1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/dma/mxs-dma.h>
20 #include <linux/string_choices.h>
21 #include "gpmi-nand.h"
22 #include "gpmi-regs.h"
23 #include "bch-regs.h"
24 
25 /* Resource names for the GPMI NAND driver. */
26 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
27 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
28 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
29 
30 /* Converts time to clock cycles */
31 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
32 
33 #define MXS_SET_ADDR		0x4
34 #define MXS_CLR_ADDR		0x8
35 /*
36  * Clear the bit and poll it cleared.  This is usually called with
37  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
38  * (bit 30).
39  */
clear_poll_bit(void __iomem * addr,u32 mask)40 static int clear_poll_bit(void __iomem *addr, u32 mask)
41 {
42 	int timeout = 0x400;
43 
44 	/* clear the bit */
45 	writel(mask, addr + MXS_CLR_ADDR);
46 
47 	/*
48 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
49 	 * recommends to wait 1us.
50 	 */
51 	udelay(1);
52 
53 	/* poll the bit becoming clear */
54 	while ((readl(addr) & mask) && --timeout)
55 		/* nothing */;
56 
57 	return !timeout;
58 }
59 
60 #define MODULE_CLKGATE		(1 << 30)
61 #define MODULE_SFTRST		(1 << 31)
62 /*
63  * The current mxs_reset_block() will do two things:
64  *  [1] enable the module.
65  *  [2] reset the module.
66  *
67  * In most of the cases, it's ok.
68  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
69  * If you try to soft reset the BCH block, it becomes unusable until
70  * the next hard reset. This case occurs in the NAND boot mode. When the board
71  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
72  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
73  * You will see a DMA timeout in this case. The bug has been fixed
74  * in the following chips, such as MX28.
75  *
76  * To avoid this bug, just add a new parameter `just_enable` for
77  * the mxs_reset_block(), and rewrite it here.
78  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)79 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
80 {
81 	int ret;
82 	int timeout = 0x400;
83 
84 	/* clear and poll SFTRST */
85 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
86 	if (unlikely(ret))
87 		goto error;
88 
89 	/* clear CLKGATE */
90 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
91 
92 	if (!just_enable) {
93 		/* set SFTRST to reset the block */
94 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
95 		udelay(1);
96 
97 		/* poll CLKGATE becoming set */
98 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
99 			/* nothing */;
100 		if (unlikely(!timeout))
101 			goto error;
102 	}
103 
104 	/* clear and poll SFTRST */
105 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
106 	if (unlikely(ret))
107 		goto error;
108 
109 	/* clear and poll CLKGATE */
110 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
111 	if (unlikely(ret))
112 		goto error;
113 
114 	return 0;
115 
116 error:
117 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
118 	return -ETIMEDOUT;
119 }
120 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)121 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
122 {
123 	struct clk *clk;
124 	int ret;
125 	int i;
126 
127 	for (i = 0; i < GPMI_CLK_MAX; i++) {
128 		clk = this->resources.clock[i];
129 		if (!clk)
130 			break;
131 
132 		if (v) {
133 			ret = clk_prepare_enable(clk);
134 			if (ret)
135 				goto err_clk;
136 		} else {
137 			clk_disable_unprepare(clk);
138 		}
139 	}
140 	return 0;
141 
142 err_clk:
143 	for (; i > 0; i--)
144 		clk_disable_unprepare(this->resources.clock[i - 1]);
145 	return ret;
146 }
147 
gpmi_init(struct gpmi_nand_data * this)148 static int gpmi_init(struct gpmi_nand_data *this)
149 {
150 	struct resources *r = &this->resources;
151 	int ret;
152 
153 	ret = pm_runtime_resume_and_get(this->dev);
154 	if (ret < 0)
155 		return ret;
156 
157 	ret = gpmi_reset_block(r->gpmi_regs, false);
158 	if (ret)
159 		goto err_out;
160 
161 	/*
162 	 * Reset BCH here, too. We got failures otherwise :(
163 	 * See later BCH reset for explanation of MX23 and MX28 handling
164 	 */
165 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166 	if (ret)
167 		goto err_out;
168 
169 	/* Choose NAND mode. */
170 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171 
172 	/* Set the IRQ polarity. */
173 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
175 
176 	/* Disable Write-Protection. */
177 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178 
179 	/* Select BCH ECC. */
180 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181 
182 	/*
183 	 * Decouple the chip select from dma channel. We use dma0 for all
184 	 * the chips, force all NAND RDY_BUSY inputs to be sourced from
185 	 * RDY_BUSY0.
186 	 */
187 	writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188 	       r->gpmi_regs + HW_GPMI_CTRL1_SET);
189 
190 err_out:
191 	pm_runtime_mark_last_busy(this->dev);
192 	pm_runtime_put_autosuspend(this->dev);
193 	return ret;
194 }
195 
196 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)197 static void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199 	struct resources *r = &this->resources;
200 	struct bch_geometry *geo = &this->bch_geometry;
201 	u32 reg;
202 	int i;
203 
204 	dev_err(this->dev, "Show GPMI registers :\n");
205 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206 		reg = readl(r->gpmi_regs + i * 0x10);
207 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208 	}
209 
210 	/* start to print out the BCH info */
211 	dev_err(this->dev, "Show BCH registers :\n");
212 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213 		reg = readl(r->bch_regs + i * 0x10);
214 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215 	}
216 	dev_err(this->dev, "BCH Geometry :\n"
217 		"GF length              : %u\n"
218 		"ECC Strength           : %u\n"
219 		"Page Size in Bytes     : %u\n"
220 		"Metadata Size in Bytes : %u\n"
221 		"ECC0 Chunk Size in Bytes: %u\n"
222 		"ECCn Chunk Size in Bytes: %u\n"
223 		"ECC Chunk Count        : %u\n"
224 		"Payload Size in Bytes  : %u\n"
225 		"Auxiliary Size in Bytes: %u\n"
226 		"Auxiliary Status Offset: %u\n"
227 		"Block Mark Byte Offset : %u\n"
228 		"Block Mark Bit Offset  : %u\n",
229 		geo->gf_len,
230 		geo->ecc_strength,
231 		geo->page_size,
232 		geo->metadata_size,
233 		geo->ecc0_chunk_size,
234 		geo->eccn_chunk_size,
235 		geo->ecc_chunk_count,
236 		geo->payload_size,
237 		geo->auxiliary_size,
238 		geo->auxiliary_status_offset,
239 		geo->block_mark_byte_offset,
240 		geo->block_mark_bit_offset);
241 }
242 
gpmi_check_ecc(struct gpmi_nand_data * this)243 static bool gpmi_check_ecc(struct gpmi_nand_data *this)
244 {
245 	struct nand_chip *chip = &this->nand;
246 	struct bch_geometry *geo = &this->bch_geometry;
247 	struct nand_device *nand = &chip->base;
248 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
249 
250 	conf->step_size = geo->eccn_chunk_size;
251 	conf->strength = geo->ecc_strength;
252 
253 	/* Do the sanity check. */
254 	if (GPMI_IS_MXS(this)) {
255 		/* The mx23/mx28 only support the GF13. */
256 		if (geo->gf_len == 14)
257 			return false;
258 	}
259 
260 	if (geo->ecc_strength > this->devdata->bch_max_ecc_strength)
261 		return false;
262 
263 	if (!nand_ecc_is_strong_enough(nand))
264 		return false;
265 
266 	return true;
267 }
268 
269 /* check if bbm locates in data chunk rather than ecc chunk */
bbm_in_data_chunk(struct gpmi_nand_data * this,unsigned int * chunk_num)270 static bool bbm_in_data_chunk(struct gpmi_nand_data *this,
271 			unsigned int *chunk_num)
272 {
273 	struct bch_geometry *geo = &this->bch_geometry;
274 	struct nand_chip *chip = &this->nand;
275 	struct mtd_info *mtd = nand_to_mtd(chip);
276 	unsigned int i, j;
277 
278 	if (geo->ecc0_chunk_size != geo->eccn_chunk_size) {
279 		dev_err(this->dev,
280 			"The size of ecc0_chunk must equal to eccn_chunk\n");
281 		return false;
282 	}
283 
284 	i = (mtd->writesize * 8 - geo->metadata_size * 8) /
285 		(geo->gf_len * geo->ecc_strength +
286 			geo->eccn_chunk_size * 8);
287 
288 	j = (mtd->writesize * 8 - geo->metadata_size * 8) -
289 		(geo->gf_len * geo->ecc_strength +
290 			geo->eccn_chunk_size * 8) * i;
291 
292 	if (j < geo->eccn_chunk_size * 8) {
293 		*chunk_num = i+1;
294 		dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n",
295 				geo->ecc_strength, *chunk_num);
296 		return true;
297 	}
298 
299 	return false;
300 }
301 
302 /*
303  * If we can get the ECC information from the nand chip, we do not
304  * need to calculate them ourselves.
305  *
306  * We may have available oob space in this case.
307  */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)308 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
309 				    unsigned int ecc_strength,
310 				    unsigned int ecc_step)
311 {
312 	struct bch_geometry *geo = &this->bch_geometry;
313 	struct nand_chip *chip = &this->nand;
314 	struct mtd_info *mtd = nand_to_mtd(chip);
315 	unsigned int block_mark_bit_offset;
316 
317 	switch (ecc_step) {
318 	case SZ_512:
319 		geo->gf_len = 13;
320 		break;
321 	case SZ_1K:
322 		geo->gf_len = 14;
323 		break;
324 	default:
325 		dev_err(this->dev,
326 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
327 			nanddev_get_ecc_requirements(&chip->base)->strength,
328 			nanddev_get_ecc_requirements(&chip->base)->step_size);
329 		return -EINVAL;
330 	}
331 	geo->ecc0_chunk_size = ecc_step;
332 	geo->eccn_chunk_size = ecc_step;
333 	geo->ecc_strength = round_up(ecc_strength, 2);
334 	if (!gpmi_check_ecc(this))
335 		return -EINVAL;
336 
337 	/* Keep the C >= O */
338 	if (geo->eccn_chunk_size < mtd->oobsize) {
339 		dev_err(this->dev,
340 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
341 			ecc_step, mtd->oobsize);
342 		return -EINVAL;
343 	}
344 
345 	/* The default value, see comment in the legacy_set_geometry(). */
346 	geo->metadata_size = 10;
347 
348 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
349 
350 	/*
351 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
352 	 *
353 	 *    |                          P                            |
354 	 *    |<----------------------------------------------------->|
355 	 *    |                                                       |
356 	 *    |                                        (Block Mark)   |
357 	 *    |                      P'                      |      | |     |
358 	 *    |<-------------------------------------------->|  D   | |  O' |
359 	 *    |                                              |<---->| |<--->|
360 	 *    V                                              V      V V     V
361 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
362 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
363 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
364 	 *                                                   ^              ^
365 	 *                                                   |      O       |
366 	 *                                                   |<------------>|
367 	 *                                                   |              |
368 	 *
369 	 *	P : the page size for BCH module.
370 	 *	E : The ECC strength.
371 	 *	G : the length of Galois Field.
372 	 *	N : The chunk count of per page.
373 	 *	M : the metasize of per page.
374 	 *	C : the ecc chunk size, aka the "data" above.
375 	 *	P': the nand chip's page size.
376 	 *	O : the nand chip's oob size.
377 	 *	O': the free oob.
378 	 *
379 	 *	The formula for P is :
380 	 *
381 	 *	            E * G * N
382 	 *	       P = ------------ + P' + M
383 	 *                      8
384 	 *
385 	 * The position of block mark moves forward in the ECC-based view
386 	 * of page, and the delta is:
387 	 *
388 	 *                   E * G * (N - 1)
389 	 *             D = (---------------- + M)
390 	 *                          8
391 	 *
392 	 * Please see the comment in legacy_set_geometry().
393 	 * With the condition C >= O , we still can get same result.
394 	 * So the bit position of the physical block mark within the ECC-based
395 	 * view of the page is :
396 	 *             (P' - D) * 8
397 	 */
398 	geo->page_size = mtd->writesize + geo->metadata_size +
399 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
400 
401 	geo->payload_size = mtd->writesize;
402 
403 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
404 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
405 				+ ALIGN(geo->ecc_chunk_count, 4);
406 
407 	if (!this->swap_block_mark)
408 		return 0;
409 
410 	/* For bit swap. */
411 	block_mark_bit_offset = mtd->writesize * 8 -
412 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
413 				+ geo->metadata_size * 8);
414 
415 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
416 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
417 	return 0;
418 }
419 
420 /*
421  *  Calculate the ECC strength by hand:
422  *	E : The ECC strength.
423  *	G : the length of Galois Field.
424  *	N : The chunk count of per page.
425  *	O : the oobsize of the NAND chip.
426  *	M : the metasize of per page.
427  *
428  *	The formula is :
429  *		E * G * N
430  *	      ------------ <= (O - M)
431  *                  8
432  *
433  *      So, we get E by:
434  *                    (O - M) * 8
435  *              E <= -------------
436  *                       G * N
437  */
get_ecc_strength(struct gpmi_nand_data * this)438 static inline int get_ecc_strength(struct gpmi_nand_data *this)
439 {
440 	struct bch_geometry *geo = &this->bch_geometry;
441 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
442 	int ecc_strength;
443 
444 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
445 			/ (geo->gf_len * geo->ecc_chunk_count);
446 
447 	/* We need the minor even number. */
448 	return round_down(ecc_strength, 2);
449 }
450 
set_geometry_for_large_oob(struct gpmi_nand_data * this)451 static int set_geometry_for_large_oob(struct gpmi_nand_data *this)
452 {
453 	struct bch_geometry *geo = &this->bch_geometry;
454 	struct nand_chip *chip = &this->nand;
455 	struct mtd_info *mtd = nand_to_mtd(chip);
456 	const struct nand_ecc_props *requirements =
457 		nanddev_get_ecc_requirements(&chip->base);
458 	unsigned int block_mark_bit_offset;
459 	unsigned int max_ecc;
460 	unsigned int bbm_chunk;
461 	unsigned int i;
462 
463 	/* sanity check for the minimum ecc nand required */
464 	if (!(requirements->strength > 0 &&
465 	      requirements->step_size > 0))
466 		return -EINVAL;
467 	geo->ecc_strength = requirements->strength;
468 
469 	/* check if platform can support this nand */
470 	if (!gpmi_check_ecc(this)) {
471 		dev_err(this->dev,
472 			"unsupported NAND chip, minimum ecc required %d\n",
473 			geo->ecc_strength);
474 		return -EINVAL;
475 	}
476 
477 	/* calculate the maximum ecc platform can support*/
478 	geo->metadata_size = 10;
479 	geo->gf_len = 14;
480 	geo->ecc0_chunk_size = 1024;
481 	geo->eccn_chunk_size = 1024;
482 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
483 	max_ecc = min(get_ecc_strength(this),
484 		      this->devdata->bch_max_ecc_strength);
485 
486 	/*
487 	 * search a supported ecc strength that makes bbm
488 	 * located in data chunk
489 	 */
490 	geo->ecc_strength = max_ecc;
491 	while (!(geo->ecc_strength < requirements->strength)) {
492 		if (bbm_in_data_chunk(this, &bbm_chunk))
493 			goto geo_setting;
494 		geo->ecc_strength -= 2;
495 	}
496 
497 	/* if none of them works, keep using the minimum ecc */
498 	/* nand required but changing ecc page layout  */
499 	geo->ecc_strength = requirements->strength;
500 	/* add extra ecc for meta data */
501 	geo->ecc0_chunk_size = 0;
502 	geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1;
503 	geo->ecc_for_meta = 1;
504 	/* check if oob can afford this extra ecc chunk */
505 	if (mtd->oobsize * 8 < geo->metadata_size * 8 +
506 	    geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) {
507 		dev_err(this->dev, "unsupported NAND chip with new layout\n");
508 		return -EINVAL;
509 	}
510 
511 	/* calculate in which chunk bbm located */
512 	bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 -
513 		     geo->gf_len * geo->ecc_strength) /
514 		     (geo->gf_len * geo->ecc_strength +
515 		     geo->eccn_chunk_size * 8) + 1;
516 
517 geo_setting:
518 
519 	geo->page_size = mtd->writesize + geo->metadata_size +
520 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
521 	geo->payload_size = mtd->writesize;
522 
523 	/*
524 	 * The auxiliary buffer contains the metadata and the ECC status. The
525 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
526 	 * contains one byte for every ECC chunk, and is also padded to the
527 	 * nearest 32-bit boundary.
528 	 */
529 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
530 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
531 				    + ALIGN(geo->ecc_chunk_count, 4);
532 
533 	if (!this->swap_block_mark)
534 		return 0;
535 
536 	/* calculate the number of ecc chunk behind the bbm */
537 	i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1;
538 
539 	block_mark_bit_offset = mtd->writesize * 8 -
540 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
541 		+ geo->metadata_size * 8);
542 
543 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
544 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
545 
546 	dev_dbg(this->dev, "BCH Geometry :\n"
547 		"GF length              : %u\n"
548 		"ECC Strength           : %u\n"
549 		"Page Size in Bytes     : %u\n"
550 		"Metadata Size in Bytes : %u\n"
551 		"ECC0 Chunk Size in Bytes: %u\n"
552 		"ECCn Chunk Size in Bytes: %u\n"
553 		"ECC Chunk Count        : %u\n"
554 		"Payload Size in Bytes  : %u\n"
555 		"Auxiliary Size in Bytes: %u\n"
556 		"Auxiliary Status Offset: %u\n"
557 		"Block Mark Byte Offset : %u\n"
558 		"Block Mark Bit Offset  : %u\n"
559 		"Block Mark in chunk	: %u\n"
560 		"Ecc for Meta data	: %u\n",
561 		geo->gf_len,
562 		geo->ecc_strength,
563 		geo->page_size,
564 		geo->metadata_size,
565 		geo->ecc0_chunk_size,
566 		geo->eccn_chunk_size,
567 		geo->ecc_chunk_count,
568 		geo->payload_size,
569 		geo->auxiliary_size,
570 		geo->auxiliary_status_offset,
571 		geo->block_mark_byte_offset,
572 		geo->block_mark_bit_offset,
573 		bbm_chunk,
574 		geo->ecc_for_meta);
575 
576 	return 0;
577 }
578 
legacy_set_geometry(struct gpmi_nand_data * this)579 static int legacy_set_geometry(struct gpmi_nand_data *this)
580 {
581 	struct bch_geometry *geo = &this->bch_geometry;
582 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
583 	unsigned int metadata_size;
584 	unsigned int status_size;
585 	unsigned int block_mark_bit_offset;
586 
587 	/*
588 	 * The size of the metadata can be changed, though we set it to 10
589 	 * bytes now. But it can't be too large, because we have to save
590 	 * enough space for BCH.
591 	 */
592 	geo->metadata_size = 10;
593 
594 	/* The default for the length of Galois Field. */
595 	geo->gf_len = 13;
596 
597 	/* The default for chunk size. */
598 	geo->ecc0_chunk_size = 512;
599 	geo->eccn_chunk_size = 512;
600 	while (geo->eccn_chunk_size < mtd->oobsize) {
601 		geo->ecc0_chunk_size *= 2; /* keep C >= O */
602 		geo->eccn_chunk_size *= 2; /* keep C >= O */
603 		geo->gf_len = 14;
604 	}
605 
606 	geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size;
607 
608 	/* We use the same ECC strength for all chunks. */
609 	geo->ecc_strength = get_ecc_strength(this);
610 	if (!gpmi_check_ecc(this)) {
611 		dev_err(this->dev,
612 			"ecc strength: %d cannot be supported by the controller (%d)\n"
613 			"try to use minimum ecc strength that NAND chip required\n",
614 			geo->ecc_strength,
615 			this->devdata->bch_max_ecc_strength);
616 		return -EINVAL;
617 	}
618 
619 	geo->page_size = mtd->writesize + geo->metadata_size +
620 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
621 	geo->payload_size = mtd->writesize;
622 
623 	/*
624 	 * The auxiliary buffer contains the metadata and the ECC status. The
625 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
626 	 * contains one byte for every ECC chunk, and is also padded to the
627 	 * nearest 32-bit boundary.
628 	 */
629 	metadata_size = ALIGN(geo->metadata_size, 4);
630 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
631 
632 	geo->auxiliary_size = metadata_size + status_size;
633 	geo->auxiliary_status_offset = metadata_size;
634 
635 	if (!this->swap_block_mark)
636 		return 0;
637 
638 	/*
639 	 * We need to compute the byte and bit offsets of
640 	 * the physical block mark within the ECC-based view of the page.
641 	 *
642 	 * NAND chip with 2K page shows below:
643 	 *                                             (Block Mark)
644 	 *                                                   |      |
645 	 *                                                   |  D   |
646 	 *                                                   |<---->|
647 	 *                                                   V      V
648 	 *    +---+----------+-+----------+-+----------+-+----------+-+
649 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
650 	 *    +---+----------+-+----------+-+----------+-+----------+-+
651 	 *
652 	 * The position of block mark moves forward in the ECC-based view
653 	 * of page, and the delta is:
654 	 *
655 	 *                   E * G * (N - 1)
656 	 *             D = (---------------- + M)
657 	 *                          8
658 	 *
659 	 * With the formula to compute the ECC strength, and the condition
660 	 *       : C >= O         (C is the ecc chunk size)
661 	 *
662 	 * It's easy to deduce to the following result:
663 	 *
664 	 *         E * G       (O - M)      C - M         C - M
665 	 *      ----------- <= ------- <=  --------  <  ---------
666 	 *           8            N           N          (N - 1)
667 	 *
668 	 *  So, we get:
669 	 *
670 	 *                   E * G * (N - 1)
671 	 *             D = (---------------- + M) < C
672 	 *                          8
673 	 *
674 	 *  The above inequality means the position of block mark
675 	 *  within the ECC-based view of the page is still in the data chunk,
676 	 *  and it's NOT in the ECC bits of the chunk.
677 	 *
678 	 *  Use the following to compute the bit position of the
679 	 *  physical block mark within the ECC-based view of the page:
680 	 *          (page_size - D) * 8
681 	 *
682 	 *  --Huang Shijie
683 	 */
684 	block_mark_bit_offset = mtd->writesize * 8 -
685 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
686 				+ geo->metadata_size * 8);
687 
688 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
689 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
690 	return 0;
691 }
692 
common_nfc_set_geometry(struct gpmi_nand_data * this)693 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
694 {
695 	struct nand_chip *chip = &this->nand;
696 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
697 	const struct nand_ecc_props *requirements =
698 		nanddev_get_ecc_requirements(&chip->base);
699 	bool use_minimun_ecc;
700 	int err;
701 
702 	use_minimun_ecc = of_property_read_bool(this->dev->of_node,
703 						"fsl,use-minimum-ecc");
704 
705 	/* use legacy bch geometry settings by default*/
706 	if ((!use_minimun_ecc && mtd->oobsize < 1024) ||
707 	    !(requirements->strength > 0 && requirements->step_size > 0)) {
708 		dev_dbg(this->dev, "use legacy bch geometry\n");
709 		err = legacy_set_geometry(this);
710 		if (!err)
711 			return 0;
712 	}
713 
714 	/* for large oob nand */
715 	if (mtd->oobsize > 1024) {
716 		dev_dbg(this->dev, "use large oob bch geometry\n");
717 		err = set_geometry_for_large_oob(this);
718 		if (!err)
719 			return 0;
720 	}
721 
722 	/* otherwise use the minimum ecc nand chip required */
723 	dev_dbg(this->dev, "use minimum ecc bch geometry\n");
724 	err = set_geometry_by_ecc_info(this, requirements->strength,
725 					requirements->step_size);
726 	if (err)
727 		dev_err(this->dev, "none of the bch geometry setting works\n");
728 
729 	return err;
730 }
731 
732 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)733 static int bch_set_geometry(struct gpmi_nand_data *this)
734 {
735 	struct resources *r = &this->resources;
736 	int ret;
737 
738 	ret = common_nfc_set_geometry(this);
739 	if (ret)
740 		return ret;
741 
742 	ret = pm_runtime_resume_and_get(this->dev);
743 	if (ret < 0) {
744 		return ret;
745 	}
746 
747 	/*
748 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
749 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
750 	* and MX28.
751 	*/
752 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
753 	if (ret)
754 		goto err_out;
755 
756 	/* Set *all* chip selects to use layout 0. */
757 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
758 
759 	ret = 0;
760 err_out:
761 	pm_runtime_mark_last_busy(this->dev);
762 	pm_runtime_put_autosuspend(this->dev);
763 
764 	return ret;
765 }
766 
767 /*
768  * <1> Firstly, we should know what's the GPMI-clock means.
769  *     The GPMI-clock is the internal clock in the gpmi nand controller.
770  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
771  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
772  *
773  * <2> Secondly, we should know what's the frequency on the nand chip pins.
774  *     The frequency on the nand chip pins is derived from the GPMI-clock.
775  *     We can get it from the following equation:
776  *
777  *         F = G / (DS + DH)
778  *
779  *         F  : the frequency on the nand chip pins.
780  *         G  : the GPMI clock, such as 100MHz.
781  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
782  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
783  *
784  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
785  *     the nand EDO(extended Data Out) timing could be applied.
786  *     The GPMI implements a feedback read strobe to sample the read data.
787  *     The feedback read strobe can be delayed to support the nand EDO timing
788  *     where the read strobe may deasserts before the read data is valid, and
789  *     read data is valid for some time after read strobe.
790  *
791  *     The following figure illustrates some aspects of a NAND Flash read:
792  *
793  *                   |<---tREA---->|
794  *                   |             |
795  *                   |         |   |
796  *                   |<--tRP-->|   |
797  *                   |         |   |
798  *                  __          ___|__________________________________
799  *     RDN            \________/   |
800  *                                 |
801  *                                 /---------\
802  *     Read Data    --------------<           >---------
803  *                                 \---------/
804  *                                |     |
805  *                                |<-D->|
806  *     FeedbackRDN  ________             ____________
807  *                          \___________/
808  *
809  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
810  *
811  *
812  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
813  *
814  *  4.1) From the aspect of the nand chip pins:
815  *        Delay = (tREA + C - tRP)               {1}
816  *
817  *        tREA : the maximum read access time.
818  *        C    : a constant to adjust the delay. default is 4000ps.
819  *        tRP  : the read pulse width, which is exactly:
820  *                   tRP = (GPMI-clock-period) * DATA_SETUP
821  *
822  *  4.2) From the aspect of the GPMI nand controller:
823  *         Delay = RDN_DELAY * 0.125 * RP        {2}
824  *
825  *         RP   : the DLL reference period.
826  *            if (GPMI-clock-period > DLL_THRETHOLD)
827  *                   RP = GPMI-clock-period / 2;
828  *            else
829  *                   RP = GPMI-clock-period;
830  *
831  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
832  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
833  *            is 16000ps, but in mx6q, we use 12000ps.
834  *
835  *  4.3) since {1} equals {2}, we get:
836  *
837  *                     (tREA + 4000 - tRP) * 8
838  *         RDN_DELAY = -----------------------     {3}
839  *                           RP
840  */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)841 static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
842 				    const struct nand_sdr_timings *sdr)
843 {
844 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
845 	struct resources *r = &this->resources;
846 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
847 	unsigned int period_ps, reference_period_ps;
848 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
849 	unsigned int tRP_ps;
850 	bool use_half_period;
851 	int sample_delay_ps, sample_delay_factor;
852 	unsigned int busy_timeout_cycles;
853 	u8 wrn_dly_sel;
854 	unsigned long clk_rate, min_rate;
855 	u64 busy_timeout_ps;
856 
857 	if (sdr->tRC_min >= 30000) {
858 		/* ONFI non-EDO modes [0-3] */
859 		hw->clk_rate = 22000000;
860 		min_rate = 0;
861 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
862 	} else if (sdr->tRC_min >= 25000) {
863 		/* ONFI EDO mode 4 */
864 		hw->clk_rate = 80000000;
865 		min_rate = 22000000;
866 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
867 	} else {
868 		/* ONFI EDO mode 5 */
869 		hw->clk_rate = 100000000;
870 		min_rate = 80000000;
871 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
872 	}
873 
874 	clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
875 	if (clk_rate <= min_rate) {
876 		dev_err(this->dev, "clock setting: expected %ld, got %ld\n",
877 			hw->clk_rate, clk_rate);
878 		return -ENOTSUPP;
879 	}
880 
881 	hw->clk_rate = clk_rate;
882 	/* SDR core timings are given in picoseconds */
883 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
884 
885 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
886 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
887 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
888 	busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
889 	busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
890 
891 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
892 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
893 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
894 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
895 
896 	/*
897 	 * Derive NFC ideal delay from {3}:
898 	 *
899 	 *                     (tREA + 4000 - tRP) * 8
900 	 *         RDN_DELAY = -----------------------
901 	 *                                RP
902 	 */
903 	if (period_ps > dll_threshold_ps) {
904 		use_half_period = true;
905 		reference_period_ps = period_ps / 2;
906 	} else {
907 		use_half_period = false;
908 		reference_period_ps = period_ps;
909 	}
910 
911 	tRP_ps = data_setup_cycles * period_ps;
912 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
913 	if (sample_delay_ps > 0)
914 		sample_delay_factor = sample_delay_ps / reference_period_ps;
915 	else
916 		sample_delay_factor = 0;
917 
918 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
919 	if (sample_delay_factor)
920 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
921 			      BM_GPMI_CTRL1_DLL_ENABLE |
922 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
923 	return 0;
924 }
925 
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)926 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
927 {
928 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
929 	struct resources *r = &this->resources;
930 	void __iomem *gpmi_regs = r->gpmi_regs;
931 	unsigned int dll_wait_time_us;
932 	int ret;
933 
934 	/* Clock dividers do NOT guarantee a clean clock signal on its output
935 	 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
936 	 * all clock dividers provide these guarantee.
937 	 */
938 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
939 		clk_disable_unprepare(r->clock[0]);
940 
941 	ret = clk_set_rate(r->clock[0], hw->clk_rate);
942 	if (ret) {
943 		dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
944 		return ret;
945 	}
946 
947 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
948 		ret = clk_prepare_enable(r->clock[0]);
949 		if (ret)
950 			return ret;
951 	}
952 
953 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
954 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
955 
956 	/*
957 	 * Clear several CTRL1 fields, DLL must be disabled when setting
958 	 * RDN_DELAY or HALF_PERIOD.
959 	 */
960 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
961 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
962 
963 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
964 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
965 	if (!dll_wait_time_us)
966 		dll_wait_time_us = 1;
967 
968 	/* Wait for the DLL to settle. */
969 	udelay(dll_wait_time_us);
970 
971 	return 0;
972 }
973 
gpmi_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)974 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
975 				const struct nand_interface_config *conf)
976 {
977 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
978 	const struct nand_sdr_timings *sdr;
979 	int ret;
980 
981 	/* Retrieve required NAND timings */
982 	sdr = nand_get_sdr_timings(conf);
983 	if (IS_ERR(sdr))
984 		return PTR_ERR(sdr);
985 
986 	/* Only MX28/MX6 GPMI controller can reach EDO timings */
987 	if (sdr->tRC_min <= 25000 && !this->devdata->support_edo_timing)
988 		return -ENOTSUPP;
989 
990 	/* Stop here if this call was just a check */
991 	if (chipnr < 0)
992 		return 0;
993 
994 	/* Do the actual derivation of the controller timings */
995 	ret = gpmi_nfc_compute_timings(this, sdr);
996 	if (ret)
997 		return ret;
998 
999 	this->hw.must_apply_timings = true;
1000 
1001 	return 0;
1002 }
1003 
1004 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)1005 static void gpmi_clear_bch(struct gpmi_nand_data *this)
1006 {
1007 	struct resources *r = &this->resources;
1008 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1009 }
1010 
get_dma_chan(struct gpmi_nand_data * this)1011 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
1012 {
1013 	/* We use the DMA channel 0 to access all the nand chips. */
1014 	return this->dma_chans[0];
1015 }
1016 
1017 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)1018 static void dma_irq_callback(void *param)
1019 {
1020 	struct gpmi_nand_data *this = param;
1021 	struct completion *dma_c = &this->dma_done;
1022 
1023 	complete(dma_c);
1024 }
1025 
bch_irq(int irq,void * cookie)1026 static irqreturn_t bch_irq(int irq, void *cookie)
1027 {
1028 	struct gpmi_nand_data *this = cookie;
1029 
1030 	gpmi_clear_bch(this);
1031 	complete(&this->bch_done);
1032 	return IRQ_HANDLED;
1033 }
1034 
gpmi_raw_len_to_len(struct gpmi_nand_data * this,int raw_len)1035 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
1036 {
1037 	/*
1038 	 * raw_len is the length to read/write including bch data which
1039 	 * we are passed in exec_op. Calculate the data length from it.
1040 	 */
1041 	if (this->bch)
1042 		return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size);
1043 	else
1044 		return raw_len;
1045 }
1046 
1047 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int raw_len,struct scatterlist * sgl,enum dma_data_direction dr)1048 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
1049 			     int raw_len, struct scatterlist *sgl,
1050 			     enum dma_data_direction dr)
1051 {
1052 	int ret;
1053 	int len = gpmi_raw_len_to_len(this, raw_len);
1054 
1055 	/* first try to map the upper buffer directly */
1056 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
1057 		sg_init_one(sgl, buf, len);
1058 		ret = dma_map_sg(this->dev, sgl, 1, dr);
1059 		if (ret == 0)
1060 			goto map_fail;
1061 
1062 		return true;
1063 	}
1064 
1065 map_fail:
1066 	/* We have to use our own DMA buffer. */
1067 	sg_init_one(sgl, this->data_buffer_dma, len);
1068 
1069 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
1070 		memcpy(this->data_buffer_dma, buf, len);
1071 
1072 	dma_map_sg(this->dev, sgl, 1, dr);
1073 
1074 	return false;
1075 }
1076 
1077 /* add our owner bbt descriptor */
1078 static uint8_t scan_ff_pattern[] = { 0xff };
1079 static struct nand_bbt_descr gpmi_bbt_descr = {
1080 	.options	= 0,
1081 	.offs		= 0,
1082 	.len		= 1,
1083 	.pattern	= scan_ff_pattern
1084 };
1085 
1086 /*
1087  * We may change the layout if we can get the ECC info from the datasheet,
1088  * else we will use all the (page + OOB).
1089  */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1090 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1091 			      struct mtd_oob_region *oobregion)
1092 {
1093 	struct nand_chip *chip = mtd_to_nand(mtd);
1094 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1095 	struct bch_geometry *geo = &this->bch_geometry;
1096 
1097 	if (section)
1098 		return -ERANGE;
1099 
1100 	oobregion->offset = 0;
1101 	oobregion->length = geo->page_size - mtd->writesize;
1102 
1103 	return 0;
1104 }
1105 
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1106 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1107 			       struct mtd_oob_region *oobregion)
1108 {
1109 	struct nand_chip *chip = mtd_to_nand(mtd);
1110 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1111 	struct bch_geometry *geo = &this->bch_geometry;
1112 
1113 	if (section)
1114 		return -ERANGE;
1115 
1116 	/* The available oob size we have. */
1117 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1118 		oobregion->offset = geo->page_size - mtd->writesize;
1119 		oobregion->length = mtd->oobsize - oobregion->offset;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static const char * const gpmi_clks_for_mx2x[] = {
1126 	"gpmi_io",
1127 };
1128 
1129 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1130 	.ecc = gpmi_ooblayout_ecc,
1131 	.free = gpmi_ooblayout_free,
1132 };
1133 
1134 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1135 	.type = IS_MX23,
1136 	.bch_max_ecc_strength = 20,
1137 	.max_chain_delay = 16000,
1138 	.clks = gpmi_clks_for_mx2x,
1139 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1140 };
1141 
1142 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1143 	.type = IS_MX28,
1144 	.bch_max_ecc_strength = 20,
1145 	.max_chain_delay = 16000,
1146 	.support_edo_timing = true,
1147 	.clks = gpmi_clks_for_mx2x,
1148 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1149 };
1150 
1151 static const char * const gpmi_clks_for_mx6[] = {
1152 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1153 };
1154 
1155 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1156 	.type = IS_MX6Q,
1157 	.bch_max_ecc_strength = 40,
1158 	.max_chain_delay = 12000,
1159 	.support_edo_timing = true,
1160 	.clks = gpmi_clks_for_mx6,
1161 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1162 };
1163 
1164 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1165 	.type = IS_MX6SX,
1166 	.bch_max_ecc_strength = 62,
1167 	.max_chain_delay = 12000,
1168 	.support_edo_timing = true,
1169 	.clks = gpmi_clks_for_mx6,
1170 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1171 };
1172 
1173 static const char * const gpmi_clks_for_mx7d[] = {
1174 	"gpmi_io", "gpmi_bch_apb",
1175 };
1176 
1177 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1178 	.type = IS_MX7D,
1179 	.bch_max_ecc_strength = 62,
1180 	.max_chain_delay = 12000,
1181 	.support_edo_timing = true,
1182 	.clks = gpmi_clks_for_mx7d,
1183 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1184 };
1185 
1186 static const char *gpmi_clks_for_mx8qxp[GPMI_CLK_MAX] = {
1187 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb",
1188 };
1189 
1190 static const struct gpmi_devdata gpmi_devdata_imx8qxp = {
1191 	.type = IS_MX8QXP,
1192 	.bch_max_ecc_strength = 62,
1193 	.max_chain_delay = 12000,
1194 	.support_edo_timing = true,
1195 	.clks = gpmi_clks_for_mx8qxp,
1196 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx8qxp),
1197 };
1198 
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)1199 static int acquire_register_block(struct gpmi_nand_data *this,
1200 				  const char *res_name)
1201 {
1202 	struct platform_device *pdev = this->pdev;
1203 	struct resources *res = &this->resources;
1204 	void __iomem *p;
1205 
1206 	p = devm_platform_ioremap_resource_byname(pdev, res_name);
1207 	if (IS_ERR(p))
1208 		return PTR_ERR(p);
1209 
1210 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1211 		res->gpmi_regs = p;
1212 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1213 		res->bch_regs = p;
1214 	else
1215 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1216 
1217 	return 0;
1218 }
1219 
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)1220 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1221 {
1222 	struct platform_device *pdev = this->pdev;
1223 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1224 	int err;
1225 
1226 	err = platform_get_irq_byname(pdev, res_name);
1227 	if (err < 0)
1228 		return err;
1229 
1230 	err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
1231 	if (err)
1232 		dev_err(this->dev, "error requesting BCH IRQ\n");
1233 
1234 	return err;
1235 }
1236 
release_dma_channels(struct gpmi_nand_data * this)1237 static void release_dma_channels(struct gpmi_nand_data *this)
1238 {
1239 	unsigned int i;
1240 	for (i = 0; i < DMA_CHANS; i++)
1241 		if (this->dma_chans[i]) {
1242 			dma_release_channel(this->dma_chans[i]);
1243 			this->dma_chans[i] = NULL;
1244 		}
1245 }
1246 
acquire_dma_channels(struct gpmi_nand_data * this)1247 static int acquire_dma_channels(struct gpmi_nand_data *this)
1248 {
1249 	struct platform_device *pdev = this->pdev;
1250 	struct dma_chan *dma_chan;
1251 	int ret = 0;
1252 
1253 	/* request dma channel */
1254 	dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1255 	if (IS_ERR(dma_chan)) {
1256 		ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1257 				    "DMA channel request failed\n");
1258 		release_dma_channels(this);
1259 	} else {
1260 		this->dma_chans[0] = dma_chan;
1261 	}
1262 
1263 	return ret;
1264 }
1265 
gpmi_get_clks(struct gpmi_nand_data * this)1266 static int gpmi_get_clks(struct gpmi_nand_data *this)
1267 {
1268 	struct resources *r = &this->resources;
1269 	struct clk *clk;
1270 	int err, i;
1271 
1272 	for (i = 0; i < this->devdata->clks_count; i++) {
1273 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1274 		if (IS_ERR(clk)) {
1275 			err = PTR_ERR(clk);
1276 			goto err_clock;
1277 		}
1278 
1279 		r->clock[i] = clk;
1280 	}
1281 
1282 	return 0;
1283 
1284 err_clock:
1285 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1286 	return err;
1287 }
1288 
acquire_resources(struct gpmi_nand_data * this)1289 static int acquire_resources(struct gpmi_nand_data *this)
1290 {
1291 	int ret;
1292 
1293 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1294 	if (ret)
1295 		goto exit_regs;
1296 
1297 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1298 	if (ret)
1299 		goto exit_regs;
1300 
1301 	ret = acquire_bch_irq(this, bch_irq);
1302 	if (ret)
1303 		goto exit_regs;
1304 
1305 	ret = acquire_dma_channels(this);
1306 	if (ret)
1307 		goto exit_regs;
1308 
1309 	ret = gpmi_get_clks(this);
1310 	if (ret)
1311 		goto exit_clock;
1312 	return 0;
1313 
1314 exit_clock:
1315 	release_dma_channels(this);
1316 exit_regs:
1317 	return ret;
1318 }
1319 
release_resources(struct gpmi_nand_data * this)1320 static void release_resources(struct gpmi_nand_data *this)
1321 {
1322 	release_dma_channels(this);
1323 }
1324 
gpmi_free_dma_buffer(struct gpmi_nand_data * this)1325 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1326 {
1327 	struct device *dev = this->dev;
1328 	struct bch_geometry *geo = &this->bch_geometry;
1329 
1330 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1331 		dma_free_coherent(dev, geo->auxiliary_size,
1332 					this->auxiliary_virt,
1333 					this->auxiliary_phys);
1334 	kfree(this->data_buffer_dma);
1335 	kfree(this->raw_buffer);
1336 
1337 	this->data_buffer_dma	= NULL;
1338 	this->raw_buffer	= NULL;
1339 }
1340 
1341 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)1342 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1343 {
1344 	struct bch_geometry *geo = &this->bch_geometry;
1345 	struct device *dev = this->dev;
1346 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1347 
1348 	/*
1349 	 * [2] Allocate a read/write data buffer.
1350 	 *     The gpmi_alloc_dma_buffer can be called twice.
1351 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1352 	 *     is called before the NAND identification; and we allocate a
1353 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1354 	 *     is called after.
1355 	 */
1356 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1357 					GFP_DMA | GFP_KERNEL);
1358 	if (this->data_buffer_dma == NULL)
1359 		goto error_alloc;
1360 
1361 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1362 					&this->auxiliary_phys, GFP_DMA);
1363 	if (!this->auxiliary_virt)
1364 		goto error_alloc;
1365 
1366 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1367 	if (!this->raw_buffer)
1368 		goto error_alloc;
1369 
1370 	return 0;
1371 
1372 error_alloc:
1373 	gpmi_free_dma_buffer(this);
1374 	return -ENOMEM;
1375 }
1376 
1377 /*
1378  * Handles block mark swapping.
1379  * It can be called in swapping the block mark, or swapping it back,
1380  * because the operations are the same.
1381  */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)1382 static void block_mark_swapping(struct gpmi_nand_data *this,
1383 				void *payload, void *auxiliary)
1384 {
1385 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1386 	unsigned char *p;
1387 	unsigned char *a;
1388 	unsigned int  bit;
1389 	unsigned char mask;
1390 	unsigned char from_data;
1391 	unsigned char from_oob;
1392 
1393 	if (!this->swap_block_mark)
1394 		return;
1395 
1396 	/*
1397 	 * If control arrives here, we're swapping. Make some convenience
1398 	 * variables.
1399 	 */
1400 	bit = nfc_geo->block_mark_bit_offset;
1401 	p   = payload + nfc_geo->block_mark_byte_offset;
1402 	a   = auxiliary;
1403 
1404 	/*
1405 	 * Get the byte from the data area that overlays the block mark. Since
1406 	 * the ECC engine applies its own view to the bits in the page, the
1407 	 * physical block mark won't (in general) appear on a byte boundary in
1408 	 * the data.
1409 	 */
1410 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1411 
1412 	/* Get the byte from the OOB. */
1413 	from_oob = a[0];
1414 
1415 	/* Swap them. */
1416 	a[0] = from_data;
1417 
1418 	mask = (0x1 << bit) - 1;
1419 	p[0] = (p[0] & mask) | (from_oob << bit);
1420 
1421 	mask = ~0 << bit;
1422 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1423 }
1424 
gpmi_count_bitflips(struct nand_chip * chip,void * buf,int first,int last,int meta)1425 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1426 			       int last, int meta)
1427 {
1428 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1429 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1430 	struct mtd_info *mtd = nand_to_mtd(chip);
1431 	int i;
1432 	unsigned char *status;
1433 	unsigned int max_bitflips = 0;
1434 
1435 	/* Loop over status bytes, accumulating ECC status. */
1436 	status = this->auxiliary_virt + ALIGN(meta, 4);
1437 
1438 	for (i = first; i < last; i++, status++) {
1439 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1440 			continue;
1441 
1442 		if (*status == STATUS_UNCORRECTABLE) {
1443 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1444 			u8 *eccbuf = this->raw_buffer;
1445 			int offset, bitoffset;
1446 			int eccbytes;
1447 			int flips;
1448 
1449 			/* Read ECC bytes into our internal raw_buffer */
1450 			offset = nfc_geo->metadata_size * 8;
1451 			offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1);
1452 			offset -= eccbits;
1453 			bitoffset = offset % 8;
1454 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1455 			offset /= 8;
1456 			eccbytes -= offset;
1457 			nand_change_read_column_op(chip, offset, eccbuf,
1458 						   eccbytes, false);
1459 
1460 			/*
1461 			 * ECC data are not byte aligned and we may have
1462 			 * in-band data in the first and last byte of
1463 			 * eccbuf. Set non-eccbits to one so that
1464 			 * nand_check_erased_ecc_chunk() does not count them
1465 			 * as bitflips.
1466 			 */
1467 			if (bitoffset)
1468 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1469 
1470 			bitoffset = (bitoffset + eccbits) % 8;
1471 			if (bitoffset)
1472 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1473 
1474 			/*
1475 			 * The ECC hardware has an uncorrectable ECC status
1476 			 * code in case we have bitflips in an erased page. As
1477 			 * nothing was written into this subpage the ECC is
1478 			 * obviously wrong and we can not trust it. We assume
1479 			 * at this point that we are reading an erased page and
1480 			 * try to correct the bitflips in buffer up to
1481 			 * ecc_strength bitflips. If this is a page with random
1482 			 * data, we exceed this number of bitflips and have a
1483 			 * ECC failure. Otherwise we use the corrected buffer.
1484 			 */
1485 			if (i == 0) {
1486 				/* The first block includes metadata */
1487 				flips = nand_check_erased_ecc_chunk(
1488 						buf + i * nfc_geo->eccn_chunk_size,
1489 						nfc_geo->eccn_chunk_size,
1490 						eccbuf, eccbytes,
1491 						this->auxiliary_virt,
1492 						nfc_geo->metadata_size,
1493 						nfc_geo->ecc_strength);
1494 			} else {
1495 				flips = nand_check_erased_ecc_chunk(
1496 						buf + i * nfc_geo->eccn_chunk_size,
1497 						nfc_geo->eccn_chunk_size,
1498 						eccbuf, eccbytes,
1499 						NULL, 0,
1500 						nfc_geo->ecc_strength);
1501 			}
1502 
1503 			if (flips > 0) {
1504 				max_bitflips = max_t(unsigned int, max_bitflips,
1505 						     flips);
1506 				mtd->ecc_stats.corrected += flips;
1507 				continue;
1508 			}
1509 
1510 			mtd->ecc_stats.failed++;
1511 			continue;
1512 		}
1513 
1514 		mtd->ecc_stats.corrected += *status;
1515 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1516 	}
1517 
1518 	return max_bitflips;
1519 }
1520 
gpmi_bch_layout_std(struct gpmi_nand_data * this)1521 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1522 {
1523 	struct bch_geometry *geo = &this->bch_geometry;
1524 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1525 	unsigned int gf_len = geo->gf_len;
1526 	unsigned int block0_size = geo->ecc0_chunk_size;
1527 	unsigned int blockn_size = geo->eccn_chunk_size;
1528 
1529 	this->bch_flashlayout0 =
1530 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1531 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1532 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1533 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1534 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this);
1535 
1536 	this->bch_flashlayout1 =
1537 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1538 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1539 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1540 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this);
1541 }
1542 
gpmi_ecc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1543 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1544 			      int oob_required, int page)
1545 {
1546 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1547 	struct mtd_info *mtd = nand_to_mtd(chip);
1548 	struct bch_geometry *geo = &this->bch_geometry;
1549 	unsigned int max_bitflips;
1550 	int ret;
1551 
1552 	gpmi_bch_layout_std(this);
1553 	this->bch = true;
1554 
1555 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1556 	if (ret)
1557 		return ret;
1558 
1559 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1560 					   geo->ecc_chunk_count,
1561 					   geo->auxiliary_status_offset);
1562 
1563 	/* handle the block mark swapping */
1564 	block_mark_swapping(this, buf, this->auxiliary_virt);
1565 
1566 	if (oob_required) {
1567 		/*
1568 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1569 		 * for details about our policy for delivering the OOB.
1570 		 *
1571 		 * We fill the caller's buffer with set bits, and then copy the
1572 		 * block mark to th caller's buffer. Note that, if block mark
1573 		 * swapping was necessary, it has already been done, so we can
1574 		 * rely on the first byte of the auxiliary buffer to contain
1575 		 * the block mark.
1576 		 */
1577 		memset(chip->oob_poi, ~0, mtd->oobsize);
1578 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1579 	}
1580 
1581 	return max_bitflips;
1582 }
1583 
1584 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1585 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1586 				 uint32_t len, uint8_t *buf, int page)
1587 {
1588 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1589 	struct bch_geometry *geo = &this->bch_geometry;
1590 	int size = chip->ecc.size; /* ECC chunk size */
1591 	int meta, n, page_size;
1592 	unsigned int max_bitflips;
1593 	unsigned int ecc_strength;
1594 	int first, last, marker_pos;
1595 	int ecc_parity_size;
1596 	int col = 0;
1597 	int ret;
1598 
1599 	/* The size of ECC parity */
1600 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1601 
1602 	/* Align it with the chunk size */
1603 	first = offs / size;
1604 	last = (offs + len - 1) / size;
1605 
1606 	if (this->swap_block_mark) {
1607 		/*
1608 		 * Find the chunk which contains the Block Marker.
1609 		 * If this chunk is in the range of [first, last],
1610 		 * we have to read out the whole page.
1611 		 * Why? since we had swapped the data at the position of Block
1612 		 * Marker to the metadata which is bound with the chunk 0.
1613 		 */
1614 		marker_pos = geo->block_mark_byte_offset / size;
1615 		if (last >= marker_pos && first <= marker_pos) {
1616 			dev_dbg(this->dev,
1617 				"page:%d, first:%d, last:%d, marker at:%d\n",
1618 				page, first, last, marker_pos);
1619 			return gpmi_ecc_read_page(chip, buf, 0, page);
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * if there is an ECC dedicate for meta:
1625 	 * - need to add an extra ECC size when calculating col and page_size,
1626 	 *   if the meta size is NOT zero.
1627 	 * - ecc0_chunk size need to set to the same size as other chunks,
1628 	 *   if the meta size is zero.
1629 	 */
1630 
1631 	meta = geo->metadata_size;
1632 	if (first) {
1633 		if (geo->ecc_for_meta)
1634 			col = meta + ecc_parity_size
1635 				+ (size + ecc_parity_size) * first;
1636 		else
1637 			col = meta + (size + ecc_parity_size) * first;
1638 
1639 		meta = 0;
1640 		buf = buf + first * size;
1641 	}
1642 
1643 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1644 	n = last - first + 1;
1645 
1646 	if (geo->ecc_for_meta && meta)
1647 		page_size = meta + ecc_parity_size
1648 			    + (size + ecc_parity_size) * n;
1649 	else
1650 		page_size = meta + (size + ecc_parity_size) * n;
1651 
1652 	ecc_strength = geo->ecc_strength >> 1;
1653 
1654 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(
1655 		(geo->ecc_for_meta ? n : n - 1)) |
1656 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1657 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1658 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1659 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ?
1660 		0 : geo->ecc0_chunk_size), this);
1661 
1662 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1663 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1664 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1665 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this);
1666 
1667 	this->bch = true;
1668 
1669 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1670 	if (ret)
1671 		return ret;
1672 
1673 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1674 		page, offs, len, col, first, n, page_size);
1675 
1676 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1677 
1678 	return max_bitflips;
1679 }
1680 
gpmi_ecc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1681 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1682 			       int oob_required, int page)
1683 {
1684 	struct mtd_info *mtd = nand_to_mtd(chip);
1685 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1686 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1687 
1688 	dev_dbg(this->dev, "ecc write page.\n");
1689 
1690 	gpmi_bch_layout_std(this);
1691 	this->bch = true;
1692 
1693 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1694 
1695 	if (this->swap_block_mark) {
1696 		/*
1697 		 * When doing bad block marker swapping we must always copy the
1698 		 * input buffer as we can't modify the const buffer.
1699 		 */
1700 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1701 		buf = this->data_buffer_dma;
1702 		block_mark_swapping(this, this->data_buffer_dma,
1703 				    this->auxiliary_virt);
1704 	}
1705 
1706 	return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1707 }
1708 
1709 /*
1710  * There are several places in this driver where we have to handle the OOB and
1711  * block marks. This is the function where things are the most complicated, so
1712  * this is where we try to explain it all. All the other places refer back to
1713  * here.
1714  *
1715  * These are the rules, in order of decreasing importance:
1716  *
1717  * 1) Nothing the caller does can be allowed to imperil the block mark.
1718  *
1719  * 2) In read operations, the first byte of the OOB we return must reflect the
1720  *    true state of the block mark, no matter where that block mark appears in
1721  *    the physical page.
1722  *
1723  * 3) ECC-based read operations return an OOB full of set bits (since we never
1724  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1725  *    return).
1726  *
1727  * 4) "Raw" read operations return a direct view of the physical bytes in the
1728  *    page, using the conventional definition of which bytes are data and which
1729  *    are OOB. This gives the caller a way to see the actual, physical bytes
1730  *    in the page, without the distortions applied by our ECC engine.
1731  *
1732  *
1733  * What we do for this specific read operation depends on two questions:
1734  *
1735  * 1) Are we doing a "raw" read, or an ECC-based read?
1736  *
1737  * 2) Are we using block mark swapping or transcription?
1738  *
1739  * There are four cases, illustrated by the following Karnaugh map:
1740  *
1741  *                    |           Raw           |         ECC-based       |
1742  *       -------------+-------------------------+-------------------------+
1743  *                    | Read the conventional   |                         |
1744  *                    | OOB at the end of the   |                         |
1745  *       Swapping     | page and return it. It  |                         |
1746  *                    | contains exactly what   |                         |
1747  *                    | we want.                | Read the block mark and |
1748  *       -------------+-------------------------+ return it in a buffer   |
1749  *                    | Read the conventional   | full of set bits.       |
1750  *                    | OOB at the end of the   |                         |
1751  *                    | page and also the block |                         |
1752  *       Transcribing | mark in the metadata.   |                         |
1753  *                    | Copy the block mark     |                         |
1754  *                    | into the first byte of  |                         |
1755  *                    | the OOB.                |                         |
1756  *       -------------+-------------------------+-------------------------+
1757  *
1758  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1759  * giving an accurate view of the actual, physical bytes in the page (we're
1760  * overwriting the block mark). That's OK because it's more important to follow
1761  * rule #2.
1762  *
1763  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1764  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1765  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1766  * ECC-based or raw view of the page is implicit in which function it calls
1767  * (there is a similar pair of ECC-based/raw functions for writing).
1768  */
gpmi_ecc_read_oob(struct nand_chip * chip,int page)1769 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1770 {
1771 	struct mtd_info *mtd = nand_to_mtd(chip);
1772 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1773 	int ret;
1774 
1775 	/* clear the OOB buffer */
1776 	memset(chip->oob_poi, ~0, mtd->oobsize);
1777 
1778 	/* Read out the conventional OOB. */
1779 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1780 				mtd->oobsize);
1781 	if (ret)
1782 		return ret;
1783 
1784 	/*
1785 	 * Now, we want to make sure the block mark is correct. In the
1786 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1787 	 * Otherwise, we need to explicitly read it.
1788 	 */
1789 	if (GPMI_IS_MX23(this)) {
1790 		/* Read the block mark into the first byte of the OOB buffer. */
1791 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1792 		if (ret)
1793 			return ret;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
gpmi_ecc_write_oob(struct nand_chip * chip,int page)1799 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1800 {
1801 	struct mtd_info *mtd = nand_to_mtd(chip);
1802 	struct mtd_oob_region of = { };
1803 
1804 	/* Do we have available oob area? */
1805 	mtd_ooblayout_free(mtd, 0, &of);
1806 	if (!of.length)
1807 		return -EPERM;
1808 
1809 	if (!nand_is_slc(chip))
1810 		return -EPERM;
1811 
1812 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1813 				 chip->oob_poi + of.offset, of.length);
1814 }
1815 
1816 /*
1817  * This function reads a NAND page without involving the ECC engine (no HW
1818  * ECC correction).
1819  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1820  * inline (interleaved with payload DATA), and do not align data chunk on
1821  * byte boundaries.
1822  * We thus need to take care moving the payload data and ECC bits stored in the
1823  * page into the provided buffers, which is why we're using nand_extract_bits().
1824  *
1825  * See set_geometry_by_ecc_info inline comments to have a full description
1826  * of the layout used by the GPMI controller.
1827  */
gpmi_ecc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1828 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1829 				  int oob_required, int page)
1830 {
1831 	struct mtd_info *mtd = nand_to_mtd(chip);
1832 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1833 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1834 	int eccsize = nfc_geo->eccn_chunk_size;
1835 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1836 	u8 *tmp_buf = this->raw_buffer;
1837 	size_t src_bit_off;
1838 	size_t oob_bit_off;
1839 	size_t oob_byte_off;
1840 	uint8_t *oob = chip->oob_poi;
1841 	int step;
1842 	int ret;
1843 
1844 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1845 				mtd->writesize + mtd->oobsize);
1846 	if (ret)
1847 		return ret;
1848 
1849 	/*
1850 	 * If required, swap the bad block marker and the data stored in the
1851 	 * metadata section, so that we don't wrongly consider a block as bad.
1852 	 *
1853 	 * See the layout description for a detailed explanation on why this
1854 	 * is needed.
1855 	 */
1856 	if (this->swap_block_mark)
1857 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1858 
1859 	/*
1860 	 * Copy the metadata section into the oob buffer (this section is
1861 	 * guaranteed to be aligned on a byte boundary).
1862 	 */
1863 	if (oob_required)
1864 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1865 
1866 	oob_bit_off = nfc_geo->metadata_size * 8;
1867 	src_bit_off = oob_bit_off;
1868 
1869 	/* Extract interleaved payload data and ECC bits */
1870 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1871 		if (buf)
1872 			nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1873 					  src_bit_off, eccsize * 8);
1874 		src_bit_off += eccsize * 8;
1875 
1876 		/* Align last ECC block to align a byte boundary */
1877 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1878 		    (oob_bit_off + eccbits) % 8)
1879 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1880 
1881 		if (oob_required)
1882 			nand_extract_bits(oob, oob_bit_off, tmp_buf,
1883 					  src_bit_off, eccbits);
1884 
1885 		src_bit_off += eccbits;
1886 		oob_bit_off += eccbits;
1887 	}
1888 
1889 	if (oob_required) {
1890 		oob_byte_off = oob_bit_off / 8;
1891 
1892 		if (oob_byte_off < mtd->oobsize)
1893 			memcpy(oob + oob_byte_off,
1894 			       tmp_buf + mtd->writesize + oob_byte_off,
1895 			       mtd->oobsize - oob_byte_off);
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 /*
1902  * This function writes a NAND page without involving the ECC engine (no HW
1903  * ECC generation).
1904  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1905  * inline (interleaved with payload DATA), and do not align data chunk on
1906  * byte boundaries.
1907  * We thus need to take care moving the OOB area at the right place in the
1908  * final page, which is why we're using nand_extract_bits().
1909  *
1910  * See set_geometry_by_ecc_info inline comments to have a full description
1911  * of the layout used by the GPMI controller.
1912  */
gpmi_ecc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1913 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1914 				   int oob_required, int page)
1915 {
1916 	struct mtd_info *mtd = nand_to_mtd(chip);
1917 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1918 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1919 	int eccsize = nfc_geo->eccn_chunk_size;
1920 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1921 	u8 *tmp_buf = this->raw_buffer;
1922 	uint8_t *oob = chip->oob_poi;
1923 	size_t dst_bit_off;
1924 	size_t oob_bit_off;
1925 	size_t oob_byte_off;
1926 	int step;
1927 
1928 	/*
1929 	 * Initialize all bits to 1 in case we don't have a buffer for the
1930 	 * payload or oob data in order to leave unspecified bits of data
1931 	 * to their initial state.
1932 	 */
1933 	if (!buf || !oob_required)
1934 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1935 
1936 	/*
1937 	 * First copy the metadata section (stored in oob buffer) at the
1938 	 * beginning of the page, as imposed by the GPMI layout.
1939 	 */
1940 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1941 	oob_bit_off = nfc_geo->metadata_size * 8;
1942 	dst_bit_off = oob_bit_off;
1943 
1944 	/* Interleave payload data and ECC bits */
1945 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1946 		if (buf)
1947 			nand_extract_bits(tmp_buf, dst_bit_off, buf,
1948 					  step * eccsize * 8, eccsize * 8);
1949 		dst_bit_off += eccsize * 8;
1950 
1951 		/* Align last ECC block to align a byte boundary */
1952 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1953 		    (oob_bit_off + eccbits) % 8)
1954 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1955 
1956 		if (oob_required)
1957 			nand_extract_bits(tmp_buf, dst_bit_off, oob,
1958 					  oob_bit_off, eccbits);
1959 
1960 		dst_bit_off += eccbits;
1961 		oob_bit_off += eccbits;
1962 	}
1963 
1964 	oob_byte_off = oob_bit_off / 8;
1965 
1966 	if (oob_required && oob_byte_off < mtd->oobsize)
1967 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1968 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1969 
1970 	/*
1971 	 * If required, swap the bad block marker and the first byte of the
1972 	 * metadata section, so that we don't modify the bad block marker.
1973 	 *
1974 	 * See the layout description for a detailed explanation on why this
1975 	 * is needed.
1976 	 */
1977 	if (this->swap_block_mark)
1978 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1979 
1980 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1981 				 mtd->writesize + mtd->oobsize);
1982 }
1983 
gpmi_ecc_read_oob_raw(struct nand_chip * chip,int page)1984 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1985 {
1986 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1987 }
1988 
gpmi_ecc_write_oob_raw(struct nand_chip * chip,int page)1989 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1990 {
1991 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1992 }
1993 
gpmi_block_markbad(struct nand_chip * chip,loff_t ofs)1994 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1995 {
1996 	struct mtd_info *mtd = nand_to_mtd(chip);
1997 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1998 	int ret = 0;
1999 	uint8_t *block_mark;
2000 	int column, page, chipnr;
2001 
2002 	chipnr = (int)(ofs >> chip->chip_shift);
2003 	nand_select_target(chip, chipnr);
2004 
2005 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
2006 
2007 	/* Write the block mark. */
2008 	block_mark = this->data_buffer_dma;
2009 	block_mark[0] = 0; /* bad block marker */
2010 
2011 	/* Shift to get page */
2012 	page = (int)(ofs >> chip->page_shift);
2013 
2014 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
2015 
2016 	nand_deselect_target(chip);
2017 
2018 	return ret;
2019 }
2020 
nand_boot_set_geometry(struct gpmi_nand_data * this)2021 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
2022 {
2023 	struct boot_rom_geometry *geometry = &this->rom_geometry;
2024 
2025 	/*
2026 	 * Set the boot block stride size.
2027 	 *
2028 	 * In principle, we should be reading this from the OTP bits, since
2029 	 * that's where the ROM is going to get it. In fact, we don't have any
2030 	 * way to read the OTP bits, so we go with the default and hope for the
2031 	 * best.
2032 	 */
2033 	geometry->stride_size_in_pages = 64;
2034 
2035 	/*
2036 	 * Set the search area stride exponent.
2037 	 *
2038 	 * In principle, we should be reading this from the OTP bits, since
2039 	 * that's where the ROM is going to get it. In fact, we don't have any
2040 	 * way to read the OTP bits, so we go with the default and hope for the
2041 	 * best.
2042 	 */
2043 	geometry->search_area_stride_exponent = 2;
2044 	return 0;
2045 }
2046 
2047 static const char  *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)2048 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
2049 {
2050 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2051 	struct device *dev = this->dev;
2052 	struct nand_chip *chip = &this->nand;
2053 	unsigned int search_area_size_in_strides;
2054 	unsigned int stride;
2055 	unsigned int page;
2056 	u8 *buffer = nand_get_data_buf(chip);
2057 	int found_an_ncb_fingerprint = false;
2058 	int ret;
2059 
2060 	/* Compute the number of strides in a search area. */
2061 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2062 
2063 	nand_select_target(chip, 0);
2064 
2065 	/*
2066 	 * Loop through the first search area, looking for the NCB fingerprint.
2067 	 */
2068 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
2069 
2070 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2071 		/* Compute the page addresses. */
2072 		page = stride * rom_geo->stride_size_in_pages;
2073 
2074 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
2075 
2076 		/*
2077 		 * Read the NCB fingerprint. The fingerprint is four bytes long
2078 		 * and starts in the 12th byte of the page.
2079 		 */
2080 		ret = nand_read_page_op(chip, page, 12, buffer,
2081 					strlen(fingerprint));
2082 		if (ret)
2083 			continue;
2084 
2085 		/* Look for the fingerprint. */
2086 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2087 			found_an_ncb_fingerprint = true;
2088 			break;
2089 		}
2090 
2091 	}
2092 
2093 	nand_deselect_target(chip);
2094 
2095 	if (found_an_ncb_fingerprint)
2096 		dev_dbg(dev, "\tFound a fingerprint\n");
2097 	else
2098 		dev_dbg(dev, "\tNo fingerprint found\n");
2099 	return found_an_ncb_fingerprint;
2100 }
2101 
2102 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)2103 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2104 {
2105 	struct device *dev = this->dev;
2106 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2107 	struct nand_chip *chip = &this->nand;
2108 	struct mtd_info *mtd = nand_to_mtd(chip);
2109 	unsigned int block_size_in_pages;
2110 	unsigned int search_area_size_in_strides;
2111 	unsigned int search_area_size_in_pages;
2112 	unsigned int search_area_size_in_blocks;
2113 	unsigned int block;
2114 	unsigned int stride;
2115 	unsigned int page;
2116 	u8 *buffer = nand_get_data_buf(chip);
2117 	int status;
2118 
2119 	/* Compute the search area geometry. */
2120 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2121 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2122 	search_area_size_in_pages = search_area_size_in_strides *
2123 					rom_geo->stride_size_in_pages;
2124 	search_area_size_in_blocks =
2125 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2126 				    block_size_in_pages;
2127 
2128 	dev_dbg(dev, "Search Area Geometry :\n");
2129 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2130 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2131 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2132 
2133 	nand_select_target(chip, 0);
2134 
2135 	/* Loop over blocks in the first search area, erasing them. */
2136 	dev_dbg(dev, "Erasing the search area...\n");
2137 
2138 	for (block = 0; block < search_area_size_in_blocks; block++) {
2139 		/* Erase this block. */
2140 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2141 		status = nand_erase_op(chip, block);
2142 		if (status)
2143 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2144 	}
2145 
2146 	/* Write the NCB fingerprint into the page buffer. */
2147 	memset(buffer, ~0, mtd->writesize);
2148 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2149 
2150 	/* Loop through the first search area, writing NCB fingerprints. */
2151 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2152 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2153 		/* Compute the page addresses. */
2154 		page = stride * rom_geo->stride_size_in_pages;
2155 
2156 		/* Write the first page of the current stride. */
2157 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2158 
2159 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2160 		if (status)
2161 			dev_err(dev, "[%s] Write failed.\n", __func__);
2162 	}
2163 
2164 	nand_deselect_target(chip);
2165 
2166 	return 0;
2167 }
2168 
mx23_boot_init(struct gpmi_nand_data * this)2169 static int mx23_boot_init(struct gpmi_nand_data  *this)
2170 {
2171 	struct device *dev = this->dev;
2172 	struct nand_chip *chip = &this->nand;
2173 	struct mtd_info *mtd = nand_to_mtd(chip);
2174 	unsigned int block_count;
2175 	unsigned int block;
2176 	int     chipnr;
2177 	int     page;
2178 	loff_t  byte;
2179 	uint8_t block_mark;
2180 	int     ret = 0;
2181 
2182 	/*
2183 	 * If control arrives here, we can't use block mark swapping, which
2184 	 * means we're forced to use transcription. First, scan for the
2185 	 * transcription stamp. If we find it, then we don't have to do
2186 	 * anything -- the block marks are already transcribed.
2187 	 */
2188 	if (mx23_check_transcription_stamp(this))
2189 		return 0;
2190 
2191 	/*
2192 	 * If control arrives here, we couldn't find a transcription stamp, so
2193 	 * so we presume the block marks are in the conventional location.
2194 	 */
2195 	dev_dbg(dev, "Transcribing bad block marks...\n");
2196 
2197 	/* Compute the number of blocks in the entire medium. */
2198 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2199 
2200 	/*
2201 	 * Loop over all the blocks in the medium, transcribing block marks as
2202 	 * we go.
2203 	 */
2204 	for (block = 0; block < block_count; block++) {
2205 		/*
2206 		 * Compute the chip, page and byte addresses for this block's
2207 		 * conventional mark.
2208 		 */
2209 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2210 		page = block << (chip->phys_erase_shift - chip->page_shift);
2211 		byte = block <<  chip->phys_erase_shift;
2212 
2213 		/* Send the command to read the conventional block mark. */
2214 		nand_select_target(chip, chipnr);
2215 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2216 					1);
2217 		nand_deselect_target(chip);
2218 
2219 		if (ret)
2220 			continue;
2221 
2222 		/*
2223 		 * Check if the block is marked bad. If so, we need to mark it
2224 		 * again, but this time the result will be a mark in the
2225 		 * location where we transcribe block marks.
2226 		 */
2227 		if (block_mark != 0xff) {
2228 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2229 			ret = chip->legacy.block_markbad(chip, byte);
2230 			if (ret)
2231 				dev_err(dev,
2232 					"Failed to mark block bad with ret %d\n",
2233 					ret);
2234 		}
2235 	}
2236 
2237 	/* Write the stamp that indicates we've transcribed the block marks. */
2238 	mx23_write_transcription_stamp(this);
2239 	return 0;
2240 }
2241 
nand_boot_init(struct gpmi_nand_data * this)2242 static int nand_boot_init(struct gpmi_nand_data  *this)
2243 {
2244 	nand_boot_set_geometry(this);
2245 
2246 	/* This is ROM arch-specific initilization before the BBT scanning. */
2247 	if (GPMI_IS_MX23(this))
2248 		return mx23_boot_init(this);
2249 	return 0;
2250 }
2251 
gpmi_set_geometry(struct gpmi_nand_data * this)2252 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2253 {
2254 	int ret;
2255 
2256 	/* Free the temporary DMA memory for reading ID. */
2257 	gpmi_free_dma_buffer(this);
2258 
2259 	/* Set up the NFC geometry which is used by BCH. */
2260 	ret = bch_set_geometry(this);
2261 	if (ret) {
2262 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2263 		return ret;
2264 	}
2265 
2266 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2267 	return gpmi_alloc_dma_buffer(this);
2268 }
2269 
gpmi_init_last(struct gpmi_nand_data * this)2270 static int gpmi_init_last(struct gpmi_nand_data *this)
2271 {
2272 	struct nand_chip *chip = &this->nand;
2273 	struct mtd_info *mtd = nand_to_mtd(chip);
2274 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2275 	struct bch_geometry *bch_geo = &this->bch_geometry;
2276 	int ret;
2277 
2278 	/* Set up the medium geometry */
2279 	ret = gpmi_set_geometry(this);
2280 	if (ret)
2281 		return ret;
2282 
2283 	/* Init the nand_ecc_ctrl{} */
2284 	ecc->read_page	= gpmi_ecc_read_page;
2285 	ecc->write_page	= gpmi_ecc_write_page;
2286 	ecc->read_oob	= gpmi_ecc_read_oob;
2287 	ecc->write_oob	= gpmi_ecc_write_oob;
2288 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2289 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2290 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2291 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2292 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2293 	ecc->size	= bch_geo->eccn_chunk_size;
2294 	ecc->strength	= bch_geo->ecc_strength;
2295 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2296 
2297 	/*
2298 	 * We only enable the subpage read when:
2299 	 *  (1) the chip is imx6, and
2300 	 *  (2) the size of the ECC parity is byte aligned.
2301 	 */
2302 	if (GPMI_IS_MX6(this) &&
2303 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2304 		ecc->read_subpage = gpmi_ecc_read_subpage;
2305 		chip->options |= NAND_SUBPAGE_READ;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
gpmi_nand_attach_chip(struct nand_chip * chip)2311 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2312 {
2313 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2314 	int ret;
2315 
2316 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2317 		chip->bbt_options |= NAND_BBT_NO_OOB;
2318 
2319 		if (of_property_read_bool(this->dev->of_node,
2320 					  "fsl,no-blockmark-swap"))
2321 			this->swap_block_mark = false;
2322 	}
2323 	dev_dbg(this->dev, "Blockmark swapping %s\n",
2324 		str_enabled_disabled(this->swap_block_mark));
2325 
2326 	ret = gpmi_init_last(this);
2327 	if (ret)
2328 		return ret;
2329 
2330 	chip->options |= NAND_SKIP_BBTSCAN;
2331 
2332 	return 0;
2333 }
2334 
get_next_transfer(struct gpmi_nand_data * this)2335 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2336 {
2337 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2338 
2339 	this->ntransfers++;
2340 
2341 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2342 		return NULL;
2343 
2344 	return transfer;
2345 }
2346 
gpmi_chain_command(struct gpmi_nand_data * this,u8 cmd,const u8 * addr,int naddr)2347 static struct dma_async_tx_descriptor *gpmi_chain_command(
2348 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2349 {
2350 	struct dma_chan *channel = get_dma_chan(this);
2351 	struct dma_async_tx_descriptor *desc;
2352 	struct gpmi_transfer *transfer;
2353 	int chip = this->nand.cur_cs;
2354 	u32 pio[3];
2355 
2356 	/* [1] send out the PIO words */
2357 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2358 		| BM_GPMI_CTRL0_WORD_LENGTH
2359 		| BF_GPMI_CTRL0_CS(chip, this)
2360 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2361 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2362 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2363 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2364 	pio[1] = 0;
2365 	pio[2] = 0;
2366 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2367 				      DMA_TRANS_NONE, 0);
2368 	if (!desc)
2369 		return NULL;
2370 
2371 	transfer = get_next_transfer(this);
2372 	if (!transfer)
2373 		return NULL;
2374 
2375 	transfer->cmdbuf[0] = cmd;
2376 	if (naddr)
2377 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2378 
2379 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2380 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2381 
2382 	transfer->direction = DMA_TO_DEVICE;
2383 
2384 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2385 				       MXS_DMA_CTRL_WAIT4END);
2386 	return desc;
2387 }
2388 
gpmi_chain_wait_ready(struct gpmi_nand_data * this)2389 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2390 	struct gpmi_nand_data *this)
2391 {
2392 	struct dma_chan *channel = get_dma_chan(this);
2393 	u32 pio[2];
2394 
2395 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2396 		| BM_GPMI_CTRL0_WORD_LENGTH
2397 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2398 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2399 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2400 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2401 	pio[1] = 0;
2402 
2403 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2404 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2405 }
2406 
gpmi_chain_data_read(struct gpmi_nand_data * this,void * buf,int raw_len,bool * direct)2407 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2408 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2409 {
2410 	struct dma_async_tx_descriptor *desc;
2411 	struct dma_chan *channel = get_dma_chan(this);
2412 	struct gpmi_transfer *transfer;
2413 	u32 pio[6] = {};
2414 
2415 	transfer = get_next_transfer(this);
2416 	if (!transfer)
2417 		return NULL;
2418 
2419 	transfer->direction = DMA_FROM_DEVICE;
2420 
2421 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2422 				   DMA_FROM_DEVICE);
2423 
2424 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2425 		| BM_GPMI_CTRL0_WORD_LENGTH
2426 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2427 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2428 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2429 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2430 
2431 	if (this->bch) {
2432 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2433 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2434 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2435 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2436 		pio[3] = raw_len;
2437 		pio[4] = transfer->sgl.dma_address;
2438 		pio[5] = this->auxiliary_phys;
2439 	}
2440 
2441 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2442 				      DMA_TRANS_NONE, 0);
2443 	if (!desc)
2444 		return NULL;
2445 
2446 	if (!this->bch)
2447 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2448 					     DMA_DEV_TO_MEM,
2449 					     MXS_DMA_CTRL_WAIT4END);
2450 
2451 	return desc;
2452 }
2453 
gpmi_chain_data_write(struct gpmi_nand_data * this,const void * buf,int raw_len)2454 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2455 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2456 {
2457 	struct dma_chan *channel = get_dma_chan(this);
2458 	struct dma_async_tx_descriptor *desc;
2459 	struct gpmi_transfer *transfer;
2460 	u32 pio[6] = {};
2461 
2462 	transfer = get_next_transfer(this);
2463 	if (!transfer)
2464 		return NULL;
2465 
2466 	transfer->direction = DMA_TO_DEVICE;
2467 
2468 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2469 
2470 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2471 		| BM_GPMI_CTRL0_WORD_LENGTH
2472 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2473 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2474 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2475 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2476 
2477 	if (this->bch) {
2478 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2479 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2480 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2481 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2482 		pio[3] = raw_len;
2483 		pio[4] = transfer->sgl.dma_address;
2484 		pio[5] = this->auxiliary_phys;
2485 	}
2486 
2487 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2488 				      DMA_TRANS_NONE,
2489 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2490 	if (!desc)
2491 		return NULL;
2492 
2493 	if (!this->bch)
2494 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2495 					       DMA_MEM_TO_DEV,
2496 					       MXS_DMA_CTRL_WAIT4END);
2497 
2498 	return desc;
2499 }
2500 
gpmi_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2501 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2502 			     const struct nand_operation *op,
2503 			     bool check_only)
2504 {
2505 	const struct nand_op_instr *instr;
2506 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2507 	struct dma_async_tx_descriptor *desc = NULL;
2508 	int i, ret, buf_len = 0, nbufs = 0;
2509 	u8 cmd = 0;
2510 	void *buf_read = NULL;
2511 	const void *buf_write = NULL;
2512 	bool direct = false;
2513 	struct completion *dma_completion, *bch_completion;
2514 	unsigned long to;
2515 
2516 	if (check_only)
2517 		return 0;
2518 
2519 	this->ntransfers = 0;
2520 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2521 		this->transfers[i].direction = DMA_NONE;
2522 
2523 	ret = pm_runtime_resume_and_get(this->dev);
2524 	if (ret < 0)
2525 		return ret;
2526 
2527 	/*
2528 	 * This driver currently supports only one NAND chip. Plus, dies share
2529 	 * the same configuration. So once timings have been applied on the
2530 	 * controller side, they will not change anymore. When the time will
2531 	 * come, the check on must_apply_timings will have to be dropped.
2532 	 */
2533 	if (this->hw.must_apply_timings) {
2534 		this->hw.must_apply_timings = false;
2535 		ret = gpmi_nfc_apply_timings(this);
2536 		if (ret)
2537 			goto out_pm;
2538 	}
2539 
2540 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2541 
2542 	for (i = 0; i < op->ninstrs; i++) {
2543 		instr = &op->instrs[i];
2544 
2545 		nand_op_trace("  ", instr);
2546 
2547 		switch (instr->type) {
2548 		case NAND_OP_WAITRDY_INSTR:
2549 			desc = gpmi_chain_wait_ready(this);
2550 			break;
2551 		case NAND_OP_CMD_INSTR:
2552 			cmd = instr->ctx.cmd.opcode;
2553 
2554 			/*
2555 			 * When this command has an address cycle chain it
2556 			 * together with the address cycle
2557 			 */
2558 			if (i + 1 != op->ninstrs &&
2559 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2560 				continue;
2561 
2562 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2563 
2564 			break;
2565 		case NAND_OP_ADDR_INSTR:
2566 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2567 						  instr->ctx.addr.naddrs);
2568 			break;
2569 		case NAND_OP_DATA_OUT_INSTR:
2570 			buf_write = instr->ctx.data.buf.out;
2571 			buf_len = instr->ctx.data.len;
2572 			nbufs++;
2573 
2574 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2575 
2576 			break;
2577 		case NAND_OP_DATA_IN_INSTR:
2578 			if (!instr->ctx.data.len)
2579 				break;
2580 			buf_read = instr->ctx.data.buf.in;
2581 			buf_len = instr->ctx.data.len;
2582 			nbufs++;
2583 
2584 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2585 						   &direct);
2586 			break;
2587 		}
2588 
2589 		if (!desc) {
2590 			ret = -ENXIO;
2591 			goto unmap;
2592 		}
2593 	}
2594 
2595 	dev_dbg(this->dev, "%s setup done\n", __func__);
2596 
2597 	if (nbufs > 1) {
2598 		dev_err(this->dev, "Multiple data instructions not supported\n");
2599 		ret = -EINVAL;
2600 		goto unmap;
2601 	}
2602 
2603 	if (this->bch) {
2604 		writel(this->bch_flashlayout0,
2605 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2606 		writel(this->bch_flashlayout1,
2607 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2608 	}
2609 
2610 	desc->callback = dma_irq_callback;
2611 	desc->callback_param = this;
2612 	dma_completion = &this->dma_done;
2613 	bch_completion = NULL;
2614 
2615 	init_completion(dma_completion);
2616 
2617 	if (this->bch && buf_read) {
2618 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2619 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2620 		bch_completion = &this->bch_done;
2621 		init_completion(bch_completion);
2622 	}
2623 
2624 	dmaengine_submit(desc);
2625 	dma_async_issue_pending(get_dma_chan(this));
2626 
2627 	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2628 	if (!to) {
2629 		dev_err(this->dev, "DMA timeout, last DMA\n");
2630 		gpmi_dump_info(this);
2631 		ret = -ETIMEDOUT;
2632 		goto unmap;
2633 	}
2634 
2635 	if (this->bch && buf_read) {
2636 		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2637 		if (!to) {
2638 			dev_err(this->dev, "BCH timeout, last DMA\n");
2639 			gpmi_dump_info(this);
2640 			ret = -ETIMEDOUT;
2641 			goto unmap;
2642 		}
2643 	}
2644 
2645 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2646 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2647 	gpmi_clear_bch(this);
2648 
2649 	ret = 0;
2650 
2651 unmap:
2652 	for (i = 0; i < this->ntransfers; i++) {
2653 		struct gpmi_transfer *transfer = &this->transfers[i];
2654 
2655 		if (transfer->direction != DMA_NONE)
2656 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2657 				     transfer->direction);
2658 	}
2659 
2660 	if (!ret && buf_read && !direct)
2661 		memcpy(buf_read, this->data_buffer_dma,
2662 		       gpmi_raw_len_to_len(this, buf_len));
2663 
2664 	this->bch = false;
2665 
2666 out_pm:
2667 	pm_runtime_mark_last_busy(this->dev);
2668 	pm_runtime_put_autosuspend(this->dev);
2669 
2670 	return ret;
2671 }
2672 
2673 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2674 	.attach_chip = gpmi_nand_attach_chip,
2675 	.setup_interface = gpmi_setup_interface,
2676 	.exec_op = gpmi_nfc_exec_op,
2677 };
2678 
gpmi_nand_init(struct gpmi_nand_data * this)2679 static int gpmi_nand_init(struct gpmi_nand_data *this)
2680 {
2681 	struct nand_chip *chip = &this->nand;
2682 	struct mtd_info  *mtd = nand_to_mtd(chip);
2683 	int ret;
2684 
2685 	/* init the MTD data structures */
2686 	mtd->name		= "gpmi-nand";
2687 	mtd->dev.parent		= this->dev;
2688 
2689 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2690 	nand_set_controller_data(chip, this);
2691 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2692 	chip->legacy.block_markbad = gpmi_block_markbad;
2693 	chip->badblock_pattern	= &gpmi_bbt_descr;
2694 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2695 
2696 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2697 	this->swap_block_mark = !GPMI_IS_MX23(this);
2698 
2699 	/*
2700 	 * Allocate a temporary DMA buffer for reading ID in the
2701 	 * nand_scan_ident().
2702 	 */
2703 	this->bch_geometry.payload_size = 1024;
2704 	this->bch_geometry.auxiliary_size = 128;
2705 	ret = gpmi_alloc_dma_buffer(this);
2706 	if (ret)
2707 		return ret;
2708 
2709 	nand_controller_init(&this->base);
2710 	this->base.ops = &gpmi_nand_controller_ops;
2711 	chip->controller = &this->base;
2712 
2713 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2714 	if (ret)
2715 		goto err_out;
2716 
2717 	ret = nand_boot_init(this);
2718 	if (ret)
2719 		goto err_nand_cleanup;
2720 	ret = nand_create_bbt(chip);
2721 	if (ret)
2722 		goto err_nand_cleanup;
2723 
2724 	ret = mtd_device_register(mtd, NULL, 0);
2725 	if (ret)
2726 		goto err_nand_cleanup;
2727 	return 0;
2728 
2729 err_nand_cleanup:
2730 	nand_cleanup(chip);
2731 err_out:
2732 	gpmi_free_dma_buffer(this);
2733 	return ret;
2734 }
2735 
2736 static const struct of_device_id gpmi_nand_id_table[] = {
2737 	{ .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2738 	{ .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2739 	{ .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2740 	{ .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2741 	{ .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2742 	{ .compatible = "fsl,imx8qxp-gpmi-nand", .data = &gpmi_devdata_imx8qxp, },
2743 	{}
2744 };
2745 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2746 
gpmi_nand_probe(struct platform_device * pdev)2747 static int gpmi_nand_probe(struct platform_device *pdev)
2748 {
2749 	struct gpmi_nand_data *this;
2750 	int ret;
2751 
2752 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2753 	if (!this)
2754 		return -ENOMEM;
2755 
2756 	this->devdata = of_device_get_match_data(&pdev->dev);
2757 	platform_set_drvdata(pdev, this);
2758 	this->pdev  = pdev;
2759 	this->dev   = &pdev->dev;
2760 
2761 	ret = acquire_resources(this);
2762 	if (ret)
2763 		goto exit_acquire_resources;
2764 
2765 	pm_runtime_enable(&pdev->dev);
2766 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2767 	pm_runtime_use_autosuspend(&pdev->dev);
2768 
2769 	ret = gpmi_init(this);
2770 	if (ret)
2771 		goto exit_nfc_init;
2772 
2773 	ret = gpmi_nand_init(this);
2774 	if (ret)
2775 		goto exit_nfc_init;
2776 
2777 	dev_info(this->dev, "driver registered.\n");
2778 
2779 	return 0;
2780 
2781 exit_nfc_init:
2782 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2783 	pm_runtime_disable(&pdev->dev);
2784 	release_resources(this);
2785 exit_acquire_resources:
2786 
2787 	return ret;
2788 }
2789 
gpmi_nand_remove(struct platform_device * pdev)2790 static void gpmi_nand_remove(struct platform_device *pdev)
2791 {
2792 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2793 	struct nand_chip *chip = &this->nand;
2794 	int ret;
2795 
2796 	ret = mtd_device_unregister(nand_to_mtd(chip));
2797 	WARN_ON(ret);
2798 	nand_cleanup(chip);
2799 	gpmi_free_dma_buffer(this);
2800 	release_resources(this);
2801 	pm_runtime_dont_use_autosuspend(&pdev->dev);
2802 	pm_runtime_disable(&pdev->dev);
2803 }
2804 
gpmi_pm_suspend(struct device * dev)2805 static int gpmi_pm_suspend(struct device *dev)
2806 {
2807 	int ret;
2808 
2809 	pinctrl_pm_select_sleep_state(dev);
2810 	ret = pm_runtime_force_suspend(dev);
2811 
2812 	return ret;
2813 }
2814 
gpmi_pm_resume(struct device * dev)2815 static int gpmi_pm_resume(struct device *dev)
2816 {
2817 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2818 	int ret;
2819 
2820 	ret = pm_runtime_force_resume(dev);
2821 	if (ret) {
2822 		dev_err(this->dev, "Error in resume %d\n", ret);
2823 		return ret;
2824 	}
2825 
2826 	pinctrl_pm_select_default_state(dev);
2827 
2828 	/* re-init the GPMI registers */
2829 	ret = gpmi_init(this);
2830 	if (ret) {
2831 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2832 		return ret;
2833 	}
2834 
2835 	/* Set flag to get timing setup restored for next exec_op */
2836 	if (this->hw.clk_rate)
2837 		this->hw.must_apply_timings = true;
2838 
2839 	/* re-init the BCH registers */
2840 	ret = bch_set_geometry(this);
2841 	if (ret) {
2842 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2843 		return ret;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 #define gpmi_enable_clk(x)	__gpmi_enable_clk(x, true)
2850 #define gpmi_disable_clk(x)	__gpmi_enable_clk(x, false)
2851 
gpmi_runtime_suspend(struct device * dev)2852 static int gpmi_runtime_suspend(struct device *dev)
2853 {
2854 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2855 
2856 	gpmi_disable_clk(this);
2857 
2858 	return 0;
2859 }
2860 
gpmi_runtime_resume(struct device * dev)2861 static int gpmi_runtime_resume(struct device *dev)
2862 {
2863 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2864 	int ret;
2865 
2866 	ret = gpmi_enable_clk(this);
2867 	if (ret)
2868 		return ret;
2869 
2870 	return 0;
2871 
2872 }
2873 
2874 static const struct dev_pm_ops gpmi_pm_ops = {
2875 	SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2876 	RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2877 };
2878 
2879 static struct platform_driver gpmi_nand_driver = {
2880 	.driver = {
2881 		.name = "gpmi-nand",
2882 		.pm = pm_ptr(&gpmi_pm_ops),
2883 		.of_match_table = gpmi_nand_id_table,
2884 	},
2885 	.probe = gpmi_nand_probe,
2886 	.remove = gpmi_nand_remove,
2887 };
2888 module_platform_driver(gpmi_nand_driver);
2889 
2890 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2891 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2892 MODULE_LICENSE("GPL");
2893