1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/string.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/random.h>
17 #include <linux/sysfs.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
35
36 static const unsigned int tran_exp[] = {
37 10000, 100000, 1000000, 10000000,
38 0, 0, 0, 0
39 };
40
41 static const unsigned char tran_mant[] = {
42 0, 10, 12, 13, 15, 20, 25, 30,
43 35, 40, 45, 50, 55, 60, 70, 80,
44 };
45
46 static const unsigned int taac_exp[] = {
47 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
48 };
49
50 static const unsigned int taac_mant[] = {
51 0, 10, 12, 13, 15, 20, 25, 30,
52 35, 40, 45, 50, 55, 60, 70, 80,
53 };
54
55 /*
56 * Given the decoded CSD structure, decode the raw CID to our CID structure.
57 */
mmc_decode_cid(struct mmc_card * card)58 static int mmc_decode_cid(struct mmc_card *card)
59 {
60 u32 *resp = card->raw_cid;
61
62 /*
63 * Add the raw card ID (cid) data to the entropy pool. It doesn't
64 * matter that not all of it is unique, it's just bonus entropy.
65 */
66 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
67
68 /*
69 * The selection of the format here is based upon published
70 * specs from SanDisk and from what people have reported.
71 */
72 switch (card->csd.mmca_vsn) {
73 case 0: /* MMC v1.0 - v1.2 */
74 case 1: /* MMC v1.4 */
75 card->cid.manfid = unstuff_bits(resp, 104, 24);
76 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
77 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
78 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
79 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
80 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
81 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
82 card->cid.prod_name[6] = unstuff_bits(resp, 48, 8);
83 card->cid.hwrev = unstuff_bits(resp, 44, 4);
84 card->cid.fwrev = unstuff_bits(resp, 40, 4);
85 card->cid.serial = unstuff_bits(resp, 16, 24);
86 card->cid.month = unstuff_bits(resp, 12, 4);
87 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
88 break;
89
90 case 2: /* MMC v2.0 - v2.2 */
91 case 3: /* MMC v3.1 - v3.3 */
92 case 4: /* MMC v4 */
93 card->cid.manfid = unstuff_bits(resp, 120, 8);
94 card->cid.oemid = unstuff_bits(resp, 104, 16);
95 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
96 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
97 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
98 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
99 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
100 card->cid.prod_name[5] = unstuff_bits(resp, 56, 8);
101 card->cid.prv = unstuff_bits(resp, 48, 8);
102 card->cid.serial = unstuff_bits(resp, 16, 32);
103 card->cid.month = unstuff_bits(resp, 12, 4);
104 card->cid.year = unstuff_bits(resp, 8, 4) + 1997;
105 break;
106
107 default:
108 pr_err("%s: card has unknown MMCA version %d\n",
109 mmc_hostname(card->host), card->csd.mmca_vsn);
110 return -EINVAL;
111 }
112
113 /* some product names include trailing whitespace */
114 strim(card->cid.prod_name);
115
116 return 0;
117 }
118
mmc_set_erase_size(struct mmc_card * card)119 static void mmc_set_erase_size(struct mmc_card *card)
120 {
121 if (card->ext_csd.erase_group_def & 1)
122 card->erase_size = card->ext_csd.hc_erase_size;
123 else
124 card->erase_size = card->csd.erase_size;
125
126 mmc_init_erase(card);
127 }
128
129
mmc_set_wp_grp_size(struct mmc_card * card)130 static void mmc_set_wp_grp_size(struct mmc_card *card)
131 {
132 if (card->ext_csd.erase_group_def & 1)
133 card->wp_grp_size = card->ext_csd.hc_erase_size *
134 card->ext_csd.raw_hc_erase_gap_size;
135 else
136 card->wp_grp_size = card->csd.erase_size *
137 (card->csd.wp_grp_size + 1);
138 }
139
140 /*
141 * Given a 128-bit response, decode to our card CSD structure.
142 */
mmc_decode_csd(struct mmc_card * card)143 static int mmc_decode_csd(struct mmc_card *card)
144 {
145 struct mmc_csd *csd = &card->csd;
146 unsigned int e, m, a, b;
147 u32 *resp = card->raw_csd;
148
149 /*
150 * We only understand CSD structure v1.1 and v1.2.
151 * v1.2 has extra information in bits 15, 11 and 10.
152 * We also support eMMC v4.4 & v4.41.
153 */
154 csd->structure = unstuff_bits(resp, 126, 2);
155 if (csd->structure == 0) {
156 pr_err("%s: unrecognised CSD structure version %d\n",
157 mmc_hostname(card->host), csd->structure);
158 return -EINVAL;
159 }
160
161 csd->mmca_vsn = unstuff_bits(resp, 122, 4);
162 m = unstuff_bits(resp, 115, 4);
163 e = unstuff_bits(resp, 112, 3);
164 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
165 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
166
167 m = unstuff_bits(resp, 99, 4);
168 e = unstuff_bits(resp, 96, 3);
169 csd->max_dtr = tran_exp[e] * tran_mant[m];
170 csd->cmdclass = unstuff_bits(resp, 84, 12);
171
172 e = unstuff_bits(resp, 47, 3);
173 m = unstuff_bits(resp, 62, 12);
174 csd->capacity = (1 + m) << (e + 2);
175
176 csd->read_blkbits = unstuff_bits(resp, 80, 4);
177 csd->read_partial = unstuff_bits(resp, 79, 1);
178 csd->write_misalign = unstuff_bits(resp, 78, 1);
179 csd->read_misalign = unstuff_bits(resp, 77, 1);
180 csd->dsr_imp = unstuff_bits(resp, 76, 1);
181 csd->r2w_factor = unstuff_bits(resp, 26, 3);
182 csd->write_blkbits = unstuff_bits(resp, 22, 4);
183 csd->write_partial = unstuff_bits(resp, 21, 1);
184
185 if (csd->write_blkbits >= 9) {
186 a = unstuff_bits(resp, 42, 5);
187 b = unstuff_bits(resp, 37, 5);
188 csd->erase_size = (a + 1) * (b + 1);
189 csd->erase_size <<= csd->write_blkbits - 9;
190 csd->wp_grp_size = unstuff_bits(resp, 32, 5);
191 }
192
193 return 0;
194 }
195
mmc_select_card_type(struct mmc_card * card)196 static void mmc_select_card_type(struct mmc_card *card)
197 {
198 struct mmc_host *host = card->host;
199 u8 card_type = card->ext_csd.raw_card_type;
200 u32 caps = host->caps, caps2 = host->caps2;
201 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
202 unsigned int avail_type = 0;
203
204 if (caps & MMC_CAP_MMC_HIGHSPEED &&
205 card_type & EXT_CSD_CARD_TYPE_HS_26) {
206 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
207 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
208 }
209
210 if (caps & MMC_CAP_MMC_HIGHSPEED &&
211 card_type & EXT_CSD_CARD_TYPE_HS_52) {
212 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
213 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
214 }
215
216 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
217 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
218 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
219 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
220 }
221
222 if (caps & MMC_CAP_1_2V_DDR &&
223 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
224 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
225 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
226 }
227
228 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
229 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
230 hs200_max_dtr = MMC_HS200_MAX_DTR;
231 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
232 }
233
234 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
235 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
236 hs200_max_dtr = MMC_HS200_MAX_DTR;
237 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
238 }
239
240 if (caps2 & MMC_CAP2_HS400_1_8V &&
241 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
242 hs200_max_dtr = MMC_HS200_MAX_DTR;
243 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
244 }
245
246 if (caps2 & MMC_CAP2_HS400_1_2V &&
247 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
248 hs200_max_dtr = MMC_HS200_MAX_DTR;
249 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
250 }
251
252 if ((caps2 & MMC_CAP2_HS400_ES) &&
253 card->ext_csd.strobe_support &&
254 (avail_type & EXT_CSD_CARD_TYPE_HS400))
255 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
256
257 card->ext_csd.hs_max_dtr = hs_max_dtr;
258 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
259 card->mmc_avail_type = avail_type;
260 }
261
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)262 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
263 {
264 u8 hc_erase_grp_sz, hc_wp_grp_sz;
265
266 /*
267 * Disable these attributes by default
268 */
269 card->ext_csd.enhanced_area_offset = -EINVAL;
270 card->ext_csd.enhanced_area_size = -EINVAL;
271
272 /*
273 * Enhanced area feature support -- check whether the eMMC
274 * card has the Enhanced area enabled. If so, export enhanced
275 * area offset and size to user by adding sysfs interface.
276 */
277 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
278 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
279 if (card->ext_csd.partition_setting_completed) {
280 hc_erase_grp_sz =
281 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
282 hc_wp_grp_sz =
283 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
284
285 /*
286 * calculate the enhanced data area offset, in bytes
287 */
288 card->ext_csd.enhanced_area_offset =
289 (((unsigned long long)ext_csd[139]) << 24) +
290 (((unsigned long long)ext_csd[138]) << 16) +
291 (((unsigned long long)ext_csd[137]) << 8) +
292 (((unsigned long long)ext_csd[136]));
293 if (mmc_card_blockaddr(card))
294 card->ext_csd.enhanced_area_offset <<= 9;
295 /*
296 * calculate the enhanced data area size, in kilobytes
297 */
298 card->ext_csd.enhanced_area_size =
299 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
300 ext_csd[140];
301 card->ext_csd.enhanced_area_size *=
302 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
303 card->ext_csd.enhanced_area_size <<= 9;
304 } else {
305 pr_warn("%s: defines enhanced area without partition setting complete\n",
306 mmc_hostname(card->host));
307 }
308 }
309 }
310
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)311 static void mmc_part_add(struct mmc_card *card, u64 size,
312 unsigned int part_cfg, char *name, int idx, bool ro,
313 int area_type)
314 {
315 card->part[card->nr_parts].size = size;
316 card->part[card->nr_parts].part_cfg = part_cfg;
317 sprintf(card->part[card->nr_parts].name, name, idx);
318 card->part[card->nr_parts].force_ro = ro;
319 card->part[card->nr_parts].area_type = area_type;
320 card->nr_parts++;
321 }
322
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)323 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
324 {
325 int idx;
326 u8 hc_erase_grp_sz, hc_wp_grp_sz;
327 u64 part_size;
328
329 /*
330 * General purpose partition feature support --
331 * If ext_csd has the size of general purpose partitions,
332 * set size, part_cfg, partition name in mmc_part.
333 */
334 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
335 EXT_CSD_PART_SUPPORT_PART_EN) {
336 hc_erase_grp_sz =
337 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
338 hc_wp_grp_sz =
339 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
340
341 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
342 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
343 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
344 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
345 continue;
346 if (card->ext_csd.partition_setting_completed == 0) {
347 pr_warn("%s: has partition size defined without partition complete\n",
348 mmc_hostname(card->host));
349 break;
350 }
351 part_size =
352 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
353 << 16) +
354 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
355 << 8) +
356 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
357 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
358 mmc_part_add(card, part_size << 19,
359 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
360 "gp%d", idx, false,
361 MMC_BLK_DATA_AREA_GP);
362 }
363 }
364 }
365
366 /* Minimum partition switch timeout in milliseconds */
367 #define MMC_MIN_PART_SWITCH_TIME 300
368
369 /*
370 * Decode extended CSD.
371 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)372 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
373 {
374 int err = 0, idx;
375 u64 part_size;
376 struct device_node *np;
377 bool broken_hpi = false;
378
379 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
380 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
381 if (card->csd.structure == 3) {
382 if (card->ext_csd.raw_ext_csd_structure > 2) {
383 pr_err("%s: unrecognised EXT_CSD structure "
384 "version %d\n", mmc_hostname(card->host),
385 card->ext_csd.raw_ext_csd_structure);
386 err = -EINVAL;
387 goto out;
388 }
389 }
390
391 np = mmc_of_find_child_device(card->host, 0);
392 if (np && of_device_is_compatible(np, "mmc-card"))
393 broken_hpi = of_property_read_bool(np, "broken-hpi");
394 of_node_put(np);
395
396 /*
397 * The EXT_CSD format is meant to be forward compatible. As long
398 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
399 * are authorized, see JEDEC JESD84-B50 section B.8.
400 */
401 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
402
403 /* fixup device after ext_csd revision field is updated */
404 mmc_fixup_device(card, mmc_ext_csd_fixups);
405
406 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
407 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
408 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
409 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
410 if (card->ext_csd.rev >= 2) {
411 card->ext_csd.sectors =
412 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
413 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
414 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
415 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
416
417 /* Cards with density > 2GiB are sector addressed */
418 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
419 mmc_card_set_blockaddr(card);
420 }
421
422 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
423 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
424
425 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 card->ext_csd.raw_erase_timeout_mult =
427 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
428 card->ext_csd.raw_hc_erase_grp_size =
429 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
430 card->ext_csd.raw_boot_mult =
431 ext_csd[EXT_CSD_BOOT_MULT];
432 if (card->ext_csd.rev >= 3) {
433 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
434 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
435
436 /* EXT_CSD value is in units of 10ms, but we store in ms */
437 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
438
439 /* Sleep / awake timeout in 100ns units */
440 if (sa_shift > 0 && sa_shift <= 0x17)
441 card->ext_csd.sa_timeout =
442 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
443 card->ext_csd.erase_group_def =
444 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
445 card->ext_csd.hc_erase_timeout = 300 *
446 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
447 card->ext_csd.hc_erase_size =
448 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
449
450 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
451
452 /*
453 * There are two boot regions of equal size, defined in
454 * multiples of 128K.
455 */
456 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
457 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
458 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
459 mmc_part_add(card, part_size,
460 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
461 "boot%d", idx, true,
462 MMC_BLK_DATA_AREA_BOOT);
463 }
464 }
465 }
466
467 card->ext_csd.raw_hc_erase_gap_size =
468 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
469 card->ext_csd.raw_sec_trim_mult =
470 ext_csd[EXT_CSD_SEC_TRIM_MULT];
471 card->ext_csd.raw_sec_erase_mult =
472 ext_csd[EXT_CSD_SEC_ERASE_MULT];
473 card->ext_csd.raw_sec_feature_support =
474 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
475 card->ext_csd.raw_trim_mult =
476 ext_csd[EXT_CSD_TRIM_MULT];
477 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
478 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
479 if (card->ext_csd.rev >= 4) {
480 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
481 EXT_CSD_PART_SETTING_COMPLETED)
482 card->ext_csd.partition_setting_completed = 1;
483 else
484 card->ext_csd.partition_setting_completed = 0;
485
486 mmc_manage_enhanced_area(card, ext_csd);
487
488 mmc_manage_gp_partitions(card, ext_csd);
489
490 card->ext_csd.sec_trim_mult =
491 ext_csd[EXT_CSD_SEC_TRIM_MULT];
492 card->ext_csd.sec_erase_mult =
493 ext_csd[EXT_CSD_SEC_ERASE_MULT];
494 card->ext_csd.sec_feature_support =
495 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
496 card->ext_csd.trim_timeout = 300 *
497 ext_csd[EXT_CSD_TRIM_MULT];
498
499 /*
500 * Note that the call to mmc_part_add above defaults to read
501 * only. If this default assumption is changed, the call must
502 * take into account the value of boot_locked below.
503 */
504 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
505 card->ext_csd.boot_ro_lockable = true;
506
507 /* Save power class values */
508 card->ext_csd.raw_pwr_cl_52_195 =
509 ext_csd[EXT_CSD_PWR_CL_52_195];
510 card->ext_csd.raw_pwr_cl_26_195 =
511 ext_csd[EXT_CSD_PWR_CL_26_195];
512 card->ext_csd.raw_pwr_cl_52_360 =
513 ext_csd[EXT_CSD_PWR_CL_52_360];
514 card->ext_csd.raw_pwr_cl_26_360 =
515 ext_csd[EXT_CSD_PWR_CL_26_360];
516 card->ext_csd.raw_pwr_cl_200_195 =
517 ext_csd[EXT_CSD_PWR_CL_200_195];
518 card->ext_csd.raw_pwr_cl_200_360 =
519 ext_csd[EXT_CSD_PWR_CL_200_360];
520 card->ext_csd.raw_pwr_cl_ddr_52_195 =
521 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
522 card->ext_csd.raw_pwr_cl_ddr_52_360 =
523 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
524 card->ext_csd.raw_pwr_cl_ddr_200_360 =
525 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
526 }
527
528 if (card->ext_csd.rev >= 5) {
529 /* Adjust production date as per JEDEC JESD84-B451 */
530 if (card->cid.year < 2010)
531 card->cid.year += 16;
532
533 /* check whether the eMMC card supports BKOPS */
534 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
535 card->ext_csd.bkops = 1;
536 card->ext_csd.man_bkops_en =
537 (ext_csd[EXT_CSD_BKOPS_EN] &
538 EXT_CSD_MANUAL_BKOPS_MASK);
539 card->ext_csd.raw_bkops_status =
540 ext_csd[EXT_CSD_BKOPS_STATUS];
541 if (card->ext_csd.man_bkops_en)
542 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
543 mmc_hostname(card->host));
544 card->ext_csd.auto_bkops_en =
545 (ext_csd[EXT_CSD_BKOPS_EN] &
546 EXT_CSD_AUTO_BKOPS_MASK);
547 if (card->ext_csd.auto_bkops_en)
548 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
549 mmc_hostname(card->host));
550 }
551
552 /* check whether the eMMC card supports HPI */
553 if (!mmc_card_broken_hpi(card) &&
554 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
555 card->ext_csd.hpi = 1;
556 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
557 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
558 else
559 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
560 /*
561 * Indicate the maximum timeout to close
562 * a command interrupted by HPI
563 */
564 card->ext_csd.out_of_int_time =
565 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
566 }
567
568 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
569 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
570
571 /*
572 * RPMB regions are defined in multiples of 128K.
573 */
574 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
575 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
576 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
577 EXT_CSD_PART_CONFIG_ACC_RPMB,
578 "rpmb", 0, false,
579 MMC_BLK_DATA_AREA_RPMB);
580 }
581 }
582
583 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
584 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
585 card->erased_byte = 0xFF;
586 else
587 card->erased_byte = 0x0;
588
589 /* eMMC v4.5 or later */
590 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
591 if (card->ext_csd.rev >= 6) {
592 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
593
594 card->ext_csd.generic_cmd6_time = 10 *
595 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
596 card->ext_csd.power_off_longtime = 10 *
597 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
598
599 card->ext_csd.cache_size =
600 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
601 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
602 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
603 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
604
605 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
606 card->ext_csd.data_sector_size = 4096;
607 else
608 card->ext_csd.data_sector_size = 512;
609
610 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
611 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
612 card->ext_csd.data_tag_unit_size =
613 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
614 (card->ext_csd.data_sector_size);
615 } else {
616 card->ext_csd.data_tag_unit_size = 0;
617 }
618 } else {
619 card->ext_csd.data_sector_size = 512;
620 }
621
622 /*
623 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
624 * when accessing a specific field", so use it here if there is no
625 * PARTITION_SWITCH_TIME.
626 */
627 if (!card->ext_csd.part_time)
628 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
629 /* Some eMMC set the value too low so set a minimum */
630 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
631 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
632
633 /* eMMC v5 or later */
634 if (card->ext_csd.rev >= 7) {
635 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
636 MMC_FIRMWARE_LEN);
637 card->ext_csd.ffu_capable =
638 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
639 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
640
641 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
642 card->ext_csd.device_life_time_est_typ_a =
643 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
644 card->ext_csd.device_life_time_est_typ_b =
645 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
646 }
647
648 /* eMMC v5.1 or later */
649 if (card->ext_csd.rev >= 8) {
650 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
651 EXT_CSD_CMDQ_SUPPORTED;
652 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
653 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
654 /* Exclude inefficiently small queue depths */
655 if (card->ext_csd.cmdq_depth <= 2) {
656 card->ext_csd.cmdq_support = false;
657 card->ext_csd.cmdq_depth = 0;
658 }
659 if (card->ext_csd.cmdq_support) {
660 pr_debug("%s: Command Queue supported depth %u\n",
661 mmc_hostname(card->host),
662 card->ext_csd.cmdq_depth);
663 }
664 card->ext_csd.enhanced_rpmb_supported =
665 (card->ext_csd.rel_param &
666 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
667 }
668 out:
669 return err;
670 }
671
mmc_read_ext_csd(struct mmc_card * card)672 static int mmc_read_ext_csd(struct mmc_card *card)
673 {
674 u8 *ext_csd;
675 int err;
676
677 if (!mmc_can_ext_csd(card))
678 return 0;
679
680 err = mmc_get_ext_csd(card, &ext_csd);
681 if (err) {
682 /* If the host or the card can't do the switch,
683 * fail more gracefully. */
684 if ((err != -EINVAL)
685 && (err != -ENOSYS)
686 && (err != -EFAULT))
687 return err;
688
689 /*
690 * High capacity cards should have this "magic" size
691 * stored in their CSD.
692 */
693 if (card->csd.capacity == (4096 * 512)) {
694 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
695 mmc_hostname(card->host));
696 } else {
697 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
698 mmc_hostname(card->host));
699 err = 0;
700 }
701
702 return err;
703 }
704
705 err = mmc_decode_ext_csd(card, ext_csd);
706 kfree(ext_csd);
707 return err;
708 }
709
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)710 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
711 {
712 u8 *bw_ext_csd;
713 int err;
714
715 if (bus_width == MMC_BUS_WIDTH_1)
716 return 0;
717
718 err = mmc_get_ext_csd(card, &bw_ext_csd);
719 if (err)
720 return err;
721
722 /* only compare read only fields */
723 err = !((card->ext_csd.raw_partition_support ==
724 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
725 (card->ext_csd.raw_erased_mem_count ==
726 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
727 (card->ext_csd.rev ==
728 bw_ext_csd[EXT_CSD_REV]) &&
729 (card->ext_csd.raw_ext_csd_structure ==
730 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
731 (card->ext_csd.raw_card_type ==
732 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
733 (card->ext_csd.raw_s_a_timeout ==
734 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
735 (card->ext_csd.raw_hc_erase_gap_size ==
736 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
737 (card->ext_csd.raw_erase_timeout_mult ==
738 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
739 (card->ext_csd.raw_hc_erase_grp_size ==
740 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
741 (card->ext_csd.raw_sec_trim_mult ==
742 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
743 (card->ext_csd.raw_sec_erase_mult ==
744 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
745 (card->ext_csd.raw_sec_feature_support ==
746 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
747 (card->ext_csd.raw_trim_mult ==
748 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
749 (card->ext_csd.raw_sectors[0] ==
750 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
751 (card->ext_csd.raw_sectors[1] ==
752 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
753 (card->ext_csd.raw_sectors[2] ==
754 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
755 (card->ext_csd.raw_sectors[3] ==
756 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
757 (card->ext_csd.raw_pwr_cl_52_195 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
759 (card->ext_csd.raw_pwr_cl_26_195 ==
760 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
761 (card->ext_csd.raw_pwr_cl_52_360 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
763 (card->ext_csd.raw_pwr_cl_26_360 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
765 (card->ext_csd.raw_pwr_cl_200_195 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
767 (card->ext_csd.raw_pwr_cl_200_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
769 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
770 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
771 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
772 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
773 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
774 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
775
776 if (err)
777 err = -EINVAL;
778
779 kfree(bw_ext_csd);
780 return err;
781 }
782
783 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
784 card->raw_cid[2], card->raw_cid[3]);
785 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
786 card->raw_csd[2], card->raw_csd[3]);
787 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
788 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
789 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
790 MMC_DEV_ATTR(wp_grp_size, "%u\n", card->wp_grp_size << 9);
791 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
792 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
793 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
794 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
795 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
796 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
797 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
798 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
799 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
800 card->ext_csd.device_life_time_est_typ_a,
801 card->ext_csd.device_life_time_est_typ_b);
802 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
803 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
804 card->ext_csd.enhanced_area_offset);
805 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
806 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
807 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
808 card->ext_csd.enhanced_rpmb_supported);
809 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
810 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
811 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
812 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
813
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)814 static ssize_t mmc_fwrev_show(struct device *dev,
815 struct device_attribute *attr,
816 char *buf)
817 {
818 struct mmc_card *card = mmc_dev_to_card(dev);
819
820 if (card->ext_csd.rev < 7)
821 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
822 else
823 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
824 card->ext_csd.fwrev);
825 }
826
827 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
828
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)829 static ssize_t mmc_dsr_show(struct device *dev,
830 struct device_attribute *attr,
831 char *buf)
832 {
833 struct mmc_card *card = mmc_dev_to_card(dev);
834 struct mmc_host *host = card->host;
835
836 if (card->csd.dsr_imp && host->dsr_req)
837 return sysfs_emit(buf, "0x%x\n", host->dsr);
838 else
839 /* return default DSR value */
840 return sysfs_emit(buf, "0x%x\n", 0x404);
841 }
842
843 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
844
845 static struct attribute *mmc_std_attrs[] = {
846 &dev_attr_cid.attr,
847 &dev_attr_csd.attr,
848 &dev_attr_date.attr,
849 &dev_attr_erase_size.attr,
850 &dev_attr_preferred_erase_size.attr,
851 &dev_attr_wp_grp_size.attr,
852 &dev_attr_fwrev.attr,
853 &dev_attr_ffu_capable.attr,
854 &dev_attr_hwrev.attr,
855 &dev_attr_manfid.attr,
856 &dev_attr_name.attr,
857 &dev_attr_oemid.attr,
858 &dev_attr_prv.attr,
859 &dev_attr_rev.attr,
860 &dev_attr_pre_eol_info.attr,
861 &dev_attr_life_time.attr,
862 &dev_attr_serial.attr,
863 &dev_attr_enhanced_area_offset.attr,
864 &dev_attr_enhanced_area_size.attr,
865 &dev_attr_raw_rpmb_size_mult.attr,
866 &dev_attr_enhanced_rpmb_supported.attr,
867 &dev_attr_rel_sectors.attr,
868 &dev_attr_ocr.attr,
869 &dev_attr_rca.attr,
870 &dev_attr_dsr.attr,
871 &dev_attr_cmdq_en.attr,
872 NULL,
873 };
874 ATTRIBUTE_GROUPS(mmc_std);
875
876 static const struct device_type mmc_type = {
877 .groups = mmc_std_groups,
878 };
879
880 /*
881 * Select the PowerClass for the current bus width
882 * If power class is defined for 4/8 bit bus in the
883 * extended CSD register, select it by executing the
884 * mmc_switch command.
885 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)886 static int __mmc_select_powerclass(struct mmc_card *card,
887 unsigned int bus_width)
888 {
889 struct mmc_host *host = card->host;
890 struct mmc_ext_csd *ext_csd = &card->ext_csd;
891 unsigned int pwrclass_val = 0;
892 int err = 0;
893
894 switch (1 << host->ios.vdd) {
895 case MMC_VDD_165_195:
896 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
897 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
898 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
899 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
900 ext_csd->raw_pwr_cl_52_195 :
901 ext_csd->raw_pwr_cl_ddr_52_195;
902 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
903 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
904 break;
905 case MMC_VDD_27_28:
906 case MMC_VDD_28_29:
907 case MMC_VDD_29_30:
908 case MMC_VDD_30_31:
909 case MMC_VDD_31_32:
910 case MMC_VDD_32_33:
911 case MMC_VDD_33_34:
912 case MMC_VDD_34_35:
913 case MMC_VDD_35_36:
914 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
915 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
916 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
917 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
918 ext_csd->raw_pwr_cl_52_360 :
919 ext_csd->raw_pwr_cl_ddr_52_360;
920 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
921 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
922 ext_csd->raw_pwr_cl_ddr_200_360 :
923 ext_csd->raw_pwr_cl_200_360;
924 break;
925 default:
926 pr_warn("%s: Voltage range not supported for power class\n",
927 mmc_hostname(host));
928 return -EINVAL;
929 }
930
931 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
932 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
933 EXT_CSD_PWR_CL_8BIT_SHIFT;
934 else
935 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
936 EXT_CSD_PWR_CL_4BIT_SHIFT;
937
938 /* If the power class is different from the default value */
939 if (pwrclass_val > 0) {
940 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
941 EXT_CSD_POWER_CLASS,
942 pwrclass_val,
943 card->ext_csd.generic_cmd6_time);
944 }
945
946 return err;
947 }
948
mmc_select_powerclass(struct mmc_card * card)949 static int mmc_select_powerclass(struct mmc_card *card)
950 {
951 struct mmc_host *host = card->host;
952 u32 bus_width, ext_csd_bits;
953 int err, ddr;
954
955 /* Power class selection is supported for versions >= 4.0 */
956 if (!mmc_can_ext_csd(card))
957 return 0;
958
959 bus_width = host->ios.bus_width;
960 /* Power class values are defined only for 4/8 bit bus */
961 if (bus_width == MMC_BUS_WIDTH_1)
962 return 0;
963
964 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
965 if (ddr)
966 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
967 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
968 else
969 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
970 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
971
972 err = __mmc_select_powerclass(card, ext_csd_bits);
973 if (err)
974 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
975 mmc_hostname(host), 1 << bus_width, ddr);
976
977 return err;
978 }
979
980 /*
981 * Set the bus speed for the selected speed mode.
982 */
mmc_set_bus_speed(struct mmc_card * card)983 static void mmc_set_bus_speed(struct mmc_card *card)
984 {
985 unsigned int max_dtr = (unsigned int)-1;
986
987 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
988 max_dtr > card->ext_csd.hs200_max_dtr)
989 max_dtr = card->ext_csd.hs200_max_dtr;
990 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
991 max_dtr = card->ext_csd.hs_max_dtr;
992 else if (max_dtr > card->csd.max_dtr)
993 max_dtr = card->csd.max_dtr;
994
995 mmc_set_clock(card->host, max_dtr);
996 }
997
998 /*
999 * Select the bus width amoung 4-bit and 8-bit(SDR).
1000 * If the bus width is changed successfully, return the selected width value.
1001 * Zero is returned instead of error value if the wide width is not supported.
1002 */
mmc_select_bus_width(struct mmc_card * card)1003 static int mmc_select_bus_width(struct mmc_card *card)
1004 {
1005 static unsigned ext_csd_bits[] = {
1006 EXT_CSD_BUS_WIDTH_8,
1007 EXT_CSD_BUS_WIDTH_4,
1008 EXT_CSD_BUS_WIDTH_1,
1009 };
1010 static unsigned bus_widths[] = {
1011 MMC_BUS_WIDTH_8,
1012 MMC_BUS_WIDTH_4,
1013 MMC_BUS_WIDTH_1,
1014 };
1015 struct mmc_host *host = card->host;
1016 unsigned idx, bus_width = 0;
1017 int err = 0;
1018
1019 if (!mmc_can_ext_csd(card) ||
1020 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1021 return 0;
1022
1023 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1024
1025 /*
1026 * Unlike SD, MMC cards dont have a configuration register to notify
1027 * supported bus width. So bus test command should be run to identify
1028 * the supported bus width or compare the ext csd values of current
1029 * bus width and ext csd values of 1 bit mode read earlier.
1030 */
1031 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1032 /*
1033 * Host is capable of 8bit transfer, then switch
1034 * the device to work in 8bit transfer mode. If the
1035 * mmc switch command returns error then switch to
1036 * 4bit transfer mode. On success set the corresponding
1037 * bus width on the host.
1038 */
1039 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1040 EXT_CSD_BUS_WIDTH,
1041 ext_csd_bits[idx],
1042 card->ext_csd.generic_cmd6_time);
1043 if (err)
1044 continue;
1045
1046 bus_width = bus_widths[idx];
1047 mmc_set_bus_width(host, bus_width);
1048
1049 /*
1050 * If controller can't handle bus width test,
1051 * compare ext_csd previously read in 1 bit mode
1052 * against ext_csd at new bus width
1053 */
1054 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1055 err = mmc_compare_ext_csds(card, bus_width);
1056 else
1057 err = mmc_bus_test(card, bus_width);
1058
1059 if (!err) {
1060 err = bus_width;
1061 break;
1062 } else {
1063 pr_warn("%s: switch to bus width %d failed\n",
1064 mmc_hostname(host), 1 << bus_width);
1065 }
1066 }
1067
1068 return err;
1069 }
1070
1071 /*
1072 * Switch to the high-speed mode
1073 */
mmc_select_hs(struct mmc_card * card)1074 static int mmc_select_hs(struct mmc_card *card)
1075 {
1076 int err;
1077
1078 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1079 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1080 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1081 true, true, MMC_CMD_RETRIES);
1082 if (err)
1083 pr_warn("%s: switch to high-speed failed, err:%d\n",
1084 mmc_hostname(card->host), err);
1085
1086 return err;
1087 }
1088
1089 /*
1090 * Activate wide bus and DDR if supported.
1091 */
mmc_select_hs_ddr(struct mmc_card * card)1092 static int mmc_select_hs_ddr(struct mmc_card *card)
1093 {
1094 struct mmc_host *host = card->host;
1095 u32 bus_width, ext_csd_bits;
1096 int err = 0;
1097
1098 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1099 return 0;
1100
1101 bus_width = host->ios.bus_width;
1102 if (bus_width == MMC_BUS_WIDTH_1)
1103 return 0;
1104
1105 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1106 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1107
1108 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109 EXT_CSD_BUS_WIDTH,
1110 ext_csd_bits,
1111 card->ext_csd.generic_cmd6_time,
1112 MMC_TIMING_MMC_DDR52,
1113 true, true, MMC_CMD_RETRIES);
1114 if (err) {
1115 pr_err("%s: switch to bus width %d ddr failed\n",
1116 mmc_hostname(host), 1 << bus_width);
1117 return err;
1118 }
1119
1120 /*
1121 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1122 * signaling.
1123 *
1124 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1125 *
1126 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1127 * in the JEDEC spec for DDR.
1128 *
1129 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1130 * host controller can support this, like some of the SDHCI
1131 * controller which connect to an eMMC device. Some of these
1132 * host controller still needs to use 1.8v vccq for supporting
1133 * DDR mode.
1134 *
1135 * So the sequence will be:
1136 * if (host and device can both support 1.2v IO)
1137 * use 1.2v IO;
1138 * else if (host and device can both support 1.8v IO)
1139 * use 1.8v IO;
1140 * so if host and device can only support 3.3v IO, this is the
1141 * last choice.
1142 *
1143 * WARNING: eMMC rules are NOT the same as SD DDR
1144 */
1145 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1147 if (!err)
1148 return 0;
1149 }
1150
1151 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1152 host->caps & MMC_CAP_1_8V_DDR)
1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1154
1155 /* make sure vccq is 3.3v after switching disaster */
1156 if (err)
1157 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1158
1159 return err;
1160 }
1161
mmc_select_hs400(struct mmc_card * card)1162 static int mmc_select_hs400(struct mmc_card *card)
1163 {
1164 struct mmc_host *host = card->host;
1165 unsigned int max_dtr;
1166 int err = 0;
1167 u8 val;
1168
1169 /*
1170 * HS400 mode requires 8-bit bus width
1171 */
1172 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1173 host->ios.bus_width == MMC_BUS_WIDTH_8))
1174 return 0;
1175
1176 /* Switch card to HS mode */
1177 val = EXT_CSD_TIMING_HS;
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1179 EXT_CSD_HS_TIMING, val,
1180 card->ext_csd.generic_cmd6_time, 0,
1181 false, true, MMC_CMD_RETRIES);
1182 if (err) {
1183 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1184 mmc_hostname(host), err);
1185 return err;
1186 }
1187
1188 /* Prepare host to downgrade to HS timing */
1189 if (host->ops->hs400_downgrade)
1190 host->ops->hs400_downgrade(host);
1191
1192 /* Set host controller to HS timing */
1193 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1194
1195 /* Reduce frequency to HS frequency */
1196 max_dtr = card->ext_csd.hs_max_dtr;
1197 mmc_set_clock(host, max_dtr);
1198
1199 err = mmc_switch_status(card, true);
1200 if (err)
1201 goto out_err;
1202
1203 if (host->ops->hs400_prepare_ddr)
1204 host->ops->hs400_prepare_ddr(host);
1205
1206 /* Switch card to DDR */
1207 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1208 EXT_CSD_BUS_WIDTH,
1209 EXT_CSD_DDR_BUS_WIDTH_8,
1210 card->ext_csd.generic_cmd6_time);
1211 if (err) {
1212 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1213 mmc_hostname(host), err);
1214 return err;
1215 }
1216
1217 /* Switch card to HS400 */
1218 val = EXT_CSD_TIMING_HS400 |
1219 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1221 EXT_CSD_HS_TIMING, val,
1222 card->ext_csd.generic_cmd6_time, 0,
1223 false, true, MMC_CMD_RETRIES);
1224 if (err) {
1225 pr_err("%s: switch to hs400 failed, err:%d\n",
1226 mmc_hostname(host), err);
1227 return err;
1228 }
1229
1230 /* Set host controller to HS400 timing and frequency */
1231 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1232 mmc_set_bus_speed(card);
1233
1234 if (host->ops->execute_hs400_tuning) {
1235 mmc_retune_disable(host);
1236 err = host->ops->execute_hs400_tuning(host, card);
1237 mmc_retune_enable(host);
1238 if (err)
1239 goto out_err;
1240 }
1241
1242 if (host->ops->hs400_complete)
1243 host->ops->hs400_complete(host);
1244
1245 err = mmc_switch_status(card, true);
1246 if (err)
1247 goto out_err;
1248
1249 return 0;
1250
1251 out_err:
1252 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1253 __func__, err);
1254 return err;
1255 }
1256
mmc_hs200_to_hs400(struct mmc_card * card)1257 int mmc_hs200_to_hs400(struct mmc_card *card)
1258 {
1259 return mmc_select_hs400(card);
1260 }
1261
mmc_hs400_to_hs200(struct mmc_card * card)1262 int mmc_hs400_to_hs200(struct mmc_card *card)
1263 {
1264 struct mmc_host *host = card->host;
1265 unsigned int max_dtr;
1266 int err;
1267 u8 val;
1268
1269 /* Reduce frequency to HS */
1270 max_dtr = card->ext_csd.hs_max_dtr;
1271 mmc_set_clock(host, max_dtr);
1272
1273 /* Switch HS400 to HS DDR */
1274 val = EXT_CSD_TIMING_HS;
1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276 val, card->ext_csd.generic_cmd6_time, 0,
1277 false, true, MMC_CMD_RETRIES);
1278 if (err)
1279 goto out_err;
1280
1281 if (host->ops->hs400_downgrade)
1282 host->ops->hs400_downgrade(host);
1283
1284 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1285
1286 err = mmc_switch_status(card, true);
1287 if (err)
1288 goto out_err;
1289
1290 /* Switch HS DDR to HS */
1291 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1292 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1293 0, false, true, MMC_CMD_RETRIES);
1294 if (err)
1295 goto out_err;
1296
1297 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1298
1299 err = mmc_switch_status(card, true);
1300 if (err)
1301 goto out_err;
1302
1303 /* Switch HS to HS200 */
1304 val = EXT_CSD_TIMING_HS200 |
1305 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1306 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1307 val, card->ext_csd.generic_cmd6_time, 0,
1308 false, true, MMC_CMD_RETRIES);
1309 if (err)
1310 goto out_err;
1311
1312 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1313
1314 /*
1315 * For HS200, CRC errors are not a reliable way to know the switch
1316 * failed. If there really is a problem, we would expect tuning will
1317 * fail and the result ends up the same.
1318 */
1319 err = mmc_switch_status(card, false);
1320 if (err)
1321 goto out_err;
1322
1323 mmc_set_bus_speed(card);
1324
1325 /* Prepare tuning for HS400 mode. */
1326 if (host->ops->prepare_hs400_tuning)
1327 host->ops->prepare_hs400_tuning(host, &host->ios);
1328
1329 return 0;
1330
1331 out_err:
1332 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1333 __func__, err);
1334 return err;
1335 }
1336
mmc_select_driver_type(struct mmc_card * card)1337 static void mmc_select_driver_type(struct mmc_card *card)
1338 {
1339 int card_drv_type, drive_strength, drv_type = 0;
1340 int fixed_drv_type = card->host->fixed_drv_type;
1341
1342 card_drv_type = card->ext_csd.raw_driver_strength |
1343 mmc_driver_type_mask(0);
1344
1345 if (fixed_drv_type >= 0)
1346 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1347 ? fixed_drv_type : 0;
1348 else
1349 drive_strength = mmc_select_drive_strength(card,
1350 card->ext_csd.hs200_max_dtr,
1351 card_drv_type, &drv_type);
1352
1353 card->drive_strength = drive_strength;
1354
1355 if (drv_type)
1356 mmc_set_driver_type(card->host, drv_type);
1357 }
1358
mmc_select_hs400es(struct mmc_card * card)1359 static int mmc_select_hs400es(struct mmc_card *card)
1360 {
1361 struct mmc_host *host = card->host;
1362 int err = -EINVAL;
1363 u8 val;
1364
1365 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1366 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1367
1368 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1369 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1370
1371 /* If fails try again during next card power cycle */
1372 if (err)
1373 goto out_err;
1374
1375 err = mmc_select_bus_width(card);
1376 if (err != MMC_BUS_WIDTH_8) {
1377 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1378 mmc_hostname(host), err);
1379 err = err < 0 ? err : -ENOTSUPP;
1380 goto out_err;
1381 }
1382
1383 /* Switch card to HS mode */
1384 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1385 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1386 card->ext_csd.generic_cmd6_time, 0,
1387 false, true, MMC_CMD_RETRIES);
1388 if (err) {
1389 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1390 mmc_hostname(host), err);
1391 goto out_err;
1392 }
1393
1394 /*
1395 * Bump to HS timing and frequency. Some cards don't handle
1396 * SEND_STATUS reliably at the initial frequency.
1397 */
1398 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1399 mmc_set_bus_speed(card);
1400
1401 err = mmc_switch_status(card, true);
1402 if (err)
1403 goto out_err;
1404
1405 /* Switch card to DDR with strobe bit */
1406 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1407 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1408 EXT_CSD_BUS_WIDTH,
1409 val,
1410 card->ext_csd.generic_cmd6_time);
1411 if (err) {
1412 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1413 mmc_hostname(host), err);
1414 goto out_err;
1415 }
1416
1417 mmc_select_driver_type(card);
1418
1419 /* Switch card to HS400 */
1420 val = EXT_CSD_TIMING_HS400 |
1421 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1422 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1423 EXT_CSD_HS_TIMING, val,
1424 card->ext_csd.generic_cmd6_time, 0,
1425 false, true, MMC_CMD_RETRIES);
1426 if (err) {
1427 pr_err("%s: switch to hs400es failed, err:%d\n",
1428 mmc_hostname(host), err);
1429 goto out_err;
1430 }
1431
1432 /* Set host controller to HS400 timing and frequency */
1433 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1434
1435 /* Controller enable enhanced strobe function */
1436 host->ios.enhanced_strobe = true;
1437 if (host->ops->hs400_enhanced_strobe)
1438 host->ops->hs400_enhanced_strobe(host, &host->ios);
1439
1440 err = mmc_switch_status(card, true);
1441 if (err)
1442 goto out_err;
1443
1444 return 0;
1445
1446 out_err:
1447 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1448 __func__, err);
1449 return err;
1450 }
1451
1452 /*
1453 * For device supporting HS200 mode, the following sequence
1454 * should be done before executing the tuning process.
1455 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1456 * 2. switch to HS200 mode
1457 * 3. set the clock to > 52Mhz and <=200MHz
1458 */
mmc_select_hs200(struct mmc_card * card)1459 static int mmc_select_hs200(struct mmc_card *card)
1460 {
1461 struct mmc_host *host = card->host;
1462 unsigned int old_timing, old_signal_voltage, old_clock;
1463 int err = -EINVAL;
1464 u8 val;
1465
1466 old_signal_voltage = host->ios.signal_voltage;
1467 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1468 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1469
1470 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1471 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1472
1473 /* If fails try again during next card power cycle */
1474 if (err)
1475 return err;
1476
1477 mmc_select_driver_type(card);
1478
1479 /*
1480 * Set the bus width(4 or 8) with host's support and
1481 * switch to HS200 mode if bus width is set successfully.
1482 */
1483 err = mmc_select_bus_width(card);
1484 if (err > 0) {
1485 val = EXT_CSD_TIMING_HS200 |
1486 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1487 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1488 EXT_CSD_HS_TIMING, val,
1489 card->ext_csd.generic_cmd6_time, 0,
1490 false, true, MMC_CMD_RETRIES);
1491 if (err)
1492 goto err;
1493
1494 /*
1495 * Bump to HS timing and frequency. Some cards don't handle
1496 * SEND_STATUS reliably at the initial frequency.
1497 * NB: We can't move to full (HS200) speeds until after we've
1498 * successfully switched over.
1499 */
1500 old_timing = host->ios.timing;
1501 old_clock = host->ios.clock;
1502 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1503 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1504
1505 /*
1506 * For HS200, CRC errors are not a reliable way to know the
1507 * switch failed. If there really is a problem, we would expect
1508 * tuning will fail and the result ends up the same.
1509 */
1510 err = mmc_switch_status(card, false);
1511
1512 /*
1513 * mmc_select_timing() assumes timing has not changed if
1514 * it is a switch error.
1515 */
1516 if (err == -EBADMSG) {
1517 mmc_set_clock(host, old_clock);
1518 mmc_set_timing(host, old_timing);
1519 }
1520 }
1521 err:
1522 if (err) {
1523 /* fall back to the old signal voltage, if fails report error */
1524 if (mmc_set_signal_voltage(host, old_signal_voltage))
1525 err = -EIO;
1526
1527 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1528 __func__, err);
1529 }
1530 return err;
1531 }
1532
1533 /*
1534 * Activate High Speed, HS200 or HS400ES mode if supported.
1535 */
mmc_select_timing(struct mmc_card * card)1536 static int mmc_select_timing(struct mmc_card *card)
1537 {
1538 int err = 0;
1539
1540 if (!mmc_can_ext_csd(card))
1541 goto bus_speed;
1542
1543 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1544 err = mmc_select_hs400es(card);
1545 goto out;
1546 }
1547
1548 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1549 err = mmc_select_hs200(card);
1550 if (err == -EBADMSG)
1551 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1552 else
1553 goto out;
1554 }
1555
1556 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1557 err = mmc_select_hs(card);
1558
1559 out:
1560 if (err && err != -EBADMSG)
1561 return err;
1562
1563 bus_speed:
1564 /*
1565 * Set the bus speed to the selected bus timing.
1566 * If timing is not selected, backward compatible is the default.
1567 */
1568 mmc_set_bus_speed(card);
1569 return 0;
1570 }
1571
1572 /*
1573 * Execute tuning sequence to seek the proper bus operating
1574 * conditions for HS200 and HS400, which sends CMD21 to the device.
1575 */
mmc_hs200_tuning(struct mmc_card * card)1576 static int mmc_hs200_tuning(struct mmc_card *card)
1577 {
1578 struct mmc_host *host = card->host;
1579
1580 /*
1581 * Timing should be adjusted to the HS400 target
1582 * operation frequency for tuning process
1583 */
1584 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1585 host->ios.bus_width == MMC_BUS_WIDTH_8)
1586 if (host->ops->prepare_hs400_tuning)
1587 host->ops->prepare_hs400_tuning(host, &host->ios);
1588
1589 return mmc_execute_tuning(card);
1590 }
1591
1592 /*
1593 * Handle the detection and initialisation of a card.
1594 *
1595 * In the case of a resume, "oldcard" will contain the card
1596 * we're trying to reinitialise.
1597 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1598 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1599 struct mmc_card *oldcard)
1600 {
1601 struct mmc_card *card;
1602 int err;
1603 u32 cid[4];
1604 u32 rocr;
1605
1606 WARN_ON(!host->claimed);
1607
1608 /* Set correct bus mode for MMC before attempting init */
1609 if (!mmc_host_is_spi(host))
1610 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1611
1612 /*
1613 * Since we're changing the OCR value, we seem to
1614 * need to tell some cards to go back to the idle
1615 * state. We wait 1ms to give cards time to
1616 * respond.
1617 * mmc_go_idle is needed for eMMC that are asleep
1618 */
1619 mmc_go_idle(host);
1620
1621 /* The extra bit indicates that we support high capacity */
1622 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1623 if (err)
1624 goto err;
1625
1626 /*
1627 * For SPI, enable CRC as appropriate.
1628 */
1629 if (mmc_host_is_spi(host)) {
1630 err = mmc_spi_set_crc(host, use_spi_crc);
1631 if (err)
1632 goto err;
1633 }
1634
1635 /*
1636 * Fetch CID from card.
1637 */
1638 err = mmc_send_cid(host, cid);
1639 if (err)
1640 goto err;
1641
1642 if (oldcard) {
1643 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1644 pr_debug("%s: Perhaps the card was replaced\n",
1645 mmc_hostname(host));
1646 err = -ENOENT;
1647 goto err;
1648 }
1649
1650 card = oldcard;
1651 } else {
1652 /*
1653 * Allocate card structure.
1654 */
1655 card = mmc_alloc_card(host, &mmc_type);
1656 if (IS_ERR(card)) {
1657 err = PTR_ERR(card);
1658 goto err;
1659 }
1660
1661 card->ocr = ocr;
1662 card->type = MMC_TYPE_MMC;
1663 card->rca = 1;
1664 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1665 }
1666
1667 /*
1668 * Call the optional HC's init_card function to handle quirks.
1669 */
1670 if (host->ops->init_card)
1671 host->ops->init_card(host, card);
1672
1673 /*
1674 * For native busses: set card RCA and quit open drain mode.
1675 */
1676 if (!mmc_host_is_spi(host)) {
1677 err = mmc_set_relative_addr(card);
1678 if (err)
1679 goto free_card;
1680
1681 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1682 }
1683
1684 if (!oldcard) {
1685 /*
1686 * Fetch CSD from card.
1687 */
1688 err = mmc_send_csd(card, card->raw_csd);
1689 if (err)
1690 goto free_card;
1691
1692 err = mmc_decode_csd(card);
1693 if (err)
1694 goto free_card;
1695 err = mmc_decode_cid(card);
1696 if (err)
1697 goto free_card;
1698 }
1699
1700 /*
1701 * handling only for cards supporting DSR and hosts requesting
1702 * DSR configuration
1703 */
1704 if (card->csd.dsr_imp && host->dsr_req)
1705 mmc_set_dsr(host);
1706
1707 /*
1708 * Select card, as all following commands rely on that.
1709 */
1710 if (!mmc_host_is_spi(host)) {
1711 err = mmc_select_card(card);
1712 if (err)
1713 goto free_card;
1714 }
1715
1716 if (!oldcard) {
1717 /* Read extended CSD. */
1718 err = mmc_read_ext_csd(card);
1719 if (err)
1720 goto free_card;
1721
1722 /*
1723 * If doing byte addressing, check if required to do sector
1724 * addressing. Handle the case of <2GB cards needing sector
1725 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1726 * ocr register has bit 30 set for sector addressing.
1727 */
1728 if (rocr & BIT(30))
1729 mmc_card_set_blockaddr(card);
1730
1731 /* Erase size depends on CSD and Extended CSD */
1732 mmc_set_erase_size(card);
1733 }
1734
1735 /*
1736 * Reselect the card type since host caps could have been changed when
1737 * debugging even if the card is not new.
1738 */
1739 mmc_select_card_type(card);
1740
1741 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1742 if (card->ext_csd.rev >= 3) {
1743 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1744 EXT_CSD_ERASE_GROUP_DEF, 1,
1745 card->ext_csd.generic_cmd6_time);
1746
1747 if (err && err != -EBADMSG)
1748 goto free_card;
1749
1750 if (err) {
1751 /*
1752 * Just disable enhanced area off & sz
1753 * will try to enable ERASE_GROUP_DEF
1754 * during next time reinit
1755 */
1756 card->ext_csd.enhanced_area_offset = -EINVAL;
1757 card->ext_csd.enhanced_area_size = -EINVAL;
1758 } else {
1759 card->ext_csd.erase_group_def = 1;
1760 /*
1761 * enable ERASE_GRP_DEF successfully.
1762 * This will affect the erase size, so
1763 * here need to reset erase size
1764 */
1765 mmc_set_erase_size(card);
1766 }
1767 }
1768 mmc_set_wp_grp_size(card);
1769 /*
1770 * Ensure eMMC user default partition is enabled
1771 */
1772 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1773 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1774 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1775 card->ext_csd.part_config,
1776 card->ext_csd.part_time);
1777 if (err && err != -EBADMSG)
1778 goto free_card;
1779 }
1780
1781 /*
1782 * Enable power_off_notification byte in the ext_csd register
1783 */
1784 if (card->ext_csd.rev >= 6) {
1785 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1786 EXT_CSD_POWER_OFF_NOTIFICATION,
1787 EXT_CSD_POWER_ON,
1788 card->ext_csd.generic_cmd6_time);
1789 if (err && err != -EBADMSG)
1790 goto free_card;
1791
1792 /*
1793 * The err can be -EBADMSG or 0,
1794 * so check for success and update the flag
1795 */
1796 if (!err)
1797 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1798 }
1799
1800 /* set erase_arg */
1801 if (mmc_can_discard(card))
1802 card->erase_arg = MMC_DISCARD_ARG;
1803 else if (mmc_can_trim(card))
1804 card->erase_arg = MMC_TRIM_ARG;
1805 else
1806 card->erase_arg = MMC_ERASE_ARG;
1807
1808 /*
1809 * Select timing interface
1810 */
1811 err = mmc_select_timing(card);
1812 if (err)
1813 goto free_card;
1814
1815 if (mmc_card_hs200(card)) {
1816 host->doing_init_tune = 1;
1817
1818 err = mmc_hs200_tuning(card);
1819 if (!err)
1820 err = mmc_select_hs400(card);
1821
1822 host->doing_init_tune = 0;
1823
1824 if (err)
1825 goto free_card;
1826 } else if (mmc_card_hs400es(card)) {
1827 if (host->ops->execute_hs400_tuning) {
1828 err = host->ops->execute_hs400_tuning(host, card);
1829 if (err)
1830 goto free_card;
1831 }
1832 } else {
1833 /* Select the desired bus width optionally */
1834 err = mmc_select_bus_width(card);
1835 if (err > 0 && mmc_card_hs(card)) {
1836 err = mmc_select_hs_ddr(card);
1837 if (err)
1838 goto free_card;
1839 }
1840 }
1841
1842 /*
1843 * Choose the power class with selected bus interface
1844 */
1845 mmc_select_powerclass(card);
1846
1847 /*
1848 * Enable HPI feature (if supported)
1849 */
1850 if (card->ext_csd.hpi) {
1851 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1852 EXT_CSD_HPI_MGMT, 1,
1853 card->ext_csd.generic_cmd6_time);
1854 if (err && err != -EBADMSG)
1855 goto free_card;
1856 if (err) {
1857 pr_warn("%s: Enabling HPI failed\n",
1858 mmc_hostname(card->host));
1859 card->ext_csd.hpi_en = 0;
1860 } else {
1861 card->ext_csd.hpi_en = 1;
1862 }
1863 }
1864
1865 /*
1866 * If cache size is higher than 0, this indicates the existence of cache
1867 * and it can be turned on. Note that some eMMCs from Micron has been
1868 * reported to need ~800 ms timeout, while enabling the cache after
1869 * sudden power failure tests. Let's extend the timeout to a minimum of
1870 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1871 */
1872 if (card->ext_csd.cache_size > 0) {
1873 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1874
1875 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1876 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1877 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1878 if (err && err != -EBADMSG)
1879 goto free_card;
1880
1881 /*
1882 * Only if no error, cache is turned on successfully.
1883 */
1884 if (err) {
1885 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1886 mmc_hostname(card->host), err);
1887 card->ext_csd.cache_ctrl = 0;
1888 } else {
1889 card->ext_csd.cache_ctrl = 1;
1890 }
1891 }
1892
1893 /*
1894 * Enable Command Queue if supported. Note that Packed Commands cannot
1895 * be used with Command Queue.
1896 */
1897 card->ext_csd.cmdq_en = false;
1898 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1899 err = mmc_cmdq_enable(card);
1900 if (err && err != -EBADMSG)
1901 goto free_card;
1902 if (err) {
1903 pr_warn("%s: Enabling CMDQ failed\n",
1904 mmc_hostname(card->host));
1905 card->ext_csd.cmdq_support = false;
1906 card->ext_csd.cmdq_depth = 0;
1907 }
1908 }
1909 /*
1910 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1911 * disabled for a time, so a flag is needed to indicate to re-enable the
1912 * Command Queue.
1913 */
1914 card->reenable_cmdq = card->ext_csd.cmdq_en;
1915
1916 if (host->cqe_ops && !host->cqe_enabled) {
1917 err = host->cqe_ops->cqe_enable(host, card);
1918 if (!err) {
1919 host->cqe_enabled = true;
1920
1921 if (card->ext_csd.cmdq_en) {
1922 pr_info("%s: Command Queue Engine enabled\n",
1923 mmc_hostname(host));
1924 } else {
1925 host->hsq_enabled = true;
1926 pr_info("%s: Host Software Queue enabled\n",
1927 mmc_hostname(host));
1928 }
1929 }
1930 }
1931
1932 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1933 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1934 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1935 mmc_hostname(host));
1936 err = -EINVAL;
1937 goto free_card;
1938 }
1939
1940 if (!oldcard)
1941 host->card = card;
1942
1943 return 0;
1944
1945 free_card:
1946 if (!oldcard)
1947 mmc_remove_card(card);
1948 err:
1949 return err;
1950 }
1951
mmc_can_sleep(struct mmc_card * card)1952 static int mmc_can_sleep(struct mmc_card *card)
1953 {
1954 return card->ext_csd.rev >= 3;
1955 }
1956
mmc_sleep_busy_cb(void * cb_data,bool * busy)1957 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1958 {
1959 struct mmc_host *host = cb_data;
1960
1961 *busy = host->ops->card_busy(host);
1962 return 0;
1963 }
1964
mmc_sleep(struct mmc_host * host)1965 static int mmc_sleep(struct mmc_host *host)
1966 {
1967 struct mmc_command cmd = {};
1968 struct mmc_card *card = host->card;
1969 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1970 bool use_r1b_resp;
1971 int err;
1972
1973 /* Re-tuning can't be done once the card is deselected */
1974 mmc_retune_hold(host);
1975
1976 err = mmc_deselect_cards(host);
1977 if (err)
1978 goto out_release;
1979
1980 cmd.opcode = MMC_SLEEP_AWAKE;
1981 cmd.arg = card->rca << 16;
1982 cmd.arg |= 1 << 15;
1983 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1984
1985 err = mmc_wait_for_cmd(host, &cmd, 0);
1986 if (err)
1987 goto out_release;
1988
1989 /*
1990 * If the host does not wait while the card signals busy, then we can
1991 * try to poll, but only if the host supports HW polling, as the
1992 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1993 * to wait the sleep/awake timeout.
1994 */
1995 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1996 goto out_release;
1997
1998 if (!host->ops->card_busy) {
1999 mmc_delay(timeout_ms);
2000 goto out_release;
2001 }
2002
2003 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2004
2005 out_release:
2006 mmc_retune_release(host);
2007 return err;
2008 }
2009
mmc_can_poweroff_notify(const struct mmc_card * card)2010 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2011 {
2012 return card &&
2013 mmc_card_mmc(card) &&
2014 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2015 }
2016
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)2017 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2018 {
2019 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2020 int err;
2021
2022 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2023 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2024 timeout = card->ext_csd.power_off_longtime;
2025
2026 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2027 EXT_CSD_POWER_OFF_NOTIFICATION,
2028 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2029 if (err)
2030 pr_err("%s: Power Off Notification timed out, %u\n",
2031 mmc_hostname(card->host), timeout);
2032
2033 /* Disable the power off notification after the switch operation. */
2034 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2035
2036 return err;
2037 }
2038
2039 /*
2040 * Host is being removed. Free up the current card.
2041 */
mmc_remove(struct mmc_host * host)2042 static void mmc_remove(struct mmc_host *host)
2043 {
2044 mmc_remove_card(host->card);
2045 host->card = NULL;
2046 }
2047
2048 /*
2049 * Card detection - card is alive.
2050 */
mmc_alive(struct mmc_host * host)2051 static int mmc_alive(struct mmc_host *host)
2052 {
2053 return mmc_send_status(host->card, NULL);
2054 }
2055
2056 /*
2057 * Card detection callback from host.
2058 */
mmc_detect(struct mmc_host * host)2059 static void mmc_detect(struct mmc_host *host)
2060 {
2061 int err;
2062
2063 mmc_get_card(host->card, NULL);
2064
2065 /*
2066 * Just check if our card has been removed.
2067 */
2068 err = _mmc_detect_card_removed(host);
2069
2070 mmc_put_card(host->card, NULL);
2071
2072 if (err) {
2073 mmc_remove(host);
2074
2075 mmc_claim_host(host);
2076 mmc_detach_bus(host);
2077 mmc_power_off(host);
2078 mmc_release_host(host);
2079 }
2080 }
2081
_mmc_cache_enabled(struct mmc_host * host)2082 static bool _mmc_cache_enabled(struct mmc_host *host)
2083 {
2084 return host->card->ext_csd.cache_size > 0 &&
2085 host->card->ext_csd.cache_ctrl & 1;
2086 }
2087
2088 /*
2089 * Flush the internal cache of the eMMC to non-volatile storage.
2090 */
_mmc_flush_cache(struct mmc_host * host)2091 static int _mmc_flush_cache(struct mmc_host *host)
2092 {
2093 int err = 0;
2094
2095 if (mmc_card_broken_cache_flush(host->card) && !host->card->written_flag)
2096 return 0;
2097
2098 if (_mmc_cache_enabled(host)) {
2099 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2100 EXT_CSD_FLUSH_CACHE, 1,
2101 CACHE_FLUSH_TIMEOUT_MS);
2102 if (err)
2103 pr_err("%s: cache flush error %d\n", mmc_hostname(host), err);
2104 else
2105 host->card->written_flag = false;
2106 }
2107
2108 return err;
2109 }
2110
_mmc_suspend(struct mmc_host * host,bool is_suspend)2111 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2112 {
2113 int err = 0;
2114 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2115 EXT_CSD_POWER_OFF_LONG;
2116
2117 mmc_claim_host(host);
2118
2119 if (mmc_card_suspended(host->card))
2120 goto out;
2121
2122 err = _mmc_flush_cache(host);
2123 if (err)
2124 goto out;
2125
2126 if (mmc_can_poweroff_notify(host->card) &&
2127 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2128 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2129 err = mmc_poweroff_notify(host->card, notify_type);
2130 else if (mmc_can_sleep(host->card))
2131 err = mmc_sleep(host);
2132 else if (!mmc_host_is_spi(host))
2133 err = mmc_deselect_cards(host);
2134
2135 if (!err) {
2136 mmc_power_off(host);
2137 mmc_card_set_suspended(host->card);
2138 }
2139 out:
2140 mmc_release_host(host);
2141 return err;
2142 }
2143
2144 /*
2145 * Suspend callback
2146 */
mmc_suspend(struct mmc_host * host)2147 static int mmc_suspend(struct mmc_host *host)
2148 {
2149 int err;
2150
2151 err = _mmc_suspend(host, true);
2152 if (!err) {
2153 pm_runtime_disable(&host->card->dev);
2154 pm_runtime_set_suspended(&host->card->dev);
2155 }
2156
2157 return err;
2158 }
2159
2160 /*
2161 * This function tries to determine if the same card is still present
2162 * and, if so, restore all state to it.
2163 */
_mmc_resume(struct mmc_host * host)2164 static int _mmc_resume(struct mmc_host *host)
2165 {
2166 int err = 0;
2167
2168 mmc_claim_host(host);
2169
2170 if (!mmc_card_suspended(host->card))
2171 goto out;
2172
2173 mmc_power_up(host, host->card->ocr);
2174 err = mmc_init_card(host, host->card->ocr, host->card);
2175 mmc_card_clr_suspended(host->card);
2176
2177 out:
2178 mmc_release_host(host);
2179 return err;
2180 }
2181
2182 /*
2183 * Shutdown callback
2184 */
mmc_shutdown(struct mmc_host * host)2185 static int mmc_shutdown(struct mmc_host *host)
2186 {
2187 int err = 0;
2188
2189 /*
2190 * In a specific case for poweroff notify, we need to resume the card
2191 * before we can shutdown it properly.
2192 */
2193 if (mmc_can_poweroff_notify(host->card) &&
2194 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2195 err = _mmc_resume(host);
2196
2197 if (!err)
2198 err = _mmc_suspend(host, false);
2199
2200 return err;
2201 }
2202
2203 /*
2204 * Callback for resume.
2205 */
mmc_resume(struct mmc_host * host)2206 static int mmc_resume(struct mmc_host *host)
2207 {
2208 pm_runtime_enable(&host->card->dev);
2209 return 0;
2210 }
2211
2212 /*
2213 * Callback for runtime_suspend.
2214 */
mmc_runtime_suspend(struct mmc_host * host)2215 static int mmc_runtime_suspend(struct mmc_host *host)
2216 {
2217 int err;
2218
2219 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2220 return 0;
2221
2222 err = _mmc_suspend(host, true);
2223 if (err)
2224 pr_err("%s: error %d doing aggressive suspend\n",
2225 mmc_hostname(host), err);
2226
2227 return err;
2228 }
2229
2230 /*
2231 * Callback for runtime_resume.
2232 */
mmc_runtime_resume(struct mmc_host * host)2233 static int mmc_runtime_resume(struct mmc_host *host)
2234 {
2235 int err;
2236
2237 err = _mmc_resume(host);
2238 if (err && err != -ENOMEDIUM)
2239 pr_err("%s: error %d doing runtime resume\n",
2240 mmc_hostname(host), err);
2241
2242 return 0;
2243 }
2244
mmc_can_reset(struct mmc_card * card)2245 static int mmc_can_reset(struct mmc_card *card)
2246 {
2247 u8 rst_n_function;
2248
2249 rst_n_function = card->ext_csd.rst_n_function;
2250 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2251 return 0;
2252 return 1;
2253 }
2254
_mmc_hw_reset(struct mmc_host * host)2255 static int _mmc_hw_reset(struct mmc_host *host)
2256 {
2257 struct mmc_card *card = host->card;
2258
2259 /*
2260 * In the case of recovery, we can't expect flushing the cache to work
2261 * always, but we have a go and ignore errors.
2262 */
2263 _mmc_flush_cache(host);
2264
2265 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2266 mmc_can_reset(card)) {
2267 /* If the card accept RST_n signal, send it. */
2268 mmc_set_clock(host, host->f_init);
2269 host->ops->card_hw_reset(host);
2270 /* Set initial state and call mmc_set_ios */
2271 mmc_set_initial_state(host);
2272 } else {
2273 /* Do a brute force power cycle */
2274 mmc_power_cycle(host, card->ocr);
2275 mmc_pwrseq_reset(host);
2276 }
2277 return mmc_init_card(host, card->ocr, card);
2278 }
2279
2280 static const struct mmc_bus_ops mmc_ops = {
2281 .remove = mmc_remove,
2282 .detect = mmc_detect,
2283 .suspend = mmc_suspend,
2284 .resume = mmc_resume,
2285 .runtime_suspend = mmc_runtime_suspend,
2286 .runtime_resume = mmc_runtime_resume,
2287 .alive = mmc_alive,
2288 .shutdown = mmc_shutdown,
2289 .hw_reset = _mmc_hw_reset,
2290 .cache_enabled = _mmc_cache_enabled,
2291 .flush_cache = _mmc_flush_cache,
2292 };
2293
2294 /*
2295 * Starting point for MMC card init.
2296 */
mmc_attach_mmc(struct mmc_host * host)2297 int mmc_attach_mmc(struct mmc_host *host)
2298 {
2299 int err;
2300 u32 ocr, rocr;
2301
2302 WARN_ON(!host->claimed);
2303
2304 /* Set correct bus mode for MMC before attempting attach */
2305 if (!mmc_host_is_spi(host))
2306 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2307
2308 err = mmc_send_op_cond(host, 0, &ocr);
2309 if (err)
2310 return err;
2311
2312 mmc_attach_bus(host, &mmc_ops);
2313 if (host->ocr_avail_mmc)
2314 host->ocr_avail = host->ocr_avail_mmc;
2315
2316 /*
2317 * We need to get OCR a different way for SPI.
2318 */
2319 if (mmc_host_is_spi(host)) {
2320 err = mmc_spi_read_ocr(host, 1, &ocr);
2321 if (err)
2322 goto err;
2323 }
2324
2325 rocr = mmc_select_voltage(host, ocr);
2326
2327 /*
2328 * Can we support the voltage of the card?
2329 */
2330 if (!rocr) {
2331 err = -EINVAL;
2332 goto err;
2333 }
2334
2335 /*
2336 * Detect and init the card.
2337 */
2338 err = mmc_init_card(host, rocr, NULL);
2339 if (err)
2340 goto err;
2341
2342 mmc_release_host(host);
2343 err = mmc_add_card(host->card);
2344 if (err)
2345 goto remove_card;
2346
2347 mmc_claim_host(host);
2348 return 0;
2349
2350 remove_card:
2351 mmc_remove_card(host->card);
2352 mmc_claim_host(host);
2353 host->card = NULL;
2354 err:
2355 mmc_detach_bus(host);
2356
2357 pr_err("%s: error %d whilst initialising MMC card\n",
2358 mmc_hostname(host), err);
2359
2360 return err;
2361 }
2362