				      phy_interface_t interface);
267 
268 /**
269  * ksz_phylink_mac_disable_tx_lpi() - Callback to signal LPI support (Dummy)
270  * @config: phylink config structure
271  *
272  * This function is a dummy handler. See ksz_phylink_mac_enable_tx_lpi() for
273  * a detailed explanation of EEE/LPI handling in KSZ switches.
274  */
ksz_phylink_mac_disable_tx_lpi(struct phylink_config * config)275 static void ksz_phylink_mac_disable_tx_lpi(struct phylink_config *config)
276 {
277 }
278 
279 /**
280  * ksz_phylink_mac_enable_tx_lpi() - Callback to signal LPI support (Dummy)
281  * @config: phylink config structure
282  * @timer: timer value before entering LPI (unused)
283  * @tx_clock_stop: whether to stop the TX clock in LPI mode (unused)
284  *
285  * This function signals to phylink that the driver architecture supports
286  * LPI management, enabling phylink to control EEE advertisement during
287  * negotiation according to IEEE Std 802.3 (Clause 78).
288  *
289  * Hardware Management of EEE/LPI State:
290  * For KSZ switch ports with integrated PHYs (e.g., KSZ9893R ports 1-2),
291  * observation and testing suggest that the actual EEE / Low Power Idle (LPI)
292  * state transitions are managed autonomously by the hardware based on
293  * the auto-negotiation results. (Note: While the datasheet describes EEE
294  * operation based on negotiation, it doesn't explicitly detail the internal
295  * MAC/PHY interaction, so autonomous hardware management of the MAC state
296  * for LPI is inferred from observed behavior).
297  * This hardware control, consistent with the switch's ability to operate
298  * autonomously via strapping, means MAC-level software intervention is not
299  * required or exposed for managing the LPI state once EEE is negotiated.
300  * (Ref: KSZ9893R Data Sheet DS00002420D, primarily Section 4.7.5 explaining
301  * EEE, also Sections 4.1.7 on Auto-Negotiation and 3.2.1 on Configuration
302  * Straps).
303  *
304  * Additionally, ports configured as MAC interfaces (e.g., KSZ9893R port 3)
305  * lack documented MAC-level LPI control.
306  *
307  * Therefore, this callback performs no action and serves primarily to inform
308  * phylink of LPI awareness and to document the inferred hardware behavior.
309  *
310  * Returns: 0 (Always success)
311  */
ksz_phylink_mac_enable_tx_lpi(struct phylink_config * config,u32 timer,bool tx_clock_stop)312 static int ksz_phylink_mac_enable_tx_lpi(struct phylink_config *config,
313 					 u32 timer, bool tx_clock_stop)
314 {
315 	return 0;
316 }
317 
318 static const struct phylink_mac_ops ksz88x3_phylink_mac_ops = {
319 	.mac_config	= ksz88x3_phylink_mac_config,
320 	.mac_link_down	= ksz_phylink_mac_link_down,
321 	.mac_link_up	= ksz8_phylink_mac_link_up,
322 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
323 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
324 };
325 
326 static const struct phylink_mac_ops ksz8_phylink_mac_ops = {
327 	.mac_config	= ksz_phylink_mac_config,
328 	.mac_link_down	= ksz_phylink_mac_link_down,
329 	.mac_link_up	= ksz8_phylink_mac_link_up,
330 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
331 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
332 };
333 
334 static const struct ksz_dev_ops ksz88xx_dev_ops = {
335 	.setup = ksz8_setup,
336 	.get_port_addr = ksz8_get_port_addr,
337 	.cfg_port_member = ksz8_cfg_port_member,
338 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
339 	.port_setup = ksz8_port_setup,
340 	.r_phy = ksz8_r_phy,
341 	.w_phy = ksz8_w_phy,
342 	.r_mib_cnt = ksz8_r_mib_cnt,
343 	.r_mib_pkt = ksz8_r_mib_pkt,
344 	.r_mib_stat64 = ksz88xx_r_mib_stats64,
345 	.freeze_mib = ksz8_freeze_mib,
346 	.port_init_cnt = ksz8_port_init_cnt,
347 	.fdb_dump = ksz8_fdb_dump,
348 	.fdb_add = ksz8_fdb_add,
349 	.fdb_del = ksz8_fdb_del,
350 	.mdb_add = ksz8_mdb_add,
351 	.mdb_del = ksz8_mdb_del,
352 	.vlan_filtering = ksz8_port_vlan_filtering,
353 	.vlan_add = ksz8_port_vlan_add,
354 	.vlan_del = ksz8_port_vlan_del,
355 	.mirror_add = ksz8_port_mirror_add,
356 	.mirror_del = ksz8_port_mirror_del,
357 	.get_caps = ksz8_get_caps,
358 	.config_cpu_port = ksz8_config_cpu_port,
359 	.enable_stp_addr = ksz8_enable_stp_addr,
360 	.reset = ksz8_reset_switch,
361 	.init = ksz8_switch_init,
362 	.exit = ksz8_switch_exit,
363 	.change_mtu = ksz8_change_mtu,
364 	.pme_write8 = ksz8_pme_write8,
365 	.pme_pread8 = ksz8_pme_pread8,
366 	.pme_pwrite8 = ksz8_pme_pwrite8,
367 };
368 
369 static const struct ksz_dev_ops ksz87xx_dev_ops = {
370 	.setup = ksz8_setup,
371 	.get_port_addr = ksz8_get_port_addr,
372 	.cfg_port_member = ksz8_cfg_port_member,
373 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
374 	.port_setup = ksz8_port_setup,
375 	.r_phy = ksz8_r_phy,
376 	.w_phy = ksz8_w_phy,
377 	.r_mib_cnt = ksz8_r_mib_cnt,
378 	.r_mib_pkt = ksz8_r_mib_pkt,
379 	.r_mib_stat64 = ksz_r_mib_stats64,
380 	.freeze_mib = ksz8_freeze_mib,
381 	.port_init_cnt = ksz8_port_init_cnt,
382 	.fdb_dump = ksz8_fdb_dump,
383 	.fdb_add = ksz8_fdb_add,
384 	.fdb_del = ksz8_fdb_del,
385 	.mdb_add = ksz8_mdb_add,
386 	.mdb_del = ksz8_mdb_del,
387 	.vlan_filtering = ksz8_port_vlan_filtering,
388 	.vlan_add = ksz8_port_vlan_add,
389 	.vlan_del = ksz8_port_vlan_del,
390 	.mirror_add = ksz8_port_mirror_add,
391 	.mirror_del = ksz8_port_mirror_del,
392 	.get_caps = ksz8_get_caps,
393 	.config_cpu_port = ksz8_config_cpu_port,
394 	.enable_stp_addr = ksz8_enable_stp_addr,
395 	.reset = ksz8_reset_switch,
396 	.init = ksz8_switch_init,
397 	.exit = ksz8_switch_exit,
398 	.change_mtu = ksz8_change_mtu,
399 	.pme_write8 = ksz8_pme_write8,
400 	.pme_pread8 = ksz8_pme_pread8,
401 	.pme_pwrite8 = ksz8_pme_pwrite8,
402 };
403 
404 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
405 					struct phy_device *phydev,
406 					unsigned int mode,
407 					phy_interface_t interface,
408 					int speed, int duplex, bool tx_pause,
409 					bool rx_pause);
410 
411 static const struct phylink_mac_ops ksz9477_phylink_mac_ops = {
412 	.mac_config	= ksz_phylink_mac_config,
413 	.mac_link_down	= ksz_phylink_mac_link_down,
414 	.mac_link_up	= ksz9477_phylink_mac_link_up,
415 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
416 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
417 };
418 
419 static const struct ksz_dev_ops ksz9477_dev_ops = {
420 	.setup = ksz9477_setup,
421 	.get_port_addr = ksz9477_get_port_addr,
422 	.cfg_port_member = ksz9477_cfg_port_member,
423 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
424 	.port_setup = ksz9477_port_setup,
425 	.set_ageing_time = ksz9477_set_ageing_time,
426 	.r_phy = ksz9477_r_phy,
427 	.w_phy = ksz9477_w_phy,
428 	.r_mib_cnt = ksz9477_r_mib_cnt,
429 	.r_mib_pkt = ksz9477_r_mib_pkt,
430 	.r_mib_stat64 = ksz_r_mib_stats64,
431 	.freeze_mib = ksz9477_freeze_mib,
432 	.port_init_cnt = ksz9477_port_init_cnt,
433 	.vlan_filtering = ksz9477_port_vlan_filtering,
434 	.vlan_add = ksz9477_port_vlan_add,
435 	.vlan_del = ksz9477_port_vlan_del,
436 	.mirror_add = ksz9477_port_mirror_add,
437 	.mirror_del = ksz9477_port_mirror_del,
438 	.get_caps = ksz9477_get_caps,
439 	.fdb_dump = ksz9477_fdb_dump,
440 	.fdb_add = ksz9477_fdb_add,
441 	.fdb_del = ksz9477_fdb_del,
442 	.mdb_add = ksz9477_mdb_add,
443 	.mdb_del = ksz9477_mdb_del,
444 	.change_mtu = ksz9477_change_mtu,
445 	.pme_write8 = ksz_write8,
446 	.pme_pread8 = ksz_pread8,
447 	.pme_pwrite8 = ksz_pwrite8,
448 	.config_cpu_port = ksz9477_config_cpu_port,
449 	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
450 	.enable_stp_addr = ksz9477_enable_stp_addr,
451 	.reset = ksz9477_reset_switch,
452 	.init = ksz9477_switch_init,
453 	.exit = ksz9477_switch_exit,
454 };
455 
456 static const struct phylink_mac_ops lan937x_phylink_mac_ops = {
457 	.mac_config	= ksz_phylink_mac_config,
458 	.mac_link_down	= ksz_phylink_mac_link_down,
459 	.mac_link_up	= ksz9477_phylink_mac_link_up,
460 	.mac_disable_tx_lpi = ksz_phylink_mac_disable_tx_lpi,
461 	.mac_enable_tx_lpi = ksz_phylink_mac_enable_tx_lpi,
462 };
463 
464 static const struct ksz_dev_ops lan937x_dev_ops = {
465 	.setup = lan937x_setup,
466 	.teardown = lan937x_teardown,
467 	.get_port_addr = ksz9477_get_port_addr,
468 	.cfg_port_member = ksz9477_cfg_port_member,
469 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
470 	.port_setup = lan937x_port_setup,
471 	.set_ageing_time = lan937x_set_ageing_time,
472 	.mdio_bus_preinit = lan937x_mdio_bus_preinit,
473 	.create_phy_addr_map = lan937x_create_phy_addr_map,
474 	.r_phy = lan937x_r_phy,
475 	.w_phy = lan937x_w_phy,
476 	.r_mib_cnt = ksz9477_r_mib_cnt,
477 	.r_mib_pkt = ksz9477_r_mib_pkt,
478 	.r_mib_stat64 = ksz_r_mib_stats64,
479 	.freeze_mib = ksz9477_freeze_mib,
480 	.port_init_cnt = ksz9477_port_init_cnt,
481 	.vlan_filtering = ksz9477_port_vlan_filtering,
482 	.vlan_add = ksz9477_port_vlan_add,
483 	.vlan_del = ksz9477_port_vlan_del,
484 	.mirror_add = ksz9477_port_mirror_add,
485 	.mirror_del = ksz9477_port_mirror_del,
486 	.get_caps = lan937x_phylink_get_caps,
487 	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
488 	.fdb_dump = ksz9477_fdb_dump,
489 	.fdb_add = ksz9477_fdb_add,
490 	.fdb_del = ksz9477_fdb_del,
491 	.mdb_add = ksz9477_mdb_add,
492 	.mdb_del = ksz9477_mdb_del,
493 	.change_mtu = lan937x_change_mtu,
494 	.config_cpu_port = lan937x_config_cpu_port,
495 	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
496 	.enable_stp_addr = ksz9477_enable_stp_addr,
497 	.reset = lan937x_reset_switch,
498 	.init = lan937x_switch_init,
499 	.exit = lan937x_switch_exit,
500 };
501 
502 static const u16 ksz8795_regs[] = {
503 	[REG_SW_MAC_ADDR]		= 0x68,
504 	[REG_IND_CTRL_0]		= 0x6E,
505 	[REG_IND_DATA_8]		= 0x70,
506 	[REG_IND_DATA_CHECK]		= 0x72,
507 	[REG_IND_DATA_HI]		= 0x71,
508 	[REG_IND_DATA_LO]		= 0x75,
509 	[REG_IND_MIB_CHECK]		= 0x74,
510 	[REG_IND_BYTE]			= 0xA0,
511 	[P_FORCE_CTRL]			= 0x0C,
512 	[P_LINK_STATUS]			= 0x0E,
513 	[P_LOCAL_CTRL]			= 0x07,
514 	[P_NEG_RESTART_CTRL]		= 0x0D,
515 	[P_REMOTE_STATUS]		= 0x08,
516 	[P_SPEED_STATUS]		= 0x09,
517 	[S_TAIL_TAG_CTRL]		= 0x0C,
518 	[P_STP_CTRL]			= 0x02,
519 	[S_START_CTRL]			= 0x01,
520 	[S_BROADCAST_CTRL]		= 0x06,
521 	[S_MULTICAST_CTRL]		= 0x04,
522 	[P_XMII_CTRL_0]			= 0x06,
523 	[P_XMII_CTRL_1]			= 0x06,
524 	[REG_SW_PME_CTRL]		= 0x8003,
525 	[REG_PORT_PME_STATUS]		= 0x8003,
526 	[REG_PORT_PME_CTRL]		= 0x8007,
527 };
528 
529 static const u32 ksz8795_masks[] = {
530 	[PORT_802_1P_REMAPPING]		= BIT(7),
531 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
532 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
533 	[MIB_COUNTER_VALID]		= BIT(5),
534 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
535 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
536 	[VLAN_TABLE_VALID]		= BIT(12),
537 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
538 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
539 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
540 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
541 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
542 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
543 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
544 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
545 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
546 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
547 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
548 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
549 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
550 	[P_MII_RX_FLOW_CTRL]		= BIT(5),
551 };
552 
553 static const u8 ksz8795_xmii_ctrl0[] = {
554 	[P_MII_100MBIT]			= 0,
555 	[P_MII_10MBIT]			= 1,
556 	[P_MII_FULL_DUPLEX]		= 0,
557 	[P_MII_HALF_DUPLEX]		= 1,
558 };
559 
560 static const u8 ksz8795_xmii_ctrl1[] = {
561 	[P_RGMII_SEL]			= 3,
562 	[P_GMII_SEL]			= 2,
563 	[P_RMII_SEL]			= 1,
564 	[P_MII_SEL]			= 0,
565 	[P_GMII_1GBIT]			= 1,
566 	[P_GMII_NOT_1GBIT]		= 0,
567 };
568 
569 static const u8 ksz8795_shifts[] = {
570 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
571 	[VLAN_TABLE]			= 16,
572 	[STATIC_MAC_FWD_PORTS]		= 16,
573 	[STATIC_MAC_FID]		= 24,
574 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
575 	[DYNAMIC_MAC_ENTRIES]		= 29,
576 	[DYNAMIC_MAC_FID]		= 16,
577 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
578 	[DYNAMIC_MAC_SRC_PORT]		= 24,
579 };
580 
581 static const u16 ksz8863_regs[] = {
582 	[REG_SW_MAC_ADDR]		= 0x70,
583 	[REG_IND_CTRL_0]		= 0x79,
584 	[REG_IND_DATA_8]		= 0x7B,
585 	[REG_IND_DATA_CHECK]		= 0x7B,
586 	[REG_IND_DATA_HI]		= 0x7C,
587 	[REG_IND_DATA_LO]		= 0x80,
588 	[REG_IND_MIB_CHECK]		= 0x80,
589 	[P_FORCE_CTRL]			= 0x0C,
590 	[P_LINK_STATUS]			= 0x0E,
591 	[P_LOCAL_CTRL]			= 0x0C,
592 	[P_NEG_RESTART_CTRL]		= 0x0D,
593 	[P_REMOTE_STATUS]		= 0x0E,
594 	[P_SPEED_STATUS]		= 0x0F,
595 	[S_TAIL_TAG_CTRL]		= 0x03,
596 	[P_STP_CTRL]			= 0x02,
597 	[S_START_CTRL]			= 0x01,
598 	[S_BROADCAST_CTRL]		= 0x06,
599 	[S_MULTICAST_CTRL]		= 0x04,
600 };
601 
602 static const u32 ksz8863_masks[] = {
603 	[PORT_802_1P_REMAPPING]		= BIT(3),
604 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
605 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
606 	[MIB_COUNTER_VALID]		= BIT(6),
607 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
608 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
609 	[VLAN_TABLE_VALID]		= BIT(19),
610 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
611 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
612 	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
613 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
614 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
615 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
616 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
617 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
618 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
619 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
620 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
621 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
622 };
623 
624 static u8 ksz8863_shifts[] = {
625 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
626 	[STATIC_MAC_FWD_PORTS]		= 16,
627 	[STATIC_MAC_FID]		= 22,
628 	[DYNAMIC_MAC_ENTRIES_H]		= 8,
629 	[DYNAMIC_MAC_ENTRIES]		= 24,
630 	[DYNAMIC_MAC_FID]		= 16,
631 	[DYNAMIC_MAC_TIMESTAMP]		= 22,
632 	[DYNAMIC_MAC_SRC_PORT]		= 20,
633 };
634 
635 static const u16 ksz8895_regs[] = {
636 	[REG_SW_MAC_ADDR]		= 0x68,
637 	[REG_IND_CTRL_0]		= 0x6E,
638 	[REG_IND_DATA_8]		= 0x70,
639 	[REG_IND_DATA_CHECK]		= 0x72,
640 	[REG_IND_DATA_HI]		= 0x71,
641 	[REG_IND_DATA_LO]		= 0x75,
642 	[REG_IND_MIB_CHECK]		= 0x75,
643 	[P_FORCE_CTRL]			= 0x0C,
644 	[P_LINK_STATUS]			= 0x0E,
645 	[P_LOCAL_CTRL]			= 0x0C,
646 	[P_NEG_RESTART_CTRL]		= 0x0D,
647 	[P_REMOTE_STATUS]		= 0x0E,
648 	[P_SPEED_STATUS]		= 0x09,
649 	[S_TAIL_TAG_CTRL]		= 0x0C,
650 	[P_STP_CTRL]			= 0x02,
651 	[S_START_CTRL]			= 0x01,
652 	[S_BROADCAST_CTRL]		= 0x06,
653 	[S_MULTICAST_CTRL]		= 0x04,
654 };
655 
656 static const u32 ksz8895_masks[] = {
657 	[PORT_802_1P_REMAPPING]		= BIT(7),
658 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
659 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
660 	[MIB_COUNTER_VALID]		= BIT(6),
661 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
662 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
663 	[VLAN_TABLE_VALID]		= BIT(12),
664 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
665 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
666 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
667 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
668 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
669 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
670 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
671 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
672 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
673 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
674 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
675 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
676 };
677 
678 static const u8 ksz8895_shifts[] = {
679 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
680 	[VLAN_TABLE]			= 13,
681 	[STATIC_MAC_FWD_PORTS]		= 16,
682 	[STATIC_MAC_FID]		= 24,
683 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
684 	[DYNAMIC_MAC_ENTRIES]		= 29,
685 	[DYNAMIC_MAC_FID]		= 16,
686 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
687 	[DYNAMIC_MAC_SRC_PORT]		= 24,
688 };
689 
690 static const u16 ksz9477_regs[] = {
691 	[REG_SW_MAC_ADDR]		= 0x0302,
692 	[P_STP_CTRL]			= 0x0B04,
693 	[S_START_CTRL]			= 0x0300,
694 	[S_BROADCAST_CTRL]		= 0x0332,
695 	[S_MULTICAST_CTRL]		= 0x0331,
696 	[P_XMII_CTRL_0]			= 0x0300,
697 	[P_XMII_CTRL_1]			= 0x0301,
698 	[REG_SW_PME_CTRL]		= 0x0006,
699 	[REG_PORT_PME_STATUS]		= 0x0013,
700 	[REG_PORT_PME_CTRL]		= 0x0017,
701 };
702 
703 static const u32 ksz9477_masks[] = {
704 	[ALU_STAT_WRITE]		= 0,
705 	[ALU_STAT_READ]			= 1,
706 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
707 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
708 };
709 
710 static const u8 ksz9477_shifts[] = {
711 	[ALU_STAT_INDEX]		= 16,
712 };
713 
714 static const u8 ksz9477_xmii_ctrl0[] = {
715 	[P_MII_100MBIT]			= 1,
716 	[P_MII_10MBIT]			= 0,
717 	[P_MII_FULL_DUPLEX]		= 1,
718 	[P_MII_HALF_DUPLEX]		= 0,
719 };
720 
721 static const u8 ksz9477_xmii_ctrl1[] = {
722 	[P_RGMII_SEL]			= 0,
723 	[P_RMII_SEL]			= 1,
724 	[P_GMII_SEL]			= 2,
725 	[P_MII_SEL]			= 3,
726 	[P_GMII_1GBIT]			= 0,
727 	[P_GMII_NOT_1GBIT]		= 1,
728 };
729 
730 static const u32 lan937x_masks[] = {
731 	[ALU_STAT_WRITE]		= 1,
732 	[ALU_STAT_READ]			= 2,
733 	[P_MII_TX_FLOW_CTRL]		= BIT(5),
734 	[P_MII_RX_FLOW_CTRL]		= BIT(3),
735 };
736 
737 static const u8 lan937x_shifts[] = {
738 	[ALU_STAT_INDEX]		= 8,
739 };
740 
741 static const struct regmap_range ksz8563_valid_regs[] = {
742 	regmap_reg_range(0x0000, 0x0003),
743 	regmap_reg_range(0x0006, 0x0006),
744 	regmap_reg_range(0x000f, 0x001f),
745 	regmap_reg_range(0x0100, 0x0100),
746 	regmap_reg_range(0x0104, 0x0107),
747 	regmap_reg_range(0x010d, 0x010d),
748 	regmap_reg_range(0x0110, 0x0113),
749 	regmap_reg_range(0x0120, 0x012b),
750 	regmap_reg_range(0x0201, 0x0201),
751 	regmap_reg_range(0x0210, 0x0213),
752 	regmap_reg_range(0x0300, 0x0300),
753 	regmap_reg_range(0x0302, 0x031b),
754 	regmap_reg_range(0x0320, 0x032b),
755 	regmap_reg_range(0x0330, 0x0336),
756 	regmap_reg_range(0x0338, 0x033e),
757 	regmap_reg_range(0x0340, 0x035f),
758 	regmap_reg_range(0x0370, 0x0370),
759 	regmap_reg_range(0x0378, 0x0378),
760 	regmap_reg_range(0x037c, 0x037d),
761 	regmap_reg_range(0x0390, 0x0393),
762 	regmap_reg_range(0x0400, 0x040e),
763 	regmap_reg_range(0x0410, 0x042f),
764 	regmap_reg_range(0x0500, 0x0519),
765 	regmap_reg_range(0x0520, 0x054b),
766 	regmap_reg_range(0x0550, 0x05b3),
767 
768 	/* port 1 */
769 	regmap_reg_range(0x1000, 0x1001),
770 	regmap_reg_range(0x1004, 0x100b),
771 	regmap_reg_range(0x1013, 0x1013),
772 	regmap_reg_range(0x1017, 0x1017),
773 	regmap_reg_range(0x101b, 0x101b),
774 	regmap_reg_range(0x101f, 0x1021),
775 	regmap_reg_range(0x1030, 0x1030),
776 	regmap_reg_range(0x1100, 0x1111),
777 	regmap_reg_range(0x111a, 0x111d),
778 	regmap_reg_range(0x1122, 0x1127),
779 	regmap_reg_range(0x112a, 0x112b),
780 	regmap_reg_range(0x1136, 0x1139),
781 	regmap_reg_range(0x113e, 0x113f),
782 	regmap_reg_range(0x1400, 0x1401),
783 	regmap_reg_range(0x1403, 0x1403),
784 	regmap_reg_range(0x1410, 0x1417),
785 	regmap_reg_range(0x1420, 0x1423),
786 	regmap_reg_range(0x1500, 0x1507),
787 	regmap_reg_range(0x1600, 0x1612),
788 	regmap_reg_range(0x1800, 0x180f),
789 	regmap_reg_range(0x1900, 0x1907),
790 	regmap_reg_range(0x1914, 0x191b),
791 	regmap_reg_range(0x1a00, 0x1a03),
792 	regmap_reg_range(0x1a04, 0x1a08),
793 	regmap_reg_range(0x1b00, 0x1b01),
794 	regmap_reg_range(0x1b04, 0x1b04),
795 	regmap_reg_range(0x1c00, 0x1c05),
796 	regmap_reg_range(0x1c08, 0x1c1b),
797 
798 	/* port 2 */
799 	regmap_reg_range(0x2000, 0x2001),
800 	regmap_reg_range(0x2004, 0x200b),
801 	regmap_reg_range(0x2013, 0x2013),
802 	regmap_reg_range(0x2017, 0x2017),
803 	regmap_reg_range(0x201b, 0x201b),
804 	regmap_reg_range(0x201f, 0x2021),
805 	regmap_reg_range(0x2030, 0x2030),
806 	regmap_reg_range(0x2100, 0x2111),
807 	regmap_reg_range(0x211a, 0x211d),
808 	regmap_reg_range(0x2122, 0x2127),
809 	regmap_reg_range(0x212a, 0x212b),
810 	regmap_reg_range(0x2136, 0x2139),
811 	regmap_reg_range(0x213e, 0x213f),
812 	regmap_reg_range(0x2400, 0x2401),
813 	regmap_reg_range(0x2403, 0x2403),
814 	regmap_reg_range(0x2410, 0x2417),
815 	regmap_reg_range(0x2420, 0x2423),
816 	regmap_reg_range(0x2500, 0x2507),
817 	regmap_reg_range(0x2600, 0x2612),
818 	regmap_reg_range(0x2800, 0x280f),
819 	regmap_reg_range(0x2900, 0x2907),
820 	regmap_reg_range(0x2914, 0x291b),
821 	regmap_reg_range(0x2a00, 0x2a03),
822 	regmap_reg_range(0x2a04, 0x2a08),
823 	regmap_reg_range(0x2b00, 0x2b01),
824 	regmap_reg_range(0x2b04, 0x2b04),
825 	regmap_reg_range(0x2c00, 0x2c05),
826 	regmap_reg_range(0x2c08, 0x2c1b),
827 
828 	/* port 3 */
829 	regmap_reg_range(0x3000, 0x3001),
830 	regmap_reg_range(0x3004, 0x300b),
831 	regmap_reg_range(0x3013, 0x3013),
832 	regmap_reg_range(0x3017, 0x3017),
833 	regmap_reg_range(0x301b, 0x301b),
834 	regmap_reg_range(0x301f, 0x3021),
835 	regmap_reg_range(0x3030, 0x3030),
836 	regmap_reg_range(0x3300, 0x3301),
837 	regmap_reg_range(0x3303, 0x3303),
838 	regmap_reg_range(0x3400, 0x3401),
839 	regmap_reg_range(0x3403, 0x3403),
840 	regmap_reg_range(0x3410, 0x3417),
841 	regmap_reg_range(0x3420, 0x3423),
842 	regmap_reg_range(0x3500, 0x3507),
843 	regmap_reg_range(0x3600, 0x3612),
844 	regmap_reg_range(0x3800, 0x380f),
845 	regmap_reg_range(0x3900, 0x3907),
846 	regmap_reg_range(0x3914, 0x391b),
847 	regmap_reg_range(0x3a00, 0x3a03),
848 	regmap_reg_range(0x3a04, 0x3a08),
849 	regmap_reg_range(0x3b00, 0x3b01),
850 	regmap_reg_range(0x3b04, 0x3b04),
851 	regmap_reg_range(0x3c00, 0x3c05),
852 	regmap_reg_range(0x3c08, 0x3c1b),
853 };
854 
855 static const struct regmap_access_table ksz8563_register_set = {
856 	.yes_ranges = ksz8563_valid_regs,
857 	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
858 };
859 
860 static const struct regmap_range ksz9477_valid_regs[] = {
861 	regmap_reg_range(0x0000, 0x0003),
862 	regmap_reg_range(0x0006, 0x0006),
863 	regmap_reg_range(0x0010, 0x001f),
864 	regmap_reg_range(0x0100, 0x0100),
865 	regmap_reg_range(0x0103, 0x0107),
866 	regmap_reg_range(0x010d, 0x010d),
867 	regmap_reg_range(0x0110, 0x0113),
868 	regmap_reg_range(0x0120, 0x012b),
869 	regmap_reg_range(0x0201, 0x0201),
870 	regmap_reg_range(0x0210, 0x0213),
871 	regmap_reg_range(0x0300, 0x0300),
872 	regmap_reg_range(0x0302, 0x031b),
873 	regmap_reg_range(0x0320, 0x032b),
874 	regmap_reg_range(0x0330, 0x0336),
875 	regmap_reg_range(0x0338, 0x033b),
876 	regmap_reg_range(0x033e, 0x033e),
877 	regmap_reg_range(0x0340, 0x035f),
878 	regmap_reg_range(0x0370, 0x0370),
879 	regmap_reg_range(0x0378, 0x0378),
880 	regmap_reg_range(0x037c, 0x037d),
881 	regmap_reg_range(0x0390, 0x0393),
882 	regmap_reg_range(0x0400, 0x040e),
883 	regmap_reg_range(0x0410, 0x042f),
884 	regmap_reg_range(0x0444, 0x044b),
885 	regmap_reg_range(0x0450, 0x046f),
886 	regmap_reg_range(0x0500, 0x0519),
887 	regmap_reg_range(0x0520, 0x054b),
888 	regmap_reg_range(0x0550, 0x05b3),
889 	regmap_reg_range(0x0604, 0x060b),
890 	regmap_reg_range(0x0610, 0x0612),
891 	regmap_reg_range(0x0614, 0x062c),
892 	regmap_reg_range(0x0640, 0x0645),
893 	regmap_reg_range(0x0648, 0x064d),
894 
895 	/* port 1 */
896 	regmap_reg_range(0x1000, 0x1001),
897 	regmap_reg_range(0x1013, 0x1013),
898 	regmap_reg_range(0x1017, 0x1017),
899 	regmap_reg_range(0x101b, 0x101b),
900 	regmap_reg_range(0x101f, 0x1020),
901 	regmap_reg_range(0x1030, 0x1030),
902 	regmap_reg_range(0x1100, 0x1115),
903 	regmap_reg_range(0x111a, 0x111f),
904 	regmap_reg_range(0x1120, 0x112b),
905 	regmap_reg_range(0x1134, 0x113b),
906 	regmap_reg_range(0x113c, 0x113f),
907 	regmap_reg_range(0x1400, 0x1401),
908 	regmap_reg_range(0x1403, 0x1403),
909 	regmap_reg_range(0x1410, 0x1417),
910 	regmap_reg_range(0x1420, 0x1423),
911 	regmap_reg_range(0x1500, 0x1507),
912 	regmap_reg_range(0x1600, 0x1613),
913 	regmap_reg_range(0x1800, 0x180f),
914 	regmap_reg_range(0x1820, 0x1827),
915 	regmap_reg_range(0x1830, 0x1837),
916 	regmap_reg_range(0x1840, 0x184b),
917 	regmap_reg_range(0x1900, 0x1907),
918 	regmap_reg_range(0x1914, 0x191b),
919 	regmap_reg_range(0x1920, 0x1920),
920 	regmap_reg_range(0x1923, 0x1927),
921 	regmap_reg_range(0x1a00, 0x1a03),
922 	regmap_reg_range(0x1a04, 0x1a07),
923 	regmap_reg_range(0x1b00, 0x1b01),
924 	regmap_reg_range(0x1b04, 0x1b04),
925 	regmap_reg_range(0x1c00, 0x1c05),
926 	regmap_reg_range(0x1c08, 0x1c1b),
927 
928 	/* port 2 */
929 	regmap_reg_range(0x2000, 0x2001),
930 	regmap_reg_range(0x2013, 0x2013),
931 	regmap_reg_range(0x2017, 0x2017),
932 	regmap_reg_range(0x201b, 0x201b),
933 	regmap_reg_range(0x201f, 0x2020),
934 	regmap_reg_range(0x2030, 0x2030),
935 	regmap_reg_range(0x2100, 0x2115),
936 	regmap_reg_range(0x211a, 0x211f),
937 	regmap_reg_range(0x2120, 0x212b),
938 	regmap_reg_range(0x2134, 0x213b),
939 	regmap_reg_range(0x213c, 0x213f),
940 	regmap_reg_range(0x2400, 0x2401),
941 	regmap_reg_range(0x2403, 0x2403),
942 	regmap_reg_range(0x2410, 0x2417),
943 	regmap_reg_range(0x2420, 0x2423),
944 	regmap_reg_range(0x2500, 0x2507),
945 	regmap_reg_range(0x2600, 0x2613),
946 	regmap_reg_range(0x2800, 0x280f),
947 	regmap_reg_range(0x2820, 0x2827),
948 	regmap_reg_range(0x2830, 0x2837),
949 	regmap_reg_range(0x2840, 0x284b),
950 	regmap_reg_range(0x2900, 0x2907),
951 	regmap_reg_range(0x2914, 0x291b),
952 	regmap_reg_range(0x2920, 0x2920),
953 	regmap_reg_range(0x2923, 0x2927),
954 	regmap_reg_range(0x2a00, 0x2a03),
955 	regmap_reg_range(0x2a04, 0x2a07),
956 	regmap_reg_range(0x2b00, 0x2b01),
957 	regmap_reg_range(0x2b04, 0x2b04),
958 	regmap_reg_range(0x2c00, 0x2c05),
959 	regmap_reg_range(0x2c08, 0x2c1b),
960 
961 	/* port 3 */
962 	regmap_reg_range(0x3000, 0x3001),
963 	regmap_reg_range(0x3013, 0x3013),
964 	regmap_reg_range(0x3017, 0x3017),
965 	regmap_reg_range(0x301b, 0x301b),
966 	regmap_reg_range(0x301f, 0x3020),
967 	regmap_reg_range(0x3030, 0x3030),
968 	regmap_reg_range(0x3100, 0x3115),
969 	regmap_reg_range(0x311a, 0x311f),
970 	regmap_reg_range(0x3120, 0x312b),
971 	regmap_reg_range(0x3134, 0x313b),
972 	regmap_reg_range(0x313c, 0x313f),
973 	regmap_reg_range(0x3400, 0x3401),
974 	regmap_reg_range(0x3403, 0x3403),
975 	regmap_reg_range(0x3410, 0x3417),
976 	regmap_reg_range(0x3420, 0x3423),
977 	regmap_reg_range(0x3500, 0x3507),
978 	regmap_reg_range(0x3600, 0x3613),
979 	regmap_reg_range(0x3800, 0x380f),
980 	regmap_reg_range(0x3820, 0x3827),
981 	regmap_reg_range(0x3830, 0x3837),
982 	regmap_reg_range(0x3840, 0x384b),
983 	regmap_reg_range(0x3900, 0x3907),
984 	regmap_reg_range(0x3914, 0x391b),
985 	regmap_reg_range(0x3920, 0x3920),
986 	regmap_reg_range(0x3923, 0x3927),
987 	regmap_reg_range(0x3a00, 0x3a03),
988 	regmap_reg_range(0x3a04, 0x3a07),
989 	regmap_reg_range(0x3b00, 0x3b01),
990 	regmap_reg_range(0x3b04, 0x3b04),
991 	regmap_reg_range(0x3c00, 0x3c05),
992 	regmap_reg_range(0x3c08, 0x3c1b),
993 
994 	/* port 4 */
995 	regmap_reg_range(0x4000, 0x4001),
996 	regmap_reg_range(0x4013, 0x4013),
997 	regmap_reg_range(0x4017, 0x4017),
998 	regmap_reg_range(0x401b, 0x401b),
999 	regmap_reg_range(0x401f, 0x4020),
1000 	regmap_reg_range(0x4030, 0x4030),
1001 	regmap_reg_range(0x4100, 0x4115),
1002 	regmap_reg_range(0x411a, 0x411f),
1003 	regmap_reg_range(0x4120, 0x412b),
1004 	regmap_reg_range(0x4134, 0x413b),
1005 	regmap_reg_range(0x413c, 0x413f),
1006 	regmap_reg_range(0x4400, 0x4401),
1007 	regmap_reg_range(0x4403, 0x4403),
1008 	regmap_reg_range(0x4410, 0x4417),
1009 	regmap_reg_range(0x4420, 0x4423),
1010 	regmap_reg_range(0x4500, 0x4507),
1011 	regmap_reg_range(0x4600, 0x4613),
1012 	regmap_reg_range(0x4800, 0x480f),
1013 	regmap_reg_range(0x4820, 0x4827),
1014 	regmap_reg_range(0x4830, 0x4837),
1015 	regmap_reg_range(0x4840, 0x484b),
1016 	regmap_reg_range(0x4900, 0x4907),
1017 	regmap_reg_range(0x4914, 0x491b),
1018 	regmap_reg_range(0x4920, 0x4920),
1019 	regmap_reg_range(0x4923, 0x4927),
1020 	regmap_reg_range(0x4a00, 0x4a03),
1021 	regmap_reg_range(0x4a04, 0x4a07),
1022 	regmap_reg_range(0x4b00, 0x4b01),
1023 	regmap_reg_range(0x4b04, 0x4b04),
1024 	regmap_reg_range(0x4c00, 0x4c05),
1025 	regmap_reg_range(0x4c08, 0x4c1b),
1026 
1027 	/* port 5 */
1028 	regmap_reg_range(0x5000, 0x5001),
1029 	regmap_reg_range(0x5013, 0x5013),
1030 	regmap_reg_range(0x5017, 0x5017),
1031 	regmap_reg_range(0x501b, 0x501b),
1032 	regmap_reg_range(0x501f, 0x5020),
1033 	regmap_reg_range(0x5030, 0x5030),
1034 	regmap_reg_range(0x5100, 0x5115),
1035 	regmap_reg_range(0x511a, 0x511f),
1036 	regmap_reg_range(0x5120, 0x512b),
1037 	regmap_reg_range(0x5134, 0x513b),
1038 	regmap_reg_range(0x513c, 0x513f),
1039 	regmap_reg_range(0x5400, 0x5401),
1040 	regmap_reg_range(0x5403, 0x5403),
1041 	regmap_reg_range(0x5410, 0x5417),
1042 	regmap_reg_range(0x5420, 0x5423),
1043 	regmap_reg_range(0x5500, 0x5507),
1044 	regmap_reg_range(0x5600, 0x5613),
1045 	regmap_reg_range(0x5800, 0x580f),
1046 	regmap_reg_range(0x5820, 0x5827),
1047 	regmap_reg_range(0x5830, 0x5837),
1048 	regmap_reg_range(0x5840, 0x584b),
1049 	regmap_reg_range(0x5900, 0x5907),
1050 	regmap_reg_range(0x5914, 0x591b),
1051 	regmap_reg_range(0x5920, 0x5920),
1052 	regmap_reg_range(0x5923, 0x5927),
1053 	regmap_reg_range(0x5a00, 0x5a03),
1054 	regmap_reg_range(0x5a04, 0x5a07),
1055 	regmap_reg_range(0x5b00, 0x5b01),
1056 	regmap_reg_range(0x5b04, 0x5b04),
1057 	regmap_reg_range(0x5c00, 0x5c05),
1058 	regmap_reg_range(0x5c08, 0x5c1b),
1059 
1060 	/* port 6 */
1061 	regmap_reg_range(0x6000, 0x6001),
1062 	regmap_reg_range(0x6013, 0x6013),
1063 	regmap_reg_range(0x6017, 0x6017),
1064 	regmap_reg_range(0x601b, 0x601b),
1065 	regmap_reg_range(0x601f, 0x6020),
1066 	regmap_reg_range(0x6030, 0x6030),
1067 	regmap_reg_range(0x6300, 0x6301),
1068 	regmap_reg_range(0x6400, 0x6401),
1069 	regmap_reg_range(0x6403, 0x6403),
1070 	regmap_reg_range(0x6410, 0x6417),
1071 	regmap_reg_range(0x6420, 0x6423),
1072 	regmap_reg_range(0x6500, 0x6507),
1073 	regmap_reg_range(0x6600, 0x6613),
1074 	regmap_reg_range(0x6800, 0x680f),
1075 	regmap_reg_range(0x6820, 0x6827),
1076 	regmap_reg_range(0x6830, 0x6837),
1077 	regmap_reg_range(0x6840, 0x684b),
1078 	regmap_reg_range(0x6900, 0x6907),
1079 	regmap_reg_range(0x6914, 0x691b),
1080 	regmap_reg_range(0x6920, 0x6920),
1081 	regmap_reg_range(0x6923, 0x6927),
1082 	regmap_reg_range(0x6a00, 0x6a03),
1083 	regmap_reg_range(0x6a04, 0x6a07),
1084 	regmap_reg_range(0x6b00, 0x6b01),
1085 	regmap_reg_range(0x6b04, 0x6b04),
1086 	regmap_reg_range(0x6c00, 0x6c05),
1087 	regmap_reg_range(0x6c08, 0x6c1b),
1088 
1089 	/* port 7 */
1090 	regmap_reg_range(0x7000, 0x7001),
1091 	regmap_reg_range(0x7013, 0x7013),
1092 	regmap_reg_range(0x7017, 0x7017),
1093 	regmap_reg_range(0x701b, 0x701b),
1094 	regmap_reg_range(0x701f, 0x7020),
1095 	regmap_reg_range(0x7030, 0x7030),
1096 	regmap_reg_range(0x7200, 0x7203),
1097 	regmap_reg_range(0x7206, 0x7207),
1098 	regmap_reg_range(0x7300, 0x7301),
1099 	regmap_reg_range(0x7400, 0x7401),
1100 	regmap_reg_range(0x7403, 0x7403),
1101 	regmap_reg_range(0x7410, 0x7417),
1102 	regmap_reg_range(0x7420, 0x7423),
1103 	regmap_reg_range(0x7500, 0x7507),
1104 	regmap_reg_range(0x7600, 0x7613),
1105 	regmap_reg_range(0x7800, 0x780f),
1106 	regmap_reg_range(0x7820, 0x7827),
1107 	regmap_reg_range(0x7830, 0x7837),
1108 	regmap_reg_range(0x7840, 0x784b),
1109 	regmap_reg_range(0x7900, 0x7907),
1110 	regmap_reg_range(0x7914, 0x791b),
1111 	regmap_reg_range(0x7920, 0x7920),
1112 	regmap_reg_range(0x7923, 0x7927),
1113 	regmap_reg_range(0x7a00, 0x7a03),
1114 	regmap_reg_range(0x7a04, 0x7a07),
1115 	regmap_reg_range(0x7b00, 0x7b01),
1116 	regmap_reg_range(0x7b04, 0x7b04),
1117 	regmap_reg_range(0x7c00, 0x7c05),
1118 	regmap_reg_range(0x7c08, 0x7c1b),
1119 };
1120 
1121 static const struct regmap_access_table ksz9477_register_set = {
1122 	.yes_ranges = ksz9477_valid_regs,
1123 	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
1124 };
1125 
1126 static const struct regmap_range ksz9896_valid_regs[] = {
1127 	regmap_reg_range(0x0000, 0x0003),
1128 	regmap_reg_range(0x0006, 0x0006),
1129 	regmap_reg_range(0x0010, 0x001f),
1130 	regmap_reg_range(0x0100, 0x0100),
1131 	regmap_reg_range(0x0103, 0x0107),
1132 	regmap_reg_range(0x010d, 0x010d),
1133 	regmap_reg_range(0x0110, 0x0113),
1134 	regmap_reg_range(0x0120, 0x0127),
1135 	regmap_reg_range(0x0201, 0x0201),
1136 	regmap_reg_range(0x0210, 0x0213),
1137 	regmap_reg_range(0x0300, 0x0300),
1138 	regmap_reg_range(0x0302, 0x030b),
1139 	regmap_reg_range(0x0310, 0x031b),
1140 	regmap_reg_range(0x0320, 0x032b),
1141 	regmap_reg_range(0x0330, 0x0336),
1142 	regmap_reg_range(0x0338, 0x033b),
1143 	regmap_reg_range(0x033e, 0x033e),
1144 	regmap_reg_range(0x0340, 0x035f),
1145 	regmap_reg_range(0x0370, 0x0370),
1146 	regmap_reg_range(0x0378, 0x0378),
1147 	regmap_reg_range(0x037c, 0x037d),
1148 	regmap_reg_range(0x0390, 0x0393),
1149 	regmap_reg_range(0x0400, 0x040e),
1150 	regmap_reg_range(0x0410, 0x042f),
1151 
1152 	/* port 1 */
1153 	regmap_reg_range(0x1000, 0x1001),
1154 	regmap_reg_range(0x1013, 0x1013),
1155 	regmap_reg_range(0x1017, 0x1017),
1156 	regmap_reg_range(0x101b, 0x101b),
1157 	regmap_reg_range(0x101f, 0x1020),
1158 	regmap_reg_range(0x1030, 0x1030),
1159 	regmap_reg_range(0x1100, 0x1115),
1160 	regmap_reg_range(0x111a, 0x111f),
1161 	regmap_reg_range(0x1120, 0x112b),
1162 	regmap_reg_range(0x1134, 0x113b),
1163 	regmap_reg_range(0x113c, 0x113f),
1164 	regmap_reg_range(0x1400, 0x1401),
1165 	regmap_reg_range(0x1403, 0x1403),
1166 	regmap_reg_range(0x1410, 0x1417),
1167 	regmap_reg_range(0x1420, 0x1423),
1168 	regmap_reg_range(0x1500, 0x1507),
1169 	regmap_reg_range(0x1600, 0x1612),
1170 	regmap_reg_range(0x1800, 0x180f),
1171 	regmap_reg_range(0x1820, 0x1827),
1172 	regmap_reg_range(0x1830, 0x1837),
1173 	regmap_reg_range(0x1840, 0x184b),
1174 	regmap_reg_range(0x1900, 0x1907),
1175 	regmap_reg_range(0x1914, 0x1915),
1176 	regmap_reg_range(0x1a00, 0x1a03),
1177 	regmap_reg_range(0x1a04, 0x1a07),
1178 	regmap_reg_range(0x1b00, 0x1b01),
1179 	regmap_reg_range(0x1b04, 0x1b04),
1180 
1181 	/* port 2 */
1182 	regmap_reg_range(0x2000, 0x2001),
1183 	regmap_reg_range(0x2013, 0x2013),
1184 	regmap_reg_range(0x2017, 0x2017),
1185 	regmap_reg_range(0x201b, 0x201b),
1186 	regmap_reg_range(0x201f, 0x2020),
1187 	regmap_reg_range(0x2030, 0x2030),
1188 	regmap_reg_range(0x2100, 0x2115),
1189 	regmap_reg_range(0x211a, 0x211f),
1190 	regmap_reg_range(0x2120, 0x212b),
1191 	regmap_reg_range(0x2134, 0x213b),
1192 	regmap_reg_range(0x213c, 0x213f),
1193 	regmap_reg_range(0x2400, 0x2401),
1194 	regmap_reg_range(0x2403, 0x2403),
1195 	regmap_reg_range(0x2410, 0x2417),
1196 	regmap_reg_range(0x2420, 0x2423),
1197 	regmap_reg_range(0x2500, 0x2507),
1198 	regmap_reg_range(0x2600, 0x2612),
1199 	regmap_reg_range(0x2800, 0x280f),
1200 	regmap_reg_range(0x2820, 0x2827),
1201 	regmap_reg_range(0x2830, 0x2837),
1202 	regmap_reg_range(0x2840, 0x284b),
1203 	regmap_reg_range(0x2900, 0x2907),
1204 	regmap_reg_range(0x2914, 0x2915),
1205 	regmap_reg_range(0x2a00, 0x2a03),
1206 	regmap_reg_range(0x2a04, 0x2a07),
1207 	regmap_reg_range(0x2b00, 0x2b01),
1208 	regmap_reg_range(0x2b04, 0x2b04),
1209 
1210 	/* port 3 */
1211 	regmap_reg_range(0x3000, 0x3001),
1212 	regmap_reg_range(0x3013, 0x3013),
1213 	regmap_reg_range(0x3017, 0x3017),
1214 	regmap_reg_range(0x301b, 0x301b),
1215 	regmap_reg_range(0x301f, 0x3020),
1216 	regmap_reg_range(0x3030, 0x3030),
1217 	regmap_reg_range(0x3100, 0x3115),
1218 	regmap_reg_range(0x311a, 0x311f),
1219 	regmap_reg_range(0x3120, 0x312b),
1220 	regmap_reg_range(0x3134, 0x313b),
1221 	regmap_reg_range(0x313c, 0x313f),
1222 	regmap_reg_range(0x3400, 0x3401),
1223 	regmap_reg_range(0x3403, 0x3403),
1224 	regmap_reg_range(0x3410, 0x3417),
1225 	regmap_reg_range(0x3420, 0x3423),
1226 	regmap_reg_range(0x3500, 0x3507),
1227 	regmap_reg_range(0x3600, 0x3612),
1228 	regmap_reg_range(0x3800, 0x380f),
1229 	regmap_reg_range(0x3820, 0x3827),
1230 	regmap_reg_range(0x3830, 0x3837),
1231 	regmap_reg_range(0x3840, 0x384b),
1232 	regmap_reg_range(0x3900, 0x3907),
1233 	regmap_reg_range(0x3914, 0x3915),
1234 	regmap_reg_range(0x3a00, 0x3a03),
1235 	regmap_reg_range(0x3a04, 0x3a07),
1236 	regmap_reg_range(0x3b00, 0x3b01),
1237 	regmap_reg_range(0x3b04, 0x3b04),
1238 
1239 	/* port 4 */
1240 	regmap_reg_range(0x4000, 0x4001),
1241 	regmap_reg_range(0x4013, 0x4013),
1242 	regmap_reg_range(0x4017, 0x4017),
1243 	regmap_reg_range(0x401b, 0x401b),
1244 	regmap_reg_range(0x401f, 0x4020),
1245 	regmap_reg_range(0x4030, 0x4030),
1246 	regmap_reg_range(0x4100, 0x4115),
1247 	regmap_reg_range(0x411a, 0x411f),
1248 	regmap_reg_range(0x4120, 0x412b),
1249 	regmap_reg_range(0x4134, 0x413b),
1250 	regmap_reg_range(0x413c, 0x413f),
1251 	regmap_reg_range(0x4400, 0x4401),
1252 	regmap_reg_range(0x4403, 0x4403),
1253 	regmap_reg_range(0x4410, 0x4417),
1254 	regmap_reg_range(0x4420, 0x4423),
1255 	regmap_reg_range(0x4500, 0x4507),
1256 	regmap_reg_range(0x4600, 0x4612),
1257 	regmap_reg_range(0x4800, 0x480f),
1258 	regmap_reg_range(0x4820, 0x4827),
1259 	regmap_reg_range(0x4830, 0x4837),
1260 	regmap_reg_range(0x4840, 0x484b),
1261 	regmap_reg_range(0x4900, 0x4907),
1262 	regmap_reg_range(0x4914, 0x4915),
1263 	regmap_reg_range(0x4a00, 0x4a03),
1264 	regmap_reg_range(0x4a04, 0x4a07),
1265 	regmap_reg_range(0x4b00, 0x4b01),
1266 	regmap_reg_range(0x4b04, 0x4b04),
1267 
1268 	/* port 5 */
1269 	regmap_reg_range(0x5000, 0x5001),
1270 	regmap_reg_range(0x5013, 0x5013),
1271 	regmap_reg_range(0x5017, 0x5017),
1272 	regmap_reg_range(0x501b, 0x501b),
1273 	regmap_reg_range(0x501f, 0x5020),
1274 	regmap_reg_range(0x5030, 0x5030),
1275 	regmap_reg_range(0x5100, 0x5115),
1276 	regmap_reg_range(0x511a, 0x511f),
1277 	regmap_reg_range(0x5120, 0x512b),
1278 	regmap_reg_range(0x5134, 0x513b),
1279 	regmap_reg_range(0x513c, 0x513f),
1280 	regmap_reg_range(0x5400, 0x5401),
1281 	regmap_reg_range(0x5403, 0x5403),
1282 	regmap_reg_range(0x5410, 0x5417),
1283 	regmap_reg_range(0x5420, 0x5423),
1284 	regmap_reg_range(0x5500, 0x5507),
1285 	regmap_reg_range(0x5600, 0x5612),
1286 	regmap_reg_range(0x5800, 0x580f),
1287 	regmap_reg_range(0x5820, 0x5827),
1288 	regmap_reg_range(0x5830, 0x5837),
1289 	regmap_reg_range(0x5840, 0x584b),
1290 	regmap_reg_range(0x5900, 0x5907),
1291 	regmap_reg_range(0x5914, 0x5915),
1292 	regmap_reg_range(0x5a00, 0x5a03),
1293 	regmap_reg_range(0x5a04, 0x5a07),
1294 	regmap_reg_range(0x5b00, 0x5b01),
1295 	regmap_reg_range(0x5b04, 0x5b04),
1296 
1297 	/* port 6 */
1298 	regmap_reg_range(0x6000, 0x6001),
1299 	regmap_reg_range(0x6013, 0x6013),
1300 	regmap_reg_range(0x6017, 0x6017),
1301 	regmap_reg_range(0x601b, 0x601b),
1302 	regmap_reg_range(0x601f, 0x6020),
1303 	regmap_reg_range(0x6030, 0x6030),
1304 	regmap_reg_range(0x6100, 0x6115),
1305 	regmap_reg_range(0x611a, 0x611f),
1306 	regmap_reg_range(0x6120, 0x612b),
1307 	regmap_reg_range(0x6134, 0x613b),
1308 	regmap_reg_range(0x613c, 0x613f),
1309 	regmap_reg_range(0x6300, 0x6301),
1310 	regmap_reg_range(0x6400, 0x6401),
1311 	regmap_reg_range(0x6403, 0x6403),
1312 	regmap_reg_range(0x6410, 0x6417),
1313 	regmap_reg_range(0x6420, 0x6423),
1314 	regmap_reg_range(0x6500, 0x6507),
1315 	regmap_reg_range(0x6600, 0x6612),
1316 	regmap_reg_range(0x6800, 0x680f),
1317 	regmap_reg_range(0x6820, 0x6827),
1318 	regmap_reg_range(0x6830, 0x6837),
1319 	regmap_reg_range(0x6840, 0x684b),
1320 	regmap_reg_range(0x6900, 0x6907),
1321 	regmap_reg_range(0x6914, 0x6915),
1322 	regmap_reg_range(0x6a00, 0x6a03),
1323 	regmap_reg_range(0x6a04, 0x6a07),
1324 	regmap_reg_range(0x6b00, 0x6b01),
1325 	regmap_reg_range(0x6b04, 0x6b04),
1326 };
1327 
1328 static const struct regmap_access_table ksz9896_register_set = {
1329 	.yes_ranges = ksz9896_valid_regs,
1330 	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1331 };
1332 
1333 static const struct regmap_range ksz8873_valid_regs[] = {
1334 	regmap_reg_range(0x00, 0x01),
1335 	/* global control register */
1336 	regmap_reg_range(0x02, 0x0f),
1337 
1338 	/* port registers */
1339 	regmap_reg_range(0x10, 0x1d),
1340 	regmap_reg_range(0x1e, 0x1f),
1341 	regmap_reg_range(0x20, 0x2d),
1342 	regmap_reg_range(0x2e, 0x2f),
1343 	regmap_reg_range(0x30, 0x39),
1344 	regmap_reg_range(0x3f, 0x3f),
1345 
1346 	/* advanced control registers */
1347 	regmap_reg_range(0x60, 0x6f),
1348 	regmap_reg_range(0x70, 0x75),
1349 	regmap_reg_range(0x76, 0x78),
1350 	regmap_reg_range(0x79, 0x7a),
1351 	regmap_reg_range(0x7b, 0x83),
1352 	regmap_reg_range(0x8e, 0x99),
1353 	regmap_reg_range(0x9a, 0xa5),
1354 	regmap_reg_range(0xa6, 0xa6),
1355 	regmap_reg_range(0xa7, 0xaa),
1356 	regmap_reg_range(0xab, 0xae),
1357 	regmap_reg_range(0xaf, 0xba),
1358 	regmap_reg_range(0xbb, 0xbc),
1359 	regmap_reg_range(0xbd, 0xbd),
1360 	regmap_reg_range(0xc0, 0xc0),
1361 	regmap_reg_range(0xc2, 0xc2),
1362 	regmap_reg_range(0xc3, 0xc3),
1363 	regmap_reg_range(0xc4, 0xc4),
1364 	regmap_reg_range(0xc6, 0xc6),
1365 };
1366 
1367 static const struct regmap_access_table ksz8873_register_set = {
1368 	.yes_ranges = ksz8873_valid_regs,
1369 	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1370 };
1371 
1372 const struct ksz_chip_data ksz_switch_chips[] = {
1373 	[KSZ8563] = {
1374 		.chip_id = KSZ8563_CHIP_ID,
1375 		.dev_name = "KSZ8563",
1376 		.num_vlans = 4096,
1377 		.num_alus = 4096,
1378 		.num_statics = 16,
1379 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1380 		.port_cnt = 3,		/* total port count */
1381 		.port_nirqs = 3,
1382 		.num_tx_queues = 4,
1383 		.num_ipms = 8,
1384 		.tc_cbs_supported = true,
1385 		.ops = &ksz9477_dev_ops,
1386 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1387 		.mib_names = ksz9477_mib_names,
1388 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1389 		.reg_mib_cnt = MIB_COUNTER_NUM,
1390 		.regs = ksz9477_regs,
1391 		.masks = ksz9477_masks,
1392 		.shifts = ksz9477_shifts,
1393 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1394 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1395 		.supports_mii = {false, false, true},
1396 		.supports_rmii = {false, false, true},
1397 		.supports_rgmii = {false, false, true},
1398 		.internal_phy = {true, true, false},
1399 		.gbit_capable = {false, false, true},
1400 		.ptp_capable = true,
1401 		.wr_table = &ksz8563_register_set,
1402 		.rd_table = &ksz8563_register_set,
1403 	},
1404 
1405 	[KSZ8795] = {
1406 		.chip_id = KSZ8795_CHIP_ID,
1407 		.dev_name = "KSZ8795",
1408 		.num_vlans = 4096,
1409 		.num_alus = 0,
1410 		.num_statics = 32,
1411 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1412 		.port_cnt = 5,		/* total cpu and user ports */
1413 		.num_tx_queues = 4,
1414 		.num_ipms = 4,
1415 		.ops = &ksz87xx_dev_ops,
1416 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1417 		.ksz87xx_eee_link_erratum = true,
1418 		.mib_names = ksz9477_mib_names,
1419 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1420 		.reg_mib_cnt = MIB_COUNTER_NUM,
1421 		.regs = ksz8795_regs,
1422 		.masks = ksz8795_masks,
1423 		.shifts = ksz8795_shifts,
1424 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1425 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1426 		.supports_mii = {false, false, false, false, true},
1427 		.supports_rmii = {false, false, false, false, true},
1428 		.supports_rgmii = {false, false, false, false, true},
1429 		.internal_phy = {true, true, true, true, false},
1430 	},
1431 
1432 	[KSZ8794] = {
1433 		/* WARNING
1434 		 * =======
1435 		 * KSZ8794 is similar to KSZ8795, except the port map
1436 		 * contains a gap between external and CPU ports, the
1437 		 * port map is NOT continuous. The per-port register
1438 		 * map is shifted accordingly too, i.e. registers at
1439 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1440 		 * used on KSZ8795 for external port 3.
1441 		 *           external  cpu
1442 		 * KSZ8794   0,1,2      4
1443 		 * KSZ8795   0,1,2,3    4
1444 		 * KSZ8765   0,1,2,3    4
1445 		 * port_cnt is configured as 5, even though it is 4
1446 		 */
1447 		.chip_id = KSZ8794_CHIP_ID,
1448 		.dev_name = "KSZ8794",
1449 		.num_vlans = 4096,
1450 		.num_alus = 0,
1451 		.num_statics = 32,
1452 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1453 		.port_cnt = 5,		/* total cpu and user ports */
1454 		.num_tx_queues = 4,
1455 		.num_ipms = 4,
1456 		.ops = &ksz87xx_dev_ops,
1457 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1458 		.ksz87xx_eee_link_erratum = true,
1459 		.mib_names = ksz9477_mib_names,
1460 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1461 		.reg_mib_cnt = MIB_COUNTER_NUM,
1462 		.regs = ksz8795_regs,
1463 		.masks = ksz8795_masks,
1464 		.shifts = ksz8795_shifts,
1465 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1466 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1467 		.supports_mii = {false, false, false, false, true},
1468 		.supports_rmii = {false, false, false, false, true},
1469 		.supports_rgmii = {false, false, false, false, true},
1470 		.internal_phy = {true, true, true, false, false},
1471 	},
1472 
1473 	[KSZ8765] = {
1474 		.chip_id = KSZ8765_CHIP_ID,
1475 		.dev_name = "KSZ8765",
1476 		.num_vlans = 4096,
1477 		.num_alus = 0,
1478 		.num_statics = 32,
1479 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1480 		.port_cnt = 5,		/* total cpu and user ports */
1481 		.num_tx_queues = 4,
1482 		.num_ipms = 4,
1483 		.ops = &ksz87xx_dev_ops,
1484 		.phylink_mac_ops = &ksz8_phylink_mac_ops,
1485 		.ksz87xx_eee_link_erratum = true,
1486 		.mib_names = ksz9477_mib_names,
1487 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1488 		.reg_mib_cnt = MIB_COUNTER_NUM,
1489 		.regs = ksz8795_regs,
1490 		.masks = ksz8795_masks,
1491 		.shifts = ksz8795_shifts,
1492 		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1493 		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1494 		.supports_mii = {false, false, false, false, true},
1495 		.supports_rmii = {false, false, false, false, true},
1496 		.supports_rgmii = {false, false, false, false, true},
1497 		.internal_phy = {true, true, true, true, false},
1498 	},
1499 
1500 	[KSZ88X3] = {
1501 		.chip_id = KSZ88X3_CHIP_ID,
1502 		.dev_name = "KSZ8863/KSZ8873",
1503 		.num_vlans = 16,
1504 		.num_alus = 0,
1505 		.num_statics = 8,
1506 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1507 		.port_cnt = 3,
1508 		.num_tx_queues = 4,
1509 		.num_ipms = 4,
1510 		.ops = &ksz88xx_dev_ops,
1511 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1512 		.mib_names = ksz88xx_mib_names,
1513 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1514 		.reg_mib_cnt = MIB_COUNTER_NUM,
1515 		.regs = ksz8863_regs,
1516 		.masks = ksz8863_masks,
1517 		.shifts = ksz8863_shifts,
1518 		.supports_mii = {false, false, true},
1519 		.supports_rmii = {false, false, true},
1520 		.internal_phy = {true, true, false},
1521 		.wr_table = &ksz8873_register_set,
1522 		.rd_table = &ksz8873_register_set,
1523 	},
1524 
1525 	[KSZ8864] = {
1526 		/* WARNING
1527 		 * =======
1528 		 * KSZ8864 is similar to KSZ8895, except the first port
1529 		 * does not exist.
1530 		 *           external  cpu
1531 		 * KSZ8864   1,2,3      4
1532 		 * KSZ8895   0,1,2,3    4
1533 		 * port_cnt is configured as 5, even though it is 4
1534 		 */
1535 		.chip_id = KSZ8864_CHIP_ID,
1536 		.dev_name = "KSZ8864",
1537 		.num_vlans = 4096,
1538 		.num_alus = 0,
1539 		.num_statics = 32,
1540 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1541 		.port_cnt = 5,		/* total cpu and user ports */
1542 		.num_tx_queues = 4,
1543 		.num_ipms = 4,
1544 		.ops = &ksz88xx_dev_ops,
1545 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1546 		.mib_names = ksz88xx_mib_names,
1547 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1548 		.reg_mib_cnt = MIB_COUNTER_NUM,
1549 		.regs = ksz8895_regs,
1550 		.masks = ksz8895_masks,
1551 		.shifts = ksz8895_shifts,
1552 		.supports_mii = {false, false, false, false, true},
1553 		.supports_rmii = {false, false, false, false, true},
1554 		.internal_phy = {false, true, true, true, false},
1555 	},
1556 
1557 	[KSZ8895] = {
1558 		.chip_id = KSZ8895_CHIP_ID,
1559 		.dev_name = "KSZ8895",
1560 		.num_vlans = 4096,
1561 		.num_alus = 0,
1562 		.num_statics = 32,
1563 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1564 		.port_cnt = 5,		/* total cpu and user ports */
1565 		.num_tx_queues = 4,
1566 		.num_ipms = 4,
1567 		.ops = &ksz88xx_dev_ops,
1568 		.phylink_mac_ops = &ksz88x3_phylink_mac_ops,
1569 		.mib_names = ksz88xx_mib_names,
1570 		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1571 		.reg_mib_cnt = MIB_COUNTER_NUM,
1572 		.regs = ksz8895_regs,
1573 		.masks = ksz8895_masks,
1574 		.shifts = ksz8895_shifts,
1575 		.supports_mii = {false, false, false, false, true},
1576 		.supports_rmii = {false, false, false, false, true},
1577 		.internal_phy = {true, true, true, true, false},
1578 	},
1579 
1580 	[KSZ9477] = {
1581 		.chip_id = KSZ9477_CHIP_ID,
1582 		.dev_name = "KSZ9477",
1583 		.num_vlans = 4096,
1584 		.num_alus = 4096,
1585 		.num_statics = 16,
1586 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1587 		.port_cnt = 7,		/* total physical port count */
1588 		.port_nirqs = 4,
1589 		.num_tx_queues = 4,
1590 		.num_ipms = 8,
1591 		.tc_cbs_supported = true,
1592 		.ops = &ksz9477_dev_ops,
1593 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1594 		.phy_errata_9477 = true,
1595 		.mib_names = ksz9477_mib_names,
1596 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1597 		.reg_mib_cnt = MIB_COUNTER_NUM,
1598 		.regs = ksz9477_regs,
1599 		.masks = ksz9477_masks,
1600 		.shifts = ksz9477_shifts,
1601 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1602 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1603 		.supports_mii	= {false, false, false, false,
1604 				   false, true, false},
1605 		.supports_rmii	= {false, false, false, false,
1606 				   false, true, false},
1607 		.supports_rgmii = {false, false, false, false,
1608 				   false, true, false},
1609 		.internal_phy	= {true, true, true, true,
1610 				   true, false, false},
1611 		.gbit_capable	= {true, true, true, true, true, true, true},
1612 		.ptp_capable = true,
1613 		.wr_table = &ksz9477_register_set,
1614 		.rd_table = &ksz9477_register_set,
1615 	},
1616 
1617 	[KSZ9896] = {
1618 		.chip_id = KSZ9896_CHIP_ID,
1619 		.dev_name = "KSZ9896",
1620 		.num_vlans = 4096,
1621 		.num_alus = 4096,
1622 		.num_statics = 16,
1623 		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1624 		.port_cnt = 6,		/* total physical port count */
1625 		.port_nirqs = 2,
1626 		.num_tx_queues = 4,
1627 		.num_ipms = 8,
1628 		.ops = &ksz9477_dev_ops,
1629 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1630 		.phy_errata_9477 = true,
1631 		.mib_names = ksz9477_mib_names,
1632 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1633 		.reg_mib_cnt = MIB_COUNTER_NUM,
1634 		.regs = ksz9477_regs,
1635 		.masks = ksz9477_masks,
1636 		.shifts = ksz9477_shifts,
1637 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1638 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1639 		.supports_mii	= {false, false, false, false,
1640 				   false, true},
1641 		.supports_rmii	= {false, false, false, false,
1642 				   false, true},
1643 		.supports_rgmii = {false, false, false, false,
1644 				   false, true},
1645 		.internal_phy	= {true, true, true, true,
1646 				   true, false},
1647 		.gbit_capable	= {true, true, true, true, true, true},
1648 		.wr_table = &ksz9896_register_set,
1649 		.rd_table = &ksz9896_register_set,
1650 	},
1651 
1652 	[KSZ9897] = {
1653 		.chip_id = KSZ9897_CHIP_ID,
1654 		.dev_name = "KSZ9897",
1655 		.num_vlans = 4096,
1656 		.num_alus = 4096,
1657 		.num_statics = 16,
1658 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1659 		.port_cnt = 7,		/* total physical port count */
1660 		.port_nirqs = 2,
1661 		.num_tx_queues = 4,
1662 		.num_ipms = 8,
1663 		.ops = &ksz9477_dev_ops,
1664 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1665 		.phy_errata_9477 = true,
1666 		.mib_names = ksz9477_mib_names,
1667 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1668 		.reg_mib_cnt = MIB_COUNTER_NUM,
1669 		.regs = ksz9477_regs,
1670 		.masks = ksz9477_masks,
1671 		.shifts = ksz9477_shifts,
1672 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1673 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1674 		.supports_mii	= {false, false, false, false,
1675 				   false, true, true},
1676 		.supports_rmii	= {false, false, false, false,
1677 				   false, true, true},
1678 		.supports_rgmii = {false, false, false, false,
1679 				   false, true, true},
1680 		.internal_phy	= {true, true, true, true,
1681 				   true, false, false},
1682 		.gbit_capable	= {true, true, true, true, true, true, true},
1683 	},
1684 
1685 	[KSZ9893] = {
1686 		.chip_id = KSZ9893_CHIP_ID,
1687 		.dev_name = "KSZ9893",
1688 		.num_vlans = 4096,
1689 		.num_alus = 4096,
1690 		.num_statics = 16,
1691 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1692 		.port_cnt = 3,		/* total port count */
1693 		.port_nirqs = 2,
1694 		.num_tx_queues = 4,
1695 		.num_ipms = 8,
1696 		.ops = &ksz9477_dev_ops,
1697 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1698 		.mib_names = ksz9477_mib_names,
1699 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1700 		.reg_mib_cnt = MIB_COUNTER_NUM,
1701 		.regs = ksz9477_regs,
1702 		.masks = ksz9477_masks,
1703 		.shifts = ksz9477_shifts,
1704 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1705 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1706 		.supports_mii = {false, false, true},
1707 		.supports_rmii = {false, false, true},
1708 		.supports_rgmii = {false, false, true},
1709 		.internal_phy = {true, true, false},
1710 		.gbit_capable = {true, true, true},
1711 	},
1712 
1713 	[KSZ9563] = {
1714 		.chip_id = KSZ9563_CHIP_ID,
1715 		.dev_name = "KSZ9563",
1716 		.num_vlans = 4096,
1717 		.num_alus = 4096,
1718 		.num_statics = 16,
1719 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1720 		.port_cnt = 3,		/* total port count */
1721 		.port_nirqs = 3,
1722 		.num_tx_queues = 4,
1723 		.num_ipms = 8,
1724 		.tc_cbs_supported = true,
1725 		.ops = &ksz9477_dev_ops,
1726 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1727 		.mib_names = ksz9477_mib_names,
1728 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1729 		.reg_mib_cnt = MIB_COUNTER_NUM,
1730 		.regs = ksz9477_regs,
1731 		.masks = ksz9477_masks,
1732 		.shifts = ksz9477_shifts,
1733 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1734 		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1735 		.supports_mii = {false, false, true},
1736 		.supports_rmii = {false, false, true},
1737 		.supports_rgmii = {false, false, true},
1738 		.internal_phy = {true, true, false},
1739 		.gbit_capable = {true, true, true},
1740 		.ptp_capable = true,
1741 	},
1742 
1743 	[KSZ8567] = {
1744 		.chip_id = KSZ8567_CHIP_ID,
1745 		.dev_name = "KSZ8567",
1746 		.num_vlans = 4096,
1747 		.num_alus = 4096,
1748 		.num_statics = 16,
1749 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1750 		.port_cnt = 7,		/* total port count */
1751 		.port_nirqs = 3,
1752 		.num_tx_queues = 4,
1753 		.num_ipms = 8,
1754 		.tc_cbs_supported = true,
1755 		.ops = &ksz9477_dev_ops,
1756 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1757 		.phy_errata_9477 = true,
1758 		.mib_names = ksz9477_mib_names,
1759 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1760 		.reg_mib_cnt = MIB_COUNTER_NUM,
1761 		.regs = ksz9477_regs,
1762 		.masks = ksz9477_masks,
1763 		.shifts = ksz9477_shifts,
1764 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1765 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1766 		.supports_mii	= {false, false, false, false,
1767 				   false, true, true},
1768 		.supports_rmii	= {false, false, false, false,
1769 				   false, true, true},
1770 		.supports_rgmii = {false, false, false, false,
1771 				   false, true, true},
1772 		.internal_phy	= {true, true, true, true,
1773 				   true, false, false},
1774 		.gbit_capable	= {false, false, false, false, false,
1775 				   true, true},
1776 		.ptp_capable = true,
1777 	},
1778 
1779 	[KSZ9567] = {
1780 		.chip_id = KSZ9567_CHIP_ID,
1781 		.dev_name = "KSZ9567",
1782 		.num_vlans = 4096,
1783 		.num_alus = 4096,
1784 		.num_statics = 16,
1785 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1786 		.port_cnt = 7,		/* total physical port count */
1787 		.port_nirqs = 3,
1788 		.num_tx_queues = 4,
1789 		.num_ipms = 8,
1790 		.tc_cbs_supported = true,
1791 		.ops = &ksz9477_dev_ops,
1792 		.mib_names = ksz9477_mib_names,
1793 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1794 		.reg_mib_cnt = MIB_COUNTER_NUM,
1795 		.regs = ksz9477_regs,
1796 		.masks = ksz9477_masks,
1797 		.shifts = ksz9477_shifts,
1798 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1799 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1800 		.supports_mii	= {false, false, false, false,
1801 				   false, true, true},
1802 		.supports_rmii	= {false, false, false, false,
1803 				   false, true, true},
1804 		.supports_rgmii = {false, false, false, false,
1805 				   false, true, true},
1806 		.internal_phy	= {true, true, true, true,
1807 				   true, false, false},
1808 		.gbit_capable	= {true, true, true, true, true, true, true},
1809 		.ptp_capable = true,
1810 	},
1811 
1812 	[LAN9370] = {
1813 		.chip_id = LAN9370_CHIP_ID,
1814 		.dev_name = "LAN9370",
1815 		.num_vlans = 4096,
1816 		.num_alus = 1024,
1817 		.num_statics = 256,
1818 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1819 		.port_cnt = 5,		/* total physical port count */
1820 		.port_nirqs = 6,
1821 		.num_tx_queues = 8,
1822 		.num_ipms = 8,
1823 		.tc_cbs_supported = true,
1824 		.phy_side_mdio_supported = true,
1825 		.ops = &lan937x_dev_ops,
1826 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1827 		.mib_names = ksz9477_mib_names,
1828 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1829 		.reg_mib_cnt = MIB_COUNTER_NUM,
1830 		.regs = ksz9477_regs,
1831 		.masks = lan937x_masks,
1832 		.shifts = lan937x_shifts,
1833 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1834 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1835 		.supports_mii = {false, false, false, false, true},
1836 		.supports_rmii = {false, false, false, false, true},
1837 		.supports_rgmii = {false, false, false, false, true},
1838 		.internal_phy = {true, true, true, true, false},
1839 		.ptp_capable = true,
1840 	},
1841 
1842 	[LAN9371] = {
1843 		.chip_id = LAN9371_CHIP_ID,
1844 		.dev_name = "LAN9371",
1845 		.num_vlans = 4096,
1846 		.num_alus = 1024,
1847 		.num_statics = 256,
1848 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1849 		.port_cnt = 6,		/* total physical port count */
1850 		.port_nirqs = 6,
1851 		.num_tx_queues = 8,
1852 		.num_ipms = 8,
1853 		.tc_cbs_supported = true,
1854 		.phy_side_mdio_supported = true,
1855 		.ops = &lan937x_dev_ops,
1856 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1857 		.mib_names = ksz9477_mib_names,
1858 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1859 		.reg_mib_cnt = MIB_COUNTER_NUM,
1860 		.regs = ksz9477_regs,
1861 		.masks = lan937x_masks,
1862 		.shifts = lan937x_shifts,
1863 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1864 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1865 		.supports_mii = {false, false, false, false, true, true},
1866 		.supports_rmii = {false, false, false, false, true, true},
1867 		.supports_rgmii = {false, false, false, false, true, true},
1868 		.internal_phy = {true, true, true, true, false, false},
1869 		.ptp_capable = true,
1870 	},
1871 
1872 	[LAN9372] = {
1873 		.chip_id = LAN9372_CHIP_ID,
1874 		.dev_name = "LAN9372",
1875 		.num_vlans = 4096,
1876 		.num_alus = 1024,
1877 		.num_statics = 256,
1878 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1879 		.port_cnt = 8,		/* total physical port count */
1880 		.port_nirqs = 6,
1881 		.num_tx_queues = 8,
1882 		.num_ipms = 8,
1883 		.tc_cbs_supported = true,
1884 		.phy_side_mdio_supported = true,
1885 		.ops = &lan937x_dev_ops,
1886 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1887 		.mib_names = ksz9477_mib_names,
1888 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1889 		.reg_mib_cnt = MIB_COUNTER_NUM,
1890 		.regs = ksz9477_regs,
1891 		.masks = lan937x_masks,
1892 		.shifts = lan937x_shifts,
1893 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1894 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1895 		.supports_mii	= {false, false, false, false,
1896 				   true, true, false, false},
1897 		.supports_rmii	= {false, false, false, false,
1898 				   true, true, false, false},
1899 		.supports_rgmii = {false, false, false, false,
1900 				   true, true, false, false},
1901 		.internal_phy	= {true, true, true, true,
1902 				   false, false, true, true},
1903 		.ptp_capable = true,
1904 	},
1905 
1906 	[LAN9373] = {
1907 		.chip_id = LAN9373_CHIP_ID,
1908 		.dev_name = "LAN9373",
1909 		.num_vlans = 4096,
1910 		.num_alus = 1024,
1911 		.num_statics = 256,
1912 		.cpu_ports = 0x38,	/* can be configured as cpu port */
1913 		.port_cnt = 5,		/* total physical port count */
1914 		.port_nirqs = 6,
1915 		.num_tx_queues = 8,
1916 		.num_ipms = 8,
1917 		.tc_cbs_supported = true,
1918 		.phy_side_mdio_supported = true,
1919 		.ops = &lan937x_dev_ops,
1920 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1921 		.mib_names = ksz9477_mib_names,
1922 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1923 		.reg_mib_cnt = MIB_COUNTER_NUM,
1924 		.regs = ksz9477_regs,
1925 		.masks = lan937x_masks,
1926 		.shifts = lan937x_shifts,
1927 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1928 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1929 		.supports_mii	= {false, false, false, false,
1930 				   true, true, false, false},
1931 		.supports_rmii	= {false, false, false, false,
1932 				   true, true, false, false},
1933 		.supports_rgmii = {false, false, false, false,
1934 				   true, true, false, false},
1935 		.internal_phy	= {true, true, true, false,
1936 				   false, false, true, true},
1937 		.ptp_capable = true,
1938 	},
1939 
1940 	[LAN9374] = {
1941 		.chip_id = LAN9374_CHIP_ID,
1942 		.dev_name = "LAN9374",
1943 		.num_vlans = 4096,
1944 		.num_alus = 1024,
1945 		.num_statics = 256,
1946 		.cpu_ports = 0x30,	/* can be configured as cpu port */
1947 		.port_cnt = 8,		/* total physical port count */
1948 		.port_nirqs = 6,
1949 		.num_tx_queues = 8,
1950 		.num_ipms = 8,
1951 		.tc_cbs_supported = true,
1952 		.phy_side_mdio_supported = true,
1953 		.ops = &lan937x_dev_ops,
1954 		.phylink_mac_ops = &lan937x_phylink_mac_ops,
1955 		.mib_names = ksz9477_mib_names,
1956 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1957 		.reg_mib_cnt = MIB_COUNTER_NUM,
1958 		.regs = ksz9477_regs,
1959 		.masks = lan937x_masks,
1960 		.shifts = lan937x_shifts,
1961 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1962 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1963 		.supports_mii	= {false, false, false, false,
1964 				   true, true, false, false},
1965 		.supports_rmii	= {false, false, false, false,
1966 				   true, true, false, false},
1967 		.supports_rgmii = {false, false, false, false,
1968 				   true, true, false, false},
1969 		.internal_phy	= {true, true, true, true,
1970 				   false, false, true, true},
1971 		.ptp_capable = true,
1972 	},
1973 
1974 	[LAN9646] = {
1975 		.chip_id = LAN9646_CHIP_ID,
1976 		.dev_name = "LAN9646",
1977 		.num_vlans = 4096,
1978 		.num_alus = 4096,
1979 		.num_statics = 16,
1980 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1981 		.port_cnt = 7,		/* total physical port count */
1982 		.port_nirqs = 4,
1983 		.num_tx_queues = 4,
1984 		.num_ipms = 8,
1985 		.ops = &ksz9477_dev_ops,
1986 		.phylink_mac_ops = &ksz9477_phylink_mac_ops,
1987 		.phy_errata_9477 = true,
1988 		.mib_names = ksz9477_mib_names,
1989 		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1990 		.reg_mib_cnt = MIB_COUNTER_NUM,
1991 		.regs = ksz9477_regs,
1992 		.masks = ksz9477_masks,
1993 		.shifts = ksz9477_shifts,
1994 		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1995 		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1996 		.supports_mii	= {false, false, false, false,
1997 				   false, true, true},
1998 		.supports_rmii	= {false, false, false, false,
1999 				   false, true, true},
2000 		.supports_rgmii = {false, false, false, false,
2001 				   false, true, true},
2002 		.internal_phy	= {true, true, true, true,
2003 				   true, false, false},
2004 		.gbit_capable	= {true, true, true, true, true, true, true},
2005 		.wr_table = &ksz9477_register_set,
2006 		.rd_table = &ksz9477_register_set,
2007 	},
2008 };
2009 EXPORT_SYMBOL_GPL(ksz_switch_chips);
2010 
ksz_lookup_info(unsigned int prod_num)2011 static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
2016 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
2017 
2018 		if (chip->chip_id == prod_num)
2019 			return chip;
2020 	}
2021 
2022 	return NULL;
2023 }
2024 
ksz_check_device_id(struct ksz_device * dev)2025 static int ksz_check_device_id(struct ksz_device *dev)
2026 {
2027 	const struct ksz_chip_data *expected_chip_data;
2028 	u32 expected_chip_id;
2029 
2030 	if (dev->pdata) {
2031 		expected_chip_id = dev->pdata->chip_id;
2032 		expected_chip_data = ksz_lookup_info(expected_chip_id);
2033 		if (WARN_ON(!expected_chip_data))
2034 			return -ENODEV;
2035 	} else {
2036 		expected_chip_data = of_device_get_match_data(dev->dev);
2037 		expected_chip_id = expected_chip_data->chip_id;
2038 	}
2039 
2040 	if (expected_chip_id != dev->chip_id) {
2041 		dev_err(dev->dev,
2042 			"Device tree specifies chip %s but found %s, please fix it!\n",
2043 			expected_chip_data->dev_name, dev->info->dev_name);
2044 		return -ENODEV;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
ksz_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2050 static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
2051 				 struct phylink_config *config)
2052 {
2053 	struct ksz_device *dev = ds->priv;
2054 
2055 	if (dev->info->supports_mii[port])
2056 		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
2057 
2058 	if (dev->info->supports_rmii[port])
2059 		__set_bit(PHY_INTERFACE_MODE_RMII,
2060 			  config->supported_interfaces);
2061 
2062 	if (dev->info->supports_rgmii[port])
2063 		phy_interface_set_rgmii(config->supported_interfaces);
2064 
2065 	if (dev->info->internal_phy[port]) {
2066 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2067 			  config->supported_interfaces);
2068 		/* Compatibility for phylib's default interface type when the
2069 		 * phy-mode property is absent
2070 		 */
2071 		__set_bit(PHY_INTERFACE_MODE_GMII,
2072 			  config->supported_interfaces);
2073 	}
2074 
2075 	if (dev->dev_ops->get_caps)
2076 		dev->dev_ops->get_caps(dev, port, config);
2077 
2078 	if (ds->ops->support_eee && ds->ops->support_eee(ds, port)) {
2079 		memcpy(config->lpi_interfaces, config->supported_interfaces,
2080 		       sizeof(config->lpi_interfaces));
2081 
2082 		config->lpi_capabilities = MAC_100FD;
2083 		if (dev->info->gbit_capable[port])
2084 			config->lpi_capabilities |= MAC_1000FD;
2085 
2086 		/* EEE is fully operational */
2087 		config->eee_enabled_default = true;
2088 	}
2089 }
2090 
ksz_r_mib_stats64(struct ksz_device * dev,int port)2091 void ksz_r_mib_stats64(struct ksz_device *dev, int port)
2092 {
2093 	struct ethtool_pause_stats *pstats;
2094 	struct rtnl_link_stats64 *stats;
2095 	struct ksz_stats_raw *raw;
2096 	struct ksz_port_mib *mib;
2097 	int ret;
2098 
2099 	mib = &dev->ports[port].mib;
2100 	stats = &mib->stats64;
2101 	pstats = &mib->pause_stats;
2102 	raw = (struct ksz_stats_raw *)mib->counters;
2103 
2104 	spin_lock(&mib->stats64_lock);
2105 
2106 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2107 		raw->rx_pause;
2108 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2109 		raw->tx_pause;
2110 
2111 	/* HW counters are counting bytes + FCS which is not acceptable
2112 	 * for rtnl_link_stats64 interface
2113 	 */
2114 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
2115 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
2116 
2117 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2118 		raw->rx_oversize;
2119 
2120 	stats->rx_crc_errors = raw->rx_crc_err;
2121 	stats->rx_frame_errors = raw->rx_align_err;
2122 	stats->rx_dropped = raw->rx_discards;
2123 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2124 		stats->rx_frame_errors  + stats->rx_dropped;
2125 
2126 	stats->tx_window_errors = raw->tx_late_col;
2127 	stats->tx_fifo_errors = raw->tx_discards;
2128 	stats->tx_aborted_errors = raw->tx_exc_col;
2129 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2130 		stats->tx_aborted_errors;
2131 
2132 	stats->multicast = raw->rx_mcast;
2133 	stats->collisions = raw->tx_total_col;
2134 
2135 	pstats->tx_pause_frames = raw->tx_pause;
2136 	pstats->rx_pause_frames = raw->rx_pause;
2137 
2138 	spin_unlock(&mib->stats64_lock);
2139 
2140 	if (dev->info->phy_errata_9477) {
2141 		ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col);
2142 		if (ret)
2143 			dev_err(dev->dev, "Failed to monitor transmission halt\n");
2144 	}
2145 }
2146 
ksz88xx_r_mib_stats64(struct ksz_device * dev,int port)2147 void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
2148 {
2149 	struct ethtool_pause_stats *pstats;
2150 	struct rtnl_link_stats64 *stats;
2151 	struct ksz88xx_stats_raw *raw;
2152 	struct ksz_port_mib *mib;
2153 
2154 	mib = &dev->ports[port].mib;
2155 	stats = &mib->stats64;
2156 	pstats = &mib->pause_stats;
2157 	raw = (struct ksz88xx_stats_raw *)mib->counters;
2158 
2159 	spin_lock(&mib->stats64_lock);
2160 
2161 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
2162 		raw->rx_pause;
2163 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
2164 		raw->tx_pause;
2165 
2166 	/* HW counters are counting bytes + FCS which is not acceptable
2167 	 * for rtnl_link_stats64 interface
2168 	 */
2169 	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
2170 	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
2171 
2172 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
2173 		raw->rx_oversize;
2174 
2175 	stats->rx_crc_errors = raw->rx_crc_err;
2176 	stats->rx_frame_errors = raw->rx_align_err;
2177 	stats->rx_dropped = raw->rx_discards;
2178 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
2179 		stats->rx_frame_errors  + stats->rx_dropped;
2180 
2181 	stats->tx_window_errors = raw->tx_late_col;
2182 	stats->tx_fifo_errors = raw->tx_discards;
2183 	stats->tx_aborted_errors = raw->tx_exc_col;
2184 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
2185 		stats->tx_aborted_errors;
2186 
2187 	stats->multicast = raw->rx_mcast;
2188 	stats->collisions = raw->tx_total_col;
2189 
2190 	pstats->tx_pause_frames = raw->tx_pause;
2191 	pstats->rx_pause_frames = raw->rx_pause;
2192 
2193 	spin_unlock(&mib->stats64_lock);
2194 }
2195 
ksz_get_stats64(struct dsa_switch * ds,int port,struct rtnl_link_stats64 * s)2196 static void ksz_get_stats64(struct dsa_switch *ds, int port,
2197 			    struct rtnl_link_stats64 *s)
2198 {
2199 	struct ksz_device *dev = ds->priv;
2200 	struct ksz_port_mib *mib;
2201 
2202 	mib = &dev->ports[port].mib;
2203 
2204 	spin_lock(&mib->stats64_lock);
2205 	memcpy(s, &mib->stats64, sizeof(*s));
2206 	spin_unlock(&mib->stats64_lock);
2207 }
2208 
ksz_get_pause_stats(struct dsa_switch * ds,int port,struct ethtool_pause_stats * pause_stats)2209 static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
2210 				struct ethtool_pause_stats *pause_stats)
2211 {
2212 	struct ksz_device *dev = ds->priv;
2213 	struct ksz_port_mib *mib;
2214 
2215 	mib = &dev->ports[port].mib;
2216 
2217 	spin_lock(&mib->stats64_lock);
2218 	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
2219 	spin_unlock(&mib->stats64_lock);
2220 }
2221 
ksz_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * buf)2222 static void ksz_get_strings(struct dsa_switch *ds, int port,
2223 			    u32 stringset, uint8_t *buf)
2224 {
2225 	struct ksz_device *dev = ds->priv;
2226 	int i;
2227 
2228 	if (stringset != ETH_SS_STATS)
2229 		return;
2230 
2231 	for (i = 0; i < dev->info->mib_cnt; i++)
2232 		ethtool_puts(&buf, dev->info->mib_names[i].string);
2233 }
2234 
2235 /**
2236  * ksz_update_port_member - Adjust port forwarding rules based on STP state and
2237  *			    isolation settings.
2238  * @dev: A pointer to the struct ksz_device representing the device.
2239  * @port: The port number to adjust.
2240  *
2241  * This function dynamically adjusts the port membership configuration for a
2242  * specified port and other device ports, based on Spanning Tree Protocol (STP)
2243  * states and port isolation settings. Each port, including the CPU port, has a
2244  * membership register, represented as a bitfield, where each bit corresponds
2245  * to a port number. A set bit indicates permission to forward frames to that
2246  * port. This function iterates over all ports, updating the membership register
2247  * to reflect current forwarding permissions:
2248  *
2249  * 1. Forwards frames only to ports that are part of the same bridge group and
2250  *    in the BR_STATE_FORWARDING state.
2251  * 2. Takes into account the isolation status of ports; ports in the
2252  *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
2253  *    frames to each other, even if they are in the same bridge group.
2254  * 3. Ensures that the CPU port is included in the membership based on its
2255  *    upstream port configuration, allowing for management and control traffic
2256  *    to flow as required.
2257  */
ksz_update_port_member(struct ksz_device * dev,int port)2258 static void ksz_update_port_member(struct ksz_device *dev, int port)
2259 {
2260 	struct ksz_port *p = &dev->ports[port];
2261 	struct dsa_switch *ds = dev->ds;
2262 	u8 port_member = 0, cpu_port;
2263 	const struct dsa_port *dp;
2264 	int i, j;
2265 
2266 	if (!dsa_is_user_port(ds, port))
2267 		return;
2268 
2269 	dp = dsa_to_port(ds, port);
2270 	cpu_port = BIT(dsa_upstream_port(ds, port));
2271 
2272 	for (i = 0; i < ds->num_ports; i++) {
2273 		const struct dsa_port *other_dp = dsa_to_port(ds, i);
2274 		struct ksz_port *other_p = &dev->ports[i];
2275 		u8 val = 0;
2276 
2277 		if (!dsa_is_user_port(ds, i))
2278 			continue;
2279 		if (port == i)
2280 			continue;
2281 		if (!dsa_port_bridge_same(dp, other_dp))
2282 			continue;
2283 		if (other_p->stp_state != BR_STATE_FORWARDING)
2284 			continue;
2285 
2286 		/* At this point we know that "port" and "other" port [i] are in
2287 		 * the same bridge group and that "other" port [i] is in
2288 		 * forwarding stp state. If "port" is also in forwarding stp
2289 		 * state, we can allow forwarding from port [port] to port [i].
2290 		 * Except if both ports are isolated.
2291 		 */
2292 		if (p->stp_state == BR_STATE_FORWARDING &&
2293 		    !(p->isolated && other_p->isolated)) {
2294 			val |= BIT(port);
2295 			port_member |= BIT(i);
2296 		}
2297 
2298 		/* Retain port [i]'s relationship to other ports than [port] */
2299 		for (j = 0; j < ds->num_ports; j++) {
2300 			const struct dsa_port *third_dp;
2301 			struct ksz_port *third_p;
2302 
2303 			if (j == i)
2304 				continue;
2305 			if (j == port)
2306 				continue;
2307 			if (!dsa_is_user_port(ds, j))
2308 				continue;
2309 			third_p = &dev->ports[j];
2310 			if (third_p->stp_state != BR_STATE_FORWARDING)
2311 				continue;
2312 
2313 			third_dp = dsa_to_port(ds, j);
2314 
2315 			/* Now we updating relation of the "other" port [i] to
2316 			 * the "third" port [j]. We already know that "other"
2317 			 * port [i] is in forwarding stp state and that "third"
2318 			 * port [j] is in forwarding stp state too.
2319 			 * We need to check if "other" port [i] and "third" port
2320 			 * [j] are in the same bridge group and not isolated
2321 			 * before allowing forwarding from port [i] to port [j].
2322 			 */
2323 			if (dsa_port_bridge_same(other_dp, third_dp) &&
2324 			    !(other_p->isolated && third_p->isolated))
2325 				val |= BIT(j);
2326 		}
2327 
2328 		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
2329 	}
2330 
2331 	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
2332 }
2333 
ksz_sw_mdio_read(struct mii_bus * bus,int addr,int regnum)2334 static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2335 {
2336 	struct ksz_device *dev = bus->priv;
2337 	u16 val;
2338 	int ret;
2339 
2340 	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2341 	if (ret < 0)
2342 		return ret;
2343 
2344 	return val;
2345 }
2346 
ksz_sw_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2347 static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2348 			     u16 val)
2349 {
2350 	struct ksz_device *dev = bus->priv;
2351 
2352 	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2353 }
2354 
2355 /**
2356  * ksz_parent_mdio_read - Read data from a PHY register on the parent MDIO bus.
2357  * @bus: MDIO bus structure.
2358  * @addr: PHY address on the parent MDIO bus.
2359  * @regnum: Register number to read.
2360  *
2361  * This function provides a direct read operation on the parent MDIO bus for
2362  * accessing PHY registers. By bypassing SPI or I2C, it uses the parent MDIO bus
2363  * to retrieve data from the PHY registers at the specified address and register
2364  * number.
2365  *
2366  * Return: Value of the PHY register, or a negative error code on failure.
2367  */
ksz_parent_mdio_read(struct mii_bus * bus,int addr,int regnum)2368 static int ksz_parent_mdio_read(struct mii_bus *bus, int addr, int regnum)
2369 {
2370 	struct ksz_device *dev = bus->priv;
2371 
2372 	return mdiobus_read_nested(dev->parent_mdio_bus, addr, regnum);
2373 }
2374 
2375 /**
2376  * ksz_parent_mdio_write - Write data to a PHY register on the parent MDIO bus.
2377  * @bus: MDIO bus structure.
2378  * @addr: PHY address on the parent MDIO bus.
2379  * @regnum: Register number to write to.
2380  * @val: Value to write to the PHY register.
2381  *
2382  * This function provides a direct write operation on the parent MDIO bus for
2383  * accessing PHY registers. Bypassing SPI or I2C, it uses the parent MDIO bus
2384  * to modify the PHY register values at the specified address.
2385  *
2386  * Return: 0 on success, or a negative error code on failure.
2387  */
ksz_parent_mdio_write(struct mii_bus * bus,int addr,int regnum,u16 val)2388 static int ksz_parent_mdio_write(struct mii_bus *bus, int addr, int regnum,
2389 				 u16 val)
2390 {
2391 	struct ksz_device *dev = bus->priv;
2392 
2393 	return mdiobus_write_nested(dev->parent_mdio_bus, addr, regnum, val);
2394 }
2395 
2396 /**
2397  * ksz_phy_addr_to_port - Map a PHY address to the corresponding switch port.
2398  * @dev: Pointer to device structure.
2399  * @addr: PHY address to map to a port.
2400  *
2401  * This function finds the corresponding switch port for a given PHY address by
2402  * iterating over all user ports on the device. It checks if a port's PHY
2403  * address in `phy_addr_map` matches the specified address and if the port
2404  * contains an internal PHY. If a match is found, the index of the port is
2405  * returned.
2406  *
2407  * Return: Port index on success, or -EINVAL if no matching port is found.
2408  */
ksz_phy_addr_to_port(struct ksz_device * dev,int addr)2409 static int ksz_phy_addr_to_port(struct ksz_device *dev, int addr)
2410 {
2411 	struct dsa_switch *ds = dev->ds;
2412 	struct dsa_port *dp;
2413 
2414 	dsa_switch_for_each_user_port(dp, ds) {
2415 		if (dev->info->internal_phy[dp->index] &&
2416 		    dev->phy_addr_map[dp->index] == addr)
2417 			return dp->index;
2418 	}
2419 
2420 	return -EINVAL;
2421 }
2422 
2423 /**
2424  * ksz_irq_phy_setup - Configure IRQs for PHYs in the KSZ device.
2425  * @dev: Pointer to the KSZ device structure.
2426  *
2427  * Sets up IRQs for each active PHY connected to the KSZ switch by mapping the
2428  * appropriate IRQs for each PHY and assigning them to the `user_mii_bus` in
2429  * the DSA switch structure. Each IRQ is mapped based on the port's IRQ domain.
2430  *
2431  * Return: 0 on success, or a negative error code on failure.
2432  */
ksz_irq_phy_setup(struct ksz_device * dev)2433 static int ksz_irq_phy_setup(struct ksz_device *dev)
2434 {
2435 	struct dsa_switch *ds = dev->ds;
2436 	int phy, port;
2437 	int irq;
2438 	int ret;
2439 
2440 	for (phy = 0; phy < PHY_MAX_ADDR; phy++) {
2441 		if (BIT(phy) & ds->phys_mii_mask) {
2442 			port = ksz_phy_addr_to_port(dev, phy);
2443 			if (port < 0) {
2444 				ret = port;
2445 				goto out;
2446 			}
2447 
2448 			irq = irq_find_mapping(dev->ports[port].pirq.domain,
2449 					       PORT_SRC_PHY_INT);
2450 			if (irq < 0) {
2451 				ret = irq;
2452 				goto out;
2453 			}
2454 			ds->user_mii_bus->irq[phy] = irq;
2455 		}
2456 	}
2457 	return 0;
2458 out:
2459 	while (phy--)
2460 		if (BIT(phy) & ds->phys_mii_mask)
2461 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2462 
2463 	return ret;
2464 }
2465 
2466 /**
2467  * ksz_irq_phy_free - Release IRQ mappings for PHYs in the KSZ device.
2468  * @dev: Pointer to the KSZ device structure.
2469  *
2470  * Releases any IRQ mappings previously assigned to active PHYs in the KSZ
2471  * switch by disposing of each mapped IRQ in the `user_mii_bus` structure.
2472  */
ksz_irq_phy_free(struct ksz_device * dev)2473 static void ksz_irq_phy_free(struct ksz_device *dev)
2474 {
2475 	struct dsa_switch *ds = dev->ds;
2476 	int phy;
2477 
2478 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
2479 		if (BIT(phy) & ds->phys_mii_mask)
2480 			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2481 }
2482 
2483 /**
2484  * ksz_parse_dt_phy_config - Parse and validate PHY configuration from DT
2485  * @dev: pointer to the KSZ device structure
2486  * @bus: pointer to the MII bus structure
2487  * @mdio_np: pointer to the MDIO node in the device tree
2488  *
2489  * This function parses and validates PHY configurations for each user port
2490  * defined in the device tree for a KSZ switch device. It verifies that the
2491  * `phy-handle` properties are correctly set and that the internal PHYs match
2492  * expected addresses and parent nodes. Sets up the PHY mask in the MII bus if
2493  * all validations pass. Logs error messages for any mismatches or missing data.
2494  *
2495  * Return: 0 on success, or a negative error code on failure.
2496  */
ksz_parse_dt_phy_config(struct ksz_device * dev,struct mii_bus * bus,struct device_node * mdio_np)2497 static int ksz_parse_dt_phy_config(struct ksz_device *dev, struct mii_bus *bus,
2498 				   struct device_node *mdio_np)
2499 {
2500 	struct device_node *phy_node, *phy_parent_node;
2501 	bool phys_are_valid = true;
2502 	struct dsa_port *dp;
2503 	u32 phy_addr;
2504 	int ret;
2505 
2506 	dsa_switch_for_each_user_port(dp, dev->ds) {
2507 		if (!dev->info->internal_phy[dp->index])
2508 			continue;
2509 
2510 		phy_node = of_parse_phandle(dp->dn, "phy-handle", 0);
2511 		if (!phy_node) {
2512 			dev_err(dev->dev, "failed to parse phy-handle for port %d.\n",
2513 				dp->index);
2514 			phys_are_valid = false;
2515 			continue;
2516 		}
2517 
2518 		phy_parent_node = of_get_parent(phy_node);
2519 		if (!phy_parent_node) {
2520 			dev_err(dev->dev, "failed to get PHY-parent node for port %d\n",
2521 				dp->index);
2522 			phys_are_valid = false;
2523 		} else if (phy_parent_node != mdio_np) {
2524 			dev_err(dev->dev, "PHY-parent node mismatch for port %d, expected %pOF, got %pOF\n",
2525 				dp->index, mdio_np, phy_parent_node);
2526 			phys_are_valid = false;
2527 		} else {
2528 			ret = of_property_read_u32(phy_node, "reg", &phy_addr);
2529 			if (ret < 0) {
2530 				dev_err(dev->dev, "failed to read PHY address for port %d. Error %d\n",
2531 					dp->index, ret);
2532 				phys_are_valid = false;
2533 			} else if (phy_addr != dev->phy_addr_map[dp->index]) {
2534 				dev_err(dev->dev, "PHY address mismatch for port %d, expected 0x%x, got 0x%x\n",
2535 					dp->index, dev->phy_addr_map[dp->index],
2536 					phy_addr);
2537 				phys_are_valid = false;
2538 			} else {
2539 				bus->phy_mask |= BIT(phy_addr);
2540 			}
2541 		}
2542 
2543 		of_node_put(phy_node);
2544 		of_node_put(phy_parent_node);
2545 	}
2546 
2547 	if (!phys_are_valid)
2548 		return -EINVAL;
2549 
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ksz_mdio_register - Register and configure the MDIO bus for the KSZ device.
2555  * @dev: Pointer to the KSZ device structure.
2556  *
2557  * This function sets up and registers an MDIO bus for the KSZ switch device,
2558  * allowing access to its internal PHYs. If the device supports side MDIO,
2559  * the function will configure the external MDIO controller specified by the
2560  * "mdio-parent-bus" device tree property to directly manage internal PHYs.
2561  * Otherwise, SPI or I2C access is set up for PHY access.
2562  *
2563  * Return: 0 on success, or a negative error code on failure.
2564  */
ksz_mdio_register(struct ksz_device * dev)2565 static int ksz_mdio_register(struct ksz_device *dev)
2566 {
2567 	struct device_node *parent_bus_node;
2568 	struct mii_bus *parent_bus = NULL;
2569 	struct dsa_switch *ds = dev->ds;
2570 	struct device_node *mdio_np;
2571 	struct mii_bus *bus;
2572 	int ret, i;
2573 
2574 	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2575 	if (!mdio_np)
2576 		return 0;
2577 
2578 	parent_bus_node = of_parse_phandle(mdio_np, "mdio-parent-bus", 0);
2579 	if (parent_bus_node && !dev->info->phy_side_mdio_supported) {
2580 		dev_err(dev->dev, "Side MDIO bus is not supported for this HW, ignoring 'mdio-parent-bus' property.\n");
2581 		ret = -EINVAL;
2582 
2583 		goto put_mdio_node;
2584 	} else if (parent_bus_node) {
2585 		parent_bus = of_mdio_find_bus(parent_bus_node);
2586 		if (!parent_bus) {
2587 			ret = -EPROBE_DEFER;
2588 
2589 			goto put_mdio_node;
2590 		}
2591 
2592 		dev->parent_mdio_bus = parent_bus;
2593 	}
2594 
2595 	bus = devm_mdiobus_alloc(ds->dev);
2596 	if (!bus) {
2597 		ret = -ENOMEM;
2598 		goto put_mdio_node;
2599 	}
2600 
2601 	if (dev->dev_ops->mdio_bus_preinit) {
2602 		ret = dev->dev_ops->mdio_bus_preinit(dev, !!parent_bus);
2603 		if (ret)
2604 			goto put_mdio_node;
2605 	}
2606 
2607 	if (dev->dev_ops->create_phy_addr_map) {
2608 		ret = dev->dev_ops->create_phy_addr_map(dev, !!parent_bus);
2609 		if (ret)
2610 			goto put_mdio_node;
2611 	} else {
2612 		for (i = 0; i < dev->info->port_cnt; i++)
2613 			dev->phy_addr_map[i] = i;
2614 	}
2615 
2616 	bus->priv = dev;
2617 	if (parent_bus) {
2618 		bus->read = ksz_parent_mdio_read;
2619 		bus->write = ksz_parent_mdio_write;
2620 		bus->name = "KSZ side MDIO";
2621 		snprintf(bus->id, MII_BUS_ID_SIZE, "ksz-side-mdio-%d",
2622 			 ds->index);
2623 	} else {
2624 		bus->read = ksz_sw_mdio_read;
2625 		bus->write = ksz_sw_mdio_write;
2626 		bus->name = "ksz user smi";
2627 		if (ds->dst->index != 0) {
2628 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d-%d", ds->dst->index, ds->index);
2629 		} else {
2630 			snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2631 		}
2632 	}
2633 
2634 	ret = ksz_parse_dt_phy_config(dev, bus, mdio_np);
2635 	if (ret)
2636 		goto put_mdio_node;
2637 
2638 	ds->phys_mii_mask = bus->phy_mask;
2639 	bus->parent = ds->dev;
2640 
2641 	ds->user_mii_bus = bus;
2642 
2643 	if (dev->irq > 0) {
2644 		ret = ksz_irq_phy_setup(dev);
2645 		if (ret)
2646 			goto put_mdio_node;
2647 	}
2648 
2649 	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2650 	if (ret) {
2651 		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2652 			bus->id);
2653 		if (dev->irq > 0)
2654 			ksz_irq_phy_free(dev);
2655 	}
2656 
2657 put_mdio_node:
2658 	of_node_put(mdio_np);
2659 	of_node_put(parent_bus_node);
2660 
2661 	return ret;
2662 }
2663 
ksz_irq_mask(struct irq_data * d)2664 static void ksz_irq_mask(struct irq_data *d)
2665 {
2666 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2667 
2668 	kirq->masked |= BIT(d->hwirq);
2669 }
2670 
ksz_irq_unmask(struct irq_data * d)2671 static void ksz_irq_unmask(struct irq_data *d)
2672 {
2673 	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2674 
2675 	kirq->masked &= ~BIT(d->hwirq);
2676 }
2677 
ksz_irq_bus_lock(struct irq_data * d)2678 static void ksz_irq_bus_lock(struct irq_data *d)
2679 {
2680 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2681 
2682 	mutex_lock(&kirq->dev->lock_irq);
2683 }
2684 
ksz_irq_bus_sync_unlock(struct irq_data * d)2685 static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2686 {
2687 	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2688 	struct ksz_device *dev = kirq->dev;
2689 	int ret;
2690 
2691 	ret = ksz_write8(dev, kirq->reg_mask, kirq->masked);
2692 	if (ret)
2693 		dev_err(dev->dev, "failed to change IRQ mask\n");
2694 
2695 	mutex_unlock(&dev->lock_irq);
2696 }
2697 
2698 static const struct irq_chip ksz_irq_chip = {
2699 	.name			= "ksz-irq",
2700 	.irq_mask		= ksz_irq_mask,
2701 	.irq_unmask		= ksz_irq_unmask,
2702 	.irq_bus_lock		= ksz_irq_bus_lock,
2703 	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2704 };
2705 
ksz_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)2706 static int ksz_irq_domain_map(struct irq_domain *d,
2707 			      unsigned int irq, irq_hw_number_t hwirq)
2708 {
2709 	irq_set_chip_data(irq, d->host_data);
2710 	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2711 	irq_set_noprobe(irq);
2712 
2713 	return 0;
2714 }
2715 
2716 static const struct irq_domain_ops ksz_irq_domain_ops = {
2717 	.map	= ksz_irq_domain_map,
2718 	.xlate	= irq_domain_xlate_twocell,
2719 };
2720 
ksz_irq_free(struct ksz_irq * kirq)2721 static void ksz_irq_free(struct ksz_irq *kirq)
2722 {
2723 	int irq, virq;
2724 
2725 	free_irq(kirq->irq_num, kirq);
2726 
2727 	for (irq = 0; irq < kirq->nirqs; irq++) {
2728 		virq = irq_find_mapping(kirq->domain, irq);
2729 		irq_dispose_mapping(virq);
2730 	}
2731 
2732 	irq_domain_remove(kirq->domain);
2733 }
2734 
ksz_irq_thread_fn(int irq,void * dev_id)2735 static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2736 {
2737 	struct ksz_irq *kirq = dev_id;
2738 	unsigned int nhandled = 0;
2739 	struct ksz_device *dev;
2740 	unsigned int sub_irq;
2741 	u8 data;
2742 	int ret;
2743 	u8 n;
2744 
2745 	dev = kirq->dev;
2746 
2747 	/* Read interrupt status register */
2748 	ret = ksz_read8(dev, kirq->reg_status, &data);
2749 	if (ret)
2750 		goto out;
2751 
2752 	for (n = 0; n < kirq->nirqs; ++n) {
2753 		if (data & BIT(n)) {
2754 			sub_irq = irq_find_mapping(kirq->domain, n);
2755 			handle_nested_irq(sub_irq);
2756 			++nhandled;
2757 		}
2758 	}
2759 out:
2760 	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2761 }
2762 
ksz_irq_common_setup(struct ksz_device * dev,struct ksz_irq * kirq)2763 static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2764 {
2765 	int ret, n;
2766 
2767 	kirq->dev = dev;
2768 	kirq->masked = ~0;
2769 
2770 	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2771 					     &ksz_irq_domain_ops, kirq);
2772 	if (!kirq->domain)
2773 		return -ENOMEM;
2774 
2775 	for (n = 0; n < kirq->nirqs; n++)
2776 		irq_create_mapping(kirq->domain, n);
2777 
2778 	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2779 				   IRQF_ONESHOT, kirq->name, kirq);
2780 	if (ret)
2781 		goto out;
2782 
2783 	return 0;
2784 
2785 out:
2786 	ksz_irq_free(kirq);
2787 
2788 	return ret;
2789 }
2790 
ksz_girq_setup(struct ksz_device * dev)2791 static int ksz_girq_setup(struct ksz_device *dev)
2792 {
2793 	struct ksz_irq *girq = &dev->girq;
2794 
2795 	girq->nirqs = dev->info->port_cnt;
2796 	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2797 	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2798 	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2799 
2800 	girq->irq_num = dev->irq;
2801 
2802 	return ksz_irq_common_setup(dev, girq);
2803 }
2804 
ksz_pirq_setup(struct ksz_device * dev,u8 p)2805 static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2806 {
2807 	struct ksz_irq *pirq = &dev->ports[p].pirq;
2808 
2809 	pirq->nirqs = dev->info->port_nirqs;
2810 	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2811 	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2812 	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2813 
2814 	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2815 	if (pirq->irq_num < 0)
2816 		return pirq->irq_num;
2817 
2818 	return ksz_irq_common_setup(dev, pirq);
2819 }
2820 
2821 static int ksz_parse_drive_strength(struct ksz_device *dev);
2822 
ksz_setup(struct dsa_switch * ds)2823 static int ksz_setup(struct dsa_switch *ds)
2824 {
2825 	struct ksz_device *dev = ds->priv;
2826 	struct dsa_port *dp;
2827 	struct ksz_port *p;
2828 	const u16 *regs;
2829 	int ret;
2830 
2831 	regs = dev->info->regs;
2832 
2833 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2834 				       dev->info->num_vlans, GFP_KERNEL);
2835 	if (!dev->vlan_cache)
2836 		return -ENOMEM;
2837 
2838 	ret = dev->dev_ops->reset(dev);
2839 	if (ret) {
2840 		dev_err(ds->dev, "failed to reset switch\n");
2841 		return ret;
2842 	}
2843 
2844 	ret = ksz_parse_drive_strength(dev);
2845 	if (ret)
2846 		return ret;
2847 
2848 	/* set broadcast storm protection 10% rate */
2849 	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2850 			   BROADCAST_STORM_RATE,
2851 			   (BROADCAST_STORM_VALUE *
2852 			   BROADCAST_STORM_PROT_RATE) / 100);
2853 
2854 	dev->dev_ops->config_cpu_port(ds);
2855 
2856 	dev->dev_ops->enable_stp_addr(dev);
2857 
2858 	ds->num_tx_queues = dev->info->num_tx_queues;
2859 
2860 	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2861 			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2862 
2863 	ksz_init_mib_timer(dev);
2864 
2865 	ds->configure_vlan_while_not_filtering = false;
2866 	ds->dscp_prio_mapping_is_global = true;
2867 
2868 	if (dev->dev_ops->setup) {
2869 		ret = dev->dev_ops->setup(ds);
2870 		if (ret)
2871 			return ret;
2872 	}
2873 
2874 	/* Start with learning disabled on standalone user ports, and enabled
2875 	 * on the CPU port. In lack of other finer mechanisms, learning on the
2876 	 * CPU port will avoid flooding bridge local addresses on the network
2877 	 * in some cases.
2878 	 */
2879 	p = &dev->ports[dev->cpu_port];
2880 	p->learning = true;
2881 
2882 	if (dev->irq > 0) {
2883 		ret = ksz_girq_setup(dev);
2884 		if (ret)
2885 			return ret;
2886 
2887 		dsa_switch_for_each_user_port(dp, dev->ds) {
2888 			ret = ksz_pirq_setup(dev, dp->index);
2889 			if (ret)
2890 				goto out_girq;
2891 
2892 			if (dev->info->ptp_capable) {
2893 				ret = ksz_ptp_irq_setup(ds, dp->index);
2894 				if (ret)
2895 					goto out_pirq;
2896 			}
2897 		}
2898 	}
2899 
2900 	if (dev->info->ptp_capable) {
2901 		ret = ksz_ptp_clock_register(ds);
2902 		if (ret) {
2903 			dev_err(dev->dev, "Failed to register PTP clock: %d\n",
2904 				ret);
2905 			goto out_ptpirq;
2906 		}
2907 	}
2908 
2909 	ret = ksz_mdio_register(dev);
2910 	if (ret < 0) {
2911 		dev_err(dev->dev, "failed to register the mdio");
2912 		goto out_ptp_clock_unregister;
2913 	}
2914 
2915 	ret = ksz_dcb_init(dev);
2916 	if (ret)
2917 		goto out_ptp_clock_unregister;
2918 
2919 	/* start switch */
2920 	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2921 			   SW_START, SW_START);
2922 
2923 	return 0;
2924 
2925 out_ptp_clock_unregister:
2926 	if (dev->info->ptp_capable)
2927 		ksz_ptp_clock_unregister(ds);
2928 out_ptpirq:
2929 	if (dev->irq > 0 && dev->info->ptp_capable)
2930 		dsa_switch_for_each_user_port(dp, dev->ds)
2931 			ksz_ptp_irq_free(ds, dp->index);
2932 out_pirq:
2933 	if (dev->irq > 0)
2934 		dsa_switch_for_each_user_port(dp, dev->ds)
2935 			ksz_irq_free(&dev->ports[dp->index].pirq);
2936 out_girq:
2937 	if (dev->irq > 0)
2938 		ksz_irq_free(&dev->girq);
2939 
2940 	return ret;
2941 }
2942 
ksz_teardown(struct dsa_switch * ds)2943 static void ksz_teardown(struct dsa_switch *ds)
2944 {
2945 	struct ksz_device *dev = ds->priv;
2946 	struct dsa_port *dp;
2947 
2948 	if (dev->info->ptp_capable)
2949 		ksz_ptp_clock_unregister(ds);
2950 
2951 	if (dev->irq > 0) {
2952 		dsa_switch_for_each_user_port(dp, dev->ds) {
2953 			if (dev->info->ptp_capable)
2954 				ksz_ptp_irq_free(ds, dp->index);
2955 
2956 			ksz_irq_free(&dev->ports[dp->index].pirq);
2957 		}
2958 
2959 		ksz_irq_free(&dev->girq);
2960 	}
2961 
2962 	if (dev->dev_ops->teardown)
2963 		dev->dev_ops->teardown(ds);
2964 }
2965 
port_r_cnt(struct ksz_device * dev,int port)2966 static void port_r_cnt(struct ksz_device *dev, int port)
2967 {
2968 	struct ksz_port_mib *mib = &dev->ports[port].mib;
2969 	u64 *dropped;
2970 
2971 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2972 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2973 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2974 					&mib->counters[mib->cnt_ptr]);
2975 		++mib->cnt_ptr;
2976 	}
2977 
2978 	/* last one in storage */
2979 	dropped = &mib->counters[dev->info->mib_cnt];
2980 
2981 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2982 	while (mib->cnt_ptr < dev->info->mib_cnt) {
2983 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2984 					dropped, &mib->counters[mib->cnt_ptr]);
2985 		++mib->cnt_ptr;
2986 	}
2987 	mib->cnt_ptr = 0;
2988 }
2989 
ksz_mib_read_work(struct work_struct * work)2990 static void ksz_mib_read_work(struct work_struct *work)
2991 {
2992 	struct ksz_device *dev = container_of(work, struct ksz_device,
2993 					      mib_read.work);
2994 	struct ksz_port_mib *mib;
2995 	struct ksz_port *p;
2996 	int i;
2997 
2998 	for (i = 0; i < dev->info->port_cnt; i++) {
2999 		if (dsa_is_unused_port(dev->ds, i))
3000 			continue;
3001 
3002 		p = &dev->ports[i];
3003 		mib = &p->mib;
3004 		mutex_lock(&mib->cnt_mutex);
3005 
3006 		/* Only read MIB counters when the port is told to do.
3007 		 * If not, read only dropped counters when link is not up.
3008 		 */
3009 		if (!p->read) {
3010 			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
3011 
3012 			if (!netif_carrier_ok(dp->user))
3013 				mib->cnt_ptr = dev->info->reg_mib_cnt;
3014 		}
3015 		port_r_cnt(dev, i);
3016 		p->read = false;
3017 
3018 		if (dev->dev_ops->r_mib_stat64)
3019 			dev->dev_ops->r_mib_stat64(dev, i);
3020 
3021 		mutex_unlock(&mib->cnt_mutex);
3022 	}
3023 
3024 	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
3025 }
3026 
ksz_init_mib_timer(struct ksz_device * dev)3027 void ksz_init_mib_timer(struct ksz_device *dev)
3028 {
3029 	int i;
3030 
3031 	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
3032 
3033 	for (i = 0; i < dev->info->port_cnt; i++) {
3034 		struct ksz_port_mib *mib = &dev->ports[i].mib;
3035 
3036 		dev->dev_ops->port_init_cnt(dev, i);
3037 
3038 		mib->cnt_ptr = 0;
3039 		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
3040 	}
3041 }
3042 
ksz_phy_read16(struct dsa_switch * ds,int addr,int reg)3043 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
3044 {
3045 	struct ksz_device *dev = ds->priv;
3046 	u16 val = 0xffff;
3047 	int ret;
3048 
3049 	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
3050 	if (ret)
3051 		return ret;
3052 
3053 	return val;
3054 }
3055 
ksz_phy_write16(struct dsa_switch * ds,int addr,int reg,u16 val)3056 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
3057 {
3058 	struct ksz_device *dev = ds->priv;
3059 	int ret;
3060 
3061 	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
3062 	if (ret)
3063 		return ret;
3064 
3065 	return 0;
3066 }
3067 
ksz_get_phy_flags(struct dsa_switch * ds,int port)3068 static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
3069 {
3070 	struct ksz_device *dev = ds->priv;
3071 
3072 	switch (dev->chip_id) {
3073 	case KSZ88X3_CHIP_ID:
3074 		/* Silicon Errata Sheet (DS80000830A):
3075 		 * Port 1 does not work with LinkMD Cable-Testing.
3076 		 * Port 1 does not respond to received PAUSE control frames.
3077 		 */
3078 		if (!port)
3079 			return MICREL_KSZ8_P1_ERRATA;
3080 		break;
3081 	}
3082 
3083 	return 0;
3084 }
3085 
ksz_phylink_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)3086 static void ksz_phylink_mac_link_down(struct phylink_config *config,
3087 				      unsigned int mode,
3088 				      phy_interface_t interface)
3089 {
3090 	struct dsa_port *dp = dsa_phylink_to_port(config);
3091 	struct ksz_device *dev = dp->ds->priv;
3092 
3093 	/* Read all MIB counters when the link is going down. */
3094 	dev->ports[dp->index].read = true;
3095 	/* timer started */
3096 	if (dev->mib_read_interval)
3097 		schedule_delayed_work(&dev->mib_read, 0);
3098 }
3099 
ksz_sset_count(struct dsa_switch * ds,int port,int sset)3100 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
3101 {
3102 	struct ksz_device *dev = ds->priv;
3103 
3104 	if (sset != ETH_SS_STATS)
3105 		return 0;
3106 
3107 	return dev->info->mib_cnt;
3108 }
3109 
ksz_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * buf)3110 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
3111 				  uint64_t *buf)
3112 {
3113 	const struct dsa_port *dp = dsa_to_port(ds, port);
3114 	struct ksz_device *dev = ds->priv;
3115 	struct ksz_port_mib *mib;
3116 
3117 	mib = &dev->ports[port].mib;
3118 	mutex_lock(&mib->cnt_mutex);
3119 
3120 	/* Only read dropped counters if no link. */
3121 	if (!netif_carrier_ok(dp->user))
3122 		mib->cnt_ptr = dev->info->reg_mib_cnt;
3123 	port_r_cnt(dev, port);
3124 	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
3125 	mutex_unlock(&mib->cnt_mutex);
3126 }
3127 
ksz_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)3128 static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
3129 				struct dsa_bridge bridge,
3130 				bool *tx_fwd_offload,
3131 				struct netlink_ext_ack *extack)
3132 {
3133 	/* port_stp_state_set() will be called after to put the port in
3134 	 * appropriate state so there is no need to do anything.
3135 	 */
3136 
3137 	return 0;
3138 }
3139 
ksz_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)3140 static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
3141 				  struct dsa_bridge bridge)
3142 {
3143 	/* port_stp_state_set() will be called after to put the port in
3144 	 * forwarding state so there is no need to do anything.
3145 	 */
3146 }
3147 
ksz_port_fast_age(struct dsa_switch * ds,int port)3148 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
3149 {
3150 	struct ksz_device *dev = ds->priv;
3151 
3152 	dev->dev_ops->flush_dyn_mac_table(dev, port);
3153 }
3154 
ksz_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)3155 static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
3156 {
3157 	struct ksz_device *dev = ds->priv;
3158 
3159 	if (!dev->dev_ops->set_ageing_time)
3160 		return -EOPNOTSUPP;
3161 
3162 	return dev->dev_ops->set_ageing_time(dev, msecs);
3163 }
3164 
ksz_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3165 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
3166 			    const unsigned char *addr, u16 vid,
3167 			    struct dsa_db db)
3168 {
3169 	struct ksz_device *dev = ds->priv;
3170 
3171 	if (!dev->dev_ops->fdb_add)
3172 		return -EOPNOTSUPP;
3173 
3174 	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
3175 }
3176 
ksz_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)3177 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
3178 			    const unsigned char *addr,
3179 			    u16 vid, struct dsa_db db)
3180 {
3181 	struct ksz_device *dev = ds->priv;
3182 
3183 	if (!dev->dev_ops->fdb_del)
3184 		return -EOPNOTSUPP;
3185 
3186 	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
3187 }
3188 
ksz_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)3189 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
3190 			     dsa_fdb_dump_cb_t *cb, void *data)
3191 {
3192 	struct ksz_device *dev = ds->priv;
3193 
3194 	if (!dev->dev_ops->fdb_dump)
3195 		return -EOPNOTSUPP;
3196 
3197 	return dev->dev_ops->fdb_dump(dev, port, cb, data);
3198 }
3199 
ksz_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3200 static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
3201 			    const struct switchdev_obj_port_mdb *mdb,
3202 			    struct dsa_db db)
3203 {
3204 	struct ksz_device *dev = ds->priv;
3205 
3206 	if (!dev->dev_ops->mdb_add)
3207 		return -EOPNOTSUPP;
3208 
3209 	return dev->dev_ops->mdb_add(dev, port, mdb, db);
3210 }
3211 
ksz_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)3212 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
3213 			    const struct switchdev_obj_port_mdb *mdb,
3214 			    struct dsa_db db)
3215 {
3216 	struct ksz_device *dev = ds->priv;
3217 
3218 	if (!dev->dev_ops->mdb_del)
3219 		return -EOPNOTSUPP;
3220 
3221 	return dev->dev_ops->mdb_del(dev, port, mdb, db);
3222 }
3223 
ksz9477_set_default_prio_queue_mapping(struct ksz_device * dev,int port)3224 static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev,
3225 						  int port)
3226 {
3227 	u32 queue_map = 0;
3228 	int ipm;
3229 
3230 	for (ipm = 0; ipm < dev->info->num_ipms; ipm++) {
3231 		int queue;
3232 
3233 		/* Traffic Type (TT) is corresponding to the Internal Priority
3234 		 * Map (IPM) in the switch. Traffic Class (TC) is
3235 		 * corresponding to the queue in the switch.
3236 		 */
3237 		queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues);
3238 		if (queue < 0)
3239 			return queue;
3240 
3241 		queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S);
3242 	}
3243 
3244 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3245 }
3246 
ksz_port_setup(struct dsa_switch * ds,int port)3247 static int ksz_port_setup(struct dsa_switch *ds, int port)
3248 {
3249 	struct ksz_device *dev = ds->priv;
3250 	int ret;
3251 
3252 	if (!dsa_is_user_port(ds, port))
3253 		return 0;
3254 
3255 	/* setup user port */
3256 	dev->dev_ops->port_setup(dev, port, false);
3257 
3258 	if (!is_ksz8(dev)) {
3259 		ret = ksz9477_set_default_prio_queue_mapping(dev, port);
3260 		if (ret)
3261 			return ret;
3262 	}
3263 
3264 	/* port_stp_state_set() will be called after to enable the port so
3265 	 * there is no need to do anything.
3266 	 */
3267 
3268 	return ksz_dcb_init_port(dev, port);
3269 }
3270 
ksz_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)3271 void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
3272 {
3273 	struct ksz_device *dev = ds->priv;
3274 	struct ksz_port *p;
3275 	const u16 *regs;
3276 	u8 data;
3277 
3278 	regs = dev->info->regs;
3279 
3280 	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
3281 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3282 
3283 	p = &dev->ports[port];
3284 
3285 	switch (state) {
3286 	case BR_STATE_DISABLED:
3287 		data |= PORT_LEARN_DISABLE;
3288 		break;
3289 	case BR_STATE_LISTENING:
3290 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
3291 		break;
3292 	case BR_STATE_LEARNING:
3293 		data |= PORT_RX_ENABLE;
3294 		if (!p->learning)
3295 			data |= PORT_LEARN_DISABLE;
3296 		break;
3297 	case BR_STATE_FORWARDING:
3298 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
3299 		if (!p->learning)
3300 			data |= PORT_LEARN_DISABLE;
3301 		break;
3302 	case BR_STATE_BLOCKING:
3303 		data |= PORT_LEARN_DISABLE;
3304 		break;
3305 	default:
3306 		dev_err(ds->dev, "invalid STP state: %d\n", state);
3307 		return;
3308 	}
3309 
3310 	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
3311 
3312 	p->stp_state = state;
3313 
3314 	ksz_update_port_member(dev, port);
3315 }
3316 
ksz_port_teardown(struct dsa_switch * ds,int port)3317 static void ksz_port_teardown(struct dsa_switch *ds, int port)
3318 {
3319 	struct ksz_device *dev = ds->priv;
3320 
3321 	switch (dev->chip_id) {
3322 	case KSZ8563_CHIP_ID:
3323 	case KSZ8567_CHIP_ID:
3324 	case KSZ9477_CHIP_ID:
3325 	case KSZ9563_CHIP_ID:
3326 	case KSZ9567_CHIP_ID:
3327 	case KSZ9893_CHIP_ID:
3328 	case KSZ9896_CHIP_ID:
3329 	case KSZ9897_CHIP_ID:
3330 	case LAN9646_CHIP_ID:
3331 		if (dsa_is_user_port(ds, port))
3332 			ksz9477_port_acl_free(dev, port);
3333 	}
3334 }
3335 
ksz_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3336 static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3337 				     struct switchdev_brport_flags flags,
3338 				     struct netlink_ext_ack *extack)
3339 {
3340 	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
3341 		return -EINVAL;
3342 
3343 	return 0;
3344 }
3345 
ksz_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)3346 static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
3347 				 struct switchdev_brport_flags flags,
3348 				 struct netlink_ext_ack *extack)
3349 {
3350 	struct ksz_device *dev = ds->priv;
3351 	struct ksz_port *p = &dev->ports[port];
3352 
3353 	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
3354 		if (flags.mask & BR_LEARNING)
3355 			p->learning = !!(flags.val & BR_LEARNING);
3356 
3357 		if (flags.mask & BR_ISOLATED)
3358 			p->isolated = !!(flags.val & BR_ISOLATED);
3359 
3360 		/* Make the change take effect immediately */
3361 		ksz_port_stp_state_set(ds, port, p->stp_state);
3362 	}
3363 
3364 	return 0;
3365 }
3366 
ksz_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)3367 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
3368 						  int port,
3369 						  enum dsa_tag_protocol mp)
3370 {
3371 	struct ksz_device *dev = ds->priv;
3372 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
3373 
3374 	if (ksz_is_ksz87xx(dev) || ksz_is_8895_family(dev))
3375 		proto = DSA_TAG_PROTO_KSZ8795;
3376 
3377 	if (dev->chip_id == KSZ88X3_CHIP_ID ||
3378 	    dev->chip_id == KSZ8563_CHIP_ID ||
3379 	    dev->chip_id == KSZ9893_CHIP_ID ||
3380 	    dev->chip_id == KSZ9563_CHIP_ID)
3381 		proto = DSA_TAG_PROTO_KSZ9893;
3382 
3383 	if (dev->chip_id == KSZ8567_CHIP_ID ||
3384 	    dev->chip_id == KSZ9477_CHIP_ID ||
3385 	    dev->chip_id == KSZ9896_CHIP_ID ||
3386 	    dev->chip_id == KSZ9897_CHIP_ID ||
3387 	    dev->chip_id == KSZ9567_CHIP_ID ||
3388 	    dev->chip_id == LAN9646_CHIP_ID)
3389 		proto = DSA_TAG_PROTO_KSZ9477;
3390 
3391 	if (is_lan937x(dev))
3392 		proto = DSA_TAG_PROTO_LAN937X;
3393 
3394 	return proto;
3395 }
3396 
ksz_connect_tag_protocol(struct dsa_switch * ds,enum dsa_tag_protocol proto)3397 static int ksz_connect_tag_protocol(struct dsa_switch *ds,
3398 				    enum dsa_tag_protocol proto)
3399 {
3400 	struct ksz_tagger_data *tagger_data;
3401 
3402 	switch (proto) {
3403 	case DSA_TAG_PROTO_KSZ8795:
3404 		return 0;
3405 	case DSA_TAG_PROTO_KSZ9893:
3406 	case DSA_TAG_PROTO_KSZ9477:
3407 	case DSA_TAG_PROTO_LAN937X:
3408 		tagger_data = ksz_tagger_data(ds);
3409 		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
3410 		return 0;
3411 	default:
3412 		return -EPROTONOSUPPORT;
3413 	}
3414 }
3415 
ksz_port_vlan_filtering(struct dsa_switch * ds,int port,bool flag,struct netlink_ext_ack * extack)3416 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
3417 				   bool flag, struct netlink_ext_ack *extack)
3418 {
3419 	struct ksz_device *dev = ds->priv;
3420 
3421 	if (!dev->dev_ops->vlan_filtering)
3422 		return -EOPNOTSUPP;
3423 
3424 	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
3425 }
3426 
ksz_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)3427 static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
3428 			     const struct switchdev_obj_port_vlan *vlan,
3429 			     struct netlink_ext_ack *extack)
3430 {
3431 	struct ksz_device *dev = ds->priv;
3432 
3433 	if (!dev->dev_ops->vlan_add)
3434 		return -EOPNOTSUPP;
3435 
3436 	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
3437 }
3438 
ksz_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)3439 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
3440 			     const struct switchdev_obj_port_vlan *vlan)
3441 {
3442 	struct ksz_device *dev = ds->priv;
3443 
3444 	if (!dev->dev_ops->vlan_del)
3445 		return -EOPNOTSUPP;
3446 
3447 	return dev->dev_ops->vlan_del(dev, port, vlan);
3448 }
3449 
ksz_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)3450 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
3451 			       struct dsa_mall_mirror_tc_entry *mirror,
3452 			       bool ingress, struct netlink_ext_ack *extack)
3453 {
3454 	struct ksz_device *dev = ds->priv;
3455 
3456 	if (!dev->dev_ops->mirror_add)
3457 		return -EOPNOTSUPP;
3458 
3459 	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
3460 }
3461 
ksz_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)3462 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
3463 				struct dsa_mall_mirror_tc_entry *mirror)
3464 {
3465 	struct ksz_device *dev = ds->priv;
3466 
3467 	if (dev->dev_ops->mirror_del)
3468 		dev->dev_ops->mirror_del(dev, port, mirror);
3469 }
3470 
ksz_change_mtu(struct dsa_switch * ds,int port,int mtu)3471 static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
3472 {
3473 	struct ksz_device *dev = ds->priv;
3474 
3475 	if (!dev->dev_ops->change_mtu)
3476 		return -EOPNOTSUPP;
3477 
3478 	return dev->dev_ops->change_mtu(dev, port, mtu);
3479 }
3480 
ksz_max_mtu(struct dsa_switch * ds,int port)3481 static int ksz_max_mtu(struct dsa_switch *ds, int port)
3482 {
3483 	struct ksz_device *dev = ds->priv;
3484 
3485 	switch (dev->chip_id) {
3486 	case KSZ8795_CHIP_ID:
3487 	case KSZ8794_CHIP_ID:
3488 	case KSZ8765_CHIP_ID:
3489 		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3490 	case KSZ88X3_CHIP_ID:
3491 	case KSZ8864_CHIP_ID:
3492 	case KSZ8895_CHIP_ID:
3493 		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3494 	case KSZ8563_CHIP_ID:
3495 	case KSZ8567_CHIP_ID:
3496 	case KSZ9477_CHIP_ID:
3497 	case KSZ9563_CHIP_ID:
3498 	case KSZ9567_CHIP_ID:
3499 	case KSZ9893_CHIP_ID:
3500 	case KSZ9896_CHIP_ID:
3501 	case KSZ9897_CHIP_ID:
3502 	case LAN9370_CHIP_ID:
3503 	case LAN9371_CHIP_ID:
3504 	case LAN9372_CHIP_ID:
3505 	case LAN9373_CHIP_ID:
3506 	case LAN9374_CHIP_ID:
3507 	case LAN9646_CHIP_ID:
3508 		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
3509 	}
3510 
3511 	return -EOPNOTSUPP;
3512 }
3513 
3514 /**
3515  * ksz_support_eee - Determine Energy Efficient Ethernet (EEE) support for a
3516  *                   port
3517  * @ds: Pointer to the DSA switch structure
3518  * @port: Port number to check
3519  *
3520  * This function also documents devices where EEE was initially advertised but
3521  * later withdrawn due to reliability issues, as described in official errata
3522  * documents. These devices are explicitly listed to record known limitations,
3523  * even if there is no technical necessity for runtime checks.
3524  *
3525  * Returns: true if the internal PHY on the given port supports fully
3526  * operational EEE, false otherwise.
3527  */
ksz_support_eee(struct dsa_switch * ds,int port)3528 static bool ksz_support_eee(struct dsa_switch *ds, int port)
3529 {
3530 	struct ksz_device *dev = ds->priv;
3531 
3532 	if (!dev->info->internal_phy[port])
3533 		return false;
3534 
3535 	switch (dev->chip_id) {
3536 	case KSZ8563_CHIP_ID:
3537 	case KSZ9563_CHIP_ID:
3538 	case KSZ9893_CHIP_ID:
3539 		return true;
3540 	case KSZ8567_CHIP_ID:
3541 		/* KSZ8567R Errata DS80000752C Module 4 */
3542 	case KSZ8765_CHIP_ID:
3543 	case KSZ8794_CHIP_ID:
3544 	case KSZ8795_CHIP_ID:
3545 		/* KSZ879x/KSZ877x/KSZ876x Errata DS80000687C Module 2 */
3546 	case KSZ9477_CHIP_ID:
3547 		/* KSZ9477S Errata DS80000754A Module 4 */
3548 	case KSZ9567_CHIP_ID:
3549 		/* KSZ9567S Errata DS80000756A Module 4 */
3550 	case KSZ9896_CHIP_ID:
3551 		/* KSZ9896C Errata DS80000757A Module 3 */
3552 	case KSZ9897_CHIP_ID:
3553 	case LAN9646_CHIP_ID:
3554 		/* KSZ9897R Errata DS80000758C Module 4 */
3555 		/* Energy Efficient Ethernet (EEE) feature select must be
3556 		 * manually disabled
3557 		 *   The EEE feature is enabled by default, but it is not fully
3558 		 *   operational. It must be manually disabled through register
3559 		 *   controls. If not disabled, the PHY ports can auto-negotiate
3560 		 *   to enable EEE, and this feature can cause link drops when
3561 		 *   linked to another device supporting EEE.
3562 		 *
3563 		 * The same item appears in the errata for all switches above.
3564 		 */
3565 		break;
3566 	}
3567 
3568 	return false;
3569 }
3570 
ksz_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_keee * e)3571 static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
3572 			   struct ethtool_keee *e)
3573 {
3574 	struct ksz_device *dev = ds->priv;
3575 
3576 	if (!e->tx_lpi_enabled) {
3577 		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
3578 		return -EINVAL;
3579 	}
3580 
3581 	if (e->tx_lpi_timer) {
3582 		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
3583 		return -EINVAL;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
ksz_set_xmii(struct ksz_device * dev,int port,phy_interface_t interface)3589 static void ksz_set_xmii(struct ksz_device *dev, int port,
3590 			 phy_interface_t interface)
3591 {
3592 	const u8 *bitval = dev->info->xmii_ctrl1;
3593 	struct ksz_port *p = &dev->ports[port];
3594 	const u16 *regs = dev->info->regs;
3595 	u8 data8;
3596 
3597 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3598 
3599 	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
3600 		   P_RGMII_ID_EG_ENABLE);
3601 
3602 	switch (interface) {
3603 	case PHY_INTERFACE_MODE_MII:
3604 		data8 |= bitval[P_MII_SEL];
3605 		break;
3606 	case PHY_INTERFACE_MODE_RMII:
3607 		data8 |= bitval[P_RMII_SEL];
3608 		break;
3609 	case PHY_INTERFACE_MODE_GMII:
3610 		data8 |= bitval[P_GMII_SEL];
3611 		break;
3612 	case PHY_INTERFACE_MODE_RGMII:
3613 	case PHY_INTERFACE_MODE_RGMII_ID:
3614 	case PHY_INTERFACE_MODE_RGMII_TXID:
3615 	case PHY_INTERFACE_MODE_RGMII_RXID:
3616 		data8 |= bitval[P_RGMII_SEL];
3617 		/* On KSZ9893, disable RGMII in-band status support */
3618 		if (dev->chip_id == KSZ9893_CHIP_ID ||
3619 		    dev->chip_id == KSZ8563_CHIP_ID ||
3620 		    dev->chip_id == KSZ9563_CHIP_ID ||
3621 		    is_lan937x(dev))
3622 			data8 &= ~P_MII_MAC_MODE;
3623 		break;
3624 	default:
3625 		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3626 			phy_modes(interface), port);
3627 		return;
3628 	}
3629 
3630 	if (p->rgmii_tx_val)
3631 		data8 |= P_RGMII_ID_EG_ENABLE;
3632 
3633 	if (p->rgmii_rx_val)
3634 		data8 |= P_RGMII_ID_IG_ENABLE;
3635 
3636 	/* Write the updated value */
3637 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3638 }
3639 
ksz_get_xmii(struct ksz_device * dev,int port,bool gbit)3640 phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3641 {
3642 	const u8 *bitval = dev->info->xmii_ctrl1;
3643 	const u16 *regs = dev->info->regs;
3644 	phy_interface_t interface;
3645 	u8 data8;
3646 	u8 val;
3647 
3648 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3649 
3650 	val = FIELD_GET(P_MII_SEL_M, data8);
3651 
3652 	if (val == bitval[P_MII_SEL]) {
3653 		if (gbit)
3654 			interface = PHY_INTERFACE_MODE_GMII;
3655 		else
3656 			interface = PHY_INTERFACE_MODE_MII;
3657 	} else if (val == bitval[P_RMII_SEL]) {
3658 		interface = PHY_INTERFACE_MODE_RMII;
3659 	} else {
3660 		interface = PHY_INTERFACE_MODE_RGMII;
3661 		if (data8 & P_RGMII_ID_EG_ENABLE)
3662 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3663 		if (data8 & P_RGMII_ID_IG_ENABLE) {
3664 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3665 			if (data8 & P_RGMII_ID_EG_ENABLE)
3666 				interface = PHY_INTERFACE_MODE_RGMII_ID;
3667 		}
3668 	}
3669 
3670 	return interface;
3671 }
3672 
ksz88x3_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3673 static void ksz88x3_phylink_mac_config(struct phylink_config *config,
3674 				       unsigned int mode,
3675 				       const struct phylink_link_state *state)
3676 {
3677 	struct dsa_port *dp = dsa_phylink_to_port(config);
3678 	struct ksz_device *dev = dp->ds->priv;
3679 
3680 	dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN);
3681 }
3682 
ksz_phylink_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)3683 static void ksz_phylink_mac_config(struct phylink_config *config,
3684 				   unsigned int mode,
3685 				   const struct phylink_link_state *state)
3686 {
3687 	struct dsa_port *dp = dsa_phylink_to_port(config);
3688 	struct ksz_device *dev = dp->ds->priv;
3689 	int port = dp->index;
3690 
3691 	/* Internal PHYs */
3692 	if (dev->info->internal_phy[port])
3693 		return;
3694 
3695 	if (phylink_autoneg_inband(mode)) {
3696 		dev_err(dev->dev, "In-band AN not supported!\n");
3697 		return;
3698 	}
3699 
3700 	ksz_set_xmii(dev, port, state->interface);
3701 
3702 	if (dev->dev_ops->setup_rgmii_delay)
3703 		dev->dev_ops->setup_rgmii_delay(dev, port);
3704 }
3705 
ksz_get_gbit(struct ksz_device * dev,int port)3706 bool ksz_get_gbit(struct ksz_device *dev, int port)
3707 {
3708 	const u8 *bitval = dev->info->xmii_ctrl1;
3709 	const u16 *regs = dev->info->regs;
3710 	bool gbit = false;
3711 	u8 data8;
3712 	bool val;
3713 
3714 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3715 
3716 	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3717 
3718 	if (val == bitval[P_GMII_1GBIT])
3719 		gbit = true;
3720 
3721 	return gbit;
3722 }
3723 
ksz_set_gbit(struct ksz_device * dev,int port,bool gbit)3724 static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3725 {
3726 	const u8 *bitval = dev->info->xmii_ctrl1;
3727 	const u16 *regs = dev->info->regs;
3728 	u8 data8;
3729 
3730 	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3731 
3732 	data8 &= ~P_GMII_1GBIT_M;
3733 
3734 	if (gbit)
3735 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3736 	else
3737 		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3738 
3739 	/* Write the updated value */
3740 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3741 }
3742 
ksz_set_100_10mbit(struct ksz_device * dev,int port,int speed)3743 static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3744 {
3745 	const u8 *bitval = dev->info->xmii_ctrl0;
3746 	const u16 *regs = dev->info->regs;
3747 	u8 data8;
3748 
3749 	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3750 
3751 	data8 &= ~P_MII_100MBIT_M;
3752 
3753 	if (speed == SPEED_100)
3754 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3755 	else
3756 		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3757 
3758 	/* Write the updated value */
3759 	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3760 }
3761 
ksz_port_set_xmii_speed(struct ksz_device * dev,int port,int speed)3762 static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3763 {
3764 	if (speed == SPEED_1000)
3765 		ksz_set_gbit(dev, port, true);
3766 	else
3767 		ksz_set_gbit(dev, port, false);
3768 
3769 	if (speed == SPEED_100 || speed == SPEED_10)
3770 		ksz_set_100_10mbit(dev, port, speed);
3771 }
3772 
ksz_duplex_flowctrl(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)3773 static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3774 				bool tx_pause, bool rx_pause)
3775 {
3776 	const u8 *bitval = dev->info->xmii_ctrl0;
3777 	const u32 *masks = dev->info->masks;
3778 	const u16 *regs = dev->info->regs;
3779 	u8 mask;
3780 	u8 val;
3781 
3782 	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3783 	       masks[P_MII_RX_FLOW_CTRL];
3784 
3785 	if (duplex == DUPLEX_FULL)
3786 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3787 	else
3788 		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3789 
3790 	if (tx_pause)
3791 		val |= masks[P_MII_TX_FLOW_CTRL];
3792 
3793 	if (rx_pause)
3794 		val |= masks[P_MII_RX_FLOW_CTRL];
3795 
3796 	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3797 }
3798 
ksz9477_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)3799 static void ksz9477_phylink_mac_link_up(struct phylink_config *config,
3800 					struct phy_device *phydev,
3801 					unsigned int mode,
3802 					phy_interface_t interface,
3803 					int speed, int duplex, bool tx_pause,
3804 					bool rx_pause)
3805 {
3806 	struct dsa_port *dp = dsa_phylink_to_port(config);
3807 	struct ksz_device *dev = dp->ds->priv;
3808 	int port = dp->index;
3809 	struct ksz_port *p;
3810 
3811 	p = &dev->ports[port];
3812 
3813 	/* Internal PHYs */
3814 	if (dev->info->internal_phy[port])
3815 		return;
3816 
3817 	p->phydev.speed = speed;
3818 
3819 	ksz_port_set_xmii_speed(dev, port, speed);
3820 
3821 	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3822 }
3823 
ksz_switch_detect(struct ksz_device * dev)3824 static int ksz_switch_detect(struct ksz_device *dev)
3825 {
3826 	u8 id1, id2, id4;
3827 	u16 id16;
3828 	u32 id32;
3829 	int ret;
3830 
3831 	/* read chip id */
3832 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3833 	if (ret)
3834 		return ret;
3835 
3836 	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3837 	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3838 
3839 	switch (id1) {
3840 	case KSZ87_FAMILY_ID:
3841 		if (id2 == KSZ87_CHIP_ID_95) {
3842 			u8 val;
3843 
3844 			dev->chip_id = KSZ8795_CHIP_ID;
3845 
3846 			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3847 			if (val & KSZ8_PORT_FIBER_MODE)
3848 				dev->chip_id = KSZ8765_CHIP_ID;
3849 		} else if (id2 == KSZ87_CHIP_ID_94) {
3850 			dev->chip_id = KSZ8794_CHIP_ID;
3851 		} else {
3852 			return -ENODEV;
3853 		}
3854 		break;
3855 	case KSZ88_FAMILY_ID:
3856 		if (id2 == KSZ88_CHIP_ID_63)
3857 			dev->chip_id = KSZ88X3_CHIP_ID;
3858 		else
3859 			return -ENODEV;
3860 		break;
3861 	case KSZ8895_FAMILY_ID:
3862 		if (id2 == KSZ8895_CHIP_ID_95 ||
3863 		    id2 == KSZ8895_CHIP_ID_95R)
3864 			dev->chip_id = KSZ8895_CHIP_ID;
3865 		else
3866 			return -ENODEV;
3867 		ret = ksz_read8(dev, REG_KSZ8864_CHIP_ID, &id4);
3868 		if (ret)
3869 			return ret;
3870 		if (id4 & SW_KSZ8864)
3871 			dev->chip_id = KSZ8864_CHIP_ID;
3872 		break;
3873 	default:
3874 		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3875 		if (ret)
3876 			return ret;
3877 
3878 		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3879 		id32 &= ~0xFF;
3880 
3881 		switch (id32) {
3882 		case KSZ9477_CHIP_ID:
3883 		case KSZ9896_CHIP_ID:
3884 		case KSZ9897_CHIP_ID:
3885 		case KSZ9567_CHIP_ID:
3886 		case KSZ8567_CHIP_ID:
3887 		case LAN9370_CHIP_ID:
3888 		case LAN9371_CHIP_ID:
3889 		case LAN9372_CHIP_ID:
3890 		case LAN9373_CHIP_ID:
3891 		case LAN9374_CHIP_ID:
3892 
3893 			/* LAN9646 does not have its own chip id. */
3894 			if (dev->chip_id != LAN9646_CHIP_ID)
3895 				dev->chip_id = id32;
3896 			break;
3897 		case KSZ9893_CHIP_ID:
3898 			ret = ksz_read8(dev, REG_CHIP_ID4,
3899 					&id4);
3900 			if (ret)
3901 				return ret;
3902 
3903 			if (id4 == SKU_ID_KSZ8563)
3904 				dev->chip_id = KSZ8563_CHIP_ID;
3905 			else if (id4 == SKU_ID_KSZ9563)
3906 				dev->chip_id = KSZ9563_CHIP_ID;
3907 			else
3908 				dev->chip_id = KSZ9893_CHIP_ID;
3909 
3910 			break;
3911 		default:
3912 			dev_err(dev->dev,
3913 				"unsupported switch detected %x)\n", id32);
3914 			return -ENODEV;
3915 		}
3916 	}
3917 	return 0;
3918 }
3919 
ksz_cls_flower_add(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)3920 static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3921 			      struct flow_cls_offload *cls, bool ingress)
3922 {
3923 	struct ksz_device *dev = ds->priv;
3924 
3925 	switch (dev->chip_id) {
3926 	case KSZ8563_CHIP_ID:
3927 	case KSZ8567_CHIP_ID:
3928 	case KSZ9477_CHIP_ID:
3929 	case KSZ9563_CHIP_ID:
3930 	case KSZ9567_CHIP_ID:
3931 	case KSZ9893_CHIP_ID:
3932 	case KSZ9896_CHIP_ID:
3933 	case KSZ9897_CHIP_ID:
3934 	case LAN9646_CHIP_ID:
3935 		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3936 	}
3937 
3938 	return -EOPNOTSUPP;
3939 }
3940 
ksz_cls_flower_del(struct dsa_switch * ds,int port,struct flow_cls_offload * cls,bool ingress)3941 static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3942 			      struct flow_cls_offload *cls, bool ingress)
3943 {
3944 	struct ksz_device *dev = ds->priv;
3945 
3946 	switch (dev->chip_id) {
3947 	case KSZ8563_CHIP_ID:
3948 	case KSZ8567_CHIP_ID:
3949 	case KSZ9477_CHIP_ID:
3950 	case KSZ9563_CHIP_ID:
3951 	case KSZ9567_CHIP_ID:
3952 	case KSZ9893_CHIP_ID:
3953 	case KSZ9896_CHIP_ID:
3954 	case KSZ9897_CHIP_ID:
3955 	case LAN9646_CHIP_ID:
3956 		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3957 	}
3958 
3959 	return -EOPNOTSUPP;
3960 }
3961 
3962 /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3963  * is converted to Hex-decimal using the successive multiplication method. On
3964  * every step, integer part is taken and decimal part is carry forwarded.
3965  */
cinc_cal(s32 idle_slope,s32 send_slope,u32 * bw)3966 static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3967 {
3968 	u32 cinc = 0;
3969 	u32 txrate;
3970 	u32 rate;
3971 	u8 temp;
3972 	u8 i;
3973 
3974 	txrate = idle_slope - send_slope;
3975 
3976 	if (!txrate)
3977 		return -EINVAL;
3978 
3979 	rate = idle_slope;
3980 
3981 	/* 24 bit register */
3982 	for (i = 0; i < 6; i++) {
3983 		rate = rate * 16;
3984 
3985 		temp = rate / txrate;
3986 
3987 		rate %= txrate;
3988 
3989 		cinc = ((cinc << 4) | temp);
3990 	}
3991 
3992 	*bw = cinc;
3993 
3994 	return 0;
3995 }
3996 
ksz_setup_tc_mode(struct ksz_device * dev,int port,u8 scheduler,u8 shaper)3997 static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3998 			     u8 shaper)
3999 {
4000 	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
4001 			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
4002 			   FIELD_PREP(MTI_SHAPING_M, shaper));
4003 }
4004 
ksz_setup_tc_cbs(struct dsa_switch * ds,int port,struct tc_cbs_qopt_offload * qopt)4005 static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
4006 			    struct tc_cbs_qopt_offload *qopt)
4007 {
4008 	struct ksz_device *dev = ds->priv;
4009 	int ret;
4010 	u32 bw;
4011 
4012 	if (!dev->info->tc_cbs_supported)
4013 		return -EOPNOTSUPP;
4014 
4015 	if (qopt->queue > dev->info->num_tx_queues)
4016 		return -EINVAL;
4017 
4018 	/* Queue Selection */
4019 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
4020 	if (ret)
4021 		return ret;
4022 
4023 	if (!qopt->enable)
4024 		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4025 					 MTI_SHAPING_OFF);
4026 
4027 	/* High Credit */
4028 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
4029 			   qopt->hicredit);
4030 	if (ret)
4031 		return ret;
4032 
4033 	/* Low Credit */
4034 	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
4035 			   qopt->locredit);
4036 	if (ret)
4037 		return ret;
4038 
4039 	/* Credit Increment Register */
4040 	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
4041 	if (ret)
4042 		return ret;
4043 
4044 	if (dev->dev_ops->tc_cbs_set_cinc) {
4045 		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
4046 		if (ret)
4047 			return ret;
4048 	}
4049 
4050 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4051 				 MTI_SHAPING_SRP);
4052 }
4053 
ksz_disable_egress_rate_limit(struct ksz_device * dev,int port)4054 static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
4055 {
4056 	int queue, ret;
4057 
4058 	/* Configuration will not take effect until the last Port Queue X
4059 	 * Egress Limit Control Register is written.
4060 	 */
4061 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4062 		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
4063 				  KSZ9477_OUT_RATE_NO_LIMIT);
4064 		if (ret)
4065 			return ret;
4066 	}
4067 
4068 	return 0;
4069 }
4070 
ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params * p,int band)4071 static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
4072 				 int band)
4073 {
4074 	/* Compared to queues, bands prioritize packets differently. In strict
4075 	 * priority mode, the lowest priority is assigned to Queue 0 while the
4076 	 * highest priority is given to Band 0.
4077 	 */
4078 	return p->bands - 1 - band;
4079 }
4080 
ksz_queue_set_strict(struct ksz_device * dev,int port,int queue)4081 static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
4082 {
4083 	int ret;
4084 
4085 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4086 	if (ret)
4087 		return ret;
4088 
4089 	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
4090 				 MTI_SHAPING_OFF);
4091 }
4092 
ksz_queue_set_wrr(struct ksz_device * dev,int port,int queue,int weight)4093 static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
4094 			     int weight)
4095 {
4096 	int ret;
4097 
4098 	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
4099 	if (ret)
4100 		return ret;
4101 
4102 	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
4103 				MTI_SHAPING_OFF);
4104 	if (ret)
4105 		return ret;
4106 
4107 	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
4108 }
4109 
ksz_tc_ets_add(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4110 static int ksz_tc_ets_add(struct ksz_device *dev, int port,
4111 			  struct tc_ets_qopt_offload_replace_params *p)
4112 {
4113 	int ret, band, tc_prio;
4114 	u32 queue_map = 0;
4115 
4116 	/* In order to ensure proper prioritization, it is necessary to set the
4117 	 * rate limit for the related queue to zero. Otherwise strict priority
4118 	 * or WRR mode will not work. This is a hardware limitation.
4119 	 */
4120 	ret = ksz_disable_egress_rate_limit(dev, port);
4121 	if (ret)
4122 		return ret;
4123 
4124 	/* Configure queue scheduling mode for all bands. Currently only strict
4125 	 * prio mode is supported.
4126 	 */
4127 	for (band = 0; band < p->bands; band++) {
4128 		int queue = ksz_ets_band_to_queue(p, band);
4129 
4130 		ret = ksz_queue_set_strict(dev, port, queue);
4131 		if (ret)
4132 			return ret;
4133 	}
4134 
4135 	/* Configure the mapping between traffic classes and queues. Note:
4136 	 * priomap variable support 16 traffic classes, but the chip can handle
4137 	 * only 8 classes.
4138 	 */
4139 	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
4140 		int queue;
4141 
4142 		if (tc_prio >= dev->info->num_ipms)
4143 			break;
4144 
4145 		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
4146 		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
4147 	}
4148 
4149 	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
4150 }
4151 
ksz_tc_ets_del(struct ksz_device * dev,int port)4152 static int ksz_tc_ets_del(struct ksz_device *dev, int port)
4153 {
4154 	int ret, queue;
4155 
4156 	/* To restore the default chip configuration, set all queues to use the
4157 	 * WRR scheduler with a weight of 1.
4158 	 */
4159 	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
4160 		ret = ksz_queue_set_wrr(dev, port, queue,
4161 					KSZ9477_DEFAULT_WRR_WEIGHT);
4162 		if (ret)
4163 			return ret;
4164 	}
4165 
4166 	/* Revert the queue mapping for TC-priority to its default setting on
4167 	 * the chip.
4168 	 */
4169 	return ksz9477_set_default_prio_queue_mapping(dev, port);
4170 }
4171 
ksz_tc_ets_validate(struct ksz_device * dev,int port,struct tc_ets_qopt_offload_replace_params * p)4172 static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
4173 			       struct tc_ets_qopt_offload_replace_params *p)
4174 {
4175 	int band;
4176 
4177 	/* Since it is not feasible to share one port among multiple qdisc,
4178 	 * the user must configure all available queues appropriately.
4179 	 */
4180 	if (p->bands != dev->info->num_tx_queues) {
4181 		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
4182 			dev->info->num_tx_queues);
4183 		return -EOPNOTSUPP;
4184 	}
4185 
4186 	for (band = 0; band < p->bands; ++band) {
4187 		/* The KSZ switches utilize a weighted round robin configuration
4188 		 * where a certain number of packets can be transmitted from a
4189 		 * queue before the next queue is serviced. For more information
4190 		 * on this, refer to section 5.2.8.4 of the KSZ8565R
4191 		 * documentation on the Port Transmit Queue Control 1 Register.
4192 		 * However, the current ETS Qdisc implementation (as of February
4193 		 * 2023) assigns a weight to each queue based on the number of
4194 		 * bytes or extrapolated bandwidth in percentages. Since this
4195 		 * differs from the KSZ switches' method and we don't want to
4196 		 * fake support by converting bytes to packets, it is better to
4197 		 * return an error instead.
4198 		 */
4199 		if (p->quanta[band]) {
4200 			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
4201 			return -EOPNOTSUPP;
4202 		}
4203 	}
4204 
4205 	return 0;
4206 }
4207 
ksz_tc_setup_qdisc_ets(struct dsa_switch * ds,int port,struct tc_ets_qopt_offload * qopt)4208 static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
4209 				  struct tc_ets_qopt_offload *qopt)
4210 {
4211 	struct ksz_device *dev = ds->priv;
4212 	int ret;
4213 
4214 	if (is_ksz8(dev))
4215 		return -EOPNOTSUPP;
4216 
4217 	if (qopt->parent != TC_H_ROOT) {
4218 		dev_err(dev->dev, "Parent should be \"root\"\n");
4219 		return -EOPNOTSUPP;
4220 	}
4221 
4222 	switch (qopt->command) {
4223 	case TC_ETS_REPLACE:
4224 		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
4225 		if (ret)
4226 			return ret;
4227 
4228 		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
4229 	case TC_ETS_DESTROY:
4230 		return ksz_tc_ets_del(dev, port);
4231 	case TC_ETS_STATS:
4232 	case TC_ETS_GRAFT:
4233 		return -EOPNOTSUPP;
4234 	}
4235 
4236 	return -EOPNOTSUPP;
4237 }
4238 
ksz_setup_tc(struct dsa_switch * ds,int port,enum tc_setup_type type,void * type_data)4239 static int ksz_setup_tc(struct dsa_switch *ds, int port,
4240 			enum tc_setup_type type, void *type_data)
4241 {
4242 	switch (type) {
4243 	case TC_SETUP_QDISC_CBS:
4244 		return ksz_setup_tc_cbs(ds, port, type_data);
4245 	case TC_SETUP_QDISC_ETS:
4246 		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
4247 	default:
4248 		return -EOPNOTSUPP;
4249 	}
4250 }
4251 
4252 /**
4253  * ksz_handle_wake_reason - Handle wake reason on a specified port.
4254  * @dev: The device structure.
4255  * @port: The port number.
4256  *
4257  * This function reads the PME (Power Management Event) status register of a
4258  * specified port to determine the wake reason. If there is no wake event, it
4259  * returns early. Otherwise, it logs the wake reason which could be due to a
4260  * "Magic Packet", "Link Up", or "Energy Detect" event. The PME status register
4261  * is then cleared to acknowledge the handling of the wake event.
4262  *
4263  * Return: 0 on success, or an error code on failure.
4264  */
ksz_handle_wake_reason(struct ksz_device * dev,int port)4265 int ksz_handle_wake_reason(struct ksz_device *dev, int port)
4266 {
4267 	const struct ksz_dev_ops *ops = dev->dev_ops;
4268 	const u16 *regs = dev->info->regs;
4269 	u8 pme_status;
4270 	int ret;
4271 
4272 	ret = ops->pme_pread8(dev, port, regs[REG_PORT_PME_STATUS],
4273 			      &pme_status);
4274 	if (ret)
4275 		return ret;
4276 
4277 	if (!pme_status)
4278 		return 0;
4279 
4280 	dev_dbg(dev->dev, "Wake event on port %d due to:%s%s%s\n", port,
4281 		pme_status & PME_WOL_MAGICPKT ? " \"Magic Packet\"" : "",
4282 		pme_status & PME_WOL_LINKUP ? " \"Link Up\"" : "",
4283 		pme_status & PME_WOL_ENERGY ? " \"Energy detect\"" : "");
4284 
4285 	return ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_STATUS],
4286 				pme_status);
4287 }
4288 
4289 /**
4290  * ksz_get_wol - Get Wake-on-LAN settings for a specified port.
4291  * @ds: The dsa_switch structure.
4292  * @port: The port number.
4293  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4294  *
4295  * This function checks the device PME wakeup_source flag and chip_id.
4296  * If enabled and supported, it sets the supported and active WoL
4297  * flags.
4298  */
ksz_get_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4299 static void ksz_get_wol(struct dsa_switch *ds, int port,
4300 			struct ethtool_wolinfo *wol)
4301 {
4302 	struct ksz_device *dev = ds->priv;
4303 	const u16 *regs = dev->info->regs;
4304 	u8 pme_ctrl;
4305 	int ret;
4306 
4307 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4308 		return;
4309 
4310 	if (!dev->wakeup_source)
4311 		return;
4312 
4313 	wol->supported = WAKE_PHY;
4314 
4315 	/* Check if the current MAC address on this port can be set
4316 	 * as global for WAKE_MAGIC support. The result may vary
4317 	 * dynamically based on other ports configurations.
4318 	 */
4319 	if (ksz_is_port_mac_global_usable(dev->ds, port))
4320 		wol->supported |= WAKE_MAGIC;
4321 
4322 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4323 				       &pme_ctrl);
4324 	if (ret)
4325 		return;
4326 
4327 	if (pme_ctrl & PME_WOL_MAGICPKT)
4328 		wol->wolopts |= WAKE_MAGIC;
4329 	if (pme_ctrl & (PME_WOL_LINKUP | PME_WOL_ENERGY))
4330 		wol->wolopts |= WAKE_PHY;
4331 }
4332 
4333 /**
4334  * ksz_set_wol - Set Wake-on-LAN settings for a specified port.
4335  * @ds: The dsa_switch structure.
4336  * @port: The port number.
4337  * @wol: Pointer to ethtool Wake-on-LAN settings structure.
4338  *
4339  * This function configures Wake-on-LAN (WoL) settings for a specified
4340  * port. It validates the provided WoL options, checks if PME is
4341  * enabled and supported, clears any previous wake reasons, and sets
4342  * the Magic Packet flag in the port's PME control register if
4343  * specified.
4344  *
4345  * Return: 0 on success, or other error codes on failure.
4346  */
ksz_set_wol(struct dsa_switch * ds,int port,struct ethtool_wolinfo * wol)4347 static int ksz_set_wol(struct dsa_switch *ds, int port,
4348 		       struct ethtool_wolinfo *wol)
4349 {
4350 	u8 pme_ctrl = 0, pme_ctrl_old = 0;
4351 	struct ksz_device *dev = ds->priv;
4352 	const u16 *regs = dev->info->regs;
4353 	bool magic_switched_off;
4354 	bool magic_switched_on;
4355 	int ret;
4356 
4357 	if (wol->wolopts & ~(WAKE_PHY | WAKE_MAGIC))
4358 		return -EINVAL;
4359 
4360 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4361 		return -EOPNOTSUPP;
4362 
4363 	if (!dev->wakeup_source)
4364 		return -EOPNOTSUPP;
4365 
4366 	ret = ksz_handle_wake_reason(dev, port);
4367 	if (ret)
4368 		return ret;
4369 
4370 	if (wol->wolopts & WAKE_MAGIC)
4371 		pme_ctrl |= PME_WOL_MAGICPKT;
4372 	if (wol->wolopts & WAKE_PHY)
4373 		pme_ctrl |= PME_WOL_LINKUP | PME_WOL_ENERGY;
4374 
4375 	ret = dev->dev_ops->pme_pread8(dev, port, regs[REG_PORT_PME_CTRL],
4376 				       &pme_ctrl_old);
4377 	if (ret)
4378 		return ret;
4379 
4380 	if (pme_ctrl_old == pme_ctrl)
4381 		return 0;
4382 
4383 	magic_switched_off = (pme_ctrl_old & PME_WOL_MAGICPKT) &&
4384 			    !(pme_ctrl & PME_WOL_MAGICPKT);
4385 	magic_switched_on = !(pme_ctrl_old & PME_WOL_MAGICPKT) &&
4386 			    (pme_ctrl & PME_WOL_MAGICPKT);
4387 
4388 	/* To keep reference count of MAC address, we should do this
4389 	 * operation only on change of WOL settings.
4390 	 */
4391 	if (magic_switched_on) {
4392 		ret = ksz_switch_macaddr_get(dev->ds, port, NULL);
4393 		if (ret)
4394 			return ret;
4395 	} else if (magic_switched_off) {
4396 		ksz_switch_macaddr_put(dev->ds);
4397 	}
4398 
4399 	ret = dev->dev_ops->pme_pwrite8(dev, port, regs[REG_PORT_PME_CTRL],
4400 					pme_ctrl);
4401 	if (ret) {
4402 		if (magic_switched_on)
4403 			ksz_switch_macaddr_put(dev->ds);
4404 		return ret;
4405 	}
4406 
4407 	return 0;
4408 }
4409 
4410 /**
4411  * ksz_wol_pre_shutdown - Prepares the switch device for shutdown while
4412  *                        considering Wake-on-LAN (WoL) settings.
4413  * @dev: The switch device structure.
4414  * @wol_enabled: Pointer to a boolean which will be set to true if WoL is
4415  *               enabled on any port.
4416  *
4417  * This function prepares the switch device for a safe shutdown while taking
4418  * into account the Wake-on-LAN (WoL) settings on the user ports. It updates
4419  * the wol_enabled flag accordingly to reflect whether WoL is active on any
4420  * port.
4421  */
ksz_wol_pre_shutdown(struct ksz_device * dev,bool * wol_enabled)4422 static void ksz_wol_pre_shutdown(struct ksz_device *dev, bool *wol_enabled)
4423 {
4424 	const struct ksz_dev_ops *ops = dev->dev_ops;
4425 	const u16 *regs = dev->info->regs;
4426 	u8 pme_pin_en = PME_ENABLE;
4427 	struct dsa_port *dp;
4428 	int ret;
4429 
4430 	*wol_enabled = false;
4431 
4432 	if (!is_ksz9477(dev) && !ksz_is_ksz87xx(dev))
4433 		return;
4434 
4435 	if (!dev->wakeup_source)
4436 		return;
4437 
4438 	dsa_switch_for_each_user_port(dp, dev->ds) {
4439 		u8 pme_ctrl = 0;
4440 
4441 		ret = ops->pme_pread8(dev, dp->index,
4442 				      regs[REG_PORT_PME_CTRL], &pme_ctrl);
4443 		if (!ret && pme_ctrl)
4444 			*wol_enabled = true;
4445 
4446 		/* make sure there are no pending wake events which would
4447 		 * prevent the device from going to sleep/shutdown.
4448 		 */
4449 		ksz_handle_wake_reason(dev, dp->index);
4450 	}
4451 
4452 	/* Now we are save to enable PME pin. */
4453 	if (*wol_enabled) {
4454 		if (dev->pme_active_high)
4455 			pme_pin_en |= PME_POLARITY;
4456 		ops->pme_write8(dev, regs[REG_SW_PME_CTRL], pme_pin_en);
4457 		if (ksz_is_ksz87xx(dev))
4458 			ksz_write8(dev, KSZ87XX_REG_INT_EN, KSZ87XX_INT_PME_MASK);
4459 	}
4460 }
4461 
ksz_port_set_mac_address(struct dsa_switch * ds,int port,const unsigned char * addr)4462 static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
4463 				    const unsigned char *addr)
4464 {
4465 	struct dsa_port *dp = dsa_to_port(ds, port);
4466 	struct ethtool_wolinfo wol;
4467 
4468 	if (dp->hsr_dev) {
4469 		dev_err(ds->dev,
4470 			"Cannot change MAC address on port %d with active HSR offload\n",
4471 			port);
4472 		return -EBUSY;
4473 	}
4474 
4475 	/* Need to initialize variable as the code to fill in settings may
4476 	 * not be executed.
4477 	 */
4478 	wol.wolopts = 0;
4479 
4480 	ksz_get_wol(ds, dp->index, &wol);
4481 	if (wol.wolopts & WAKE_MAGIC) {
4482 		dev_err(ds->dev,
4483 			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
4484 			port);
4485 		return -EBUSY;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 /**
4492  * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
4493  *                                 can be used as a global address.
4494  * @ds: Pointer to the DSA switch structure.
4495  * @port: The port number on which the MAC address is to be checked.
4496  *
4497  * This function examines the MAC address set on the specified port and
4498  * determines if it can be used as a global address for the switch.
4499  *
4500  * Return: true if the port's MAC address can be used as a global address, false
4501  * otherwise.
4502  */
ksz_is_port_mac_global_usable(struct dsa_switch * ds,int port)4503 bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
4504 {
4505 	struct net_device *user = dsa_to_port(ds, port)->user;
4506 	const unsigned char *addr = user->dev_addr;
4507 	struct ksz_switch_macaddr *switch_macaddr;
4508 	struct ksz_device *dev = ds->priv;
4509 
4510 	ASSERT_RTNL();
4511 
4512 	switch_macaddr = dev->switch_macaddr;
4513 	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
4514 		return false;
4515 
4516 	return true;
4517 }
4518 
4519 /**
4520  * ksz_switch_macaddr_get - Program the switch's MAC address register.
4521  * @ds: DSA switch instance.
4522  * @port: Port number.
4523  * @extack: Netlink extended acknowledgment.
4524  *
4525  * This function programs the switch's MAC address register with the MAC address
4526  * of the requesting user port. This single address is used by the switch for
4527  * multiple features like HSR self-address filtering and WoL. Other user ports
4528  * can share ownership of this address as long as their MAC address is the same.
4529  * The MAC addresses of user ports must not change while they have ownership of
4530  * the switch MAC address.
4531  *
4532  * Return: 0 on success, or other error codes on failure.
4533  */
ksz_switch_macaddr_get(struct dsa_switch * ds,int port,struct netlink_ext_ack * extack)4534 int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
4535 			   struct netlink_ext_ack *extack)
4536 {
4537 	struct net_device *user = dsa_to_port(ds, port)->user;
4538 	const unsigned char *addr = user->dev_addr;
4539 	struct ksz_switch_macaddr *switch_macaddr;
4540 	struct ksz_device *dev = ds->priv;
4541 	const u16 *regs = dev->info->regs;
4542 	int i, ret;
4543 
4544 	/* Make sure concurrent MAC address changes are blocked */
4545 	ASSERT_RTNL();
4546 
4547 	switch_macaddr = dev->switch_macaddr;
4548 	if (switch_macaddr) {
4549 		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
4550 			NL_SET_ERR_MSG_FMT_MOD(extack,
4551 					       "Switch already configured for MAC address %pM",
4552 					       switch_macaddr->addr);
4553 			return -EBUSY;
4554 		}
4555 
4556 		refcount_inc(&switch_macaddr->refcount);
4557 		return 0;
4558 	}
4559 
4560 	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
4561 	if (!switch_macaddr)
4562 		return -ENOMEM;
4563 
4564 	ether_addr_copy(switch_macaddr->addr, addr);
4565 	refcount_set(&switch_macaddr->refcount, 1);
4566 	dev->switch_macaddr = switch_macaddr;
4567 
4568 	/* Program the switch MAC address to hardware */
4569 	for (i = 0; i < ETH_ALEN; i++) {
4570 		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
4571 		if (ret)
4572 			goto macaddr_drop;
4573 	}
4574 
4575 	return 0;
4576 
4577 macaddr_drop:
4578 	dev->switch_macaddr = NULL;
4579 	refcount_set(&switch_macaddr->refcount, 0);
4580 	kfree(switch_macaddr);
4581 
4582 	return ret;
4583 }
4584 
ksz_switch_macaddr_put(struct dsa_switch * ds)4585 void ksz_switch_macaddr_put(struct dsa_switch *ds)
4586 {
4587 	struct ksz_switch_macaddr *switch_macaddr;
4588 	struct ksz_device *dev = ds->priv;
4589 	const u16 *regs = dev->info->regs;
4590 	int i;
4591 
4592 	/* Make sure concurrent MAC address changes are blocked */
4593 	ASSERT_RTNL();
4594 
4595 	switch_macaddr = dev->switch_macaddr;
4596 	if (!refcount_dec_and_test(&switch_macaddr->refcount))
4597 		return;
4598 
4599 	for (i = 0; i < ETH_ALEN; i++)
4600 		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
4601 
4602 	dev->switch_macaddr = NULL;
4603 	kfree(switch_macaddr);
4604 }
4605 
ksz_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)4606 static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
4607 			struct netlink_ext_ack *extack)
4608 {
4609 	struct ksz_device *dev = ds->priv;
4610 	enum hsr_version ver;
4611 	int ret;
4612 
4613 	ret = hsr_get_version(hsr, &ver);
4614 	if (ret)
4615 		return ret;
4616 
4617 	if (dev->chip_id != KSZ9477_CHIP_ID) {
4618 		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
4619 		return -EOPNOTSUPP;
4620 	}
4621 
4622 	/* KSZ9477 can support HW offloading of only 1 HSR device */
4623 	if (dev->hsr_dev && hsr != dev->hsr_dev) {
4624 		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
4625 		return -EOPNOTSUPP;
4626 	}
4627 
4628 	/* KSZ9477 only supports HSR v0 and v1 */
4629 	if (!(ver == HSR_V0 || ver == HSR_V1)) {
4630 		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
4631 		return -EOPNOTSUPP;
4632 	}
4633 
4634 	/* KSZ9477 can only perform HSR offloading for up to two ports */
4635 	if (hweight8(dev->hsr_ports) >= 2) {
4636 		NL_SET_ERR_MSG_MOD(extack,
4637 				   "Cannot offload more than two ports - using software HSR");
4638 		return -EOPNOTSUPP;
4639 	}
4640 
4641 	/* Self MAC address filtering, to avoid frames traversing
4642 	 * the HSR ring more than once.
4643 	 */
4644 	ret = ksz_switch_macaddr_get(ds, port, extack);
4645 	if (ret)
4646 		return ret;
4647 
4648 	ksz9477_hsr_join(ds, port, hsr);
4649 	dev->hsr_dev = hsr;
4650 	dev->hsr_ports |= BIT(port);
4651 
4652 	return 0;
4653 }
4654 
ksz_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)4655 static int ksz_hsr_leave(struct dsa_switch *ds, int port,
4656 			 struct net_device *hsr)
4657 {
4658 	struct ksz_device *dev = ds->priv;
4659 
4660 	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
4661 
4662 	ksz9477_hsr_leave(ds, port, hsr);
4663 	dev->hsr_ports &= ~BIT(port);
4664 	if (!dev->hsr_ports)
4665 		dev->hsr_dev = NULL;
4666 
4667 	ksz_switch_macaddr_put(ds);
4668 
4669 	return 0;
4670 }
4671 
ksz_suspend(struct dsa_switch * ds)4672 static int ksz_suspend(struct dsa_switch *ds)
4673 {
4674 	struct ksz_device *dev = ds->priv;
4675 
4676 	cancel_delayed_work_sync(&dev->mib_read);
4677 	return 0;
4678 }
4679 
ksz_resume(struct dsa_switch * ds)4680 static int ksz_resume(struct dsa_switch *ds)
4681 {
4682 	struct ksz_device *dev = ds->priv;
4683 
4684 	if (dev->mib_read_interval)
4685 		schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
4686 	return 0;
4687 }
4688 
4689 static const struct dsa_switch_ops ksz_switch_ops = {
4690 	.get_tag_protocol	= ksz_get_tag_protocol,
4691 	.connect_tag_protocol   = ksz_connect_tag_protocol,
4692 	.get_phy_flags		= ksz_get_phy_flags,
4693 	.setup			= ksz_setup,
4694 	.teardown		= ksz_teardown,
4695 	.phy_read		= ksz_phy_read16,
4696 	.phy_write		= ksz_phy_write16,
4697 	.phylink_get_caps	= ksz_phylink_get_caps,
4698 	.port_setup		= ksz_port_setup,
4699 	.set_ageing_time	= ksz_set_ageing_time,
4700 	.get_strings		= ksz_get_strings,
4701 	.get_ethtool_stats	= ksz_get_ethtool_stats,
4702 	.get_sset_count		= ksz_sset_count,
4703 	.port_bridge_join	= ksz_port_bridge_join,
4704 	.port_bridge_leave	= ksz_port_bridge_leave,
4705 	.port_hsr_join		= ksz_hsr_join,
4706 	.port_hsr_leave		= ksz_hsr_leave,
4707 	.port_set_mac_address	= ksz_port_set_mac_address,
4708 	.port_stp_state_set	= ksz_port_stp_state_set,
4709 	.port_teardown		= ksz_port_teardown,
4710 	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
4711 	.port_bridge_flags	= ksz_port_bridge_flags,
4712 	.port_fast_age		= ksz_port_fast_age,
4713 	.port_vlan_filtering	= ksz_port_vlan_filtering,
4714 	.port_vlan_add		= ksz_port_vlan_add,
4715 	.port_vlan_del		= ksz_port_vlan_del,
4716 	.port_fdb_dump		= ksz_port_fdb_dump,
4717 	.port_fdb_add		= ksz_port_fdb_add,
4718 	.port_fdb_del		= ksz_port_fdb_del,
4719 	.port_mdb_add           = ksz_port_mdb_add,
4720 	.port_mdb_del           = ksz_port_mdb_del,
4721 	.port_mirror_add	= ksz_port_mirror_add,
4722 	.port_mirror_del	= ksz_port_mirror_del,
4723 	.get_stats64		= ksz_get_stats64,
4724 	.get_pause_stats	= ksz_get_pause_stats,
4725 	.port_change_mtu	= ksz_change_mtu,
4726 	.port_max_mtu		= ksz_max_mtu,
4727 	.get_wol		= ksz_get_wol,
4728 	.set_wol		= ksz_set_wol,
4729 	.suspend		= ksz_suspend,
4730 	.resume			= ksz_resume,
4731 	.get_ts_info		= ksz_get_ts_info,
4732 	.port_hwtstamp_get	= ksz_hwtstamp_get,
4733 	.port_hwtstamp_set	= ksz_hwtstamp_set,
4734 	.port_txtstamp		= ksz_port_txtstamp,
4735 	.port_rxtstamp		= ksz_port_rxtstamp,
4736 	.cls_flower_add		= ksz_cls_flower_add,
4737 	.cls_flower_del		= ksz_cls_flower_del,
4738 	.port_setup_tc		= ksz_setup_tc,
4739 	.support_eee		= ksz_support_eee,
4740 	.set_mac_eee		= ksz_set_mac_eee,
4741 	.port_get_default_prio	= ksz_port_get_default_prio,
4742 	.port_set_default_prio	= ksz_port_set_default_prio,
4743 	.port_get_dscp_prio	= ksz_port_get_dscp_prio,
4744 	.port_add_dscp_prio	= ksz_port_add_dscp_prio,
4745 	.port_del_dscp_prio	= ksz_port_del_dscp_prio,
4746 	.port_get_apptrust	= ksz_port_get_apptrust,
4747 	.port_set_apptrust	= ksz_port_set_apptrust,
4748 };
4749 
ksz_switch_alloc(struct device * base,void * priv)4750 struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
4751 {
4752 	struct dsa_switch *ds;
4753 	struct ksz_device *swdev;
4754 
4755 	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
4756 	if (!ds)
4757 		return NULL;
4758 
4759 	ds->dev = base;
4760 	ds->num_ports = DSA_MAX_PORTS;
4761 	ds->ops = &ksz_switch_ops;
4762 
4763 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
4764 	if (!swdev)
4765 		return NULL;
4766 
4767 	ds->priv = swdev;
4768 	swdev->dev = base;
4769 
4770 	swdev->ds = ds;
4771 	swdev->priv = priv;
4772 
4773 	return swdev;
4774 }
4775 EXPORT_SYMBOL(ksz_switch_alloc);
4776 
4777 /**
4778  * ksz_switch_shutdown - Shutdown routine for the switch device.
4779  * @dev: The switch device structure.
4780  *
4781  * This function is responsible for initiating a shutdown sequence for the
4782  * switch device. It invokes the reset operation defined in the device
4783  * operations, if available, to reset the switch. Subsequently, it calls the
4784  * DSA framework's shutdown function to ensure a proper shutdown of the DSA
4785  * switch.
4786  */
ksz_switch_shutdown(struct ksz_device * dev)4787 void ksz_switch_shutdown(struct ksz_device *dev)
4788 {
4789 	bool wol_enabled = false;
4790 
4791 	ksz_wol_pre_shutdown(dev, &wol_enabled);
4792 
4793 	if (dev->dev_ops->reset && !wol_enabled)
4794 		dev->dev_ops->reset(dev);
4795 
4796 	dsa_switch_shutdown(dev->ds);
4797 }
4798 EXPORT_SYMBOL(ksz_switch_shutdown);
4799 
ksz_parse_rgmii_delay(struct ksz_device * dev,int port_num,struct device_node * port_dn)4800 static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
4801 				  struct device_node *port_dn)
4802 {
4803 	phy_interface_t phy_mode = dev->ports[port_num].interface;
4804 	int rx_delay = -1, tx_delay = -1;
4805 
4806 	if (!phy_interface_mode_is_rgmii(phy_mode))
4807 		return;
4808 
4809 	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
4810 	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
4811 
4812 	if (rx_delay == -1 && tx_delay == -1) {
4813 		dev_warn(dev->dev,
4814 			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
4815 			 "please update device tree to specify \"rx-internal-delay-ps\" and "
4816 			 "\"tx-internal-delay-ps\"",
4817 			 port_num);
4818 
4819 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4820 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4821 			rx_delay = 2000;
4822 
4823 		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4824 		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4825 			tx_delay = 2000;
4826 	}
4827 
4828 	if (rx_delay < 0)
4829 		rx_delay = 0;
4830 	if (tx_delay < 0)
4831 		tx_delay = 0;
4832 
4833 	dev->ports[port_num].rgmii_rx_val = rx_delay;
4834 	dev->ports[port_num].rgmii_tx_val = tx_delay;
4835 }
4836 
4837 /**
4838  * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4839  *				 register value.
4840  * @array:	The array of drive strength values to search.
4841  * @array_size:	The size of the array.
4842  * @microamp:	The drive strength value in microamp to be converted.
4843  *
4844  * This function searches the array of drive strength values for the given
4845  * microamp value and returns the corresponding register value for that drive.
4846  *
4847  * Returns: If found, the corresponding register value for that drive strength
4848  * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4849  */
ksz_drive_strength_to_reg(const struct ksz_drive_strength * array,size_t array_size,int microamp)4850 static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4851 				     size_t array_size, int microamp)
4852 {
4853 	int i;
4854 
4855 	for (i = 0; i < array_size; i++) {
4856 		if (array[i].microamp == microamp)
4857 			return array[i].reg_val;
4858 	}
4859 
4860 	return -EINVAL;
4861 }
4862 
4863 /**
4864  * ksz_drive_strength_error() - Report invalid drive strength value
4865  * @dev:	ksz device
4866  * @array:	The array of drive strength values to search.
4867  * @array_size:	The size of the array.
4868  * @microamp:	Invalid drive strength value in microamp
4869  *
4870  * This function logs an error message when an unsupported drive strength value
4871  * is detected. It lists out all the supported drive strength values for
4872  * reference in the error message.
4873  */
ksz_drive_strength_error(struct ksz_device * dev,const struct ksz_drive_strength * array,size_t array_size,int microamp)4874 static void ksz_drive_strength_error(struct ksz_device *dev,
4875 				     const struct ksz_drive_strength *array,
4876 				     size_t array_size, int microamp)
4877 {
4878 	char supported_values[100];
4879 	size_t remaining_size;
4880 	int added_len;
4881 	char *ptr;
4882 	int i;
4883 
4884 	remaining_size = sizeof(supported_values);
4885 	ptr = supported_values;
4886 
4887 	for (i = 0; i < array_size; i++) {
4888 		added_len = snprintf(ptr, remaining_size,
4889 				     i == 0 ? "%d" : ", %d", array[i].microamp);
4890 
4891 		if (added_len >= remaining_size)
4892 			break;
4893 
4894 		ptr += added_len;
4895 		remaining_size -= added_len;
4896 	}
4897 
4898 	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4899 		microamp, supported_values);
4900 }
4901 
4902 /**
4903  * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4904  *				    chip variants.
4905  * @dev:       ksz device
4906  * @props:     Array of drive strength properties to be applied
4907  * @num_props: Number of properties in the array
4908  *
4909  * This function configures the drive strength for various KSZ9477 chip variants
4910  * based on the provided properties. It handles chip-specific nuances and
4911  * ensures only valid drive strengths are written to the respective chip.
4912  *
4913  * Return: 0 on successful configuration, a negative error code on failure.
4914  */
ksz9477_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)4915 static int ksz9477_drive_strength_write(struct ksz_device *dev,
4916 					struct ksz_driver_strength_prop *props,
4917 					int num_props)
4918 {
4919 	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4920 	int i, ret, reg;
4921 	u8 mask = 0;
4922 	u8 val = 0;
4923 
4924 	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4925 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4926 			 props[KSZ_DRIVER_STRENGTH_IO].name);
4927 
4928 	if (dev->chip_id == KSZ8795_CHIP_ID ||
4929 	    dev->chip_id == KSZ8794_CHIP_ID ||
4930 	    dev->chip_id == KSZ8765_CHIP_ID)
4931 		reg = KSZ8795_REG_SW_CTRL_20;
4932 	else
4933 		reg = KSZ9477_REG_SW_IO_STRENGTH;
4934 
4935 	for (i = 0; i < num_props; i++) {
4936 		if (props[i].value == -1)
4937 			continue;
4938 
4939 		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4940 						array_size, props[i].value);
4941 		if (ret < 0) {
4942 			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4943 						 array_size, props[i].value);
4944 			return ret;
4945 		}
4946 
4947 		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4948 		val |= ret << props[i].offset;
4949 	}
4950 
4951 	return ksz_rmw8(dev, reg, mask, val);
4952 }
4953 
4954 /**
4955  * ksz88x3_drive_strength_write() - Set the drive strength configuration for
4956  *				    KSZ8863 compatible chip variants.
4957  * @dev:       ksz device
4958  * @props:     Array of drive strength properties to be set
4959  * @num_props: Number of properties in the array
4960  *
4961  * This function applies the specified drive strength settings to KSZ88X3 chip
4962  * variants (KSZ8873, KSZ8863).
4963  * It ensures the configurations align with what the chip variant supports and
4964  * warns or errors out on unsupported settings.
4965  *
4966  * Return: 0 on success, error code otherwise
4967  */
ksz88x3_drive_strength_write(struct ksz_device * dev,struct ksz_driver_strength_prop * props,int num_props)4968 static int ksz88x3_drive_strength_write(struct ksz_device *dev,
4969 					struct ksz_driver_strength_prop *props,
4970 					int num_props)
4971 {
4972 	size_t array_size = ARRAY_SIZE(ksz88x3_drive_strengths);
4973 	int microamp;
4974 	int i, ret;
4975 
4976 	for (i = 0; i < num_props; i++) {
4977 		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4978 			continue;
4979 
4980 		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4981 			 props[i].name);
4982 	}
4983 
4984 	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4985 	ret = ksz_drive_strength_to_reg(ksz88x3_drive_strengths, array_size,
4986 					microamp);
4987 	if (ret < 0) {
4988 		ksz_drive_strength_error(dev, ksz88x3_drive_strengths,
4989 					 array_size, microamp);
4990 		return ret;
4991 	}
4992 
4993 	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4994 			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4995 }
4996 
4997 /**
4998  * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4999  *				from device tree properties.
5000  * @dev:	ksz device
5001  *
5002  * This function reads the specified drive strength properties from the
5003  * device tree, validates against the supported chip variants, and sets
5004  * them accordingly. An error should be critical here, as the drive strength
5005  * settings are crucial for EMI compliance.
5006  *
5007  * Return: 0 on success, error code otherwise
5008  */
ksz_parse_drive_strength(struct ksz_device * dev)5009 static int ksz_parse_drive_strength(struct ksz_device *dev)
5010 {
5011 	struct ksz_driver_strength_prop of_props[] = {
5012 		[KSZ_DRIVER_STRENGTH_HI] = {
5013 			.name = "microchip,hi-drive-strength-microamp",
5014 			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
5015 			.value = -1,
5016 		},
5017 		[KSZ_DRIVER_STRENGTH_LO] = {
5018 			.name = "microchip,lo-drive-strength-microamp",
5019 			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
5020 			.value = -1,
5021 		},
5022 		[KSZ_DRIVER_STRENGTH_IO] = {
5023 			.name = "microchip,io-drive-strength-microamp",
5024 			.offset = 0, /* don't care */
5025 			.value = -1,
5026 		},
5027 	};
5028 	struct device_node *np = dev->dev->of_node;
5029 	bool have_any_prop = false;
5030 	int i, ret;
5031 
5032 	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5033 		ret = of_property_read_u32(np, of_props[i].name,
5034 					   &of_props[i].value);
5035 		if (ret && ret != -EINVAL)
5036 			dev_warn(dev->dev, "Failed to read %s\n",
5037 				 of_props[i].name);
5038 		if (ret)
5039 			continue;
5040 
5041 		have_any_prop = true;
5042 	}
5043 
5044 	if (!have_any_prop)
5045 		return 0;
5046 
5047 	switch (dev->chip_id) {
5048 	case KSZ88X3_CHIP_ID:
5049 		return ksz88x3_drive_strength_write(dev, of_props,
5050 						    ARRAY_SIZE(of_props));
5051 	case KSZ8795_CHIP_ID:
5052 	case KSZ8794_CHIP_ID:
5053 	case KSZ8765_CHIP_ID:
5054 	case KSZ8563_CHIP_ID:
5055 	case KSZ8567_CHIP_ID:
5056 	case KSZ9477_CHIP_ID:
5057 	case KSZ9563_CHIP_ID:
5058 	case KSZ9567_CHIP_ID:
5059 	case KSZ9893_CHIP_ID:
5060 	case KSZ9896_CHIP_ID:
5061 	case KSZ9897_CHIP_ID:
5062 	case LAN9646_CHIP_ID:
5063 		return ksz9477_drive_strength_write(dev, of_props,
5064 						    ARRAY_SIZE(of_props));
5065 	default:
5066 		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
5067 			if (of_props[i].value == -1)
5068 				continue;
5069 
5070 			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
5071 				 of_props[i].name);
5072 		}
5073 	}
5074 
5075 	return 0;
5076 }
5077 
ksz_switch_register(struct ksz_device * dev)5078 int ksz_switch_register(struct ksz_device *dev)
5079 {
5080 	const struct ksz_chip_data *info;
5081 	struct device_node *ports;
5082 	phy_interface_t interface;
5083 	unsigned int port_num;
5084 	int ret;
5085 	int i;
5086 
5087 	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
5088 						  GPIOD_OUT_LOW);
5089 	if (IS_ERR(dev->reset_gpio))
5090 		return PTR_ERR(dev->reset_gpio);
5091 
5092 	if (dev->reset_gpio) {
5093 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5094 		usleep_range(10000, 12000);
5095 		gpiod_set_value_cansleep(dev->reset_gpio, 0);
5096 		msleep(100);
5097 	}
5098 
5099 	mutex_init(&dev->dev_mutex);
5100 	mutex_init(&dev->regmap_mutex);
5101 	mutex_init(&dev->alu_mutex);
5102 	mutex_init(&dev->vlan_mutex);
5103 
5104 	ret = ksz_switch_detect(dev);
5105 	if (ret)
5106 		return ret;
5107 
5108 	info = ksz_lookup_info(dev->chip_id);
5109 	if (!info)
5110 		return -ENODEV;
5111 
5112 	/* Update the compatible info with the probed one */
5113 	dev->info = info;
5114 
5115 	dev_info(dev->dev, "found switch: %s, rev %i\n",
5116 		 dev->info->dev_name, dev->chip_rev);
5117 
5118 	ret = ksz_check_device_id(dev);
5119 	if (ret)
5120 		return ret;
5121 
5122 	dev->dev_ops = dev->info->ops;
5123 
5124 	ret = dev->dev_ops->init(dev);
5125 	if (ret)
5126 		return ret;
5127 
5128 	dev->ports = devm_kzalloc(dev->dev,
5129 				  dev->info->port_cnt * sizeof(struct ksz_port),
5130 				  GFP_KERNEL);
5131 	if (!dev->ports)
5132 		return -ENOMEM;
5133 
5134 	for (i = 0; i < dev->info->port_cnt; i++) {
5135 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
5136 		mutex_init(&dev->ports[i].mib.cnt_mutex);
5137 		dev->ports[i].mib.counters =
5138 			devm_kzalloc(dev->dev,
5139 				     sizeof(u64) * (dev->info->mib_cnt + 1),
5140 				     GFP_KERNEL);
5141 		if (!dev->ports[i].mib.counters)
5142 			return -ENOMEM;
5143 
5144 		dev->ports[i].ksz_dev = dev;
5145 		dev->ports[i].num = i;
5146 	}
5147 
5148 	/* set the real number of ports */
5149 	dev->ds->num_ports = dev->info->port_cnt;
5150 
5151 	/* set the phylink ops */
5152 	dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops;
5153 
5154 	/* Host port interface will be self detected, or specifically set in
5155 	 * device tree.
5156 	 */
5157 	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
5158 		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
5159 	if (dev->dev->of_node) {
5160 		ret = of_get_phy_mode(dev->dev->of_node, &interface);
5161 		if (ret == 0)
5162 			dev->compat_interface = interface;
5163 		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
5164 		if (!ports)
5165 			ports = of_get_child_by_name(dev->dev->of_node, "ports");
5166 		if (ports) {
5167 			for_each_available_child_of_node_scoped(ports, port) {
5168 				if (of_property_read_u32(port, "reg",
5169 							 &port_num))
5170 					continue;
5171 				if (!(dev->port_mask & BIT(port_num))) {
5172 					of_node_put(ports);
5173 					return -EINVAL;
5174 				}
5175 				of_get_phy_mode(port,
5176 						&dev->ports[port_num].interface);
5177 
5178 				ksz_parse_rgmii_delay(dev, port_num, port);
5179 			}
5180 			of_node_put(ports);
5181 		}
5182 		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
5183 							 "microchip,synclko-125");
5184 		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
5185 							     "microchip,synclko-disable");
5186 		if (dev->synclko_125 && dev->synclko_disable) {
5187 			dev_err(dev->dev, "inconsistent synclko settings\n");
5188 			return -EINVAL;
5189 		}
5190 
5191 		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
5192 							   "wakeup-source");
5193 		dev->pme_active_high = of_property_read_bool(dev->dev->of_node,
5194 							     "microchip,pme-active-high");
5195 	}
5196 
5197 	ret = dsa_register_switch(dev->ds);
5198 	if (ret) {
5199 		dev->dev_ops->exit(dev);
5200 		return ret;
5201 	}
5202 
5203 	/* Read MIB counters every 30 seconds to avoid overflow. */
5204 	dev->mib_read_interval = msecs_to_jiffies(5000);
5205 
5206 	/* Start the MIB timer. */
5207 	schedule_delayed_work(&dev->mib_read, 0);
5208 
5209 	return ret;
5210 }
5211 EXPORT_SYMBOL(ksz_switch_register);
5212 
ksz_switch_remove(struct ksz_device * dev)5213 void ksz_switch_remove(struct ksz_device *dev)
5214 {
5215 	/* timer started */
5216 	if (dev->mib_read_interval) {
5217 		dev->mib_read_interval = 0;
5218 		cancel_delayed_work_sync(&dev->mib_read);
5219 	}
5220 
5221 	dev->dev_ops->exit(dev);
5222 	dsa_unregister_switch(dev->ds);
5223 
5224 	if (dev->reset_gpio)
5225 		gpiod_set_value_cansleep(dev->reset_gpio, 1);
5226 
5227 }
5228 EXPORT_SYMBOL(ksz_switch_remove);
5229 
5230 #ifdef CONFIG_PM_SLEEP
ksz_switch_suspend(struct device * dev)5231 int ksz_switch_suspend(struct device *dev)
5232 {
5233 	struct ksz_device *priv = dev_get_drvdata(dev);
5234 
5235 	return dsa_switch_suspend(priv->ds);
5236 }
5237 EXPORT_SYMBOL(ksz_switch_suspend);
5238 
ksz_switch_resume(struct device * dev)5239 int ksz_switch_resume(struct device *dev)
5240 {
5241 	struct ksz_device *priv = dev_get_drvdata(dev);
5242 
5243 	return dsa_switch_resume(priv->ds);
5244 }
5245 EXPORT_SYMBOL(ksz_switch_resume);
5246 #endif
5247 
5248 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
5249 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
5250 MODULE_LICENSE("GPL");
5251