1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sysfs.h>
19
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/mmc.h>
23 #include <linux/mmc/sd.h>
24
25 #include "core.h"
26 #include "card.h"
27 #include "host.h"
28 #include "bus.h"
29 #include "mmc_ops.h"
30 #include "quirks.h"
31 #include "sd.h"
32 #include "sd_ops.h"
33
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37 };
38
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42 };
43
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 };
47
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51 };
52
53 static const unsigned int sd_au_size[] = {
54 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
55 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
56 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
57 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
58 };
59
60 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
61 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
62
63 struct sd_busy_data {
64 struct mmc_card *card;
65 u8 *reg_buf;
66 };
67
68 /*
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 */
mmc_decode_cid(struct mmc_card * card)71 void mmc_decode_cid(struct mmc_card *card)
72 {
73 u32 *resp = card->raw_cid;
74
75 /*
76 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 * matter that not all of it is unique, it's just bonus entropy.
78 */
79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80
81 /*
82 * SD doesn't currently have a version field so we will
83 * have to assume we can parse this.
84 */
85 card->cid.manfid = unstuff_bits(resp, 120, 8);
86 card->cid.oemid = unstuff_bits(resp, 104, 16);
87 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
88 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
89 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
90 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
91 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
92 card->cid.hwrev = unstuff_bits(resp, 60, 4);
93 card->cid.fwrev = unstuff_bits(resp, 56, 4);
94 card->cid.serial = unstuff_bits(resp, 24, 32);
95 card->cid.year = unstuff_bits(resp, 12, 8);
96 card->cid.month = unstuff_bits(resp, 8, 4);
97
98 card->cid.year += 2000; /* SD cards year offset */
99
100 /* some product names may include trailing whitespace */
101 strim(card->cid.prod_name);
102 }
103
104 /*
105 * Given a 128-bit response, decode to our card CSD structure.
106 */
mmc_decode_csd(struct mmc_card * card,bool is_sduc)107 static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
108 {
109 struct mmc_csd *csd = &card->csd;
110 unsigned int e, m, csd_struct;
111 u32 *resp = card->raw_csd;
112
113 csd_struct = unstuff_bits(resp, 126, 2);
114
115 switch (csd_struct) {
116 case 0:
117 m = unstuff_bits(resp, 115, 4);
118 e = unstuff_bits(resp, 112, 3);
119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
121
122 m = unstuff_bits(resp, 99, 4);
123 e = unstuff_bits(resp, 96, 3);
124 csd->max_dtr = tran_exp[e] * tran_mant[m];
125 csd->cmdclass = unstuff_bits(resp, 84, 12);
126
127 e = unstuff_bits(resp, 47, 3);
128 m = unstuff_bits(resp, 62, 12);
129 csd->capacity = (1 + m) << (e + 2);
130
131 csd->read_blkbits = unstuff_bits(resp, 80, 4);
132 csd->read_partial = unstuff_bits(resp, 79, 1);
133 csd->write_misalign = unstuff_bits(resp, 78, 1);
134 csd->read_misalign = unstuff_bits(resp, 77, 1);
135 csd->dsr_imp = unstuff_bits(resp, 76, 1);
136 csd->r2w_factor = unstuff_bits(resp, 26, 3);
137 csd->write_blkbits = unstuff_bits(resp, 22, 4);
138 csd->write_partial = unstuff_bits(resp, 21, 1);
139
140 if (unstuff_bits(resp, 46, 1)) {
141 csd->erase_size = 1;
142 } else if (csd->write_blkbits >= 9) {
143 csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
144 csd->erase_size <<= csd->write_blkbits - 9;
145 }
146
147 if (unstuff_bits(resp, 13, 1))
148 mmc_card_set_readonly(card);
149 break;
150 case 1:
151 case 2:
152 /*
153 * This is a block-addressed SDHC, SDXC or SDUC card.
154 * Most interesting fields are unused and have fixed
155 * values. To avoid getting tripped by buggy cards,
156 * we assume those fixed values ourselves.
157 */
158 mmc_card_set_blockaddr(card);
159
160 csd->taac_ns = 0; /* Unused */
161 csd->taac_clks = 0; /* Unused */
162
163 m = unstuff_bits(resp, 99, 4);
164 e = unstuff_bits(resp, 96, 3);
165 csd->max_dtr = tran_exp[e] * tran_mant[m];
166 csd->cmdclass = unstuff_bits(resp, 84, 12);
167
168 if (csd_struct == 1)
169 m = unstuff_bits(resp, 48, 22);
170 else
171 m = unstuff_bits(resp, 48, 28);
172 csd->c_size = m;
173
174 if (csd->c_size >= 0x400000 && is_sduc)
175 mmc_card_set_ult_capacity(card);
176 else if (csd->c_size >= 0xFFFF)
177 mmc_card_set_ext_capacity(card);
178
179 csd->capacity = (1 + (typeof(sector_t))m) << 10;
180
181 csd->read_blkbits = 9;
182 csd->read_partial = 0;
183 csd->write_misalign = 0;
184 csd->read_misalign = 0;
185 csd->r2w_factor = 4; /* Unused */
186 csd->write_blkbits = 9;
187 csd->write_partial = 0;
188 csd->erase_size = 1;
189
190 if (unstuff_bits(resp, 13, 1))
191 mmc_card_set_readonly(card);
192 break;
193 default:
194 pr_err("%s: unrecognised CSD structure version %d\n",
195 mmc_hostname(card->host), csd_struct);
196 return -EINVAL;
197 }
198
199 card->erase_size = csd->erase_size;
200
201 return 0;
202 }
203
204 /*
205 * Given a 64-bit response, decode to our card SCR structure.
206 */
mmc_decode_scr(struct mmc_card * card)207 int mmc_decode_scr(struct mmc_card *card)
208 {
209 struct sd_scr *scr = &card->scr;
210 unsigned int scr_struct;
211 u32 resp[4];
212
213 resp[3] = card->raw_scr[1];
214 resp[2] = card->raw_scr[0];
215
216 scr_struct = unstuff_bits(resp, 60, 4);
217 if (scr_struct != 0) {
218 pr_err("%s: unrecognised SCR structure version %d\n",
219 mmc_hostname(card->host), scr_struct);
220 return -EINVAL;
221 }
222
223 scr->sda_vsn = unstuff_bits(resp, 56, 4);
224 scr->bus_widths = unstuff_bits(resp, 48, 4);
225 if (scr->sda_vsn == SCR_SPEC_VER_2)
226 /* Check if Physical Layer Spec v3.0 is supported */
227 scr->sda_spec3 = unstuff_bits(resp, 47, 1);
228
229 if (scr->sda_spec3) {
230 scr->sda_spec4 = unstuff_bits(resp, 42, 1);
231 scr->sda_specx = unstuff_bits(resp, 38, 4);
232 }
233
234 if (unstuff_bits(resp, 55, 1))
235 card->erased_byte = 0xFF;
236 else
237 card->erased_byte = 0x0;
238
239 if (scr->sda_spec4)
240 scr->cmds = unstuff_bits(resp, 32, 4);
241 else if (scr->sda_spec3)
242 scr->cmds = unstuff_bits(resp, 32, 2);
243
244 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
245 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
246 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
247 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /*
255 * Fetch and process SD Status register.
256 */
mmc_read_ssr(struct mmc_card * card)257 static int mmc_read_ssr(struct mmc_card *card)
258 {
259 unsigned int au, es, et, eo;
260 __be32 *raw_ssr;
261 u32 resp[4] = {};
262 u8 discard_support;
263 int i;
264
265 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
266 pr_warn("%s: card lacks mandatory SD Status function\n",
267 mmc_hostname(card->host));
268 return 0;
269 }
270
271 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
272 if (!raw_ssr)
273 return -ENOMEM;
274
275 if (mmc_app_sd_status(card, raw_ssr)) {
276 pr_warn("%s: problem reading SD Status register\n",
277 mmc_hostname(card->host));
278 kfree(raw_ssr);
279 return 0;
280 }
281
282 for (i = 0; i < 16; i++)
283 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
284
285 kfree(raw_ssr);
286
287 /*
288 * unstuff_bits only works with four u32s so we have to offset the
289 * bitfield positions accordingly.
290 */
291 au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
292 if (au) {
293 if (au <= 9 || card->scr.sda_spec3) {
294 card->ssr.au = sd_au_size[au];
295 es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
296 et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
297 if (es && et) {
298 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
299 card->ssr.erase_timeout = (et * 1000) / es;
300 card->ssr.erase_offset = eo * 1000;
301 }
302 } else {
303 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
304 mmc_hostname(card->host));
305 }
306 }
307
308 /*
309 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
310 */
311 resp[3] = card->raw_ssr[6];
312 discard_support = unstuff_bits(resp, 313 - 288, 1);
313 card->erase_arg = (card->scr.sda_specx && discard_support) ?
314 SD_DISCARD_ARG : SD_ERASE_ARG;
315
316 return 0;
317 }
318
319 /*
320 * Fetches and decodes switch information
321 */
mmc_read_switch(struct mmc_card * card)322 static int mmc_read_switch(struct mmc_card *card)
323 {
324 int err;
325 u8 *status;
326
327 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
328 return 0;
329
330 if (!(card->csd.cmdclass & CCC_SWITCH)) {
331 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
332 mmc_hostname(card->host));
333 return 0;
334 }
335
336 status = kmalloc(64, GFP_KERNEL);
337 if (!status)
338 return -ENOMEM;
339
340 /*
341 * Find out the card's support bits with a mode 0 operation.
342 * The argument does not matter, as the support bits do not
343 * change with the arguments.
344 */
345 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
346 if (err) {
347 /*
348 * If the host or the card can't do the switch,
349 * fail more gracefully.
350 */
351 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
352 goto out;
353
354 pr_warn("%s: problem reading Bus Speed modes\n",
355 mmc_hostname(card->host));
356 err = 0;
357
358 goto out;
359 }
360
361 if (status[13] & SD_MODE_HIGH_SPEED)
362 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
363
364 if (card->scr.sda_spec3) {
365 card->sw_caps.sd3_bus_mode = status[13];
366 /* Driver Strengths supported by the card */
367 card->sw_caps.sd3_drv_type = status[9];
368 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
369 }
370
371 out:
372 kfree(status);
373
374 return err;
375 }
376
377 /*
378 * Test if the card supports high-speed mode and, if so, switch to it.
379 */
mmc_sd_switch_hs(struct mmc_card * card)380 int mmc_sd_switch_hs(struct mmc_card *card)
381 {
382 int err;
383 u8 *status;
384
385 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
386 return 0;
387
388 if (!(card->csd.cmdclass & CCC_SWITCH))
389 return 0;
390
391 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
392 return 0;
393
394 if (card->sw_caps.hs_max_dtr == 0)
395 return 0;
396
397 status = kmalloc(64, GFP_KERNEL);
398 if (!status)
399 return -ENOMEM;
400
401 err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
402 HIGH_SPEED_BUS_SPEED, status);
403 if (err)
404 goto out;
405
406 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
407 pr_warn("%s: Problem switching card into high-speed mode!\n",
408 mmc_hostname(card->host));
409 err = 0;
410 } else {
411 err = 1;
412 }
413
414 out:
415 kfree(status);
416
417 return err;
418 }
419
sd_select_driver_type(struct mmc_card * card,u8 * status)420 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
421 {
422 int card_drv_type, drive_strength, drv_type;
423 int err;
424
425 card->drive_strength = 0;
426
427 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
428
429 drive_strength = mmc_select_drive_strength(card,
430 card->sw_caps.uhs_max_dtr,
431 card_drv_type, &drv_type);
432
433 if (drive_strength) {
434 err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
435 drive_strength, status);
436 if (err)
437 return err;
438 if ((status[15] & 0xF) != drive_strength) {
439 pr_warn("%s: Problem setting drive strength!\n",
440 mmc_hostname(card->host));
441 return 0;
442 }
443 card->drive_strength = drive_strength;
444 }
445
446 if (drv_type)
447 mmc_set_driver_type(card->host, drv_type);
448
449 return 0;
450 }
451
sd_update_bus_speed_mode(struct mmc_card * card)452 static void sd_update_bus_speed_mode(struct mmc_card *card)
453 {
454 /*
455 * If the host doesn't support any of the UHS-I modes, fallback on
456 * default speed.
457 */
458 if (!mmc_host_uhs(card->host)) {
459 card->sd_bus_speed = 0;
460 return;
461 }
462
463 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
464 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
465 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
466 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
468 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
471 SD_MODE_UHS_SDR50)) {
472 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
475 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
476 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
477 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
478 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
479 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
480 SD_MODE_UHS_SDR12)) {
481 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
482 }
483 }
484
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)485 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
486 {
487 int err;
488 unsigned int timing = 0;
489
490 switch (card->sd_bus_speed) {
491 case UHS_SDR104_BUS_SPEED:
492 timing = MMC_TIMING_UHS_SDR104;
493 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
494 break;
495 case UHS_DDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_DDR50;
497 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
498 break;
499 case UHS_SDR50_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR50;
501 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
502 break;
503 case UHS_SDR25_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR25;
505 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
506 break;
507 case UHS_SDR12_BUS_SPEED:
508 timing = MMC_TIMING_UHS_SDR12;
509 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
510 break;
511 default:
512 return 0;
513 }
514
515 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
516 if (err)
517 return err;
518
519 if ((status[16] & 0xF) != card->sd_bus_speed)
520 pr_warn("%s: Problem setting bus speed mode!\n",
521 mmc_hostname(card->host));
522 else {
523 mmc_set_timing(card->host, timing);
524 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
525 }
526
527 return 0;
528 }
529
530 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)531 static u32 sd_get_host_max_current(struct mmc_host *host)
532 {
533 u32 voltage, max_current;
534
535 voltage = 1 << host->ios.vdd;
536 switch (voltage) {
537 case MMC_VDD_165_195:
538 max_current = host->max_current_180;
539 break;
540 case MMC_VDD_29_30:
541 case MMC_VDD_30_31:
542 max_current = host->max_current_300;
543 break;
544 case MMC_VDD_32_33:
545 case MMC_VDD_33_34:
546 max_current = host->max_current_330;
547 break;
548 default:
549 max_current = 0;
550 }
551
552 return max_current;
553 }
554
sd_set_current_limit(struct mmc_card * card,u8 * status)555 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
556 {
557 int current_limit = SD_SET_CURRENT_NO_CHANGE;
558 int err;
559 u32 max_current;
560
561 /*
562 * Current limit switch is only defined for SDR50, SDR104, and DDR50
563 * bus speed modes. For other bus speed modes, we do not change the
564 * current limit.
565 */
566 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
567 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
568 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
569 return 0;
570
571 /*
572 * Host has different current capabilities when operating at
573 * different voltages, so find out its max current first.
574 */
575 max_current = sd_get_host_max_current(card->host);
576
577 /*
578 * We only check host's capability here, if we set a limit that is
579 * higher than the card's maximum current, the card will be using its
580 * maximum current, e.g. if the card's maximum current is 300ma, and
581 * when we set current limit to 200ma, the card will draw 200ma, and
582 * when we set current limit to 400/600/800ma, the card will draw its
583 * maximum 300ma from the host.
584 *
585 * The above is incorrect: if we try to set a current limit that is
586 * not supported by the card, the card can rightfully error out the
587 * attempt, and remain at the default current limit. This results
588 * in a 300mA card being limited to 200mA even though the host
589 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
590 * an iMX6 host. --rmk
591 */
592 if (max_current >= 800 &&
593 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
594 current_limit = SD_SET_CURRENT_LIMIT_800;
595 else if (max_current >= 600 &&
596 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
597 current_limit = SD_SET_CURRENT_LIMIT_600;
598 else if (max_current >= 400 &&
599 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
600 current_limit = SD_SET_CURRENT_LIMIT_400;
601 else if (max_current >= 200 &&
602 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
603 current_limit = SD_SET_CURRENT_LIMIT_200;
604
605 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
606 err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
607 current_limit, status);
608 if (err)
609 return err;
610
611 if (((status[15] >> 4) & 0x0F) != current_limit)
612 pr_warn("%s: Problem setting current limit!\n",
613 mmc_hostname(card->host));
614
615 }
616
617 return 0;
618 }
619
620 /*
621 * UHS-I specific initialization procedure
622 */
mmc_sd_init_uhs_card(struct mmc_card * card)623 static int mmc_sd_init_uhs_card(struct mmc_card *card)
624 {
625 int err;
626 u8 *status;
627
628 if (!(card->csd.cmdclass & CCC_SWITCH))
629 return 0;
630
631 status = kmalloc(64, GFP_KERNEL);
632 if (!status)
633 return -ENOMEM;
634
635 /* Set 4-bit bus width */
636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
637 if (err)
638 goto out;
639
640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
641
642 /*
643 * Select the bus speed mode depending on host
644 * and card capability.
645 */
646 sd_update_bus_speed_mode(card);
647
648 /* Set the driver strength for the card */
649 err = sd_select_driver_type(card, status);
650 if (err)
651 goto out;
652
653 /* Set current limit for the card */
654 err = sd_set_current_limit(card, status);
655 if (err)
656 goto out;
657
658 /* Set bus speed mode of the card */
659 err = sd_set_bus_speed_mode(card, status);
660 if (err)
661 goto out;
662
663 /*
664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
666 */
667 if (!mmc_host_is_spi(card->host) &&
668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
671 err = mmc_execute_tuning(card);
672
673 /*
674 * As SD Specifications Part1 Physical Layer Specification
675 * Version 3.01 says, CMD19 tuning is available for unlocked
676 * cards in transfer state of 1.8V signaling mode. The small
677 * difference between v3.00 and 3.01 spec means that CMD19
678 * tuning is also available for DDR50 mode.
679 */
680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
681 pr_warn("%s: ddr50 tuning failed\n",
682 mmc_hostname(card->host));
683 err = 0;
684 }
685 }
686
687 out:
688 kfree(status);
689
690 return err;
691 }
692
693 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
694 card->raw_cid[2], card->raw_cid[3]);
695 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
696 card->raw_csd[2], card->raw_csd[3]);
697 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
698 MMC_DEV_ATTR(ssr,
699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
705 card->raw_ssr[15]);
706 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
707 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
708 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
709 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
710 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
711 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
712 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
713 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
714 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
715 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
716 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
717
718
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721 {
722 struct mmc_card *card = mmc_dev_to_card(dev);
723 struct mmc_host *host = card->host;
724
725 if (card->csd.dsr_imp && host->dsr_req)
726 return sysfs_emit(buf, "0x%x\n", host->dsr);
727 /* return default DSR value */
728 return sysfs_emit(buf, "0x%x\n", 0x404);
729 }
730
731 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
732
733 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
734 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
735 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
736
737 #define sdio_info_attr(num) \
738 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
739 { \
740 struct mmc_card *card = mmc_dev_to_card(dev); \
741 \
742 if (num > card->num_info) \
743 return -ENODATA; \
744 if (!card->info[num - 1][0]) \
745 return 0; \
746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
747 } \
748 static DEVICE_ATTR_RO(info##num)
749
750 sdio_info_attr(1);
751 sdio_info_attr(2);
752 sdio_info_attr(3);
753 sdio_info_attr(4);
754
755 static struct attribute *sd_std_attrs[] = {
756 &dev_attr_vendor.attr,
757 &dev_attr_device.attr,
758 &dev_attr_revision.attr,
759 &dev_attr_info1.attr,
760 &dev_attr_info2.attr,
761 &dev_attr_info3.attr,
762 &dev_attr_info4.attr,
763 &dev_attr_cid.attr,
764 &dev_attr_csd.attr,
765 &dev_attr_scr.attr,
766 &dev_attr_ssr.attr,
767 &dev_attr_date.attr,
768 &dev_attr_erase_size.attr,
769 &dev_attr_preferred_erase_size.attr,
770 &dev_attr_fwrev.attr,
771 &dev_attr_hwrev.attr,
772 &dev_attr_manfid.attr,
773 &dev_attr_name.attr,
774 &dev_attr_oemid.attr,
775 &dev_attr_serial.attr,
776 &dev_attr_ocr.attr,
777 &dev_attr_rca.attr,
778 &dev_attr_dsr.attr,
779 NULL,
780 };
781
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)782 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
783 int index)
784 {
785 struct device *dev = kobj_to_dev(kobj);
786 struct mmc_card *card = mmc_dev_to_card(dev);
787
788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
789 if ((attr == &dev_attr_vendor.attr ||
790 attr == &dev_attr_device.attr ||
791 attr == &dev_attr_revision.attr ||
792 attr == &dev_attr_info1.attr ||
793 attr == &dev_attr_info2.attr ||
794 attr == &dev_attr_info3.attr ||
795 attr == &dev_attr_info4.attr
796 ) &&!mmc_card_sd_combo(card))
797 return 0;
798
799 return attr->mode;
800 }
801
802 static const struct attribute_group sd_std_group = {
803 .attrs = sd_std_attrs,
804 .is_visible = sd_std_is_visible,
805 };
806 __ATTRIBUTE_GROUPS(sd_std);
807
808 const struct device_type sd_type = {
809 .groups = sd_std_groups,
810 };
811
812 /*
813 * Fetch CID from card.
814 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)815 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
816 {
817 int err;
818 u32 max_current;
819 int retries = 10;
820 u32 pocr = ocr;
821
822 try_again:
823 if (!retries) {
824 ocr &= ~SD_OCR_S18R;
825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
826 }
827
828 /*
829 * Since we're changing the OCR value, we seem to
830 * need to tell some cards to go back to the idle
831 * state. We wait 1ms to give cards time to
832 * respond.
833 */
834 mmc_go_idle(host);
835
836 /*
837 * If SD_SEND_IF_COND indicates an SD 2.0
838 * compliant card and we should set bit 30
839 * of the ocr to indicate that we can handle
840 * block-addressed SDHC cards.
841 */
842 err = mmc_send_if_cond(host, ocr);
843 if (!err) {
844 ocr |= SD_OCR_CCS;
845 /* Set HO2T as well - SDUC card won't respond otherwise */
846 ocr |= SD_OCR_2T;
847 }
848
849 /*
850 * If the host supports one of UHS-I modes, request the card
851 * to switch to 1.8V signaling level. If the card has failed
852 * repeatedly to switch however, skip this.
853 */
854 if (retries && mmc_host_uhs(host))
855 ocr |= SD_OCR_S18R;
856
857 /*
858 * If the host can supply more than 150mA at current voltage,
859 * XPC should be set to 1.
860 */
861 max_current = sd_get_host_max_current(host);
862 if (max_current > 150)
863 ocr |= SD_OCR_XPC;
864
865 err = mmc_send_app_op_cond(host, ocr, rocr);
866 if (err)
867 return err;
868
869 /*
870 * In case the S18A bit is set in the response, let's start the signal
871 * voltage switch procedure. SPI mode doesn't support CMD11.
872 * Note that, according to the spec, the S18A bit is not valid unless
873 * the CCS bit is set as well. We deliberately deviate from the spec in
874 * regards to this, which allows UHS-I to be supported for SDSC cards.
875 */
876 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
877 rocr && (*rocr & SD_ROCR_S18A)) {
878 err = mmc_set_uhs_voltage(host, pocr);
879 if (err == -EAGAIN) {
880 retries--;
881 goto try_again;
882 } else if (err) {
883 retries = 0;
884 goto try_again;
885 }
886 }
887
888 err = mmc_send_cid(host, cid);
889 return err;
890 }
891
mmc_sd_get_csd(struct mmc_card * card,bool is_sduc)892 int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
893 {
894 int err;
895
896 /*
897 * Fetch CSD from card.
898 */
899 err = mmc_send_csd(card, card->raw_csd);
900 if (err)
901 return err;
902
903 err = mmc_decode_csd(card, is_sduc);
904 if (err)
905 return err;
906
907 return 0;
908 }
909
mmc_sd_get_ro(struct mmc_host * host)910 int mmc_sd_get_ro(struct mmc_host *host)
911 {
912 int ro;
913
914 /*
915 * Some systems don't feature a write-protect pin and don't need one.
916 * E.g. because they only have micro-SD card slot. For those systems
917 * assume that the SD card is always read-write.
918 */
919 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
920 return 0;
921
922 if (!host->ops->get_ro)
923 return -1;
924
925 ro = host->ops->get_ro(host);
926
927 return ro;
928 }
929
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)930 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
931 bool reinit)
932 {
933 int err;
934
935 if (!reinit) {
936 /*
937 * Fetch SCR from card.
938 */
939 err = mmc_app_send_scr(card);
940 if (err)
941 return err;
942
943 err = mmc_decode_scr(card);
944 if (err)
945 return err;
946
947 /*
948 * Fetch and process SD Status register.
949 */
950 err = mmc_read_ssr(card);
951 if (err)
952 return err;
953
954 /* Erase init depends on CSD and SSR */
955 mmc_init_erase(card);
956 }
957
958 /*
959 * Fetch switch information from card. Note, sd3_bus_mode can change if
960 * voltage switch outcome changes, so do this always.
961 */
962 err = mmc_read_switch(card);
963 if (err)
964 return err;
965
966 /*
967 * For SPI, enable CRC as appropriate.
968 * This CRC enable is located AFTER the reading of the
969 * card registers because some SDHC cards are not able
970 * to provide valid CRCs for non-512-byte blocks.
971 */
972 if (mmc_host_is_spi(host)) {
973 err = mmc_spi_set_crc(host, use_spi_crc);
974 if (err)
975 return err;
976 }
977
978 /*
979 * Check if read-only switch is active.
980 */
981 if (!reinit) {
982 int ro = mmc_sd_get_ro(host);
983
984 if (ro < 0) {
985 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
986 mmc_hostname(host));
987 } else if (ro > 0) {
988 mmc_card_set_readonly(card);
989 }
990 }
991
992 return 0;
993 }
994
mmc_sd_get_max_clock(struct mmc_card * card)995 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
996 {
997 unsigned max_dtr = (unsigned int)-1;
998
999 if (mmc_card_hs(card)) {
1000 if (max_dtr > card->sw_caps.hs_max_dtr)
1001 max_dtr = card->sw_caps.hs_max_dtr;
1002 } else if (max_dtr > card->csd.max_dtr) {
1003 max_dtr = card->csd.max_dtr;
1004 }
1005
1006 return max_dtr;
1007 }
1008
mmc_sd_card_using_v18(struct mmc_card * card)1009 static bool mmc_sd_card_using_v18(struct mmc_card *card)
1010 {
1011 /*
1012 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1013 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1014 * they can be used to determine if the card has already switched to
1015 * 1.8V signaling.
1016 */
1017 return card->sw_caps.sd3_bus_mode &
1018 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1019 }
1020
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1021 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1022 u8 reg_data)
1023 {
1024 struct mmc_host *host = card->host;
1025 struct mmc_request mrq = {};
1026 struct mmc_command cmd = {};
1027 struct mmc_data data = {};
1028 struct scatterlist sg;
1029 u8 *reg_buf;
1030
1031 reg_buf = kzalloc(512, GFP_KERNEL);
1032 if (!reg_buf)
1033 return -ENOMEM;
1034
1035 mrq.cmd = &cmd;
1036 mrq.data = &data;
1037
1038 /*
1039 * Arguments of CMD49:
1040 * [31:31] MIO (0 = memory).
1041 * [30:27] FNO (function number).
1042 * [26:26] MW - mask write mode (0 = disable).
1043 * [25:18] page number.
1044 * [17:9] offset address.
1045 * [8:0] length (0 = 1 byte).
1046 */
1047 cmd.arg = fno << 27 | page << 18 | offset << 9;
1048
1049 /* The first byte in the buffer is the data to be written. */
1050 reg_buf[0] = reg_data;
1051
1052 data.flags = MMC_DATA_WRITE;
1053 data.blksz = 512;
1054 data.blocks = 1;
1055 data.sg = &sg;
1056 data.sg_len = 1;
1057 sg_init_one(&sg, reg_buf, 512);
1058
1059 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1060 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1061
1062 mmc_set_data_timeout(&data, card);
1063 mmc_wait_for_req(host, &mrq);
1064
1065 kfree(reg_buf);
1066
1067 /*
1068 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1069 * after the CMD49. Although, let's leave this to be managed by the
1070 * caller.
1071 */
1072
1073 if (cmd.error)
1074 return cmd.error;
1075 if (data.error)
1076 return data.error;
1077
1078 return 0;
1079 }
1080
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1081 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1082 u16 offset, u16 len, u8 *reg_buf)
1083 {
1084 u32 cmd_args;
1085
1086 /*
1087 * Command arguments of CMD48:
1088 * [31:31] MIO (0 = memory).
1089 * [30:27] FNO (function number).
1090 * [26:26] reserved (0).
1091 * [25:18] page number.
1092 * [17:9] offset address.
1093 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1094 */
1095 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1096
1097 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1098 cmd_args, reg_buf, 512);
1099 }
1100
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1101 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1102 u16 offset)
1103 {
1104 int err;
1105 u8 *reg_buf;
1106
1107 reg_buf = kzalloc(512, GFP_KERNEL);
1108 if (!reg_buf)
1109 return -ENOMEM;
1110
1111 /* Read the extension register for power management function. */
1112 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1113 if (err) {
1114 pr_warn("%s: error %d reading PM func of ext reg\n",
1115 mmc_hostname(card->host), err);
1116 goto out;
1117 }
1118
1119 /* PM revision consists of 4 bits. */
1120 card->ext_power.rev = reg_buf[0] & 0xf;
1121
1122 /* Power Off Notification support at bit 4. */
1123 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1124 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1125
1126 /* Power Sustenance support at bit 5. */
1127 if (reg_buf[1] & BIT(5))
1128 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1129
1130 /* Power Down Mode support at bit 6. */
1131 if (reg_buf[1] & BIT(6))
1132 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1133
1134 card->ext_power.fno = fno;
1135 card->ext_power.page = page;
1136 card->ext_power.offset = offset;
1137
1138 out:
1139 kfree(reg_buf);
1140 return err;
1141 }
1142
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1143 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1144 u16 offset)
1145 {
1146 int err;
1147 u8 *reg_buf;
1148
1149 reg_buf = kzalloc(512, GFP_KERNEL);
1150 if (!reg_buf)
1151 return -ENOMEM;
1152
1153 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1154 if (err) {
1155 pr_warn("%s: error %d reading PERF func of ext reg\n",
1156 mmc_hostname(card->host), err);
1157 goto out;
1158 }
1159
1160 /* PERF revision. */
1161 card->ext_perf.rev = reg_buf[0];
1162
1163 /* FX_EVENT support at bit 0. */
1164 if (reg_buf[1] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1166
1167 /* Card initiated self-maintenance support at bit 0. */
1168 if (reg_buf[2] & BIT(0))
1169 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1170
1171 /* Host initiated self-maintenance support at bit 1. */
1172 if (reg_buf[2] & BIT(1))
1173 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1174
1175 /* Cache support at bit 0. */
1176 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1177 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1178
1179 /* Command queue support indicated via queue depth bits (0 to 4). */
1180 if (reg_buf[6] & 0x1f)
1181 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1182
1183 card->ext_perf.fno = fno;
1184 card->ext_perf.page = page;
1185 card->ext_perf.offset = offset;
1186
1187 out:
1188 kfree(reg_buf);
1189 return err;
1190 }
1191
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1192 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1193 u16 *next_ext_addr)
1194 {
1195 u8 num_regs, fno, page;
1196 u16 sfc, offset, ext = *next_ext_addr;
1197 u32 reg_addr;
1198
1199 /*
1200 * Parse only one register set per extension, as that is sufficient to
1201 * support the standard functions. This means another 48 bytes in the
1202 * buffer must be available.
1203 */
1204 if (ext + 48 > 512)
1205 return -EFAULT;
1206
1207 /* Standard Function Code */
1208 memcpy(&sfc, &gen_info_buf[ext], 2);
1209
1210 /* Address to the next extension. */
1211 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1212
1213 /* Number of registers for this extension. */
1214 num_regs = gen_info_buf[ext + 42];
1215
1216 /* We support only one register per extension. */
1217 if (num_regs != 1)
1218 return 0;
1219
1220 /* Extension register address. */
1221 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1222
1223 /* 9 bits (0 to 8) contains the offset address. */
1224 offset = reg_addr & 0x1ff;
1225
1226 /* 8 bits (9 to 16) contains the page number. */
1227 page = reg_addr >> 9 & 0xff ;
1228
1229 /* 4 bits (18 to 21) contains the function number. */
1230 fno = reg_addr >> 18 & 0xf;
1231
1232 /* Standard Function Code for power management. */
1233 if (sfc == 0x1)
1234 return sd_parse_ext_reg_power(card, fno, page, offset);
1235
1236 /* Standard Function Code for performance enhancement. */
1237 if (sfc == 0x2)
1238 return sd_parse_ext_reg_perf(card, fno, page, offset);
1239
1240 return 0;
1241 }
1242
sd_read_ext_regs(struct mmc_card * card)1243 static int sd_read_ext_regs(struct mmc_card *card)
1244 {
1245 int err, i;
1246 u8 num_ext, *gen_info_buf;
1247 u16 rev, len, next_ext_addr;
1248
1249 if (mmc_host_is_spi(card->host))
1250 return 0;
1251
1252 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1253 return 0;
1254
1255 gen_info_buf = kzalloc(512, GFP_KERNEL);
1256 if (!gen_info_buf)
1257 return -ENOMEM;
1258
1259 /*
1260 * Read 512 bytes of general info, which is found at function number 0,
1261 * at page 0 and with no offset.
1262 */
1263 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1264 if (err) {
1265 pr_err("%s: error %d reading general info of SD ext reg\n",
1266 mmc_hostname(card->host), err);
1267 goto out;
1268 }
1269
1270 /* General info structure revision. */
1271 memcpy(&rev, &gen_info_buf[0], 2);
1272
1273 /* Length of general info in bytes. */
1274 memcpy(&len, &gen_info_buf[2], 2);
1275
1276 /* Number of extensions to be find. */
1277 num_ext = gen_info_buf[4];
1278
1279 /*
1280 * We only support revision 0 and limit it to 512 bytes for simplicity.
1281 * No matter what, let's return zero to allow us to continue using the
1282 * card, even if we can't support the features from the SD function
1283 * extensions registers.
1284 */
1285 if (rev != 0 || len > 512) {
1286 pr_warn("%s: non-supported SD ext reg layout\n",
1287 mmc_hostname(card->host));
1288 goto out;
1289 }
1290
1291 /*
1292 * Parse the extension registers. The first extension should start
1293 * immediately after the general info header (16 bytes).
1294 */
1295 next_ext_addr = 16;
1296 for (i = 0; i < num_ext; i++) {
1297 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1298 if (err) {
1299 pr_err("%s: error %d parsing SD ext reg\n",
1300 mmc_hostname(card->host), err);
1301 goto out;
1302 }
1303 }
1304
1305 out:
1306 kfree(gen_info_buf);
1307 return err;
1308 }
1309
sd_cache_enabled(struct mmc_host * host)1310 static bool sd_cache_enabled(struct mmc_host *host)
1311 {
1312 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1313 }
1314
sd_flush_cache(struct mmc_host * host)1315 static int sd_flush_cache(struct mmc_host *host)
1316 {
1317 struct mmc_card *card = host->card;
1318 u8 *reg_buf, fno, page;
1319 u16 offset;
1320 int err;
1321
1322 if (!sd_cache_enabled(host))
1323 return 0;
1324
1325 reg_buf = kzalloc(512, GFP_KERNEL);
1326 if (!reg_buf)
1327 return -ENOMEM;
1328
1329 /*
1330 * Set Flush Cache at bit 0 in the performance enhancement register at
1331 * 261 bytes offset.
1332 */
1333 fno = card->ext_perf.fno;
1334 page = card->ext_perf.page;
1335 offset = card->ext_perf.offset + 261;
1336
1337 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1338 if (err) {
1339 pr_warn("%s: error %d writing Cache Flush bit\n",
1340 mmc_hostname(host), err);
1341 goto out;
1342 }
1343
1344 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1345 MMC_BUSY_EXTR_SINGLE);
1346 if (err)
1347 goto out;
1348
1349 /*
1350 * Read the Flush Cache bit. The card shall reset it, to confirm that
1351 * it's has completed the flushing of the cache.
1352 */
1353 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1354 if (err) {
1355 pr_warn("%s: error %d reading Cache Flush bit\n",
1356 mmc_hostname(host), err);
1357 goto out;
1358 }
1359
1360 if (reg_buf[0] & BIT(0))
1361 err = -ETIMEDOUT;
1362 out:
1363 kfree(reg_buf);
1364 return err;
1365 }
1366
sd_enable_cache(struct mmc_card * card)1367 static int sd_enable_cache(struct mmc_card *card)
1368 {
1369 u8 *reg_buf;
1370 int err;
1371
1372 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1373
1374 reg_buf = kzalloc(512, GFP_KERNEL);
1375 if (!reg_buf)
1376 return -ENOMEM;
1377
1378 /*
1379 * Set Cache Enable at bit 0 in the performance enhancement register at
1380 * 260 bytes offset.
1381 */
1382 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1383 card->ext_perf.offset + 260, BIT(0));
1384 if (err) {
1385 pr_warn("%s: error %d writing Cache Enable bit\n",
1386 mmc_hostname(card->host), err);
1387 goto out;
1388 }
1389
1390 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1391 MMC_BUSY_EXTR_SINGLE);
1392 if (!err)
1393 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1394
1395 out:
1396 kfree(reg_buf);
1397 return err;
1398 }
1399
1400 /*
1401 * Handle the detection and initialisation of a card.
1402 *
1403 * In the case of a resume, "oldcard" will contain the card
1404 * we're trying to reinitialise.
1405 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1406 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1407 struct mmc_card *oldcard)
1408 {
1409 struct mmc_card *card;
1410 int err;
1411 u32 cid[4];
1412 u32 rocr = 0;
1413 bool v18_fixup_failed = false;
1414
1415 WARN_ON(!host->claimed);
1416 retry:
1417 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1418 if (err)
1419 return err;
1420
1421 if (oldcard) {
1422 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1423 pr_debug("%s: Perhaps the card was replaced\n",
1424 mmc_hostname(host));
1425 return -ENOENT;
1426 }
1427
1428 card = oldcard;
1429 } else {
1430 /*
1431 * Allocate card structure.
1432 */
1433 card = mmc_alloc_card(host, &sd_type);
1434 if (IS_ERR(card))
1435 return PTR_ERR(card);
1436
1437 card->ocr = ocr;
1438 card->type = MMC_TYPE_SD;
1439 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1440 }
1441
1442 /*
1443 * Call the optional HC's init_card function to handle quirks.
1444 */
1445 if (host->ops->init_card)
1446 host->ops->init_card(host, card);
1447
1448 /*
1449 * For native busses: get card RCA and quit open drain mode.
1450 */
1451 if (!mmc_host_is_spi(host)) {
1452 err = mmc_send_relative_addr(host, &card->rca);
1453 if (err)
1454 goto free_card;
1455 }
1456
1457 if (!oldcard) {
1458 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1459 bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1460
1461 err = mmc_sd_get_csd(card, is_sduc);
1462 if (err)
1463 goto free_card;
1464
1465 mmc_decode_cid(card);
1466 }
1467
1468 /*
1469 * handling only for cards supporting DSR and hosts requesting
1470 * DSR configuration
1471 */
1472 if (card->csd.dsr_imp && host->dsr_req)
1473 mmc_set_dsr(host);
1474
1475 /*
1476 * Select card, as all following commands rely on that.
1477 */
1478 if (!mmc_host_is_spi(host)) {
1479 err = mmc_select_card(card);
1480 if (err)
1481 goto free_card;
1482 }
1483
1484 /* Apply quirks prior to card setup */
1485 mmc_fixup_device(card, mmc_sd_fixups);
1486
1487 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1488 if (err)
1489 goto free_card;
1490
1491 /*
1492 * If the card has not been power cycled, it may still be using 1.8V
1493 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1494 * transfer mode.
1495 */
1496 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1497 mmc_sd_card_using_v18(card) &&
1498 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1499 if (mmc_host_set_uhs_voltage(host) ||
1500 mmc_sd_init_uhs_card(card)) {
1501 v18_fixup_failed = true;
1502 mmc_power_cycle(host, ocr);
1503 if (!oldcard)
1504 mmc_remove_card(card);
1505 goto retry;
1506 }
1507 goto cont;
1508 }
1509
1510 /* Initialization sequence for UHS-I cards */
1511 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1512 err = mmc_sd_init_uhs_card(card);
1513 if (err)
1514 goto free_card;
1515 } else {
1516 /*
1517 * Attempt to change to high-speed (if supported)
1518 */
1519 err = mmc_sd_switch_hs(card);
1520 if (err > 0)
1521 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1522 else if (err)
1523 goto free_card;
1524
1525 /*
1526 * Set bus speed.
1527 */
1528 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1529
1530 if (host->ios.timing == MMC_TIMING_SD_HS &&
1531 host->ops->prepare_sd_hs_tuning) {
1532 err = host->ops->prepare_sd_hs_tuning(host, card);
1533 if (err)
1534 goto free_card;
1535 }
1536
1537 /*
1538 * Switch to wider bus (if supported).
1539 */
1540 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1541 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1542 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1543 if (err)
1544 goto free_card;
1545
1546 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1547 }
1548
1549 if (host->ios.timing == MMC_TIMING_SD_HS &&
1550 host->ops->execute_sd_hs_tuning) {
1551 err = host->ops->execute_sd_hs_tuning(host, card);
1552 if (err)
1553 goto free_card;
1554 }
1555 }
1556 cont:
1557 if (!oldcard) {
1558 /* Read/parse the extension registers. */
1559 err = sd_read_ext_regs(card);
1560 if (err)
1561 goto free_card;
1562 }
1563
1564 /* Enable internal SD cache if supported. */
1565 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1566 err = sd_enable_cache(card);
1567 if (err)
1568 goto free_card;
1569 }
1570
1571 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1572 err = host->cqe_ops->cqe_enable(host, card);
1573 if (!err) {
1574 host->cqe_enabled = true;
1575 host->hsq_enabled = true;
1576 pr_info("%s: Host Software Queue enabled\n",
1577 mmc_hostname(host));
1578 }
1579 }
1580
1581 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1582 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1583 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1584 mmc_hostname(host));
1585 err = -EINVAL;
1586 goto free_card;
1587 }
1588
1589 host->card = card;
1590 return 0;
1591
1592 free_card:
1593 if (!oldcard)
1594 mmc_remove_card(card);
1595
1596 return err;
1597 }
1598
1599 /*
1600 * Host is being removed. Free up the current card.
1601 */
mmc_sd_remove(struct mmc_host * host)1602 static void mmc_sd_remove(struct mmc_host *host)
1603 {
1604 mmc_remove_card(host->card);
1605 host->card = NULL;
1606 }
1607
1608 /*
1609 * Card detection - card is alive.
1610 */
mmc_sd_alive(struct mmc_host * host)1611 static int mmc_sd_alive(struct mmc_host *host)
1612 {
1613 return mmc_send_status(host->card, NULL);
1614 }
1615
1616 /*
1617 * Card detection callback from host.
1618 */
mmc_sd_detect(struct mmc_host * host)1619 static void mmc_sd_detect(struct mmc_host *host)
1620 {
1621 int err;
1622
1623 mmc_get_card(host->card, NULL);
1624
1625 /*
1626 * Just check if our card has been removed.
1627 */
1628 err = _mmc_detect_card_removed(host);
1629
1630 mmc_put_card(host->card, NULL);
1631
1632 if (err) {
1633 mmc_sd_remove(host);
1634
1635 mmc_claim_host(host);
1636 mmc_detach_bus(host);
1637 mmc_power_off(host);
1638 mmc_release_host(host);
1639 }
1640 }
1641
sd_can_poweroff_notify(struct mmc_card * card)1642 static int sd_can_poweroff_notify(struct mmc_card *card)
1643 {
1644 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1645 }
1646
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1647 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1648 {
1649 struct sd_busy_data *data = cb_data;
1650 struct mmc_card *card = data->card;
1651 int err;
1652
1653 /*
1654 * Read the status register for the power management function. It's at
1655 * one byte offset and is one byte long. The Power Off Notification
1656 * Ready is bit 0.
1657 */
1658 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1659 card->ext_power.offset + 1, 1, data->reg_buf);
1660 if (err) {
1661 pr_warn("%s: error %d reading status reg of PM func\n",
1662 mmc_hostname(card->host), err);
1663 return err;
1664 }
1665
1666 *busy = !(data->reg_buf[0] & BIT(0));
1667 return 0;
1668 }
1669
sd_poweroff_notify(struct mmc_card * card)1670 static int sd_poweroff_notify(struct mmc_card *card)
1671 {
1672 struct sd_busy_data cb_data;
1673 u8 *reg_buf;
1674 int err;
1675
1676 reg_buf = kzalloc(512, GFP_KERNEL);
1677 if (!reg_buf)
1678 return -ENOMEM;
1679
1680 /*
1681 * Set the Power Off Notification bit in the power management settings
1682 * register at 2 bytes offset.
1683 */
1684 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1685 card->ext_power.offset + 2, BIT(0));
1686 if (err) {
1687 pr_warn("%s: error %d writing Power Off Notify bit\n",
1688 mmc_hostname(card->host), err);
1689 goto out;
1690 }
1691
1692 /* Find out when the command is completed. */
1693 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1694 MMC_BUSY_EXTR_SINGLE);
1695 if (err)
1696 goto out;
1697
1698 cb_data.card = card;
1699 cb_data.reg_buf = reg_buf;
1700 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1701 &sd_busy_poweroff_notify_cb, &cb_data);
1702
1703 out:
1704 kfree(reg_buf);
1705 return err;
1706 }
1707
_mmc_sd_suspend(struct mmc_host * host)1708 static int _mmc_sd_suspend(struct mmc_host *host)
1709 {
1710 struct mmc_card *card = host->card;
1711 int err = 0;
1712
1713 mmc_claim_host(host);
1714
1715 if (mmc_card_suspended(card))
1716 goto out;
1717
1718 if (sd_can_poweroff_notify(card))
1719 err = sd_poweroff_notify(card);
1720 else if (!mmc_host_is_spi(host))
1721 err = mmc_deselect_cards(host);
1722
1723 if (!err) {
1724 mmc_power_off(host);
1725 mmc_card_set_suspended(card);
1726 }
1727
1728 out:
1729 mmc_release_host(host);
1730 return err;
1731 }
1732
1733 /*
1734 * Callback for suspend
1735 */
mmc_sd_suspend(struct mmc_host * host)1736 static int mmc_sd_suspend(struct mmc_host *host)
1737 {
1738 int err;
1739
1740 err = _mmc_sd_suspend(host);
1741 if (!err) {
1742 pm_runtime_disable(&host->card->dev);
1743 pm_runtime_set_suspended(&host->card->dev);
1744 }
1745
1746 return err;
1747 }
1748
1749 /*
1750 * This function tries to determine if the same card is still present
1751 * and, if so, restore all state to it.
1752 */
_mmc_sd_resume(struct mmc_host * host)1753 static int _mmc_sd_resume(struct mmc_host *host)
1754 {
1755 int err = 0;
1756
1757 mmc_claim_host(host);
1758
1759 if (!mmc_card_suspended(host->card))
1760 goto out;
1761
1762 mmc_power_up(host, host->card->ocr);
1763 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1764 mmc_card_clr_suspended(host->card);
1765
1766 out:
1767 mmc_release_host(host);
1768 return err;
1769 }
1770
1771 /*
1772 * Callback for resume
1773 */
mmc_sd_resume(struct mmc_host * host)1774 static int mmc_sd_resume(struct mmc_host *host)
1775 {
1776 pm_runtime_enable(&host->card->dev);
1777 return 0;
1778 }
1779
1780 /*
1781 * Callback for runtime_suspend.
1782 */
mmc_sd_runtime_suspend(struct mmc_host * host)1783 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1784 {
1785 int err;
1786
1787 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1788 return 0;
1789
1790 err = _mmc_sd_suspend(host);
1791 if (err)
1792 pr_err("%s: error %d doing aggressive suspend\n",
1793 mmc_hostname(host), err);
1794
1795 return err;
1796 }
1797
1798 /*
1799 * Callback for runtime_resume.
1800 */
mmc_sd_runtime_resume(struct mmc_host * host)1801 static int mmc_sd_runtime_resume(struct mmc_host *host)
1802 {
1803 int err;
1804
1805 err = _mmc_sd_resume(host);
1806 if (err && err != -ENOMEDIUM)
1807 pr_err("%s: error %d doing runtime resume\n",
1808 mmc_hostname(host), err);
1809
1810 return 0;
1811 }
1812
mmc_sd_hw_reset(struct mmc_host * host)1813 static int mmc_sd_hw_reset(struct mmc_host *host)
1814 {
1815 mmc_power_cycle(host, host->card->ocr);
1816 return mmc_sd_init_card(host, host->card->ocr, host->card);
1817 }
1818
1819 static const struct mmc_bus_ops mmc_sd_ops = {
1820 .remove = mmc_sd_remove,
1821 .detect = mmc_sd_detect,
1822 .runtime_suspend = mmc_sd_runtime_suspend,
1823 .runtime_resume = mmc_sd_runtime_resume,
1824 .suspend = mmc_sd_suspend,
1825 .resume = mmc_sd_resume,
1826 .alive = mmc_sd_alive,
1827 .shutdown = mmc_sd_suspend,
1828 .hw_reset = mmc_sd_hw_reset,
1829 .cache_enabled = sd_cache_enabled,
1830 .flush_cache = sd_flush_cache,
1831 };
1832
1833 /*
1834 * Starting point for SD card init.
1835 */
mmc_attach_sd(struct mmc_host * host)1836 int mmc_attach_sd(struct mmc_host *host)
1837 {
1838 int err;
1839 u32 ocr, rocr;
1840
1841 WARN_ON(!host->claimed);
1842
1843 err = mmc_send_app_op_cond(host, 0, &ocr);
1844 if (err)
1845 return err;
1846
1847 mmc_attach_bus(host, &mmc_sd_ops);
1848 if (host->ocr_avail_sd)
1849 host->ocr_avail = host->ocr_avail_sd;
1850
1851 /*
1852 * We need to get OCR a different way for SPI.
1853 */
1854 if (mmc_host_is_spi(host)) {
1855 mmc_go_idle(host);
1856
1857 err = mmc_spi_read_ocr(host, 0, &ocr);
1858 if (err)
1859 goto err;
1860 }
1861
1862 /*
1863 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1864 * these bits as being in-valid and especially also bit7.
1865 */
1866 ocr &= ~0x7FFF;
1867
1868 rocr = mmc_select_voltage(host, ocr);
1869
1870 /*
1871 * Can we support the voltage(s) of the card(s)?
1872 */
1873 if (!rocr) {
1874 err = -EINVAL;
1875 goto err;
1876 }
1877
1878 /*
1879 * Detect and init the card.
1880 */
1881 err = mmc_sd_init_card(host, rocr, NULL);
1882 if (err)
1883 goto err;
1884
1885 mmc_release_host(host);
1886 err = mmc_add_card(host->card);
1887 if (err)
1888 goto remove_card;
1889
1890 mmc_claim_host(host);
1891 return 0;
1892
1893 remove_card:
1894 mmc_remove_card(host->card);
1895 host->card = NULL;
1896 mmc_claim_host(host);
1897 err:
1898 mmc_detach_bus(host);
1899
1900 pr_err("%s: error %d whilst initialising SD card\n",
1901 mmc_hostname(host), err);
1902
1903 return err;
1904 }
1905