1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47 #define R5L_POOL_SIZE 4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50 "write-back"};
51 /*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 * - caching phase
56 * - writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
73 * - return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 * - calculate parity
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
80 */
81
82 struct r5l_log {
83 struct md_rdev *rdev;
84
85 u32 uuid_checksum;
86
87 sector_t device_size; /* log device size, round to
88 * BLOCK_SECTORS */
89 sector_t max_free_space; /* reclaim run if free space is at
90 * this size */
91
92 sector_t last_checkpoint; /* log tail. where recovery scan
93 * starts from */
94 u64 last_cp_seq; /* log tail sequence */
95
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
98
99 sector_t next_checkpoint;
100
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
110 * to the RAID */
111 struct list_head flushing_ios; /* io_units which are waiting for log
112 * cache flush */
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
115
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
117
118 struct kmem_cache *io_kc;
119 mempool_t io_pool;
120 struct bio_set bs;
121 mempool_t meta_pool;
122
123 struct md_thread __rcu *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * doesn't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
130 * state) */
131 wait_queue_head_t iounit_wait;
132
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
135
136 bool need_cache_flush;
137
138 /* for r5c_cache */
139 enum r5c_journal_mode r5c_journal_mode;
140
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
143
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
146
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
151
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183 /*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
r5c_tree_index(struct r5conf * conf,sector_t sect)195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 sector_t sect)
197 {
198 sector_div(sect, conf->chunk_sectors);
199 return sect;
200 }
201
202 /*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209 struct r5l_io_unit {
210 struct r5l_log *log;
211
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
214
215 struct bio *current_bio;/* current_bio accepting new data */
216
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
223
224 int state;
225 bool need_split_bio;
226 struct bio *split_bio;
227
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
232 /*
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
235 */
236 unsigned int io_deferred:1;
237
238 struct bio_list flush_barriers; /* size == 0 flush bios */
239 };
240
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248 };
249
r5c_is_writeback(struct r5l_log * log)250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255
r5l_ring_add(struct r5l_log * log,sector_t start,sector_t inc)256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258 start += inc;
259 if (start >= log->device_size)
260 start = start - log->device_size;
261 return start;
262 }
263
r5l_ring_distance(struct r5l_log * log,sector_t start,sector_t end)264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 sector_t end)
266 {
267 if (end >= start)
268 return end - start;
269 else
270 return end + log->device_size - start;
271 }
272
r5l_has_free_space(struct r5l_log * log,sector_t size)273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275 sector_t used_size;
276
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
278 log->log_start);
279
280 return log->device_size > used_size + size;
281 }
282
__r5l_set_io_unit_state(struct r5l_io_unit * io,enum r5l_io_unit_state state)283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
285 {
286 if (WARN_ON(io->state >= state))
287 return;
288 io->state = state;
289 }
290
291 static void
r5c_return_dev_pending_writes(struct r5conf * conf,struct r5dev * dev)292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294 struct bio *wbi, *wbi2;
295
296 wbi = dev->written;
297 dev->written = NULL;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
302 bio_endio(wbi);
303 wbi = wbi2;
304 }
305 }
306
r5c_handle_cached_data_endio(struct r5conf * conf,struct stripe_head * sh,int disks)307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
309 {
310 int i;
311
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 }
317 }
318 }
319
320 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
321
322 /* Check whether we should flush some stripes to free up stripe cache */
r5c_check_stripe_cache_usage(struct r5conf * conf)323 void r5c_check_stripe_cache_usage(struct r5conf *conf)
324 {
325 int total_cached;
326 struct r5l_log *log = READ_ONCE(conf->log);
327
328 if (!r5c_is_writeback(log))
329 return;
330
331 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
332 atomic_read(&conf->r5c_cached_full_stripes);
333
334 /*
335 * The following condition is true for either of the following:
336 * - stripe cache pressure high:
337 * total_cached > 3/4 min_nr_stripes ||
338 * empty_inactive_list_nr > 0
339 * - stripe cache pressure moderate:
340 * total_cached > 1/2 min_nr_stripes
341 */
342 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
343 atomic_read(&conf->empty_inactive_list_nr) > 0)
344 r5l_wake_reclaim(log, 0);
345 }
346
347 /*
348 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
349 * stripes in the cache
350 */
r5c_check_cached_full_stripe(struct r5conf * conf)351 void r5c_check_cached_full_stripe(struct r5conf *conf)
352 {
353 struct r5l_log *log = READ_ONCE(conf->log);
354
355 if (!r5c_is_writeback(log))
356 return;
357
358 /*
359 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
360 * or a full stripe (chunk size / 4k stripes).
361 */
362 if (atomic_read(&conf->r5c_cached_full_stripes) >=
363 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
364 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
365 r5l_wake_reclaim(log, 0);
366 }
367
368 /*
369 * Total log space (in sectors) needed to flush all data in cache
370 *
371 * To avoid deadlock due to log space, it is necessary to reserve log
372 * space to flush critical stripes (stripes that occupying log space near
373 * last_checkpoint). This function helps check how much log space is
374 * required to flush all cached stripes.
375 *
376 * To reduce log space requirements, two mechanisms are used to give cache
377 * flush higher priorities:
378 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
379 * stripes ALREADY in journal can be flushed w/o pending writes;
380 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
381 * can be delayed (r5l_add_no_space_stripe).
382 *
383 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
384 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
385 * pages of journal space. For stripes that has not passed 1, flushing it
386 * requires (conf->raid_disks + 1) pages of journal space. There are at
387 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
388 * required to flush all cached stripes (in pages) is:
389 *
390 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
391 * (group_cnt + 1) * (raid_disks + 1)
392 * or
393 * (stripe_in_journal_count) * (max_degraded + 1) +
394 * (group_cnt + 1) * (raid_disks - max_degraded)
395 */
r5c_log_required_to_flush_cache(struct r5conf * conf)396 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
397 {
398 struct r5l_log *log = READ_ONCE(conf->log);
399
400 if (!r5c_is_writeback(log))
401 return 0;
402
403 return BLOCK_SECTORS *
404 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
405 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
406 }
407
408 /*
409 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
410 *
411 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
412 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
413 * device is less than 2x of reclaim_required_space.
414 */
r5c_update_log_state(struct r5l_log * log)415 static inline void r5c_update_log_state(struct r5l_log *log)
416 {
417 struct r5conf *conf = log->rdev->mddev->private;
418 sector_t free_space;
419 sector_t reclaim_space;
420 bool wake_reclaim = false;
421
422 if (!r5c_is_writeback(log))
423 return;
424
425 free_space = r5l_ring_distance(log, log->log_start,
426 log->last_checkpoint);
427 reclaim_space = r5c_log_required_to_flush_cache(conf);
428 if (free_space < 2 * reclaim_space)
429 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
430 else {
431 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
432 wake_reclaim = true;
433 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434 }
435 if (free_space < 3 * reclaim_space)
436 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
437 else
438 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
439
440 if (wake_reclaim)
441 r5l_wake_reclaim(log, 0);
442 }
443
444 /*
445 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
446 * This function should only be called in write-back mode.
447 */
r5c_make_stripe_write_out(struct stripe_head * sh)448 void r5c_make_stripe_write_out(struct stripe_head *sh)
449 {
450 struct r5conf *conf = sh->raid_conf;
451 struct r5l_log *log = READ_ONCE(conf->log);
452
453 BUG_ON(!r5c_is_writeback(log));
454
455 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
456 clear_bit(STRIPE_R5C_CACHING, &sh->state);
457
458 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
459 atomic_inc(&conf->preread_active_stripes);
460 }
461
r5c_handle_data_cached(struct stripe_head * sh)462 static void r5c_handle_data_cached(struct stripe_head *sh)
463 {
464 int i;
465
466 for (i = sh->disks; i--; )
467 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
468 set_bit(R5_InJournal, &sh->dev[i].flags);
469 clear_bit(R5_LOCKED, &sh->dev[i].flags);
470 }
471 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
472 }
473
474 /*
475 * this journal write must contain full parity,
476 * it may also contain some data pages
477 */
r5c_handle_parity_cached(struct stripe_head * sh)478 static void r5c_handle_parity_cached(struct stripe_head *sh)
479 {
480 int i;
481
482 for (i = sh->disks; i--; )
483 if (test_bit(R5_InJournal, &sh->dev[i].flags))
484 set_bit(R5_Wantwrite, &sh->dev[i].flags);
485 }
486
487 /*
488 * Setting proper flags after writing (or flushing) data and/or parity to the
489 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
490 */
r5c_finish_cache_stripe(struct stripe_head * sh)491 static void r5c_finish_cache_stripe(struct stripe_head *sh)
492 {
493 struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
494
495 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
496 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
497 /*
498 * Set R5_InJournal for parity dev[pd_idx]. This means
499 * all data AND parity in the journal. For RAID 6, it is
500 * NOT necessary to set the flag for dev[qd_idx], as the
501 * two parities are written out together.
502 */
503 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
504 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
505 r5c_handle_data_cached(sh);
506 } else {
507 r5c_handle_parity_cached(sh);
508 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
509 }
510 }
511
r5l_io_run_stripes(struct r5l_io_unit * io)512 static void r5l_io_run_stripes(struct r5l_io_unit *io)
513 {
514 struct stripe_head *sh, *next;
515
516 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
517 list_del_init(&sh->log_list);
518
519 r5c_finish_cache_stripe(sh);
520
521 set_bit(STRIPE_HANDLE, &sh->state);
522 raid5_release_stripe(sh);
523 }
524 }
525
r5l_log_run_stripes(struct r5l_log * log)526 static void r5l_log_run_stripes(struct r5l_log *log)
527 {
528 struct r5l_io_unit *io, *next;
529
530 lockdep_assert_held(&log->io_list_lock);
531
532 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
533 /* don't change list order */
534 if (io->state < IO_UNIT_IO_END)
535 break;
536
537 list_move_tail(&io->log_sibling, &log->finished_ios);
538 r5l_io_run_stripes(io);
539 }
540 }
541
r5l_move_to_end_ios(struct r5l_log * log)542 static void r5l_move_to_end_ios(struct r5l_log *log)
543 {
544 struct r5l_io_unit *io, *next;
545
546 lockdep_assert_held(&log->io_list_lock);
547
548 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
549 /* don't change list order */
550 if (io->state < IO_UNIT_IO_END)
551 break;
552 list_move_tail(&io->log_sibling, &log->io_end_ios);
553 }
554 }
555
556 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
r5l_log_endio(struct bio * bio)557 static void r5l_log_endio(struct bio *bio)
558 {
559 struct r5l_io_unit *io = bio->bi_private;
560 struct r5l_io_unit *io_deferred;
561 struct r5l_log *log = io->log;
562 unsigned long flags;
563 bool has_null_flush;
564 bool has_flush_payload;
565
566 if (bio->bi_status)
567 md_error(log->rdev->mddev, log->rdev);
568
569 bio_put(bio);
570 mempool_free(io->meta_page, &log->meta_pool);
571
572 spin_lock_irqsave(&log->io_list_lock, flags);
573 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
574
575 /*
576 * if the io doesn't not have null_flush or flush payload,
577 * it is not safe to access it after releasing io_list_lock.
578 * Therefore, it is necessary to check the condition with
579 * the lock held.
580 */
581 has_null_flush = io->has_null_flush;
582 has_flush_payload = io->has_flush_payload;
583
584 if (log->need_cache_flush && !list_empty(&io->stripe_list))
585 r5l_move_to_end_ios(log);
586 else
587 r5l_log_run_stripes(log);
588 if (!list_empty(&log->running_ios)) {
589 /*
590 * FLUSH/FUA io_unit is deferred because of ordering, now we
591 * can dispatch it
592 */
593 io_deferred = list_first_entry(&log->running_ios,
594 struct r5l_io_unit, log_sibling);
595 if (io_deferred->io_deferred)
596 schedule_work(&log->deferred_io_work);
597 }
598
599 spin_unlock_irqrestore(&log->io_list_lock, flags);
600
601 if (log->need_cache_flush)
602 md_wakeup_thread(log->rdev->mddev->thread);
603
604 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
605 if (has_null_flush) {
606 struct bio *bi;
607
608 WARN_ON(bio_list_empty(&io->flush_barriers));
609 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
610 bio_endio(bi);
611 if (atomic_dec_and_test(&io->pending_stripe)) {
612 __r5l_stripe_write_finished(io);
613 return;
614 }
615 }
616 }
617 /* decrease pending_stripe for flush payload */
618 if (has_flush_payload)
619 if (atomic_dec_and_test(&io->pending_stripe))
620 __r5l_stripe_write_finished(io);
621 }
622
r5l_do_submit_io(struct r5l_log * log,struct r5l_io_unit * io)623 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
624 {
625 unsigned long flags;
626
627 spin_lock_irqsave(&log->io_list_lock, flags);
628 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
629 spin_unlock_irqrestore(&log->io_list_lock, flags);
630
631 /*
632 * In case of journal device failures, submit_bio will get error
633 * and calls endio, then active stripes will continue write
634 * process. Therefore, it is not necessary to check Faulty bit
635 * of journal device here.
636 *
637 * We can't check split_bio after current_bio is submitted. If
638 * io->split_bio is null, after current_bio is submitted, current_bio
639 * might already be completed and the io_unit is freed. We submit
640 * split_bio first to avoid the issue.
641 */
642 if (io->split_bio) {
643 if (io->has_flush)
644 io->split_bio->bi_opf |= REQ_PREFLUSH;
645 if (io->has_fua)
646 io->split_bio->bi_opf |= REQ_FUA;
647 submit_bio(io->split_bio);
648 }
649
650 if (io->has_flush)
651 io->current_bio->bi_opf |= REQ_PREFLUSH;
652 if (io->has_fua)
653 io->current_bio->bi_opf |= REQ_FUA;
654 submit_bio(io->current_bio);
655 }
656
657 /* deferred io_unit will be dispatched here */
r5l_submit_io_async(struct work_struct * work)658 static void r5l_submit_io_async(struct work_struct *work)
659 {
660 struct r5l_log *log = container_of(work, struct r5l_log,
661 deferred_io_work);
662 struct r5l_io_unit *io = NULL;
663 unsigned long flags;
664
665 spin_lock_irqsave(&log->io_list_lock, flags);
666 if (!list_empty(&log->running_ios)) {
667 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
668 log_sibling);
669 if (!io->io_deferred)
670 io = NULL;
671 else
672 io->io_deferred = 0;
673 }
674 spin_unlock_irqrestore(&log->io_list_lock, flags);
675 if (io)
676 r5l_do_submit_io(log, io);
677 }
678
r5c_disable_writeback_async(struct work_struct * work)679 static void r5c_disable_writeback_async(struct work_struct *work)
680 {
681 struct r5l_log *log = container_of(work, struct r5l_log,
682 disable_writeback_work);
683 struct mddev *mddev = log->rdev->mddev;
684 struct r5conf *conf = mddev->private;
685
686 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
687 return;
688 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
689 mdname(mddev));
690
691 /* wait superblock change before suspend */
692 wait_event(mddev->sb_wait,
693 !READ_ONCE(conf->log) ||
694 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
695
696 log = READ_ONCE(conf->log);
697 if (log) {
698 mddev_suspend(mddev, false);
699 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
700 mddev_resume(mddev);
701 }
702 }
703
r5l_submit_current_io(struct r5l_log * log)704 static void r5l_submit_current_io(struct r5l_log *log)
705 {
706 struct r5l_io_unit *io = log->current_io;
707 struct r5l_meta_block *block;
708 unsigned long flags;
709 u32 crc;
710 bool do_submit = true;
711
712 if (!io)
713 return;
714
715 block = page_address(io->meta_page);
716 block->meta_size = cpu_to_le32(io->meta_offset);
717 crc = crc32c(log->uuid_checksum, block, PAGE_SIZE);
718 block->checksum = cpu_to_le32(crc);
719
720 log->current_io = NULL;
721 spin_lock_irqsave(&log->io_list_lock, flags);
722 if (io->has_flush || io->has_fua) {
723 if (io != list_first_entry(&log->running_ios,
724 struct r5l_io_unit, log_sibling)) {
725 io->io_deferred = 1;
726 do_submit = false;
727 }
728 }
729 spin_unlock_irqrestore(&log->io_list_lock, flags);
730 if (do_submit)
731 r5l_do_submit_io(log, io);
732 }
733
r5l_bio_alloc(struct r5l_log * log)734 static struct bio *r5l_bio_alloc(struct r5l_log *log)
735 {
736 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
737 REQ_OP_WRITE, GFP_NOIO, &log->bs);
738
739 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
740
741 return bio;
742 }
743
r5_reserve_log_entry(struct r5l_log * log,struct r5l_io_unit * io)744 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
745 {
746 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
747
748 r5c_update_log_state(log);
749 /*
750 * If we filled up the log device start from the beginning again,
751 * which will require a new bio.
752 *
753 * Note: for this to work properly the log size needs to me a multiple
754 * of BLOCK_SECTORS.
755 */
756 if (log->log_start == 0)
757 io->need_split_bio = true;
758
759 io->log_end = log->log_start;
760 }
761
r5l_new_meta(struct r5l_log * log)762 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
763 {
764 struct r5l_io_unit *io;
765 struct r5l_meta_block *block;
766
767 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
768 if (!io)
769 return NULL;
770 memset(io, 0, sizeof(*io));
771
772 io->log = log;
773 INIT_LIST_HEAD(&io->log_sibling);
774 INIT_LIST_HEAD(&io->stripe_list);
775 bio_list_init(&io->flush_barriers);
776 io->state = IO_UNIT_RUNNING;
777
778 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
779 block = page_address(io->meta_page);
780 clear_page(block);
781 block->magic = cpu_to_le32(R5LOG_MAGIC);
782 block->version = R5LOG_VERSION;
783 block->seq = cpu_to_le64(log->seq);
784 block->position = cpu_to_le64(log->log_start);
785
786 io->log_start = log->log_start;
787 io->meta_offset = sizeof(struct r5l_meta_block);
788 io->seq = log->seq++;
789
790 io->current_bio = r5l_bio_alloc(log);
791 io->current_bio->bi_end_io = r5l_log_endio;
792 io->current_bio->bi_private = io;
793 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
794
795 r5_reserve_log_entry(log, io);
796
797 spin_lock_irq(&log->io_list_lock);
798 list_add_tail(&io->log_sibling, &log->running_ios);
799 spin_unlock_irq(&log->io_list_lock);
800
801 return io;
802 }
803
r5l_get_meta(struct r5l_log * log,unsigned int payload_size)804 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
805 {
806 if (log->current_io &&
807 log->current_io->meta_offset + payload_size > PAGE_SIZE)
808 r5l_submit_current_io(log);
809
810 if (!log->current_io) {
811 log->current_io = r5l_new_meta(log);
812 if (!log->current_io)
813 return -ENOMEM;
814 }
815
816 return 0;
817 }
818
r5l_append_payload_meta(struct r5l_log * log,u16 type,sector_t location,u32 checksum1,u32 checksum2,bool checksum2_valid)819 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
820 sector_t location,
821 u32 checksum1, u32 checksum2,
822 bool checksum2_valid)
823 {
824 struct r5l_io_unit *io = log->current_io;
825 struct r5l_payload_data_parity *payload;
826
827 payload = page_address(io->meta_page) + io->meta_offset;
828 payload->header.type = cpu_to_le16(type);
829 payload->header.flags = cpu_to_le16(0);
830 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
831 (PAGE_SHIFT - 9));
832 payload->location = cpu_to_le64(location);
833 payload->checksum[0] = cpu_to_le32(checksum1);
834 if (checksum2_valid)
835 payload->checksum[1] = cpu_to_le32(checksum2);
836
837 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
838 sizeof(__le32) * (1 + !!checksum2_valid);
839 }
840
r5l_append_payload_page(struct r5l_log * log,struct page * page)841 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
842 {
843 struct r5l_io_unit *io = log->current_io;
844
845 if (io->need_split_bio) {
846 BUG_ON(io->split_bio);
847 io->split_bio = io->current_bio;
848 io->current_bio = r5l_bio_alloc(log);
849 bio_chain(io->current_bio, io->split_bio);
850 io->need_split_bio = false;
851 }
852
853 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
854 BUG();
855
856 r5_reserve_log_entry(log, io);
857 }
858
r5l_append_flush_payload(struct r5l_log * log,sector_t sect)859 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
860 {
861 struct mddev *mddev = log->rdev->mddev;
862 struct r5conf *conf = mddev->private;
863 struct r5l_io_unit *io;
864 struct r5l_payload_flush *payload;
865 int meta_size;
866
867 /*
868 * payload_flush requires extra writes to the journal.
869 * To avoid handling the extra IO in quiesce, just skip
870 * flush_payload
871 */
872 if (conf->quiesce)
873 return;
874
875 mutex_lock(&log->io_mutex);
876 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
877
878 if (r5l_get_meta(log, meta_size)) {
879 mutex_unlock(&log->io_mutex);
880 return;
881 }
882
883 /* current implementation is one stripe per flush payload */
884 io = log->current_io;
885 payload = page_address(io->meta_page) + io->meta_offset;
886 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
887 payload->header.flags = cpu_to_le16(0);
888 payload->size = cpu_to_le32(sizeof(__le64));
889 payload->flush_stripes[0] = cpu_to_le64(sect);
890 io->meta_offset += meta_size;
891 /* multiple flush payloads count as one pending_stripe */
892 if (!io->has_flush_payload) {
893 io->has_flush_payload = 1;
894 atomic_inc(&io->pending_stripe);
895 }
896 mutex_unlock(&log->io_mutex);
897 }
898
r5l_log_stripe(struct r5l_log * log,struct stripe_head * sh,int data_pages,int parity_pages)899 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
900 int data_pages, int parity_pages)
901 {
902 int i;
903 int meta_size;
904 int ret;
905 struct r5l_io_unit *io;
906
907 meta_size =
908 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
909 * data_pages) +
910 sizeof(struct r5l_payload_data_parity) +
911 sizeof(__le32) * parity_pages;
912
913 ret = r5l_get_meta(log, meta_size);
914 if (ret)
915 return ret;
916
917 io = log->current_io;
918
919 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
920 io->has_flush = 1;
921
922 for (i = 0; i < sh->disks; i++) {
923 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
924 test_bit(R5_InJournal, &sh->dev[i].flags))
925 continue;
926 if (i == sh->pd_idx || i == sh->qd_idx)
927 continue;
928 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
929 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
930 io->has_fua = 1;
931 /*
932 * we need to flush journal to make sure recovery can
933 * reach the data with fua flag
934 */
935 io->has_flush = 1;
936 }
937 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
938 raid5_compute_blocknr(sh, i, 0),
939 sh->dev[i].log_checksum, 0, false);
940 r5l_append_payload_page(log, sh->dev[i].page);
941 }
942
943 if (parity_pages == 2) {
944 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
945 sh->sector, sh->dev[sh->pd_idx].log_checksum,
946 sh->dev[sh->qd_idx].log_checksum, true);
947 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
948 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
949 } else if (parity_pages == 1) {
950 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
951 sh->sector, sh->dev[sh->pd_idx].log_checksum,
952 0, false);
953 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
954 } else /* Just writing data, not parity, in caching phase */
955 BUG_ON(parity_pages != 0);
956
957 list_add_tail(&sh->log_list, &io->stripe_list);
958 atomic_inc(&io->pending_stripe);
959 sh->log_io = io;
960
961 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
962 return 0;
963
964 if (sh->log_start == MaxSector) {
965 BUG_ON(!list_empty(&sh->r5c));
966 sh->log_start = io->log_start;
967 spin_lock_irq(&log->stripe_in_journal_lock);
968 list_add_tail(&sh->r5c,
969 &log->stripe_in_journal_list);
970 spin_unlock_irq(&log->stripe_in_journal_lock);
971 atomic_inc(&log->stripe_in_journal_count);
972 }
973 return 0;
974 }
975
976 /* add stripe to no_space_stripes, and then wake up reclaim */
r5l_add_no_space_stripe(struct r5l_log * log,struct stripe_head * sh)977 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
978 struct stripe_head *sh)
979 {
980 spin_lock(&log->no_space_stripes_lock);
981 list_add_tail(&sh->log_list, &log->no_space_stripes);
982 spin_unlock(&log->no_space_stripes_lock);
983 }
984
985 /*
986 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
987 * data from log to raid disks), so we shouldn't wait for reclaim here
988 */
r5l_write_stripe(struct r5l_log * log,struct stripe_head * sh)989 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
990 {
991 struct r5conf *conf = sh->raid_conf;
992 int write_disks = 0;
993 int data_pages, parity_pages;
994 int reserve;
995 int i;
996 int ret = 0;
997 bool wake_reclaim = false;
998
999 if (!log)
1000 return -EAGAIN;
1001 /* Don't support stripe batch */
1002 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1003 test_bit(STRIPE_SYNCING, &sh->state)) {
1004 /* the stripe is written to log, we start writing it to raid */
1005 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1006 return -EAGAIN;
1007 }
1008
1009 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1010
1011 for (i = 0; i < sh->disks; i++) {
1012 void *addr;
1013
1014 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1015 test_bit(R5_InJournal, &sh->dev[i].flags))
1016 continue;
1017
1018 write_disks++;
1019 /* checksum is already calculated in last run */
1020 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1021 continue;
1022 addr = kmap_local_page(sh->dev[i].page);
1023 sh->dev[i].log_checksum = crc32c(log->uuid_checksum,
1024 addr, PAGE_SIZE);
1025 kunmap_local(addr);
1026 }
1027 parity_pages = 1 + !!(sh->qd_idx >= 0);
1028 data_pages = write_disks - parity_pages;
1029
1030 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1031 /*
1032 * The stripe must enter state machine again to finish the write, so
1033 * don't delay.
1034 */
1035 clear_bit(STRIPE_DELAYED, &sh->state);
1036 atomic_inc(&sh->count);
1037
1038 mutex_lock(&log->io_mutex);
1039 /* meta + data */
1040 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1041
1042 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1043 if (!r5l_has_free_space(log, reserve)) {
1044 r5l_add_no_space_stripe(log, sh);
1045 wake_reclaim = true;
1046 } else {
1047 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1048 if (ret) {
1049 spin_lock_irq(&log->io_list_lock);
1050 list_add_tail(&sh->log_list,
1051 &log->no_mem_stripes);
1052 spin_unlock_irq(&log->io_list_lock);
1053 }
1054 }
1055 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1056 /*
1057 * log space critical, do not process stripes that are
1058 * not in cache yet (sh->log_start == MaxSector).
1059 */
1060 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1061 sh->log_start == MaxSector) {
1062 r5l_add_no_space_stripe(log, sh);
1063 wake_reclaim = true;
1064 reserve = 0;
1065 } else if (!r5l_has_free_space(log, reserve)) {
1066 if (sh->log_start == log->last_checkpoint)
1067 BUG();
1068 else
1069 r5l_add_no_space_stripe(log, sh);
1070 } else {
1071 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1072 if (ret) {
1073 spin_lock_irq(&log->io_list_lock);
1074 list_add_tail(&sh->log_list,
1075 &log->no_mem_stripes);
1076 spin_unlock_irq(&log->io_list_lock);
1077 }
1078 }
1079 }
1080
1081 mutex_unlock(&log->io_mutex);
1082 if (wake_reclaim)
1083 r5l_wake_reclaim(log, reserve);
1084 return 0;
1085 }
1086
r5l_write_stripe_run(struct r5l_log * log)1087 void r5l_write_stripe_run(struct r5l_log *log)
1088 {
1089 if (!log)
1090 return;
1091 mutex_lock(&log->io_mutex);
1092 r5l_submit_current_io(log);
1093 mutex_unlock(&log->io_mutex);
1094 }
1095
r5l_handle_flush_request(struct r5l_log * log,struct bio * bio)1096 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1097 {
1098 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1099 /*
1100 * in write through (journal only)
1101 * we flush log disk cache first, then write stripe data to
1102 * raid disks. So if bio is finished, the log disk cache is
1103 * flushed already. The recovery guarantees we can recovery
1104 * the bio from log disk, so we don't need to flush again
1105 */
1106 if (bio->bi_iter.bi_size == 0) {
1107 bio_endio(bio);
1108 return 0;
1109 }
1110 bio->bi_opf &= ~REQ_PREFLUSH;
1111 } else {
1112 /* write back (with cache) */
1113 if (bio->bi_iter.bi_size == 0) {
1114 mutex_lock(&log->io_mutex);
1115 r5l_get_meta(log, 0);
1116 bio_list_add(&log->current_io->flush_barriers, bio);
1117 log->current_io->has_flush = 1;
1118 log->current_io->has_null_flush = 1;
1119 atomic_inc(&log->current_io->pending_stripe);
1120 r5l_submit_current_io(log);
1121 mutex_unlock(&log->io_mutex);
1122 return 0;
1123 }
1124 }
1125 return -EAGAIN;
1126 }
1127
1128 /* This will run after log space is reclaimed */
r5l_run_no_space_stripes(struct r5l_log * log)1129 static void r5l_run_no_space_stripes(struct r5l_log *log)
1130 {
1131 struct stripe_head *sh;
1132
1133 spin_lock(&log->no_space_stripes_lock);
1134 while (!list_empty(&log->no_space_stripes)) {
1135 sh = list_first_entry(&log->no_space_stripes,
1136 struct stripe_head, log_list);
1137 list_del_init(&sh->log_list);
1138 set_bit(STRIPE_HANDLE, &sh->state);
1139 raid5_release_stripe(sh);
1140 }
1141 spin_unlock(&log->no_space_stripes_lock);
1142 }
1143
1144 /*
1145 * calculate new last_checkpoint
1146 * for write through mode, returns log->next_checkpoint
1147 * for write back, returns log_start of first sh in stripe_in_journal_list
1148 */
r5c_calculate_new_cp(struct r5conf * conf)1149 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1150 {
1151 struct stripe_head *sh;
1152 struct r5l_log *log = READ_ONCE(conf->log);
1153 sector_t new_cp;
1154 unsigned long flags;
1155
1156 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1157 return log->next_checkpoint;
1158
1159 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1160 if (list_empty(&log->stripe_in_journal_list)) {
1161 /* all stripes flushed */
1162 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1163 return log->next_checkpoint;
1164 }
1165 sh = list_first_entry(&log->stripe_in_journal_list,
1166 struct stripe_head, r5c);
1167 new_cp = sh->log_start;
1168 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1169 return new_cp;
1170 }
1171
r5l_reclaimable_space(struct r5l_log * log)1172 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1173 {
1174 struct r5conf *conf = log->rdev->mddev->private;
1175
1176 return r5l_ring_distance(log, log->last_checkpoint,
1177 r5c_calculate_new_cp(conf));
1178 }
1179
r5l_run_no_mem_stripe(struct r5l_log * log)1180 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1181 {
1182 struct stripe_head *sh;
1183
1184 lockdep_assert_held(&log->io_list_lock);
1185
1186 if (!list_empty(&log->no_mem_stripes)) {
1187 sh = list_first_entry(&log->no_mem_stripes,
1188 struct stripe_head, log_list);
1189 list_del_init(&sh->log_list);
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 raid5_release_stripe(sh);
1192 }
1193 }
1194
r5l_complete_finished_ios(struct r5l_log * log)1195 static bool r5l_complete_finished_ios(struct r5l_log *log)
1196 {
1197 struct r5l_io_unit *io, *next;
1198 bool found = false;
1199
1200 lockdep_assert_held(&log->io_list_lock);
1201
1202 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1203 /* don't change list order */
1204 if (io->state < IO_UNIT_STRIPE_END)
1205 break;
1206
1207 log->next_checkpoint = io->log_start;
1208
1209 list_del(&io->log_sibling);
1210 mempool_free(io, &log->io_pool);
1211 r5l_run_no_mem_stripe(log);
1212
1213 found = true;
1214 }
1215
1216 return found;
1217 }
1218
__r5l_stripe_write_finished(struct r5l_io_unit * io)1219 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1220 {
1221 struct r5l_log *log = io->log;
1222 struct r5conf *conf = log->rdev->mddev->private;
1223 unsigned long flags;
1224
1225 spin_lock_irqsave(&log->io_list_lock, flags);
1226 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1227
1228 if (!r5l_complete_finished_ios(log)) {
1229 spin_unlock_irqrestore(&log->io_list_lock, flags);
1230 return;
1231 }
1232
1233 if (r5l_reclaimable_space(log) > log->max_free_space ||
1234 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1235 r5l_wake_reclaim(log, 0);
1236
1237 spin_unlock_irqrestore(&log->io_list_lock, flags);
1238 wake_up(&log->iounit_wait);
1239 }
1240
r5l_stripe_write_finished(struct stripe_head * sh)1241 void r5l_stripe_write_finished(struct stripe_head *sh)
1242 {
1243 struct r5l_io_unit *io;
1244
1245 io = sh->log_io;
1246 sh->log_io = NULL;
1247
1248 if (io && atomic_dec_and_test(&io->pending_stripe))
1249 __r5l_stripe_write_finished(io);
1250 }
1251
r5l_log_flush_endio(struct bio * bio)1252 static void r5l_log_flush_endio(struct bio *bio)
1253 {
1254 struct r5l_log *log = container_of(bio, struct r5l_log,
1255 flush_bio);
1256 unsigned long flags;
1257 struct r5l_io_unit *io;
1258
1259 if (bio->bi_status)
1260 md_error(log->rdev->mddev, log->rdev);
1261 bio_uninit(bio);
1262
1263 spin_lock_irqsave(&log->io_list_lock, flags);
1264 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1265 r5l_io_run_stripes(io);
1266 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1267 spin_unlock_irqrestore(&log->io_list_lock, flags);
1268 }
1269
1270 /*
1271 * Starting dispatch IO to raid.
1272 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1273 * broken meta in the middle of a log causes recovery can't find meta at the
1274 * head of log. If operations require meta at the head persistent in log, we
1275 * must make sure meta before it persistent in log too. A case is:
1276 *
1277 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1278 * data/parity must be persistent in log before we do the write to raid disks.
1279 *
1280 * The solution is we restrictly maintain io_unit list order. In this case, we
1281 * only write stripes of an io_unit to raid disks till the io_unit is the first
1282 * one whose data/parity is in log.
1283 */
r5l_flush_stripe_to_raid(struct r5l_log * log)1284 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1285 {
1286 bool do_flush;
1287
1288 if (!log || !log->need_cache_flush)
1289 return;
1290
1291 spin_lock_irq(&log->io_list_lock);
1292 /* flush bio is running */
1293 if (!list_empty(&log->flushing_ios)) {
1294 spin_unlock_irq(&log->io_list_lock);
1295 return;
1296 }
1297 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1298 do_flush = !list_empty(&log->flushing_ios);
1299 spin_unlock_irq(&log->io_list_lock);
1300
1301 if (!do_flush)
1302 return;
1303 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1304 REQ_OP_WRITE | REQ_PREFLUSH);
1305 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1306 submit_bio(&log->flush_bio);
1307 }
1308
1309 static void r5l_write_super(struct r5l_log *log, sector_t cp);
r5l_write_super_and_discard_space(struct r5l_log * log,sector_t end)1310 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1311 sector_t end)
1312 {
1313 struct block_device *bdev = log->rdev->bdev;
1314 struct mddev *mddev;
1315
1316 r5l_write_super(log, end);
1317
1318 if (!bdev_max_discard_sectors(bdev))
1319 return;
1320
1321 mddev = log->rdev->mddev;
1322 /*
1323 * Discard could zero data, so before discard we must make sure
1324 * superblock is updated to new log tail. Updating superblock (either
1325 * directly call md_update_sb() or depend on md thread) must hold
1326 * reconfig mutex. On the other hand, raid5_quiesce is called with
1327 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1328 * for all IO finish, hence waiting for reclaim thread, while reclaim
1329 * thread is calling this function and waiting for reconfig mutex. So
1330 * there is a deadlock. We workaround this issue with a trylock.
1331 * FIXME: we could miss discard if we can't take reconfig mutex
1332 */
1333 set_mask_bits(&mddev->sb_flags, 0,
1334 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1335 if (!mddev_trylock(mddev))
1336 return;
1337 md_update_sb(mddev, 1);
1338 mddev_unlock(mddev);
1339
1340 /* discard IO error really doesn't matter, ignore it */
1341 if (log->last_checkpoint < end) {
1342 blkdev_issue_discard(bdev,
1343 log->last_checkpoint + log->rdev->data_offset,
1344 end - log->last_checkpoint, GFP_NOIO);
1345 } else {
1346 blkdev_issue_discard(bdev,
1347 log->last_checkpoint + log->rdev->data_offset,
1348 log->device_size - log->last_checkpoint,
1349 GFP_NOIO);
1350 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1351 GFP_NOIO);
1352 }
1353 }
1354
1355 /*
1356 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1357 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1358 *
1359 * must hold conf->device_lock
1360 */
r5c_flush_stripe(struct r5conf * conf,struct stripe_head * sh)1361 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1362 {
1363 BUG_ON(list_empty(&sh->lru));
1364 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1365 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1366
1367 /*
1368 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1369 * raid5_release_stripe() while holding conf->device_lock
1370 */
1371 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1372 lockdep_assert_held(&conf->device_lock);
1373
1374 list_del_init(&sh->lru);
1375 atomic_inc(&sh->count);
1376
1377 set_bit(STRIPE_HANDLE, &sh->state);
1378 atomic_inc(&conf->active_stripes);
1379 r5c_make_stripe_write_out(sh);
1380
1381 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1382 atomic_inc(&conf->r5c_flushing_partial_stripes);
1383 else
1384 atomic_inc(&conf->r5c_flushing_full_stripes);
1385 raid5_release_stripe(sh);
1386 }
1387
1388 /*
1389 * if num == 0, flush all full stripes
1390 * if num > 0, flush all full stripes. If less than num full stripes are
1391 * flushed, flush some partial stripes until totally num stripes are
1392 * flushed or there is no more cached stripes.
1393 */
r5c_flush_cache(struct r5conf * conf,int num)1394 void r5c_flush_cache(struct r5conf *conf, int num)
1395 {
1396 int count;
1397 struct stripe_head *sh, *next;
1398
1399 lockdep_assert_held(&conf->device_lock);
1400 if (!READ_ONCE(conf->log))
1401 return;
1402
1403 count = 0;
1404 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1405 r5c_flush_stripe(conf, sh);
1406 count++;
1407 }
1408
1409 if (count >= num)
1410 return;
1411 list_for_each_entry_safe(sh, next,
1412 &conf->r5c_partial_stripe_list, lru) {
1413 r5c_flush_stripe(conf, sh);
1414 if (++count >= num)
1415 break;
1416 }
1417 }
1418
r5c_do_reclaim(struct r5conf * conf)1419 static void r5c_do_reclaim(struct r5conf *conf)
1420 {
1421 struct r5l_log *log = READ_ONCE(conf->log);
1422 struct stripe_head *sh;
1423 int count = 0;
1424 unsigned long flags;
1425 int total_cached;
1426 int stripes_to_flush;
1427 int flushing_partial, flushing_full;
1428
1429 if (!r5c_is_writeback(log))
1430 return;
1431
1432 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1433 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1434 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1435 atomic_read(&conf->r5c_cached_full_stripes) -
1436 flushing_full - flushing_partial;
1437
1438 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1439 atomic_read(&conf->empty_inactive_list_nr) > 0)
1440 /*
1441 * if stripe cache pressure high, flush all full stripes and
1442 * some partial stripes
1443 */
1444 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1445 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1446 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1447 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1448 /*
1449 * if stripe cache pressure moderate, or if there is many full
1450 * stripes,flush all full stripes
1451 */
1452 stripes_to_flush = 0;
1453 else
1454 /* no need to flush */
1455 stripes_to_flush = -1;
1456
1457 if (stripes_to_flush >= 0) {
1458 spin_lock_irqsave(&conf->device_lock, flags);
1459 r5c_flush_cache(conf, stripes_to_flush);
1460 spin_unlock_irqrestore(&conf->device_lock, flags);
1461 }
1462
1463 /* if log space is tight, flush stripes on stripe_in_journal_list */
1464 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1465 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1466 spin_lock(&conf->device_lock);
1467 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1468 /*
1469 * stripes on stripe_in_journal_list could be in any
1470 * state of the stripe_cache state machine. In this
1471 * case, we only want to flush stripe on
1472 * r5c_cached_full/partial_stripes. The following
1473 * condition makes sure the stripe is on one of the
1474 * two lists.
1475 */
1476 if (!list_empty(&sh->lru) &&
1477 !test_bit(STRIPE_HANDLE, &sh->state) &&
1478 atomic_read(&sh->count) == 0) {
1479 r5c_flush_stripe(conf, sh);
1480 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1481 break;
1482 }
1483 }
1484 spin_unlock(&conf->device_lock);
1485 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1486 }
1487
1488 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1489 r5l_run_no_space_stripes(log);
1490
1491 md_wakeup_thread(conf->mddev->thread);
1492 }
1493
r5l_do_reclaim(struct r5l_log * log)1494 static void r5l_do_reclaim(struct r5l_log *log)
1495 {
1496 struct r5conf *conf = log->rdev->mddev->private;
1497 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1498 sector_t reclaimable;
1499 sector_t next_checkpoint;
1500 bool write_super;
1501
1502 spin_lock_irq(&log->io_list_lock);
1503 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1504 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1505 /*
1506 * move proper io_unit to reclaim list. We should not change the order.
1507 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1508 * shouldn't reuse space of an unreclaimable io_unit
1509 */
1510 while (1) {
1511 reclaimable = r5l_reclaimable_space(log);
1512 if (reclaimable >= reclaim_target ||
1513 (list_empty(&log->running_ios) &&
1514 list_empty(&log->io_end_ios) &&
1515 list_empty(&log->flushing_ios) &&
1516 list_empty(&log->finished_ios)))
1517 break;
1518
1519 md_wakeup_thread(log->rdev->mddev->thread);
1520 wait_event_lock_irq(log->iounit_wait,
1521 r5l_reclaimable_space(log) > reclaimable,
1522 log->io_list_lock);
1523 }
1524
1525 next_checkpoint = r5c_calculate_new_cp(conf);
1526 spin_unlock_irq(&log->io_list_lock);
1527
1528 if (reclaimable == 0 || !write_super)
1529 return;
1530
1531 /*
1532 * write_super will flush cache of each raid disk. We must write super
1533 * here, because the log area might be reused soon and we don't want to
1534 * confuse recovery
1535 */
1536 r5l_write_super_and_discard_space(log, next_checkpoint);
1537
1538 mutex_lock(&log->io_mutex);
1539 log->last_checkpoint = next_checkpoint;
1540 r5c_update_log_state(log);
1541 mutex_unlock(&log->io_mutex);
1542
1543 r5l_run_no_space_stripes(log);
1544 }
1545
r5l_reclaim_thread(struct md_thread * thread)1546 static void r5l_reclaim_thread(struct md_thread *thread)
1547 {
1548 struct mddev *mddev = thread->mddev;
1549 struct r5conf *conf = mddev->private;
1550 struct r5l_log *log = READ_ONCE(conf->log);
1551
1552 if (!log)
1553 return;
1554 r5c_do_reclaim(conf);
1555 r5l_do_reclaim(log);
1556 }
1557
r5l_wake_reclaim(struct r5l_log * log,sector_t space)1558 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1559 {
1560 unsigned long target;
1561 unsigned long new = (unsigned long)space; /* overflow in theory */
1562
1563 if (!log)
1564 return;
1565
1566 target = READ_ONCE(log->reclaim_target);
1567 do {
1568 if (new < target)
1569 return;
1570 } while (!try_cmpxchg(&log->reclaim_target, &target, new));
1571 md_wakeup_thread(log->reclaim_thread);
1572 }
1573
r5l_quiesce(struct r5l_log * log,int quiesce)1574 void r5l_quiesce(struct r5l_log *log, int quiesce)
1575 {
1576 struct mddev *mddev = log->rdev->mddev;
1577 struct md_thread *thread = rcu_dereference_protected(
1578 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1579
1580 if (quiesce) {
1581 /* make sure r5l_write_super_and_discard_space exits */
1582 wake_up(&mddev->sb_wait);
1583 kthread_park(thread->tsk);
1584 r5l_wake_reclaim(log, MaxSector);
1585 r5l_do_reclaim(log);
1586 } else
1587 kthread_unpark(thread->tsk);
1588 }
1589
r5l_log_disk_error(struct r5conf * conf)1590 bool r5l_log_disk_error(struct r5conf *conf)
1591 {
1592 struct r5l_log *log = READ_ONCE(conf->log);
1593
1594 /* don't allow write if journal disk is missing */
1595 if (!log)
1596 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1597 else
1598 return test_bit(Faulty, &log->rdev->flags);
1599 }
1600
1601 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1602
1603 struct r5l_recovery_ctx {
1604 struct page *meta_page; /* current meta */
1605 sector_t meta_total_blocks; /* total size of current meta and data */
1606 sector_t pos; /* recovery position */
1607 u64 seq; /* recovery position seq */
1608 int data_parity_stripes; /* number of data_parity stripes */
1609 int data_only_stripes; /* number of data_only stripes */
1610 struct list_head cached_list;
1611
1612 /*
1613 * read ahead page pool (ra_pool)
1614 * in recovery, log is read sequentially. It is not efficient to
1615 * read every page with sync_page_io(). The read ahead page pool
1616 * reads multiple pages with one IO, so further log read can
1617 * just copy data from the pool.
1618 */
1619 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1620 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1621 sector_t pool_offset; /* offset of first page in the pool */
1622 int total_pages; /* total allocated pages */
1623 int valid_pages; /* pages with valid data */
1624 };
1625
r5l_recovery_allocate_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1626 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1627 struct r5l_recovery_ctx *ctx)
1628 {
1629 struct page *page;
1630
1631 ctx->valid_pages = 0;
1632 ctx->total_pages = 0;
1633 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1634 page = alloc_page(GFP_KERNEL);
1635
1636 if (!page)
1637 break;
1638 ctx->ra_pool[ctx->total_pages] = page;
1639 ctx->total_pages += 1;
1640 }
1641
1642 if (ctx->total_pages == 0)
1643 return -ENOMEM;
1644
1645 ctx->pool_offset = 0;
1646 return 0;
1647 }
1648
r5l_recovery_free_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1649 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1650 struct r5l_recovery_ctx *ctx)
1651 {
1652 int i;
1653
1654 for (i = 0; i < ctx->total_pages; ++i)
1655 put_page(ctx->ra_pool[i]);
1656 }
1657
1658 /*
1659 * fetch ctx->valid_pages pages from offset
1660 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1661 * However, if the offset is close to the end of the journal device,
1662 * ctx->valid_pages could be smaller than ctx->total_pages
1663 */
r5l_recovery_fetch_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx,sector_t offset)1664 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1665 struct r5l_recovery_ctx *ctx,
1666 sector_t offset)
1667 {
1668 struct bio bio;
1669 int ret;
1670
1671 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1672 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1673 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1674
1675 ctx->valid_pages = 0;
1676 ctx->pool_offset = offset;
1677
1678 while (ctx->valid_pages < ctx->total_pages) {
1679 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1680 0);
1681 ctx->valid_pages += 1;
1682
1683 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1684
1685 if (offset == 0) /* reached end of the device */
1686 break;
1687 }
1688
1689 ret = submit_bio_wait(&bio);
1690 bio_uninit(&bio);
1691 return ret;
1692 }
1693
1694 /*
1695 * try read a page from the read ahead page pool, if the page is not in the
1696 * pool, call r5l_recovery_fetch_ra_pool
1697 */
r5l_recovery_read_page(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t offset)1698 static int r5l_recovery_read_page(struct r5l_log *log,
1699 struct r5l_recovery_ctx *ctx,
1700 struct page *page,
1701 sector_t offset)
1702 {
1703 int ret;
1704
1705 if (offset < ctx->pool_offset ||
1706 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1707 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1708 if (ret)
1709 return ret;
1710 }
1711
1712 BUG_ON(offset < ctx->pool_offset ||
1713 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1714
1715 memcpy(page_address(page),
1716 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1717 BLOCK_SECTOR_SHIFT]),
1718 PAGE_SIZE);
1719 return 0;
1720 }
1721
r5l_recovery_read_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1722 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1723 struct r5l_recovery_ctx *ctx)
1724 {
1725 struct page *page = ctx->meta_page;
1726 struct r5l_meta_block *mb;
1727 u32 crc, stored_crc;
1728 int ret;
1729
1730 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1731 if (ret != 0)
1732 return ret;
1733
1734 mb = page_address(page);
1735 stored_crc = le32_to_cpu(mb->checksum);
1736 mb->checksum = 0;
1737
1738 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1739 le64_to_cpu(mb->seq) != ctx->seq ||
1740 mb->version != R5LOG_VERSION ||
1741 le64_to_cpu(mb->position) != ctx->pos)
1742 return -EINVAL;
1743
1744 crc = crc32c(log->uuid_checksum, mb, PAGE_SIZE);
1745 if (stored_crc != crc)
1746 return -EINVAL;
1747
1748 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1749 return -EINVAL;
1750
1751 ctx->meta_total_blocks = BLOCK_SECTORS;
1752
1753 return 0;
1754 }
1755
1756 static void
r5l_recovery_create_empty_meta_block(struct r5l_log * log,struct page * page,sector_t pos,u64 seq)1757 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1758 struct page *page,
1759 sector_t pos, u64 seq)
1760 {
1761 struct r5l_meta_block *mb;
1762
1763 mb = page_address(page);
1764 clear_page(mb);
1765 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1766 mb->version = R5LOG_VERSION;
1767 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1768 mb->seq = cpu_to_le64(seq);
1769 mb->position = cpu_to_le64(pos);
1770 }
1771
r5l_log_write_empty_meta_block(struct r5l_log * log,sector_t pos,u64 seq)1772 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1773 u64 seq)
1774 {
1775 struct page *page;
1776 struct r5l_meta_block *mb;
1777
1778 page = alloc_page(GFP_KERNEL);
1779 if (!page)
1780 return -ENOMEM;
1781 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1782 mb = page_address(page);
1783 mb->checksum = cpu_to_le32(crc32c(log->uuid_checksum, mb, PAGE_SIZE));
1784 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1785 REQ_SYNC | REQ_FUA, false)) {
1786 __free_page(page);
1787 return -EIO;
1788 }
1789 __free_page(page);
1790 return 0;
1791 }
1792
1793 /*
1794 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1795 * to mark valid (potentially not flushed) data in the journal.
1796 *
1797 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1798 * so there should not be any mismatch here.
1799 */
r5l_recovery_load_data(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1800 static void r5l_recovery_load_data(struct r5l_log *log,
1801 struct stripe_head *sh,
1802 struct r5l_recovery_ctx *ctx,
1803 struct r5l_payload_data_parity *payload,
1804 sector_t log_offset)
1805 {
1806 struct mddev *mddev = log->rdev->mddev;
1807 struct r5conf *conf = mddev->private;
1808 int dd_idx;
1809
1810 raid5_compute_sector(conf,
1811 le64_to_cpu(payload->location), 0,
1812 &dd_idx, sh);
1813 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1814 sh->dev[dd_idx].log_checksum =
1815 le32_to_cpu(payload->checksum[0]);
1816 ctx->meta_total_blocks += BLOCK_SECTORS;
1817
1818 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1819 set_bit(STRIPE_R5C_CACHING, &sh->state);
1820 }
1821
r5l_recovery_load_parity(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1822 static void r5l_recovery_load_parity(struct r5l_log *log,
1823 struct stripe_head *sh,
1824 struct r5l_recovery_ctx *ctx,
1825 struct r5l_payload_data_parity *payload,
1826 sector_t log_offset)
1827 {
1828 struct mddev *mddev = log->rdev->mddev;
1829 struct r5conf *conf = mddev->private;
1830
1831 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1832 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1833 sh->dev[sh->pd_idx].log_checksum =
1834 le32_to_cpu(payload->checksum[0]);
1835 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1836
1837 if (sh->qd_idx >= 0) {
1838 r5l_recovery_read_page(
1839 log, ctx, sh->dev[sh->qd_idx].page,
1840 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1841 sh->dev[sh->qd_idx].log_checksum =
1842 le32_to_cpu(payload->checksum[1]);
1843 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1844 }
1845 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1846 }
1847
r5l_recovery_reset_stripe(struct stripe_head * sh)1848 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1849 {
1850 int i;
1851
1852 sh->state = 0;
1853 sh->log_start = MaxSector;
1854 for (i = sh->disks; i--; )
1855 sh->dev[i].flags = 0;
1856 }
1857
1858 static void
r5l_recovery_replay_one_stripe(struct r5conf * conf,struct stripe_head * sh,struct r5l_recovery_ctx * ctx)1859 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1860 struct stripe_head *sh,
1861 struct r5l_recovery_ctx *ctx)
1862 {
1863 struct md_rdev *rdev, *rrdev;
1864 int disk_index;
1865 int data_count = 0;
1866
1867 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1868 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1869 continue;
1870 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1871 continue;
1872 data_count++;
1873 }
1874
1875 /*
1876 * stripes that only have parity must have been flushed
1877 * before the crash that we are now recovering from, so
1878 * there is nothing more to recovery.
1879 */
1880 if (data_count == 0)
1881 goto out;
1882
1883 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1884 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1885 continue;
1886
1887 /* in case device is broken */
1888 rdev = conf->disks[disk_index].rdev;
1889 if (rdev) {
1890 atomic_inc(&rdev->nr_pending);
1891 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1892 sh->dev[disk_index].page, REQ_OP_WRITE,
1893 false);
1894 rdev_dec_pending(rdev, rdev->mddev);
1895 }
1896 rrdev = conf->disks[disk_index].replacement;
1897 if (rrdev) {
1898 atomic_inc(&rrdev->nr_pending);
1899 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1900 sh->dev[disk_index].page, REQ_OP_WRITE,
1901 false);
1902 rdev_dec_pending(rrdev, rrdev->mddev);
1903 }
1904 }
1905 ctx->data_parity_stripes++;
1906 out:
1907 r5l_recovery_reset_stripe(sh);
1908 }
1909
1910 static struct stripe_head *
r5c_recovery_alloc_stripe(struct r5conf * conf,sector_t stripe_sect,int noblock)1911 r5c_recovery_alloc_stripe(
1912 struct r5conf *conf,
1913 sector_t stripe_sect,
1914 int noblock)
1915 {
1916 struct stripe_head *sh;
1917
1918 sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1919 noblock ? R5_GAS_NOBLOCK : 0);
1920 if (!sh)
1921 return NULL; /* no more stripe available */
1922
1923 r5l_recovery_reset_stripe(sh);
1924
1925 return sh;
1926 }
1927
1928 static struct stripe_head *
r5c_recovery_lookup_stripe(struct list_head * list,sector_t sect)1929 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1930 {
1931 struct stripe_head *sh;
1932
1933 list_for_each_entry(sh, list, lru)
1934 if (sh->sector == sect)
1935 return sh;
1936 return NULL;
1937 }
1938
1939 static void
r5c_recovery_drop_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1940 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1941 struct r5l_recovery_ctx *ctx)
1942 {
1943 struct stripe_head *sh, *next;
1944
1945 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1946 r5l_recovery_reset_stripe(sh);
1947 list_del_init(&sh->lru);
1948 raid5_release_stripe(sh);
1949 }
1950 }
1951
1952 static void
r5c_recovery_replay_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1953 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1954 struct r5l_recovery_ctx *ctx)
1955 {
1956 struct stripe_head *sh, *next;
1957
1958 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1959 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1960 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1961 list_del_init(&sh->lru);
1962 raid5_release_stripe(sh);
1963 }
1964 }
1965
1966 /* if matches return 0; otherwise return -EINVAL */
1967 static int
r5l_recovery_verify_data_checksum(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t log_offset,__le32 log_checksum)1968 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1969 struct r5l_recovery_ctx *ctx,
1970 struct page *page,
1971 sector_t log_offset, __le32 log_checksum)
1972 {
1973 void *addr;
1974 u32 checksum;
1975
1976 r5l_recovery_read_page(log, ctx, page, log_offset);
1977 addr = kmap_local_page(page);
1978 checksum = crc32c(log->uuid_checksum, addr, PAGE_SIZE);
1979 kunmap_local(addr);
1980 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1981 }
1982
1983 /*
1984 * before loading data to stripe cache, we need verify checksum for all data,
1985 * if there is mismatch for any data page, we drop all data in the mata block
1986 */
1987 static int
r5l_recovery_verify_data_checksum_for_mb(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1988 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1989 struct r5l_recovery_ctx *ctx)
1990 {
1991 struct mddev *mddev = log->rdev->mddev;
1992 struct r5conf *conf = mddev->private;
1993 struct r5l_meta_block *mb = page_address(ctx->meta_page);
1994 sector_t mb_offset = sizeof(struct r5l_meta_block);
1995 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1996 struct page *page;
1997 struct r5l_payload_data_parity *payload;
1998 struct r5l_payload_flush *payload_flush;
1999
2000 page = alloc_page(GFP_KERNEL);
2001 if (!page)
2002 return -ENOMEM;
2003
2004 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2005 payload = (void *)mb + mb_offset;
2006 payload_flush = (void *)mb + mb_offset;
2007
2008 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2009 if (r5l_recovery_verify_data_checksum(
2010 log, ctx, page, log_offset,
2011 payload->checksum[0]) < 0)
2012 goto mismatch;
2013 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2014 if (r5l_recovery_verify_data_checksum(
2015 log, ctx, page, log_offset,
2016 payload->checksum[0]) < 0)
2017 goto mismatch;
2018 if (conf->max_degraded == 2 && /* q for RAID 6 */
2019 r5l_recovery_verify_data_checksum(
2020 log, ctx, page,
2021 r5l_ring_add(log, log_offset,
2022 BLOCK_SECTORS),
2023 payload->checksum[1]) < 0)
2024 goto mismatch;
2025 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2026 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2027 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2028 goto mismatch;
2029
2030 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2031 mb_offset += sizeof(struct r5l_payload_flush) +
2032 le32_to_cpu(payload_flush->size);
2033 } else {
2034 /* DATA or PARITY payload */
2035 log_offset = r5l_ring_add(log, log_offset,
2036 le32_to_cpu(payload->size));
2037 mb_offset += sizeof(struct r5l_payload_data_parity) +
2038 sizeof(__le32) *
2039 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2040 }
2041
2042 }
2043
2044 put_page(page);
2045 return 0;
2046
2047 mismatch:
2048 put_page(page);
2049 return -EINVAL;
2050 }
2051
2052 /*
2053 * Analyze all data/parity pages in one meta block
2054 * Returns:
2055 * 0 for success
2056 * -EINVAL for unknown playload type
2057 * -EAGAIN for checksum mismatch of data page
2058 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2059 */
2060 static int
r5c_recovery_analyze_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct list_head * cached_stripe_list)2061 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2062 struct r5l_recovery_ctx *ctx,
2063 struct list_head *cached_stripe_list)
2064 {
2065 struct mddev *mddev = log->rdev->mddev;
2066 struct r5conf *conf = mddev->private;
2067 struct r5l_meta_block *mb;
2068 struct r5l_payload_data_parity *payload;
2069 struct r5l_payload_flush *payload_flush;
2070 int mb_offset;
2071 sector_t log_offset;
2072 sector_t stripe_sect;
2073 struct stripe_head *sh;
2074 int ret;
2075
2076 /*
2077 * for mismatch in data blocks, we will drop all data in this mb, but
2078 * we will still read next mb for other data with FLUSH flag, as
2079 * io_unit could finish out of order.
2080 */
2081 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2082 if (ret == -EINVAL)
2083 return -EAGAIN;
2084 else if (ret)
2085 return ret; /* -ENOMEM duo to alloc_page() failed */
2086
2087 mb = page_address(ctx->meta_page);
2088 mb_offset = sizeof(struct r5l_meta_block);
2089 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2090
2091 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2092 int dd;
2093
2094 payload = (void *)mb + mb_offset;
2095 payload_flush = (void *)mb + mb_offset;
2096
2097 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2098 int i, count;
2099
2100 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2101 for (i = 0; i < count; ++i) {
2102 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2103 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2104 stripe_sect);
2105 if (sh) {
2106 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2107 r5l_recovery_reset_stripe(sh);
2108 list_del_init(&sh->lru);
2109 raid5_release_stripe(sh);
2110 }
2111 }
2112
2113 mb_offset += sizeof(struct r5l_payload_flush) +
2114 le32_to_cpu(payload_flush->size);
2115 continue;
2116 }
2117
2118 /* DATA or PARITY payload */
2119 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2120 raid5_compute_sector(
2121 conf, le64_to_cpu(payload->location), 0, &dd,
2122 NULL)
2123 : le64_to_cpu(payload->location);
2124
2125 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2126 stripe_sect);
2127
2128 if (!sh) {
2129 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2130 /*
2131 * cannot get stripe from raid5_get_active_stripe
2132 * try replay some stripes
2133 */
2134 if (!sh) {
2135 r5c_recovery_replay_stripes(
2136 cached_stripe_list, ctx);
2137 sh = r5c_recovery_alloc_stripe(
2138 conf, stripe_sect, 1);
2139 }
2140 if (!sh) {
2141 int new_size = conf->min_nr_stripes * 2;
2142 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2143 mdname(mddev),
2144 new_size);
2145 ret = raid5_set_cache_size(mddev, new_size);
2146 if (conf->min_nr_stripes <= new_size / 2) {
2147 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2148 mdname(mddev),
2149 ret,
2150 new_size,
2151 conf->min_nr_stripes,
2152 conf->max_nr_stripes);
2153 return -ENOMEM;
2154 }
2155 sh = r5c_recovery_alloc_stripe(
2156 conf, stripe_sect, 0);
2157 }
2158 if (!sh) {
2159 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2160 mdname(mddev));
2161 return -ENOMEM;
2162 }
2163 list_add_tail(&sh->lru, cached_stripe_list);
2164 }
2165
2166 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2167 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2168 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2169 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2170 list_move_tail(&sh->lru, cached_stripe_list);
2171 }
2172 r5l_recovery_load_data(log, sh, ctx, payload,
2173 log_offset);
2174 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2175 r5l_recovery_load_parity(log, sh, ctx, payload,
2176 log_offset);
2177 else
2178 return -EINVAL;
2179
2180 log_offset = r5l_ring_add(log, log_offset,
2181 le32_to_cpu(payload->size));
2182
2183 mb_offset += sizeof(struct r5l_payload_data_parity) +
2184 sizeof(__le32) *
2185 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2186 }
2187
2188 return 0;
2189 }
2190
2191 /*
2192 * Load the stripe into cache. The stripe will be written out later by
2193 * the stripe cache state machine.
2194 */
r5c_recovery_load_one_stripe(struct r5l_log * log,struct stripe_head * sh)2195 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2196 struct stripe_head *sh)
2197 {
2198 struct r5dev *dev;
2199 int i;
2200
2201 for (i = sh->disks; i--; ) {
2202 dev = sh->dev + i;
2203 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2204 set_bit(R5_InJournal, &dev->flags);
2205 set_bit(R5_UPTODATE, &dev->flags);
2206 }
2207 }
2208 }
2209
2210 /*
2211 * Scan through the log for all to-be-flushed data
2212 *
2213 * For stripes with data and parity, namely Data-Parity stripe
2214 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2215 *
2216 * For stripes with only data, namely Data-Only stripe
2217 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2218 *
2219 * For a stripe, if we see data after parity, we should discard all previous
2220 * data and parity for this stripe, as these data are already flushed to
2221 * the array.
2222 *
2223 * At the end of the scan, we return the new journal_tail, which points to
2224 * first data-only stripe on the journal device, or next invalid meta block.
2225 */
r5c_recovery_flush_log(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2226 static int r5c_recovery_flush_log(struct r5l_log *log,
2227 struct r5l_recovery_ctx *ctx)
2228 {
2229 struct stripe_head *sh;
2230 int ret = 0;
2231
2232 /* scan through the log */
2233 while (1) {
2234 if (r5l_recovery_read_meta_block(log, ctx))
2235 break;
2236
2237 ret = r5c_recovery_analyze_meta_block(log, ctx,
2238 &ctx->cached_list);
2239 /*
2240 * -EAGAIN means mismatch in data block, in this case, we still
2241 * try scan the next metablock
2242 */
2243 if (ret && ret != -EAGAIN)
2244 break; /* ret == -EINVAL or -ENOMEM */
2245 ctx->seq++;
2246 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2247 }
2248
2249 if (ret == -ENOMEM) {
2250 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2251 return ret;
2252 }
2253
2254 /* replay data-parity stripes */
2255 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2256
2257 /* load data-only stripes to stripe cache */
2258 list_for_each_entry(sh, &ctx->cached_list, lru) {
2259 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2260 r5c_recovery_load_one_stripe(log, sh);
2261 ctx->data_only_stripes++;
2262 }
2263
2264 return 0;
2265 }
2266
2267 /*
2268 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2269 * log will start here. but we can't let superblock point to last valid
2270 * meta block. The log might looks like:
2271 * | meta 1| meta 2| meta 3|
2272 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2273 * superblock points to meta 1, we write a new valid meta 2n. if crash
2274 * happens again, new recovery will start from meta 1. Since meta 2n is
2275 * valid now, recovery will think meta 3 is valid, which is wrong.
2276 * The solution is we create a new meta in meta2 with its seq == meta
2277 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2278 * will not think meta 3 is a valid meta, because its seq doesn't match
2279 */
2280
2281 /*
2282 * Before recovery, the log looks like the following
2283 *
2284 * ---------------------------------------------
2285 * | valid log | invalid log |
2286 * ---------------------------------------------
2287 * ^
2288 * |- log->last_checkpoint
2289 * |- log->last_cp_seq
2290 *
2291 * Now we scan through the log until we see invalid entry
2292 *
2293 * ---------------------------------------------
2294 * | valid log | invalid log |
2295 * ---------------------------------------------
2296 * ^ ^
2297 * |- log->last_checkpoint |- ctx->pos
2298 * |- log->last_cp_seq |- ctx->seq
2299 *
2300 * From this point, we need to increase seq number by 10 to avoid
2301 * confusing next recovery.
2302 *
2303 * ---------------------------------------------
2304 * | valid log | invalid log |
2305 * ---------------------------------------------
2306 * ^ ^
2307 * |- log->last_checkpoint |- ctx->pos+1
2308 * |- log->last_cp_seq |- ctx->seq+10001
2309 *
2310 * However, it is not safe to start the state machine yet, because data only
2311 * parities are not yet secured in RAID. To save these data only parities, we
2312 * rewrite them from seq+11.
2313 *
2314 * -----------------------------------------------------------------
2315 * | valid log | data only stripes | invalid log |
2316 * -----------------------------------------------------------------
2317 * ^ ^
2318 * |- log->last_checkpoint |- ctx->pos+n
2319 * |- log->last_cp_seq |- ctx->seq+10000+n
2320 *
2321 * If failure happens again during this process, the recovery can safe start
2322 * again from log->last_checkpoint.
2323 *
2324 * Once data only stripes are rewritten to journal, we move log_tail
2325 *
2326 * -----------------------------------------------------------------
2327 * | old log | data only stripes | invalid log |
2328 * -----------------------------------------------------------------
2329 * ^ ^
2330 * |- log->last_checkpoint |- ctx->pos+n
2331 * |- log->last_cp_seq |- ctx->seq+10000+n
2332 *
2333 * Then we can safely start the state machine. If failure happens from this
2334 * point on, the recovery will start from new log->last_checkpoint.
2335 */
2336 static int
r5c_recovery_rewrite_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2337 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2338 struct r5l_recovery_ctx *ctx)
2339 {
2340 struct stripe_head *sh;
2341 struct mddev *mddev = log->rdev->mddev;
2342 struct page *page;
2343 sector_t next_checkpoint = MaxSector;
2344
2345 page = alloc_page(GFP_KERNEL);
2346 if (!page) {
2347 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2348 mdname(mddev));
2349 return -ENOMEM;
2350 }
2351
2352 WARN_ON(list_empty(&ctx->cached_list));
2353
2354 list_for_each_entry(sh, &ctx->cached_list, lru) {
2355 struct r5l_meta_block *mb;
2356 int i;
2357 int offset;
2358 sector_t write_pos;
2359
2360 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2361 r5l_recovery_create_empty_meta_block(log, page,
2362 ctx->pos, ctx->seq);
2363 mb = page_address(page);
2364 offset = le32_to_cpu(mb->meta_size);
2365 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2366
2367 for (i = sh->disks; i--; ) {
2368 struct r5dev *dev = &sh->dev[i];
2369 struct r5l_payload_data_parity *payload;
2370 void *addr;
2371
2372 if (test_bit(R5_InJournal, &dev->flags)) {
2373 payload = (void *)mb + offset;
2374 payload->header.type = cpu_to_le16(
2375 R5LOG_PAYLOAD_DATA);
2376 payload->size = cpu_to_le32(BLOCK_SECTORS);
2377 payload->location = cpu_to_le64(
2378 raid5_compute_blocknr(sh, i, 0));
2379 addr = kmap_local_page(dev->page);
2380 payload->checksum[0] = cpu_to_le32(
2381 crc32c(log->uuid_checksum, addr,
2382 PAGE_SIZE));
2383 kunmap_local(addr);
2384 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2385 dev->page, REQ_OP_WRITE, false);
2386 write_pos = r5l_ring_add(log, write_pos,
2387 BLOCK_SECTORS);
2388 offset += sizeof(__le32) +
2389 sizeof(struct r5l_payload_data_parity);
2390
2391 }
2392 }
2393 mb->meta_size = cpu_to_le32(offset);
2394 mb->checksum = cpu_to_le32(crc32c(log->uuid_checksum,
2395 mb, PAGE_SIZE));
2396 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2397 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2398 sh->log_start = ctx->pos;
2399 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2400 atomic_inc(&log->stripe_in_journal_count);
2401 ctx->pos = write_pos;
2402 ctx->seq += 1;
2403 next_checkpoint = sh->log_start;
2404 }
2405 log->next_checkpoint = next_checkpoint;
2406 __free_page(page);
2407 return 0;
2408 }
2409
r5c_recovery_flush_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2410 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2411 struct r5l_recovery_ctx *ctx)
2412 {
2413 struct mddev *mddev = log->rdev->mddev;
2414 struct r5conf *conf = mddev->private;
2415 struct stripe_head *sh, *next;
2416 bool cleared_pending = false;
2417
2418 if (ctx->data_only_stripes == 0)
2419 return;
2420
2421 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2422 cleared_pending = true;
2423 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2424 }
2425 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2426
2427 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2428 r5c_make_stripe_write_out(sh);
2429 set_bit(STRIPE_HANDLE, &sh->state);
2430 list_del_init(&sh->lru);
2431 raid5_release_stripe(sh);
2432 }
2433
2434 /* reuse conf->wait_for_quiescent in recovery */
2435 wait_event(conf->wait_for_quiescent,
2436 atomic_read(&conf->active_stripes) == 0);
2437
2438 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2439 if (cleared_pending)
2440 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2441 }
2442
r5l_recovery_log(struct r5l_log * log)2443 static int r5l_recovery_log(struct r5l_log *log)
2444 {
2445 struct mddev *mddev = log->rdev->mddev;
2446 struct r5l_recovery_ctx *ctx;
2447 int ret;
2448 sector_t pos;
2449
2450 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2451 if (!ctx)
2452 return -ENOMEM;
2453
2454 ctx->pos = log->last_checkpoint;
2455 ctx->seq = log->last_cp_seq;
2456 INIT_LIST_HEAD(&ctx->cached_list);
2457 ctx->meta_page = alloc_page(GFP_KERNEL);
2458
2459 if (!ctx->meta_page) {
2460 ret = -ENOMEM;
2461 goto meta_page;
2462 }
2463
2464 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2465 ret = -ENOMEM;
2466 goto ra_pool;
2467 }
2468
2469 ret = r5c_recovery_flush_log(log, ctx);
2470
2471 if (ret)
2472 goto error;
2473
2474 pos = ctx->pos;
2475 ctx->seq += 10000;
2476
2477 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2478 pr_info("md/raid:%s: starting from clean shutdown\n",
2479 mdname(mddev));
2480 else
2481 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2482 mdname(mddev), ctx->data_only_stripes,
2483 ctx->data_parity_stripes);
2484
2485 if (ctx->data_only_stripes == 0) {
2486 log->next_checkpoint = ctx->pos;
2487 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2488 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2489 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2490 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2491 mdname(mddev));
2492 ret = -EIO;
2493 goto error;
2494 }
2495
2496 log->log_start = ctx->pos;
2497 log->seq = ctx->seq;
2498 log->last_checkpoint = pos;
2499 r5l_write_super(log, pos);
2500
2501 r5c_recovery_flush_data_only_stripes(log, ctx);
2502 ret = 0;
2503 error:
2504 r5l_recovery_free_ra_pool(log, ctx);
2505 ra_pool:
2506 __free_page(ctx->meta_page);
2507 meta_page:
2508 kfree(ctx);
2509 return ret;
2510 }
2511
r5l_write_super(struct r5l_log * log,sector_t cp)2512 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2513 {
2514 struct mddev *mddev = log->rdev->mddev;
2515
2516 log->rdev->journal_tail = cp;
2517 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2518 }
2519
r5c_journal_mode_show(struct mddev * mddev,char * page)2520 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2521 {
2522 struct r5conf *conf;
2523 int ret;
2524
2525 ret = mddev_lock(mddev);
2526 if (ret)
2527 return ret;
2528
2529 conf = mddev->private;
2530 if (!conf || !conf->log)
2531 goto out_unlock;
2532
2533 switch (conf->log->r5c_journal_mode) {
2534 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2535 ret = snprintf(
2536 page, PAGE_SIZE, "[%s] %s\n",
2537 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2538 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2539 break;
2540 case R5C_JOURNAL_MODE_WRITE_BACK:
2541 ret = snprintf(
2542 page, PAGE_SIZE, "%s [%s]\n",
2543 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2544 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2545 break;
2546 default:
2547 ret = 0;
2548 }
2549
2550 out_unlock:
2551 mddev_unlock(mddev);
2552 return ret;
2553 }
2554
2555 /*
2556 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2557 *
2558 * @mode as defined in 'enum r5c_journal_mode'.
2559 *
2560 */
r5c_journal_mode_set(struct mddev * mddev,int mode)2561 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2562 {
2563 struct r5conf *conf;
2564
2565 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2566 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2567 return -EINVAL;
2568
2569 conf = mddev->private;
2570 if (!conf || !conf->log)
2571 return -ENODEV;
2572
2573 if (raid5_calc_degraded(conf) > 0 &&
2574 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2575 return -EINVAL;
2576
2577 conf->log->r5c_journal_mode = mode;
2578
2579 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2580 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2581 return 0;
2582 }
2583 EXPORT_SYMBOL(r5c_journal_mode_set);
2584
r5c_journal_mode_store(struct mddev * mddev,const char * page,size_t length)2585 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2586 const char *page, size_t length)
2587 {
2588 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2589 size_t len = length;
2590 int ret;
2591
2592 if (len < 2)
2593 return -EINVAL;
2594
2595 if (page[len - 1] == '\n')
2596 len--;
2597
2598 while (mode--)
2599 if (strlen(r5c_journal_mode_str[mode]) == len &&
2600 !strncmp(page, r5c_journal_mode_str[mode], len))
2601 break;
2602 ret = mddev_suspend_and_lock(mddev);
2603 if (ret)
2604 return ret;
2605 ret = r5c_journal_mode_set(mddev, mode);
2606 mddev_unlock_and_resume(mddev);
2607 return ret ?: length;
2608 }
2609
2610 struct md_sysfs_entry
2611 r5c_journal_mode = __ATTR(journal_mode, 0644,
2612 r5c_journal_mode_show, r5c_journal_mode_store);
2613
2614 /*
2615 * Try handle write operation in caching phase. This function should only
2616 * be called in write-back mode.
2617 *
2618 * If all outstanding writes can be handled in caching phase, returns 0
2619 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2620 * and returns -EAGAIN
2621 */
r5c_try_caching_write(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)2622 int r5c_try_caching_write(struct r5conf *conf,
2623 struct stripe_head *sh,
2624 struct stripe_head_state *s,
2625 int disks)
2626 {
2627 struct r5l_log *log = READ_ONCE(conf->log);
2628 int i;
2629 struct r5dev *dev;
2630 int to_cache = 0;
2631 void __rcu **pslot;
2632 sector_t tree_index;
2633 int ret;
2634 uintptr_t refcount;
2635
2636 BUG_ON(!r5c_is_writeback(log));
2637
2638 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2639 /*
2640 * There are two different scenarios here:
2641 * 1. The stripe has some data cached, and it is sent to
2642 * write-out phase for reclaim
2643 * 2. The stripe is clean, and this is the first write
2644 *
2645 * For 1, return -EAGAIN, so we continue with
2646 * handle_stripe_dirtying().
2647 *
2648 * For 2, set STRIPE_R5C_CACHING and continue with caching
2649 * write.
2650 */
2651
2652 /* case 1: anything injournal or anything in written */
2653 if (s->injournal > 0 || s->written > 0)
2654 return -EAGAIN;
2655 /* case 2 */
2656 set_bit(STRIPE_R5C_CACHING, &sh->state);
2657 }
2658
2659 /*
2660 * When run in degraded mode, array is set to write-through mode.
2661 * This check helps drain pending write safely in the transition to
2662 * write-through mode.
2663 *
2664 * When a stripe is syncing, the write is also handled in write
2665 * through mode.
2666 */
2667 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2668 r5c_make_stripe_write_out(sh);
2669 return -EAGAIN;
2670 }
2671
2672 for (i = disks; i--; ) {
2673 dev = &sh->dev[i];
2674 /* if non-overwrite, use writing-out phase */
2675 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2676 !test_bit(R5_InJournal, &dev->flags)) {
2677 r5c_make_stripe_write_out(sh);
2678 return -EAGAIN;
2679 }
2680 }
2681
2682 /* if the stripe is not counted in big_stripe_tree, add it now */
2683 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2684 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2685 tree_index = r5c_tree_index(conf, sh->sector);
2686 spin_lock(&log->tree_lock);
2687 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2688 tree_index);
2689 if (pslot) {
2690 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2691 pslot, &log->tree_lock) >>
2692 R5C_RADIX_COUNT_SHIFT;
2693 radix_tree_replace_slot(
2694 &log->big_stripe_tree, pslot,
2695 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2696 } else {
2697 /*
2698 * this radix_tree_insert can fail safely, so no
2699 * need to call radix_tree_preload()
2700 */
2701 ret = radix_tree_insert(
2702 &log->big_stripe_tree, tree_index,
2703 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2704 if (ret) {
2705 spin_unlock(&log->tree_lock);
2706 r5c_make_stripe_write_out(sh);
2707 return -EAGAIN;
2708 }
2709 }
2710 spin_unlock(&log->tree_lock);
2711
2712 /*
2713 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2714 * counted in the radix tree
2715 */
2716 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2717 atomic_inc(&conf->r5c_cached_partial_stripes);
2718 }
2719
2720 for (i = disks; i--; ) {
2721 dev = &sh->dev[i];
2722 if (dev->towrite) {
2723 set_bit(R5_Wantwrite, &dev->flags);
2724 set_bit(R5_Wantdrain, &dev->flags);
2725 set_bit(R5_LOCKED, &dev->flags);
2726 to_cache++;
2727 }
2728 }
2729
2730 if (to_cache) {
2731 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2732 /*
2733 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2734 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2735 * r5c_handle_data_cached()
2736 */
2737 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2738 }
2739
2740 return 0;
2741 }
2742
2743 /*
2744 * free extra pages (orig_page) we allocated for prexor
2745 */
r5c_release_extra_page(struct stripe_head * sh)2746 void r5c_release_extra_page(struct stripe_head *sh)
2747 {
2748 struct r5conf *conf = sh->raid_conf;
2749 int i;
2750 bool using_disk_info_extra_page;
2751
2752 using_disk_info_extra_page =
2753 sh->dev[0].orig_page == conf->disks[0].extra_page;
2754
2755 for (i = sh->disks; i--; )
2756 if (sh->dev[i].page != sh->dev[i].orig_page) {
2757 struct page *p = sh->dev[i].orig_page;
2758
2759 sh->dev[i].orig_page = sh->dev[i].page;
2760 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2761
2762 if (!using_disk_info_extra_page)
2763 put_page(p);
2764 }
2765
2766 if (using_disk_info_extra_page) {
2767 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2768 md_wakeup_thread(conf->mddev->thread);
2769 }
2770 }
2771
r5c_use_extra_page(struct stripe_head * sh)2772 void r5c_use_extra_page(struct stripe_head *sh)
2773 {
2774 struct r5conf *conf = sh->raid_conf;
2775 int i;
2776 struct r5dev *dev;
2777
2778 for (i = sh->disks; i--; ) {
2779 dev = &sh->dev[i];
2780 if (dev->orig_page != dev->page)
2781 put_page(dev->orig_page);
2782 dev->orig_page = conf->disks[i].extra_page;
2783 }
2784 }
2785
2786 /*
2787 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2788 * stripe is committed to RAID disks.
2789 */
r5c_finish_stripe_write_out(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)2790 void r5c_finish_stripe_write_out(struct r5conf *conf,
2791 struct stripe_head *sh,
2792 struct stripe_head_state *s)
2793 {
2794 struct r5l_log *log = READ_ONCE(conf->log);
2795 int i;
2796 sector_t tree_index;
2797 void __rcu **pslot;
2798 uintptr_t refcount;
2799
2800 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2801 return;
2802
2803 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2804 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2805
2806 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2807 return;
2808
2809 for (i = sh->disks; i--; ) {
2810 clear_bit(R5_InJournal, &sh->dev[i].flags);
2811 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2812 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
2813 }
2814
2815 /*
2816 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2817 * We updated R5_InJournal, so we also update s->injournal.
2818 */
2819 s->injournal = 0;
2820
2821 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2822 if (atomic_dec_and_test(&conf->pending_full_writes))
2823 md_wakeup_thread(conf->mddev->thread);
2824
2825 spin_lock_irq(&log->stripe_in_journal_lock);
2826 list_del_init(&sh->r5c);
2827 spin_unlock_irq(&log->stripe_in_journal_lock);
2828 sh->log_start = MaxSector;
2829
2830 atomic_dec(&log->stripe_in_journal_count);
2831 r5c_update_log_state(log);
2832
2833 /* stop counting this stripe in big_stripe_tree */
2834 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2835 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2836 tree_index = r5c_tree_index(conf, sh->sector);
2837 spin_lock(&log->tree_lock);
2838 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2839 tree_index);
2840 BUG_ON(pslot == NULL);
2841 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2842 pslot, &log->tree_lock) >>
2843 R5C_RADIX_COUNT_SHIFT;
2844 if (refcount == 1)
2845 radix_tree_delete(&log->big_stripe_tree, tree_index);
2846 else
2847 radix_tree_replace_slot(
2848 &log->big_stripe_tree, pslot,
2849 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2850 spin_unlock(&log->tree_lock);
2851 }
2852
2853 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2854 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2855 atomic_dec(&conf->r5c_flushing_partial_stripes);
2856 atomic_dec(&conf->r5c_cached_partial_stripes);
2857 }
2858
2859 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2860 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2861 atomic_dec(&conf->r5c_flushing_full_stripes);
2862 atomic_dec(&conf->r5c_cached_full_stripes);
2863 }
2864
2865 r5l_append_flush_payload(log, sh->sector);
2866 /* stripe is flused to raid disks, we can do resync now */
2867 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2868 set_bit(STRIPE_HANDLE, &sh->state);
2869 }
2870
r5c_cache_data(struct r5l_log * log,struct stripe_head * sh)2871 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2872 {
2873 struct r5conf *conf = sh->raid_conf;
2874 int pages = 0;
2875 int reserve;
2876 int i;
2877 int ret = 0;
2878
2879 BUG_ON(!log);
2880
2881 for (i = 0; i < sh->disks; i++) {
2882 void *addr;
2883
2884 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2885 continue;
2886 addr = kmap_local_page(sh->dev[i].page);
2887 sh->dev[i].log_checksum = crc32c(log->uuid_checksum,
2888 addr, PAGE_SIZE);
2889 kunmap_local(addr);
2890 pages++;
2891 }
2892 WARN_ON(pages == 0);
2893
2894 /*
2895 * The stripe must enter state machine again to call endio, so
2896 * don't delay.
2897 */
2898 clear_bit(STRIPE_DELAYED, &sh->state);
2899 atomic_inc(&sh->count);
2900
2901 mutex_lock(&log->io_mutex);
2902 /* meta + data */
2903 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2904
2905 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2906 sh->log_start == MaxSector)
2907 r5l_add_no_space_stripe(log, sh);
2908 else if (!r5l_has_free_space(log, reserve)) {
2909 if (sh->log_start == log->last_checkpoint)
2910 BUG();
2911 else
2912 r5l_add_no_space_stripe(log, sh);
2913 } else {
2914 ret = r5l_log_stripe(log, sh, pages, 0);
2915 if (ret) {
2916 spin_lock_irq(&log->io_list_lock);
2917 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2918 spin_unlock_irq(&log->io_list_lock);
2919 }
2920 }
2921
2922 mutex_unlock(&log->io_mutex);
2923 return 0;
2924 }
2925
2926 /* check whether this big stripe is in write back cache. */
r5c_big_stripe_cached(struct r5conf * conf,sector_t sect)2927 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2928 {
2929 struct r5l_log *log = READ_ONCE(conf->log);
2930 sector_t tree_index;
2931 void *slot;
2932
2933 if (!log)
2934 return false;
2935
2936 tree_index = r5c_tree_index(conf, sect);
2937 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2938 return slot != NULL;
2939 }
2940
r5l_load_log(struct r5l_log * log)2941 static int r5l_load_log(struct r5l_log *log)
2942 {
2943 struct md_rdev *rdev = log->rdev;
2944 struct page *page;
2945 struct r5l_meta_block *mb;
2946 sector_t cp = log->rdev->journal_tail;
2947 u32 stored_crc, expected_crc;
2948 bool create_super = false;
2949 int ret = 0;
2950
2951 /* Make sure it's valid */
2952 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2953 cp = 0;
2954 page = alloc_page(GFP_KERNEL);
2955 if (!page)
2956 return -ENOMEM;
2957
2958 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2959 ret = -EIO;
2960 goto ioerr;
2961 }
2962 mb = page_address(page);
2963
2964 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2965 mb->version != R5LOG_VERSION) {
2966 create_super = true;
2967 goto create;
2968 }
2969 stored_crc = le32_to_cpu(mb->checksum);
2970 mb->checksum = 0;
2971 expected_crc = crc32c(log->uuid_checksum, mb, PAGE_SIZE);
2972 if (stored_crc != expected_crc) {
2973 create_super = true;
2974 goto create;
2975 }
2976 if (le64_to_cpu(mb->position) != cp) {
2977 create_super = true;
2978 goto create;
2979 }
2980 create:
2981 if (create_super) {
2982 log->last_cp_seq = get_random_u32();
2983 cp = 0;
2984 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2985 /*
2986 * Make sure super points to correct address. Log might have
2987 * data very soon. If super hasn't correct log tail address,
2988 * recovery can't find the log
2989 */
2990 r5l_write_super(log, cp);
2991 } else
2992 log->last_cp_seq = le64_to_cpu(mb->seq);
2993
2994 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2995 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2996 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2997 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2998 log->last_checkpoint = cp;
2999
3000 __free_page(page);
3001
3002 if (create_super) {
3003 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3004 log->seq = log->last_cp_seq + 1;
3005 log->next_checkpoint = cp;
3006 } else
3007 ret = r5l_recovery_log(log);
3008
3009 r5c_update_log_state(log);
3010 return ret;
3011 ioerr:
3012 __free_page(page);
3013 return ret;
3014 }
3015
r5l_start(struct r5l_log * log)3016 int r5l_start(struct r5l_log *log)
3017 {
3018 int ret;
3019
3020 if (!log)
3021 return 0;
3022
3023 ret = r5l_load_log(log);
3024 if (ret) {
3025 struct mddev *mddev = log->rdev->mddev;
3026 struct r5conf *conf = mddev->private;
3027
3028 r5l_exit_log(conf);
3029 }
3030 return ret;
3031 }
3032
r5c_update_on_rdev_error(struct mddev * mddev,struct md_rdev * rdev)3033 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3034 {
3035 struct r5conf *conf = mddev->private;
3036 struct r5l_log *log = READ_ONCE(conf->log);
3037
3038 if (!log)
3039 return;
3040
3041 if ((raid5_calc_degraded(conf) > 0 ||
3042 test_bit(Journal, &rdev->flags)) &&
3043 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3044 schedule_work(&log->disable_writeback_work);
3045 }
3046
r5l_init_log(struct r5conf * conf,struct md_rdev * rdev)3047 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3048 {
3049 struct r5l_log *log;
3050 struct md_thread *thread;
3051 int ret;
3052
3053 pr_debug("md/raid:%s: using device %pg as journal\n",
3054 mdname(conf->mddev), rdev->bdev);
3055
3056 if (PAGE_SIZE != 4096)
3057 return -EINVAL;
3058
3059 /*
3060 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3061 * raid_disks r5l_payload_data_parity.
3062 *
3063 * Write journal and cache does not work for very big array
3064 * (raid_disks > 203)
3065 */
3066 if (sizeof(struct r5l_meta_block) +
3067 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3068 conf->raid_disks) > PAGE_SIZE) {
3069 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3070 mdname(conf->mddev), conf->raid_disks);
3071 return -EINVAL;
3072 }
3073
3074 log = kzalloc(sizeof(*log), GFP_KERNEL);
3075 if (!log)
3076 return -ENOMEM;
3077 log->rdev = rdev;
3078 log->need_cache_flush = bdev_write_cache(rdev->bdev);
3079 log->uuid_checksum = crc32c(~0, rdev->mddev->uuid,
3080 sizeof(rdev->mddev->uuid));
3081
3082 mutex_init(&log->io_mutex);
3083
3084 spin_lock_init(&log->io_list_lock);
3085 INIT_LIST_HEAD(&log->running_ios);
3086 INIT_LIST_HEAD(&log->io_end_ios);
3087 INIT_LIST_HEAD(&log->flushing_ios);
3088 INIT_LIST_HEAD(&log->finished_ios);
3089
3090 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3091 if (!log->io_kc)
3092 goto io_kc;
3093
3094 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3095 if (ret)
3096 goto io_pool;
3097
3098 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3099 if (ret)
3100 goto io_bs;
3101
3102 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3103 if (ret)
3104 goto out_mempool;
3105
3106 spin_lock_init(&log->tree_lock);
3107 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3108
3109 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3110 "reclaim");
3111 if (!thread)
3112 goto reclaim_thread;
3113
3114 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3115 rcu_assign_pointer(log->reclaim_thread, thread);
3116
3117 init_waitqueue_head(&log->iounit_wait);
3118
3119 INIT_LIST_HEAD(&log->no_mem_stripes);
3120
3121 INIT_LIST_HEAD(&log->no_space_stripes);
3122 spin_lock_init(&log->no_space_stripes_lock);
3123
3124 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3125 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3126
3127 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3128 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3129 spin_lock_init(&log->stripe_in_journal_lock);
3130 atomic_set(&log->stripe_in_journal_count, 0);
3131
3132 WRITE_ONCE(conf->log, log);
3133
3134 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3135 return 0;
3136
3137 reclaim_thread:
3138 mempool_exit(&log->meta_pool);
3139 out_mempool:
3140 bioset_exit(&log->bs);
3141 io_bs:
3142 mempool_exit(&log->io_pool);
3143 io_pool:
3144 kmem_cache_destroy(log->io_kc);
3145 io_kc:
3146 kfree(log);
3147 return -EINVAL;
3148 }
3149
r5l_exit_log(struct r5conf * conf)3150 void r5l_exit_log(struct r5conf *conf)
3151 {
3152 struct r5l_log *log = conf->log;
3153
3154 md_unregister_thread(conf->mddev, &log->reclaim_thread);
3155
3156 /*
3157 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3158 * ensure disable_writeback_work wakes up and exits.
3159 */
3160 WRITE_ONCE(conf->log, NULL);
3161 wake_up(&conf->mddev->sb_wait);
3162 flush_work(&log->disable_writeback_work);
3163
3164 mempool_exit(&log->meta_pool);
3165 bioset_exit(&log->bs);
3166 mempool_exit(&log->io_pool);
3167 kmem_cache_destroy(log->io_kc);
3168 kfree(log);
3169 }
3170