1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009-2011 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/dm-bufio.h>
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23
24 #include "dm.h"
25
26 #define DM_MSG_PREFIX "bufio"
27
28 /*
29 * Memory management policy:
30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34 * dirty buffers.
35 */
36 #define DM_BUFIO_MIN_BUFFERS 8
37
38 #define DM_BUFIO_MEMORY_PERCENT 2
39 #define DM_BUFIO_VMALLOC_PERCENT 25
40 #define DM_BUFIO_WRITEBACK_RATIO 3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16
42
43 /*
44 * Check buffer ages in this interval (seconds)
45 */
46 #define DM_BUFIO_WORK_TIMER_SECS 30
47
48 /*
49 * Free buffers when they are older than this (seconds)
50 */
51 #define DM_BUFIO_DEFAULT_AGE_SECS 300
52
53 /*
54 * The nr of bytes of cached data to keep around.
55 */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
57
58 /*
59 * Align buffer writes to this boundary.
60 * Tests show that SSDs have the highest IOPS when using 4k writes.
61 */
62 #define DM_BUFIO_WRITE_ALIGN 4096
63
64 /*
65 * dm_buffer->list_mode
66 */
67 #define LIST_CLEAN 0
68 #define LIST_DIRTY 1
69 #define LIST_SIZE 2
70
71 #define SCAN_RESCHED_CYCLE 16
72
73 /*--------------------------------------------------------------*/
74
75 /*
76 * Rather than use an LRU list, we use a clock algorithm where entries
77 * are held in a circular list. When an entry is 'hit' a reference bit
78 * is set. The least recently used entry is approximated by running a
79 * cursor around the list selecting unreferenced entries. Referenced
80 * entries have their reference bit cleared as the cursor passes them.
81 */
82 struct lru_entry {
83 struct list_head list;
84 atomic_t referenced;
85 };
86
87 struct lru_iter {
88 struct lru *lru;
89 struct list_head list;
90 struct lru_entry *stop;
91 struct lru_entry *e;
92 };
93
94 struct lru {
95 struct list_head *cursor;
96 unsigned long count;
97
98 struct list_head iterators;
99 };
100
101 /*--------------*/
102
lru_init(struct lru * lru)103 static void lru_init(struct lru *lru)
104 {
105 lru->cursor = NULL;
106 lru->count = 0;
107 INIT_LIST_HEAD(&lru->iterators);
108 }
109
lru_destroy(struct lru * lru)110 static void lru_destroy(struct lru *lru)
111 {
112 WARN_ON_ONCE(lru->cursor);
113 WARN_ON_ONCE(!list_empty(&lru->iterators));
114 }
115
116 /*
117 * Insert a new entry into the lru.
118 */
lru_insert(struct lru * lru,struct lru_entry * le)119 static void lru_insert(struct lru *lru, struct lru_entry *le)
120 {
121 /*
122 * Don't be tempted to set to 1, makes the lru aspect
123 * perform poorly.
124 */
125 atomic_set(&le->referenced, 0);
126
127 if (lru->cursor) {
128 list_add_tail(&le->list, lru->cursor);
129 } else {
130 INIT_LIST_HEAD(&le->list);
131 lru->cursor = &le->list;
132 }
133 lru->count++;
134 }
135
136 /*--------------*/
137
138 /*
139 * Convert a list_head pointer to an lru_entry pointer.
140 */
to_le(struct list_head * l)141 static inline struct lru_entry *to_le(struct list_head *l)
142 {
143 return container_of(l, struct lru_entry, list);
144 }
145
146 /*
147 * Initialize an lru_iter and add it to the list of cursors in the lru.
148 */
lru_iter_begin(struct lru * lru,struct lru_iter * it)149 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
150 {
151 it->lru = lru;
152 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
153 it->e = lru->cursor ? to_le(lru->cursor) : NULL;
154 list_add(&it->list, &lru->iterators);
155 }
156
157 /*
158 * Remove an lru_iter from the list of cursors in the lru.
159 */
lru_iter_end(struct lru_iter * it)160 static inline void lru_iter_end(struct lru_iter *it)
161 {
162 list_del(&it->list);
163 }
164
165 /* Predicate function type to be used with lru_iter_next */
166 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
167
168 /*
169 * Advance the cursor to the next entry that passes the
170 * predicate, and return that entry. Returns NULL if the
171 * iteration is complete.
172 */
lru_iter_next(struct lru_iter * it,iter_predicate pred,void * context)173 static struct lru_entry *lru_iter_next(struct lru_iter *it,
174 iter_predicate pred, void *context)
175 {
176 struct lru_entry *e;
177
178 while (it->e) {
179 e = it->e;
180
181 /* advance the cursor */
182 if (it->e == it->stop)
183 it->e = NULL;
184 else
185 it->e = to_le(it->e->list.next);
186
187 if (pred(e, context))
188 return e;
189 }
190
191 return NULL;
192 }
193
194 /*
195 * Invalidate a specific lru_entry and update all cursors in
196 * the lru accordingly.
197 */
lru_iter_invalidate(struct lru * lru,struct lru_entry * e)198 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
199 {
200 struct lru_iter *it;
201
202 list_for_each_entry(it, &lru->iterators, list) {
203 /* Move c->e forwards if necc. */
204 if (it->e == e) {
205 it->e = to_le(it->e->list.next);
206 if (it->e == e)
207 it->e = NULL;
208 }
209
210 /* Move it->stop backwards if necc. */
211 if (it->stop == e) {
212 it->stop = to_le(it->stop->list.prev);
213 if (it->stop == e)
214 it->stop = NULL;
215 }
216 }
217 }
218
219 /*--------------*/
220
221 /*
222 * Remove a specific entry from the lru.
223 */
lru_remove(struct lru * lru,struct lru_entry * le)224 static void lru_remove(struct lru *lru, struct lru_entry *le)
225 {
226 lru_iter_invalidate(lru, le);
227 if (lru->count == 1) {
228 lru->cursor = NULL;
229 } else {
230 if (lru->cursor == &le->list)
231 lru->cursor = lru->cursor->next;
232 list_del(&le->list);
233 }
234 lru->count--;
235 }
236
237 /*
238 * Mark as referenced.
239 */
lru_reference(struct lru_entry * le)240 static inline void lru_reference(struct lru_entry *le)
241 {
242 atomic_set(&le->referenced, 1);
243 }
244
245 /*--------------*/
246
247 /*
248 * Remove the least recently used entry (approx), that passes the predicate.
249 * Returns NULL on failure.
250 */
251 enum evict_result {
252 ER_EVICT,
253 ER_DONT_EVICT,
254 ER_STOP, /* stop looking for something to evict */
255 };
256
257 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
258
lru_evict(struct lru * lru,le_predicate pred,void * context,bool no_sleep)259 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
260 {
261 unsigned long tested = 0;
262 struct list_head *h = lru->cursor;
263 struct lru_entry *le;
264
265 if (!h)
266 return NULL;
267 /*
268 * In the worst case we have to loop around twice. Once to clear
269 * the reference flags, and then again to discover the predicate
270 * fails for all entries.
271 */
272 while (tested < lru->count) {
273 le = container_of(h, struct lru_entry, list);
274
275 if (atomic_read(&le->referenced)) {
276 atomic_set(&le->referenced, 0);
277 } else {
278 tested++;
279 switch (pred(le, context)) {
280 case ER_EVICT:
281 /*
282 * Adjust the cursor, so we start the next
283 * search from here.
284 */
285 lru->cursor = le->list.next;
286 lru_remove(lru, le);
287 return le;
288
289 case ER_DONT_EVICT:
290 break;
291
292 case ER_STOP:
293 lru->cursor = le->list.next;
294 return NULL;
295 }
296 }
297
298 h = h->next;
299
300 if (!no_sleep)
301 cond_resched();
302 }
303
304 return NULL;
305 }
306
307 /*--------------------------------------------------------------*/
308
309 /*
310 * Buffer state bits.
311 */
312 #define B_READING 0
313 #define B_WRITING 1
314 #define B_DIRTY 2
315
316 /*
317 * Describes how the block was allocated:
318 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
319 * See the comment at alloc_buffer_data.
320 */
321 enum data_mode {
322 DATA_MODE_SLAB = 0,
323 DATA_MODE_KMALLOC = 1,
324 DATA_MODE_GET_FREE_PAGES = 2,
325 DATA_MODE_VMALLOC = 3,
326 DATA_MODE_LIMIT = 4
327 };
328
329 struct dm_buffer {
330 /* protected by the locks in dm_buffer_cache */
331 struct rb_node node;
332
333 /* immutable, so don't need protecting */
334 sector_t block;
335 void *data;
336 unsigned char data_mode; /* DATA_MODE_* */
337
338 /*
339 * These two fields are used in isolation, so do not need
340 * a surrounding lock.
341 */
342 atomic_t hold_count;
343 unsigned long last_accessed;
344
345 /*
346 * Everything else is protected by the mutex in
347 * dm_bufio_client
348 */
349 unsigned long state;
350 struct lru_entry lru;
351 unsigned char list_mode; /* LIST_* */
352 blk_status_t read_error;
353 blk_status_t write_error;
354 unsigned int dirty_start;
355 unsigned int dirty_end;
356 unsigned int write_start;
357 unsigned int write_end;
358 struct list_head write_list;
359 struct dm_bufio_client *c;
360 void (*end_io)(struct dm_buffer *b, blk_status_t bs);
361 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
362 #define MAX_STACK 10
363 unsigned int stack_len;
364 unsigned long stack_entries[MAX_STACK];
365 #endif
366 };
367
368 /*--------------------------------------------------------------*/
369
370 /*
371 * The buffer cache manages buffers, particularly:
372 * - inc/dec of holder count
373 * - setting the last_accessed field
374 * - maintains clean/dirty state along with lru
375 * - selecting buffers that match predicates
376 *
377 * It does *not* handle:
378 * - allocation/freeing of buffers.
379 * - IO
380 * - Eviction or cache sizing.
381 *
382 * cache_get() and cache_put() are threadsafe, you do not need to
383 * protect these calls with a surrounding mutex. All the other
384 * methods are not threadsafe; they do use locking primitives, but
385 * only enough to ensure get/put are threadsafe.
386 */
387
388 struct buffer_tree {
389 union {
390 struct rw_semaphore lock;
391 rwlock_t spinlock;
392 } u;
393 struct rb_root root;
394 } ____cacheline_aligned_in_smp;
395
396 struct dm_buffer_cache {
397 struct lru lru[LIST_SIZE];
398 /*
399 * We spread entries across multiple trees to reduce contention
400 * on the locks.
401 */
402 unsigned int num_locks;
403 bool no_sleep;
404 struct buffer_tree trees[];
405 };
406
407 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
408
cache_index(sector_t block,unsigned int num_locks)409 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
410 {
411 return dm_hash_locks_index(block, num_locks);
412 }
413
cache_read_lock(struct dm_buffer_cache * bc,sector_t block)414 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
415 {
416 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
417 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
418 else
419 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
420 }
421
cache_read_unlock(struct dm_buffer_cache * bc,sector_t block)422 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
423 {
424 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
425 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
426 else
427 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
428 }
429
cache_write_lock(struct dm_buffer_cache * bc,sector_t block)430 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
431 {
432 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
433 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
434 else
435 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
436 }
437
cache_write_unlock(struct dm_buffer_cache * bc,sector_t block)438 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
439 {
440 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
441 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
442 else
443 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
444 }
445
446 /*
447 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
448 * This struct helps avoid redundant drop and gets of the same lock.
449 */
450 struct lock_history {
451 struct dm_buffer_cache *cache;
452 bool write;
453 unsigned int previous;
454 unsigned int no_previous;
455 };
456
lh_init(struct lock_history * lh,struct dm_buffer_cache * cache,bool write)457 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
458 {
459 lh->cache = cache;
460 lh->write = write;
461 lh->no_previous = cache->num_locks;
462 lh->previous = lh->no_previous;
463 }
464
__lh_lock(struct lock_history * lh,unsigned int index)465 static void __lh_lock(struct lock_history *lh, unsigned int index)
466 {
467 if (lh->write) {
468 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
469 write_lock_bh(&lh->cache->trees[index].u.spinlock);
470 else
471 down_write(&lh->cache->trees[index].u.lock);
472 } else {
473 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
474 read_lock_bh(&lh->cache->trees[index].u.spinlock);
475 else
476 down_read(&lh->cache->trees[index].u.lock);
477 }
478 }
479
__lh_unlock(struct lock_history * lh,unsigned int index)480 static void __lh_unlock(struct lock_history *lh, unsigned int index)
481 {
482 if (lh->write) {
483 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
484 write_unlock_bh(&lh->cache->trees[index].u.spinlock);
485 else
486 up_write(&lh->cache->trees[index].u.lock);
487 } else {
488 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
489 read_unlock_bh(&lh->cache->trees[index].u.spinlock);
490 else
491 up_read(&lh->cache->trees[index].u.lock);
492 }
493 }
494
495 /*
496 * Make sure you call this since it will unlock the final lock.
497 */
lh_exit(struct lock_history * lh)498 static void lh_exit(struct lock_history *lh)
499 {
500 if (lh->previous != lh->no_previous) {
501 __lh_unlock(lh, lh->previous);
502 lh->previous = lh->no_previous;
503 }
504 }
505
506 /*
507 * Named 'next' because there is no corresponding
508 * 'up/unlock' call since it's done automatically.
509 */
lh_next(struct lock_history * lh,sector_t b)510 static void lh_next(struct lock_history *lh, sector_t b)
511 {
512 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
513
514 if (lh->previous != lh->no_previous) {
515 if (lh->previous != index) {
516 __lh_unlock(lh, lh->previous);
517 __lh_lock(lh, index);
518 lh->previous = index;
519 }
520 } else {
521 __lh_lock(lh, index);
522 lh->previous = index;
523 }
524 }
525
le_to_buffer(struct lru_entry * le)526 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
527 {
528 return container_of(le, struct dm_buffer, lru);
529 }
530
list_to_buffer(struct list_head * l)531 static struct dm_buffer *list_to_buffer(struct list_head *l)
532 {
533 struct lru_entry *le = list_entry(l, struct lru_entry, list);
534
535 return le_to_buffer(le);
536 }
537
cache_init(struct dm_buffer_cache * bc,unsigned int num_locks,bool no_sleep)538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
539 {
540 unsigned int i;
541
542 bc->num_locks = num_locks;
543 bc->no_sleep = no_sleep;
544
545 for (i = 0; i < bc->num_locks; i++) {
546 if (no_sleep)
547 rwlock_init(&bc->trees[i].u.spinlock);
548 else
549 init_rwsem(&bc->trees[i].u.lock);
550 bc->trees[i].root = RB_ROOT;
551 }
552
553 lru_init(&bc->lru[LIST_CLEAN]);
554 lru_init(&bc->lru[LIST_DIRTY]);
555 }
556
cache_destroy(struct dm_buffer_cache * bc)557 static void cache_destroy(struct dm_buffer_cache *bc)
558 {
559 unsigned int i;
560
561 for (i = 0; i < bc->num_locks; i++)
562 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
563
564 lru_destroy(&bc->lru[LIST_CLEAN]);
565 lru_destroy(&bc->lru[LIST_DIRTY]);
566 }
567
568 /*--------------*/
569
570 /*
571 * not threadsafe, or racey depending how you look at it
572 */
cache_count(struct dm_buffer_cache * bc,int list_mode)573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
574 {
575 return bc->lru[list_mode].count;
576 }
577
cache_total(struct dm_buffer_cache * bc)578 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
579 {
580 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
581 }
582
583 /*--------------*/
584
585 /*
586 * Gets a specific buffer, indexed by block.
587 * If the buffer is found then its holder count will be incremented and
588 * lru_reference will be called.
589 *
590 * threadsafe
591 */
__cache_get(const struct rb_root * root,sector_t block)592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
593 {
594 struct rb_node *n = root->rb_node;
595 struct dm_buffer *b;
596
597 while (n) {
598 b = container_of(n, struct dm_buffer, node);
599
600 if (b->block == block)
601 return b;
602
603 n = block < b->block ? n->rb_left : n->rb_right;
604 }
605
606 return NULL;
607 }
608
__cache_inc_buffer(struct dm_buffer * b)609 static void __cache_inc_buffer(struct dm_buffer *b)
610 {
611 atomic_inc(&b->hold_count);
612 WRITE_ONCE(b->last_accessed, jiffies);
613 }
614
cache_get(struct dm_buffer_cache * bc,sector_t block)615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
616 {
617 struct dm_buffer *b;
618
619 cache_read_lock(bc, block);
620 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
621 if (b) {
622 lru_reference(&b->lru);
623 __cache_inc_buffer(b);
624 }
625 cache_read_unlock(bc, block);
626
627 return b;
628 }
629
630 /*--------------*/
631
632 /*
633 * Returns true if the hold count hits zero.
634 * threadsafe
635 */
cache_put(struct dm_buffer_cache * bc,struct dm_buffer * b)636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
637 {
638 bool r;
639
640 cache_read_lock(bc, b->block);
641 BUG_ON(!atomic_read(&b->hold_count));
642 r = atomic_dec_and_test(&b->hold_count);
643 cache_read_unlock(bc, b->block);
644
645 return r;
646 }
647
648 /*--------------*/
649
650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
651
652 /*
653 * Evicts a buffer based on a predicate. The oldest buffer that
654 * matches the predicate will be selected. In addition to the
655 * predicate the hold_count of the selected buffer will be zero.
656 */
657 struct evict_wrapper {
658 struct lock_history *lh;
659 b_predicate pred;
660 void *context;
661 };
662
663 /*
664 * Wraps the buffer predicate turning it into an lru predicate. Adds
665 * extra test for hold_count.
666 */
__evict_pred(struct lru_entry * le,void * context)667 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
668 {
669 struct evict_wrapper *w = context;
670 struct dm_buffer *b = le_to_buffer(le);
671
672 lh_next(w->lh, b->block);
673
674 if (atomic_read(&b->hold_count))
675 return ER_DONT_EVICT;
676
677 return w->pred(b, w->context);
678 }
679
__cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context,struct lock_history * lh)680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
681 b_predicate pred, void *context,
682 struct lock_history *lh)
683 {
684 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
685 struct lru_entry *le;
686 struct dm_buffer *b;
687
688 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
689 if (!le)
690 return NULL;
691
692 b = le_to_buffer(le);
693 /* __evict_pred will have locked the appropriate tree. */
694 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
695
696 return b;
697 }
698
cache_evict(struct dm_buffer_cache * bc,int list_mode,b_predicate pred,void * context)699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
700 b_predicate pred, void *context)
701 {
702 struct dm_buffer *b;
703 struct lock_history lh;
704
705 lh_init(&lh, bc, true);
706 b = __cache_evict(bc, list_mode, pred, context, &lh);
707 lh_exit(&lh);
708
709 return b;
710 }
711
712 /*--------------*/
713
714 /*
715 * Mark a buffer as clean or dirty. Not threadsafe.
716 */
cache_mark(struct dm_buffer_cache * bc,struct dm_buffer * b,int list_mode)717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
718 {
719 cache_write_lock(bc, b->block);
720 if (list_mode != b->list_mode) {
721 lru_remove(&bc->lru[b->list_mode], &b->lru);
722 b->list_mode = list_mode;
723 lru_insert(&bc->lru[b->list_mode], &b->lru);
724 }
725 cache_write_unlock(bc, b->block);
726 }
727
728 /*--------------*/
729
730 /*
731 * Runs through the lru associated with 'old_mode', if the predicate matches then
732 * it moves them to 'new_mode'. Not threadsafe.
733 */
__cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context,struct lock_history * lh)734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
735 b_predicate pred, void *context, struct lock_history *lh)
736 {
737 struct lru_entry *le;
738 struct dm_buffer *b;
739 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
740
741 while (true) {
742 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
743 if (!le)
744 break;
745
746 b = le_to_buffer(le);
747 b->list_mode = new_mode;
748 lru_insert(&bc->lru[b->list_mode], &b->lru);
749 }
750 }
751
cache_mark_many(struct dm_buffer_cache * bc,int old_mode,int new_mode,b_predicate pred,void * context)752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
753 b_predicate pred, void *context)
754 {
755 struct lock_history lh;
756
757 lh_init(&lh, bc, true);
758 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
759 lh_exit(&lh);
760 }
761
762 /*--------------*/
763
764 /*
765 * Iterates through all clean or dirty entries calling a function for each
766 * entry. The callback may terminate the iteration early. Not threadsafe.
767 */
768
769 /*
770 * Iterator functions should return one of these actions to indicate
771 * how the iteration should proceed.
772 */
773 enum it_action {
774 IT_NEXT,
775 IT_COMPLETE,
776 };
777
778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
779
__cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context,struct lock_history * lh)780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
781 iter_fn fn, void *context, struct lock_history *lh)
782 {
783 struct lru *lru = &bc->lru[list_mode];
784 struct lru_entry *le, *first;
785
786 if (!lru->cursor)
787 return;
788
789 first = le = to_le(lru->cursor);
790 do {
791 struct dm_buffer *b = le_to_buffer(le);
792
793 lh_next(lh, b->block);
794
795 switch (fn(b, context)) {
796 case IT_NEXT:
797 break;
798
799 case IT_COMPLETE:
800 return;
801 }
802 cond_resched();
803
804 le = to_le(le->list.next);
805 } while (le != first);
806 }
807
cache_iterate(struct dm_buffer_cache * bc,int list_mode,iter_fn fn,void * context)808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
809 iter_fn fn, void *context)
810 {
811 struct lock_history lh;
812
813 lh_init(&lh, bc, false);
814 __cache_iterate(bc, list_mode, fn, context, &lh);
815 lh_exit(&lh);
816 }
817
818 /*--------------*/
819
820 /*
821 * Passes ownership of the buffer to the cache. Returns false if the
822 * buffer was already present (in which case ownership does not pass).
823 * eg, a race with another thread.
824 *
825 * Holder count should be 1 on insertion.
826 *
827 * Not threadsafe.
828 */
__cache_insert(struct rb_root * root,struct dm_buffer * b)829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
830 {
831 struct rb_node **new = &root->rb_node, *parent = NULL;
832 struct dm_buffer *found;
833
834 while (*new) {
835 found = container_of(*new, struct dm_buffer, node);
836
837 if (found->block == b->block)
838 return false;
839
840 parent = *new;
841 new = b->block < found->block ?
842 &found->node.rb_left : &found->node.rb_right;
843 }
844
845 rb_link_node(&b->node, parent, new);
846 rb_insert_color(&b->node, root);
847
848 return true;
849 }
850
cache_insert(struct dm_buffer_cache * bc,struct dm_buffer * b)851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
852 {
853 bool r;
854
855 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
856 return false;
857
858 cache_write_lock(bc, b->block);
859 BUG_ON(atomic_read(&b->hold_count) != 1);
860 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
861 if (r)
862 lru_insert(&bc->lru[b->list_mode], &b->lru);
863 cache_write_unlock(bc, b->block);
864
865 return r;
866 }
867
868 /*--------------*/
869
870 /*
871 * Removes buffer from cache, ownership of the buffer passes back to the caller.
872 * Fails if the hold_count is not one (ie. the caller holds the only reference).
873 *
874 * Not threadsafe.
875 */
cache_remove(struct dm_buffer_cache * bc,struct dm_buffer * b)876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
877 {
878 bool r;
879
880 cache_write_lock(bc, b->block);
881
882 if (atomic_read(&b->hold_count) != 1) {
883 r = false;
884 } else {
885 r = true;
886 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
887 lru_remove(&bc->lru[b->list_mode], &b->lru);
888 }
889
890 cache_write_unlock(bc, b->block);
891
892 return r;
893 }
894
895 /*--------------*/
896
897 typedef void (*b_release)(struct dm_buffer *);
898
__find_next(struct rb_root * root,sector_t block)899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
900 {
901 struct rb_node *n = root->rb_node;
902 struct dm_buffer *b;
903 struct dm_buffer *best = NULL;
904
905 while (n) {
906 b = container_of(n, struct dm_buffer, node);
907
908 if (b->block == block)
909 return b;
910
911 if (block <= b->block) {
912 n = n->rb_left;
913 best = b;
914 } else {
915 n = n->rb_right;
916 }
917 }
918
919 return best;
920 }
921
__remove_range(struct dm_buffer_cache * bc,struct rb_root * root,sector_t begin,sector_t end,b_predicate pred,b_release release)922 static void __remove_range(struct dm_buffer_cache *bc,
923 struct rb_root *root,
924 sector_t begin, sector_t end,
925 b_predicate pred, b_release release)
926 {
927 struct dm_buffer *b;
928
929 while (true) {
930 cond_resched();
931
932 b = __find_next(root, begin);
933 if (!b || (b->block >= end))
934 break;
935
936 begin = b->block + 1;
937
938 if (atomic_read(&b->hold_count))
939 continue;
940
941 if (pred(b, NULL) == ER_EVICT) {
942 rb_erase(&b->node, root);
943 lru_remove(&bc->lru[b->list_mode], &b->lru);
944 release(b);
945 }
946 }
947 }
948
cache_remove_range(struct dm_buffer_cache * bc,sector_t begin,sector_t end,b_predicate pred,b_release release)949 static void cache_remove_range(struct dm_buffer_cache *bc,
950 sector_t begin, sector_t end,
951 b_predicate pred, b_release release)
952 {
953 unsigned int i;
954
955 BUG_ON(bc->no_sleep);
956 for (i = 0; i < bc->num_locks; i++) {
957 down_write(&bc->trees[i].u.lock);
958 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
959 up_write(&bc->trees[i].u.lock);
960 }
961 }
962
963 /*----------------------------------------------------------------*/
964
965 /*
966 * Linking of buffers:
967 * All buffers are linked to buffer_cache with their node field.
968 *
969 * Clean buffers that are not being written (B_WRITING not set)
970 * are linked to lru[LIST_CLEAN] with their lru_list field.
971 *
972 * Dirty and clean buffers that are being written are linked to
973 * lru[LIST_DIRTY] with their lru_list field. When the write
974 * finishes, the buffer cannot be relinked immediately (because we
975 * are in an interrupt context and relinking requires process
976 * context), so some clean-not-writing buffers can be held on
977 * dirty_lru too. They are later added to lru in the process
978 * context.
979 */
980 struct dm_bufio_client {
981 struct block_device *bdev;
982 unsigned int block_size;
983 s8 sectors_per_block_bits;
984
985 bool no_sleep;
986 struct mutex lock;
987 spinlock_t spinlock;
988
989 int async_write_error;
990
991 void (*alloc_callback)(struct dm_buffer *buf);
992 void (*write_callback)(struct dm_buffer *buf);
993 struct kmem_cache *slab_buffer;
994 struct kmem_cache *slab_cache;
995 struct dm_io_client *dm_io;
996
997 struct list_head reserved_buffers;
998 unsigned int need_reserved_buffers;
999
1000 unsigned int minimum_buffers;
1001
1002 sector_t start;
1003
1004 struct shrinker *shrinker;
1005 struct work_struct shrink_work;
1006 atomic_long_t need_shrink;
1007
1008 wait_queue_head_t free_buffer_wait;
1009
1010 struct list_head client_list;
1011
1012 /*
1013 * Used by global_cleanup to sort the clients list.
1014 */
1015 unsigned long oldest_buffer;
1016
1017 struct dm_buffer_cache cache; /* must be last member */
1018 };
1019
1020 /*----------------------------------------------------------------*/
1021
1022 #define dm_bufio_in_request() (!!current->bio_list)
1023
dm_bufio_lock(struct dm_bufio_client * c)1024 static void dm_bufio_lock(struct dm_bufio_client *c)
1025 {
1026 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1027 spin_lock_bh(&c->spinlock);
1028 else
1029 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1030 }
1031
dm_bufio_unlock(struct dm_bufio_client * c)1032 static void dm_bufio_unlock(struct dm_bufio_client *c)
1033 {
1034 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1035 spin_unlock_bh(&c->spinlock);
1036 else
1037 mutex_unlock(&c->lock);
1038 }
1039
1040 /*----------------------------------------------------------------*/
1041
1042 /*
1043 * Default cache size: available memory divided by the ratio.
1044 */
1045 static unsigned long dm_bufio_default_cache_size;
1046
1047 /*
1048 * Total cache size set by the user.
1049 */
1050 static unsigned long dm_bufio_cache_size;
1051
1052 /*
1053 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1054 * at any time. If it disagrees, the user has changed cache size.
1055 */
1056 static unsigned long dm_bufio_cache_size_latch;
1057
1058 static DEFINE_SPINLOCK(global_spinlock);
1059
1060 /*
1061 * Buffers are freed after this timeout
1062 */
1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1065
1066 static unsigned long dm_bufio_peak_allocated;
1067 static unsigned long dm_bufio_allocated_kmem_cache;
1068 static unsigned long dm_bufio_allocated_kmalloc;
1069 static unsigned long dm_bufio_allocated_get_free_pages;
1070 static unsigned long dm_bufio_allocated_vmalloc;
1071 static unsigned long dm_bufio_current_allocated;
1072
1073 /*----------------------------------------------------------------*/
1074
1075 /*
1076 * The current number of clients.
1077 */
1078 static int dm_bufio_client_count;
1079
1080 /*
1081 * The list of all clients.
1082 */
1083 static LIST_HEAD(dm_bufio_all_clients);
1084
1085 /*
1086 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1087 */
1088 static DEFINE_MUTEX(dm_bufio_clients_lock);
1089
1090 static struct workqueue_struct *dm_bufio_wq;
1091 static struct delayed_work dm_bufio_cleanup_old_work;
1092 static struct work_struct dm_bufio_replacement_work;
1093
1094
1095 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)1096 static void buffer_record_stack(struct dm_buffer *b)
1097 {
1098 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1099 }
1100 #endif
1101
1102 /*----------------------------------------------------------------*/
1103
adjust_total_allocated(struct dm_buffer * b,bool unlink)1104 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1105 {
1106 unsigned char data_mode;
1107 long diff;
1108
1109 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1110 &dm_bufio_allocated_kmem_cache,
1111 &dm_bufio_allocated_kmalloc,
1112 &dm_bufio_allocated_get_free_pages,
1113 &dm_bufio_allocated_vmalloc,
1114 };
1115
1116 data_mode = b->data_mode;
1117 diff = (long)b->c->block_size;
1118 if (unlink)
1119 diff = -diff;
1120
1121 spin_lock(&global_spinlock);
1122
1123 *class_ptr[data_mode] += diff;
1124
1125 dm_bufio_current_allocated += diff;
1126
1127 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1128 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1129
1130 if (!unlink) {
1131 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1132 queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1133 }
1134
1135 spin_unlock(&global_spinlock);
1136 }
1137
1138 /*
1139 * Change the number of clients and recalculate per-client limit.
1140 */
__cache_size_refresh(void)1141 static void __cache_size_refresh(void)
1142 {
1143 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1144 return;
1145 if (WARN_ON(dm_bufio_client_count < 0))
1146 return;
1147
1148 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1149
1150 /*
1151 * Use default if set to 0 and report the actual cache size used.
1152 */
1153 if (!dm_bufio_cache_size_latch) {
1154 (void)cmpxchg(&dm_bufio_cache_size, 0,
1155 dm_bufio_default_cache_size);
1156 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1157 }
1158 }
1159
1160 /*
1161 * Allocating buffer data.
1162 *
1163 * Small buffers are allocated with kmem_cache, to use space optimally.
1164 *
1165 * For large buffers, we choose between get_free_pages and vmalloc.
1166 * Each has advantages and disadvantages.
1167 *
1168 * __get_free_pages can randomly fail if the memory is fragmented.
1169 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1170 * as low as 128M) so using it for caching is not appropriate.
1171 *
1172 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1173 * won't have a fatal effect here, but it just causes flushes of some other
1174 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1175 * always fails (i.e. order > MAX_PAGE_ORDER).
1176 *
1177 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1178 * initial reserve allocation, so there's no risk of wasting all vmalloc
1179 * space.
1180 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,unsigned char * data_mode)1181 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1182 unsigned char *data_mode)
1183 {
1184 if (unlikely(c->slab_cache != NULL)) {
1185 *data_mode = DATA_MODE_SLAB;
1186 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1187 }
1188
1189 if (unlikely(c->block_size < PAGE_SIZE)) {
1190 *data_mode = DATA_MODE_KMALLOC;
1191 return kmalloc(c->block_size, gfp_mask | __GFP_RECLAIMABLE);
1192 }
1193
1194 if (c->block_size <= KMALLOC_MAX_SIZE &&
1195 gfp_mask & __GFP_NORETRY) {
1196 *data_mode = DATA_MODE_GET_FREE_PAGES;
1197 return (void *)__get_free_pages(gfp_mask,
1198 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1199 }
1200
1201 *data_mode = DATA_MODE_VMALLOC;
1202
1203 return __vmalloc(c->block_size, gfp_mask);
1204 }
1205
1206 /*
1207 * Free buffer's data.
1208 */
free_buffer_data(struct dm_bufio_client * c,void * data,unsigned char data_mode)1209 static void free_buffer_data(struct dm_bufio_client *c,
1210 void *data, unsigned char data_mode)
1211 {
1212 switch (data_mode) {
1213 case DATA_MODE_SLAB:
1214 kmem_cache_free(c->slab_cache, data);
1215 break;
1216
1217 case DATA_MODE_KMALLOC:
1218 kfree(data);
1219 break;
1220
1221 case DATA_MODE_GET_FREE_PAGES:
1222 free_pages((unsigned long)data,
1223 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1224 break;
1225
1226 case DATA_MODE_VMALLOC:
1227 vfree(data);
1228 break;
1229
1230 default:
1231 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1232 data_mode);
1233 BUG();
1234 }
1235 }
1236
1237 /*
1238 * Allocate buffer and its data.
1239 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)1240 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1241 {
1242 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1243
1244 if (!b)
1245 return NULL;
1246
1247 b->c = c;
1248
1249 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1250 if (!b->data) {
1251 kmem_cache_free(c->slab_buffer, b);
1252 return NULL;
1253 }
1254 adjust_total_allocated(b, false);
1255
1256 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1257 b->stack_len = 0;
1258 #endif
1259 return b;
1260 }
1261
1262 /*
1263 * Free buffer and its data.
1264 */
free_buffer(struct dm_buffer * b)1265 static void free_buffer(struct dm_buffer *b)
1266 {
1267 struct dm_bufio_client *c = b->c;
1268
1269 adjust_total_allocated(b, true);
1270 free_buffer_data(c, b->data, b->data_mode);
1271 kmem_cache_free(c->slab_buffer, b);
1272 }
1273
1274 /*
1275 *--------------------------------------------------------------------------
1276 * Submit I/O on the buffer.
1277 *
1278 * Bio interface is faster but it has some problems:
1279 * the vector list is limited (increasing this limit increases
1280 * memory-consumption per buffer, so it is not viable);
1281 *
1282 * the memory must be direct-mapped, not vmalloced;
1283 *
1284 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1285 * it is not vmalloced, try using the bio interface.
1286 *
1287 * If the buffer is big, if it is vmalloced or if the underlying device
1288 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1289 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1290 * shortcomings.
1291 *--------------------------------------------------------------------------
1292 */
1293
1294 /*
1295 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1296 * that the request was handled directly with bio interface.
1297 */
dmio_complete(unsigned long error,void * context)1298 static void dmio_complete(unsigned long error, void *context)
1299 {
1300 struct dm_buffer *b = context;
1301
1302 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1303 }
1304
use_dmio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1305 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1306 unsigned int n_sectors, unsigned int offset,
1307 unsigned short ioprio)
1308 {
1309 int r;
1310 struct dm_io_request io_req = {
1311 .bi_opf = op,
1312 .notify.fn = dmio_complete,
1313 .notify.context = b,
1314 .client = b->c->dm_io,
1315 };
1316 struct dm_io_region region = {
1317 .bdev = b->c->bdev,
1318 .sector = sector,
1319 .count = n_sectors,
1320 };
1321
1322 if (b->data_mode != DATA_MODE_VMALLOC) {
1323 io_req.mem.type = DM_IO_KMEM;
1324 io_req.mem.ptr.addr = (char *)b->data + offset;
1325 } else {
1326 io_req.mem.type = DM_IO_VMA;
1327 io_req.mem.ptr.vma = (char *)b->data + offset;
1328 }
1329
1330 r = dm_io(&io_req, 1, ®ion, NULL, ioprio);
1331 if (unlikely(r))
1332 b->end_io(b, errno_to_blk_status(r));
1333 }
1334
bio_complete(struct bio * bio)1335 static void bio_complete(struct bio *bio)
1336 {
1337 struct dm_buffer *b = bio->bi_private;
1338 blk_status_t status = bio->bi_status;
1339
1340 bio_uninit(bio);
1341 kfree(bio);
1342 b->end_io(b, status);
1343 }
1344
use_bio(struct dm_buffer * b,enum req_op op,sector_t sector,unsigned int n_sectors,unsigned int offset,unsigned short ioprio)1345 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1346 unsigned int n_sectors, unsigned int offset,
1347 unsigned short ioprio)
1348 {
1349 struct bio *bio;
1350 char *ptr;
1351 unsigned int len;
1352
1353 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1354 if (!bio) {
1355 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1356 return;
1357 }
1358 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1359 bio->bi_iter.bi_sector = sector;
1360 bio->bi_end_io = bio_complete;
1361 bio->bi_private = b;
1362 bio->bi_ioprio = ioprio;
1363
1364 ptr = (char *)b->data + offset;
1365 len = n_sectors << SECTOR_SHIFT;
1366
1367 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1368
1369 submit_bio(bio);
1370 }
1371
block_to_sector(struct dm_bufio_client * c,sector_t block)1372 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1373 {
1374 sector_t sector;
1375
1376 if (likely(c->sectors_per_block_bits >= 0))
1377 sector = block << c->sectors_per_block_bits;
1378 else
1379 sector = block * (c->block_size >> SECTOR_SHIFT);
1380 sector += c->start;
1381
1382 return sector;
1383 }
1384
submit_io(struct dm_buffer * b,enum req_op op,unsigned short ioprio,void (* end_io)(struct dm_buffer *,blk_status_t))1385 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1386 void (*end_io)(struct dm_buffer *, blk_status_t))
1387 {
1388 unsigned int n_sectors;
1389 sector_t sector;
1390 unsigned int offset, end;
1391
1392 b->end_io = end_io;
1393
1394 sector = block_to_sector(b->c, b->block);
1395
1396 if (op != REQ_OP_WRITE) {
1397 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1398 offset = 0;
1399 } else {
1400 if (b->c->write_callback)
1401 b->c->write_callback(b);
1402 offset = b->write_start;
1403 end = b->write_end;
1404 offset &= -DM_BUFIO_WRITE_ALIGN;
1405 end += DM_BUFIO_WRITE_ALIGN - 1;
1406 end &= -DM_BUFIO_WRITE_ALIGN;
1407 if (unlikely(end > b->c->block_size))
1408 end = b->c->block_size;
1409
1410 sector += offset >> SECTOR_SHIFT;
1411 n_sectors = (end - offset) >> SECTOR_SHIFT;
1412 }
1413
1414 if (b->data_mode != DATA_MODE_VMALLOC)
1415 use_bio(b, op, sector, n_sectors, offset, ioprio);
1416 else
1417 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1418 }
1419
1420 /*
1421 *--------------------------------------------------------------
1422 * Writing dirty buffers
1423 *--------------------------------------------------------------
1424 */
1425
1426 /*
1427 * The endio routine for write.
1428 *
1429 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1430 * it.
1431 */
write_endio(struct dm_buffer * b,blk_status_t status)1432 static void write_endio(struct dm_buffer *b, blk_status_t status)
1433 {
1434 b->write_error = status;
1435 if (unlikely(status)) {
1436 struct dm_bufio_client *c = b->c;
1437
1438 (void)cmpxchg(&c->async_write_error, 0,
1439 blk_status_to_errno(status));
1440 }
1441
1442 BUG_ON(!test_bit(B_WRITING, &b->state));
1443
1444 smp_mb__before_atomic();
1445 clear_bit(B_WRITING, &b->state);
1446 smp_mb__after_atomic();
1447
1448 wake_up_bit(&b->state, B_WRITING);
1449 }
1450
1451 /*
1452 * Initiate a write on a dirty buffer, but don't wait for it.
1453 *
1454 * - If the buffer is not dirty, exit.
1455 * - If there some previous write going on, wait for it to finish (we can't
1456 * have two writes on the same buffer simultaneously).
1457 * - Submit our write and don't wait on it. We set B_WRITING indicating
1458 * that there is a write in progress.
1459 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)1460 static void __write_dirty_buffer(struct dm_buffer *b,
1461 struct list_head *write_list)
1462 {
1463 if (!test_bit(B_DIRTY, &b->state))
1464 return;
1465
1466 clear_bit(B_DIRTY, &b->state);
1467 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1468
1469 b->write_start = b->dirty_start;
1470 b->write_end = b->dirty_end;
1471
1472 if (!write_list)
1473 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1474 else
1475 list_add_tail(&b->write_list, write_list);
1476 }
1477
__flush_write_list(struct list_head * write_list)1478 static void __flush_write_list(struct list_head *write_list)
1479 {
1480 struct blk_plug plug;
1481
1482 blk_start_plug(&plug);
1483 while (!list_empty(write_list)) {
1484 struct dm_buffer *b =
1485 list_entry(write_list->next, struct dm_buffer, write_list);
1486 list_del(&b->write_list);
1487 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1488 cond_resched();
1489 }
1490 blk_finish_plug(&plug);
1491 }
1492
1493 /*
1494 * Wait until any activity on the buffer finishes. Possibly write the
1495 * buffer if it is dirty. When this function finishes, there is no I/O
1496 * running on the buffer and the buffer is not dirty.
1497 */
__make_buffer_clean(struct dm_buffer * b)1498 static void __make_buffer_clean(struct dm_buffer *b)
1499 {
1500 BUG_ON(atomic_read(&b->hold_count));
1501
1502 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1503 if (!smp_load_acquire(&b->state)) /* fast case */
1504 return;
1505
1506 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1507 __write_dirty_buffer(b, NULL);
1508 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1509 }
1510
is_clean(struct dm_buffer * b,void * context)1511 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1512 {
1513 struct dm_bufio_client *c = context;
1514
1515 /* These should never happen */
1516 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1517 return ER_DONT_EVICT;
1518 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1519 return ER_DONT_EVICT;
1520 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1521 return ER_DONT_EVICT;
1522
1523 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1524 unlikely(test_bit(B_READING, &b->state)))
1525 return ER_DONT_EVICT;
1526
1527 return ER_EVICT;
1528 }
1529
is_dirty(struct dm_buffer * b,void * context)1530 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1531 {
1532 /* These should never happen */
1533 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1534 return ER_DONT_EVICT;
1535 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1536 return ER_DONT_EVICT;
1537
1538 return ER_EVICT;
1539 }
1540
1541 /*
1542 * Find some buffer that is not held by anybody, clean it, unlink it and
1543 * return it.
1544 */
__get_unclaimed_buffer(struct dm_bufio_client * c)1545 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1546 {
1547 struct dm_buffer *b;
1548
1549 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1550 if (b) {
1551 /* this also waits for pending reads */
1552 __make_buffer_clean(b);
1553 return b;
1554 }
1555
1556 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1557 return NULL;
1558
1559 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1560 if (b) {
1561 __make_buffer_clean(b);
1562 return b;
1563 }
1564
1565 return NULL;
1566 }
1567
1568 /*
1569 * Wait until some other threads free some buffer or release hold count on
1570 * some buffer.
1571 *
1572 * This function is entered with c->lock held, drops it and regains it
1573 * before exiting.
1574 */
__wait_for_free_buffer(struct dm_bufio_client * c)1575 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1576 {
1577 DECLARE_WAITQUEUE(wait, current);
1578
1579 add_wait_queue(&c->free_buffer_wait, &wait);
1580 set_current_state(TASK_UNINTERRUPTIBLE);
1581 dm_bufio_unlock(c);
1582
1583 /*
1584 * It's possible to miss a wake up event since we don't always
1585 * hold c->lock when wake_up is called. So we have a timeout here,
1586 * just in case.
1587 */
1588 io_schedule_timeout(5 * HZ);
1589
1590 remove_wait_queue(&c->free_buffer_wait, &wait);
1591
1592 dm_bufio_lock(c);
1593 }
1594
1595 enum new_flag {
1596 NF_FRESH = 0,
1597 NF_READ = 1,
1598 NF_GET = 2,
1599 NF_PREFETCH = 3
1600 };
1601
1602 /*
1603 * Allocate a new buffer. If the allocation is not possible, wait until
1604 * some other thread frees a buffer.
1605 *
1606 * May drop the lock and regain it.
1607 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)1608 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1609 {
1610 struct dm_buffer *b;
1611 bool tried_noio_alloc = false;
1612
1613 /*
1614 * dm-bufio is resistant to allocation failures (it just keeps
1615 * one buffer reserved in cases all the allocations fail).
1616 * So set flags to not try too hard:
1617 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1618 * mutex and wait ourselves.
1619 * __GFP_NORETRY: don't retry and rather return failure
1620 * __GFP_NOMEMALLOC: don't use emergency reserves
1621 * __GFP_NOWARN: don't print a warning in case of failure
1622 *
1623 * For debugging, if we set the cache size to 1, no new buffers will
1624 * be allocated.
1625 */
1626 while (1) {
1627 if (dm_bufio_cache_size_latch != 1) {
1628 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1629 if (b)
1630 return b;
1631 }
1632
1633 if (nf == NF_PREFETCH)
1634 return NULL;
1635
1636 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1637 dm_bufio_unlock(c);
1638 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1639 dm_bufio_lock(c);
1640 if (b)
1641 return b;
1642 tried_noio_alloc = true;
1643 }
1644
1645 if (!list_empty(&c->reserved_buffers)) {
1646 b = list_to_buffer(c->reserved_buffers.next);
1647 list_del(&b->lru.list);
1648 c->need_reserved_buffers++;
1649
1650 return b;
1651 }
1652
1653 b = __get_unclaimed_buffer(c);
1654 if (b)
1655 return b;
1656
1657 __wait_for_free_buffer(c);
1658 }
1659 }
1660
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)1661 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1662 {
1663 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1664
1665 if (!b)
1666 return NULL;
1667
1668 if (c->alloc_callback)
1669 c->alloc_callback(b);
1670
1671 return b;
1672 }
1673
1674 /*
1675 * Free a buffer and wake other threads waiting for free buffers.
1676 */
__free_buffer_wake(struct dm_buffer * b)1677 static void __free_buffer_wake(struct dm_buffer *b)
1678 {
1679 struct dm_bufio_client *c = b->c;
1680
1681 b->block = -1;
1682 if (!c->need_reserved_buffers)
1683 free_buffer(b);
1684 else {
1685 list_add(&b->lru.list, &c->reserved_buffers);
1686 c->need_reserved_buffers--;
1687 }
1688
1689 /*
1690 * We hold the bufio lock here, so no one can add entries to the
1691 * wait queue anyway.
1692 */
1693 if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1694 wake_up(&c->free_buffer_wait);
1695 }
1696
cleaned(struct dm_buffer * b,void * context)1697 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1698 {
1699 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1700 return ER_DONT_EVICT; /* should never happen */
1701
1702 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1703 return ER_DONT_EVICT;
1704 else
1705 return ER_EVICT;
1706 }
1707
__move_clean_buffers(struct dm_bufio_client * c)1708 static void __move_clean_buffers(struct dm_bufio_client *c)
1709 {
1710 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1711 }
1712
1713 struct write_context {
1714 int no_wait;
1715 struct list_head *write_list;
1716 };
1717
write_one(struct dm_buffer * b,void * context)1718 static enum it_action write_one(struct dm_buffer *b, void *context)
1719 {
1720 struct write_context *wc = context;
1721
1722 if (wc->no_wait && test_bit(B_WRITING, &b->state))
1723 return IT_COMPLETE;
1724
1725 __write_dirty_buffer(b, wc->write_list);
1726 return IT_NEXT;
1727 }
1728
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)1729 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1730 struct list_head *write_list)
1731 {
1732 struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1733
1734 __move_clean_buffers(c);
1735 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1736 }
1737
1738 /*
1739 * Check if we're over watermark.
1740 * If we are over threshold_buffers, start freeing buffers.
1741 * If we're over "limit_buffers", block until we get under the limit.
1742 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)1743 static void __check_watermark(struct dm_bufio_client *c,
1744 struct list_head *write_list)
1745 {
1746 if (cache_count(&c->cache, LIST_DIRTY) >
1747 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1748 __write_dirty_buffers_async(c, 1, write_list);
1749 }
1750
1751 /*
1752 *--------------------------------------------------------------
1753 * Getting a buffer
1754 *--------------------------------------------------------------
1755 */
1756
cache_put_and_wake(struct dm_bufio_client * c,struct dm_buffer * b)1757 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1758 {
1759 /*
1760 * Relying on waitqueue_active() is racey, but we sleep
1761 * with schedule_timeout anyway.
1762 */
1763 if (cache_put(&c->cache, b) &&
1764 unlikely(waitqueue_active(&c->free_buffer_wait)))
1765 wake_up(&c->free_buffer_wait);
1766 }
1767
1768 /*
1769 * This assumes you have already checked the cache to see if the buffer
1770 * is already present (it will recheck after dropping the lock for allocation).
1771 */
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)1772 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1773 enum new_flag nf, int *need_submit,
1774 struct list_head *write_list)
1775 {
1776 struct dm_buffer *b, *new_b = NULL;
1777
1778 *need_submit = 0;
1779
1780 /* This can't be called with NF_GET */
1781 if (WARN_ON_ONCE(nf == NF_GET))
1782 return NULL;
1783
1784 new_b = __alloc_buffer_wait(c, nf);
1785 if (!new_b)
1786 return NULL;
1787
1788 /*
1789 * We've had a period where the mutex was unlocked, so need to
1790 * recheck the buffer tree.
1791 */
1792 b = cache_get(&c->cache, block);
1793 if (b) {
1794 __free_buffer_wake(new_b);
1795 goto found_buffer;
1796 }
1797
1798 __check_watermark(c, write_list);
1799
1800 b = new_b;
1801 atomic_set(&b->hold_count, 1);
1802 WRITE_ONCE(b->last_accessed, jiffies);
1803 b->block = block;
1804 b->read_error = 0;
1805 b->write_error = 0;
1806 b->list_mode = LIST_CLEAN;
1807
1808 if (nf == NF_FRESH)
1809 b->state = 0;
1810 else {
1811 b->state = 1 << B_READING;
1812 *need_submit = 1;
1813 }
1814
1815 /*
1816 * We mustn't insert into the cache until the B_READING state
1817 * is set. Otherwise another thread could get it and use
1818 * it before it had been read.
1819 */
1820 cache_insert(&c->cache, b);
1821
1822 return b;
1823
1824 found_buffer:
1825 if (nf == NF_PREFETCH) {
1826 cache_put_and_wake(c, b);
1827 return NULL;
1828 }
1829
1830 /*
1831 * Note: it is essential that we don't wait for the buffer to be
1832 * read if dm_bufio_get function is used. Both dm_bufio_get and
1833 * dm_bufio_prefetch can be used in the driver request routine.
1834 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1835 * the same buffer, it would deadlock if we waited.
1836 */
1837 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1838 cache_put_and_wake(c, b);
1839 return NULL;
1840 }
1841
1842 return b;
1843 }
1844
1845 /*
1846 * The endio routine for reading: set the error, clear the bit and wake up
1847 * anyone waiting on the buffer.
1848 */
read_endio(struct dm_buffer * b,blk_status_t status)1849 static void read_endio(struct dm_buffer *b, blk_status_t status)
1850 {
1851 b->read_error = status;
1852
1853 BUG_ON(!test_bit(B_READING, &b->state));
1854
1855 smp_mb__before_atomic();
1856 clear_bit(B_READING, &b->state);
1857 smp_mb__after_atomic();
1858
1859 wake_up_bit(&b->state, B_READING);
1860 }
1861
1862 /*
1863 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1864 * functions is similar except that dm_bufio_new doesn't read the
1865 * buffer from the disk (assuming that the caller overwrites all the data
1866 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1867 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp,unsigned short ioprio)1868 static void *new_read(struct dm_bufio_client *c, sector_t block,
1869 enum new_flag nf, struct dm_buffer **bp,
1870 unsigned short ioprio)
1871 {
1872 int need_submit = 0;
1873 struct dm_buffer *b;
1874
1875 LIST_HEAD(write_list);
1876
1877 *bp = NULL;
1878
1879 /*
1880 * Fast path, hopefully the block is already in the cache. No need
1881 * to get the client lock for this.
1882 */
1883 b = cache_get(&c->cache, block);
1884 if (b) {
1885 if (nf == NF_PREFETCH) {
1886 cache_put_and_wake(c, b);
1887 return NULL;
1888 }
1889
1890 /*
1891 * Note: it is essential that we don't wait for the buffer to be
1892 * read if dm_bufio_get function is used. Both dm_bufio_get and
1893 * dm_bufio_prefetch can be used in the driver request routine.
1894 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1895 * the same buffer, it would deadlock if we waited.
1896 */
1897 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1898 cache_put_and_wake(c, b);
1899 return NULL;
1900 }
1901 }
1902
1903 if (!b) {
1904 if (nf == NF_GET)
1905 return NULL;
1906
1907 dm_bufio_lock(c);
1908 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1909 dm_bufio_unlock(c);
1910 }
1911
1912 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1913 if (b && (atomic_read(&b->hold_count) == 1))
1914 buffer_record_stack(b);
1915 #endif
1916
1917 __flush_write_list(&write_list);
1918
1919 if (!b)
1920 return NULL;
1921
1922 if (need_submit)
1923 submit_io(b, REQ_OP_READ, ioprio, read_endio);
1924
1925 if (nf != NF_GET) /* we already tested this condition above */
1926 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1927
1928 if (b->read_error) {
1929 int error = blk_status_to_errno(b->read_error);
1930
1931 dm_bufio_release(b);
1932
1933 return ERR_PTR(error);
1934 }
1935
1936 *bp = b;
1937
1938 return b->data;
1939 }
1940
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1941 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1942 struct dm_buffer **bp)
1943 {
1944 return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1945 }
1946 EXPORT_SYMBOL_GPL(dm_bufio_get);
1947
__dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1948 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1949 struct dm_buffer **bp, unsigned short ioprio)
1950 {
1951 if (WARN_ON_ONCE(dm_bufio_in_request()))
1952 return ERR_PTR(-EINVAL);
1953
1954 return new_read(c, block, NF_READ, bp, ioprio);
1955 }
1956
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1957 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1958 struct dm_buffer **bp)
1959 {
1960 return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1961 }
1962 EXPORT_SYMBOL_GPL(dm_bufio_read);
1963
dm_bufio_read_with_ioprio(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp,unsigned short ioprio)1964 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1965 struct dm_buffer **bp, unsigned short ioprio)
1966 {
1967 return __dm_bufio_read(c, block, bp, ioprio);
1968 }
1969 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1970
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1971 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1972 struct dm_buffer **bp)
1973 {
1974 if (WARN_ON_ONCE(dm_bufio_in_request()))
1975 return ERR_PTR(-EINVAL);
1976
1977 return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1978 }
1979 EXPORT_SYMBOL_GPL(dm_bufio_new);
1980
__dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)1981 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1982 sector_t block, unsigned int n_blocks,
1983 unsigned short ioprio)
1984 {
1985 struct blk_plug plug;
1986
1987 LIST_HEAD(write_list);
1988
1989 if (WARN_ON_ONCE(dm_bufio_in_request()))
1990 return; /* should never happen */
1991
1992 blk_start_plug(&plug);
1993
1994 for (; n_blocks--; block++) {
1995 int need_submit;
1996 struct dm_buffer *b;
1997
1998 b = cache_get(&c->cache, block);
1999 if (b) {
2000 /* already in cache */
2001 cache_put_and_wake(c, b);
2002 continue;
2003 }
2004
2005 dm_bufio_lock(c);
2006 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
2007 &write_list);
2008 if (unlikely(!list_empty(&write_list))) {
2009 dm_bufio_unlock(c);
2010 blk_finish_plug(&plug);
2011 __flush_write_list(&write_list);
2012 blk_start_plug(&plug);
2013 dm_bufio_lock(c);
2014 }
2015 if (unlikely(b != NULL)) {
2016 dm_bufio_unlock(c);
2017
2018 if (need_submit)
2019 submit_io(b, REQ_OP_READ, ioprio, read_endio);
2020 dm_bufio_release(b);
2021
2022 cond_resched();
2023
2024 if (!n_blocks)
2025 goto flush_plug;
2026 dm_bufio_lock(c);
2027 }
2028 dm_bufio_unlock(c);
2029 }
2030
2031 flush_plug:
2032 blk_finish_plug(&plug);
2033 }
2034
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks)2035 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2036 {
2037 return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2038 }
2039 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2040
dm_bufio_prefetch_with_ioprio(struct dm_bufio_client * c,sector_t block,unsigned int n_blocks,unsigned short ioprio)2041 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2042 unsigned int n_blocks, unsigned short ioprio)
2043 {
2044 return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2045 }
2046 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2047
dm_bufio_release(struct dm_buffer * b)2048 void dm_bufio_release(struct dm_buffer *b)
2049 {
2050 struct dm_bufio_client *c = b->c;
2051
2052 /*
2053 * If there were errors on the buffer, and the buffer is not
2054 * to be written, free the buffer. There is no point in caching
2055 * invalid buffer.
2056 */
2057 if ((b->read_error || b->write_error) &&
2058 !test_bit_acquire(B_READING, &b->state) &&
2059 !test_bit(B_WRITING, &b->state) &&
2060 !test_bit(B_DIRTY, &b->state)) {
2061 dm_bufio_lock(c);
2062
2063 /* cache remove can fail if there are other holders */
2064 if (cache_remove(&c->cache, b)) {
2065 __free_buffer_wake(b);
2066 dm_bufio_unlock(c);
2067 return;
2068 }
2069
2070 dm_bufio_unlock(c);
2071 }
2072
2073 cache_put_and_wake(c, b);
2074 }
2075 EXPORT_SYMBOL_GPL(dm_bufio_release);
2076
dm_bufio_mark_partial_buffer_dirty(struct dm_buffer * b,unsigned int start,unsigned int end)2077 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2078 unsigned int start, unsigned int end)
2079 {
2080 struct dm_bufio_client *c = b->c;
2081
2082 BUG_ON(start >= end);
2083 BUG_ON(end > b->c->block_size);
2084
2085 dm_bufio_lock(c);
2086
2087 BUG_ON(test_bit(B_READING, &b->state));
2088
2089 if (!test_and_set_bit(B_DIRTY, &b->state)) {
2090 b->dirty_start = start;
2091 b->dirty_end = end;
2092 cache_mark(&c->cache, b, LIST_DIRTY);
2093 } else {
2094 if (start < b->dirty_start)
2095 b->dirty_start = start;
2096 if (end > b->dirty_end)
2097 b->dirty_end = end;
2098 }
2099
2100 dm_bufio_unlock(c);
2101 }
2102 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2103
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)2104 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2105 {
2106 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2107 }
2108 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2109
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)2110 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2111 {
2112 LIST_HEAD(write_list);
2113
2114 if (WARN_ON_ONCE(dm_bufio_in_request()))
2115 return; /* should never happen */
2116
2117 dm_bufio_lock(c);
2118 __write_dirty_buffers_async(c, 0, &write_list);
2119 dm_bufio_unlock(c);
2120 __flush_write_list(&write_list);
2121 }
2122 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2123
2124 /*
2125 * For performance, it is essential that the buffers are written asynchronously
2126 * and simultaneously (so that the block layer can merge the writes) and then
2127 * waited upon.
2128 *
2129 * Finally, we flush hardware disk cache.
2130 */
is_writing(struct lru_entry * e,void * context)2131 static bool is_writing(struct lru_entry *e, void *context)
2132 {
2133 struct dm_buffer *b = le_to_buffer(e);
2134
2135 return test_bit(B_WRITING, &b->state);
2136 }
2137
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)2138 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2139 {
2140 int a, f;
2141 unsigned long nr_buffers;
2142 struct lru_entry *e;
2143 struct lru_iter it;
2144
2145 LIST_HEAD(write_list);
2146
2147 dm_bufio_lock(c);
2148 __write_dirty_buffers_async(c, 0, &write_list);
2149 dm_bufio_unlock(c);
2150 __flush_write_list(&write_list);
2151 dm_bufio_lock(c);
2152
2153 nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2154 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2155 while ((e = lru_iter_next(&it, is_writing, c))) {
2156 struct dm_buffer *b = le_to_buffer(e);
2157 __cache_inc_buffer(b);
2158
2159 BUG_ON(test_bit(B_READING, &b->state));
2160
2161 if (nr_buffers) {
2162 nr_buffers--;
2163 dm_bufio_unlock(c);
2164 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2165 dm_bufio_lock(c);
2166 } else {
2167 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2168 }
2169
2170 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2171 cache_mark(&c->cache, b, LIST_CLEAN);
2172
2173 cache_put_and_wake(c, b);
2174
2175 cond_resched();
2176 }
2177 lru_iter_end(&it);
2178
2179 wake_up(&c->free_buffer_wait);
2180 dm_bufio_unlock(c);
2181
2182 a = xchg(&c->async_write_error, 0);
2183 f = dm_bufio_issue_flush(c);
2184 if (a)
2185 return a;
2186
2187 return f;
2188 }
2189 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2190
2191 /*
2192 * Use dm-io to send an empty barrier to flush the device.
2193 */
dm_bufio_issue_flush(struct dm_bufio_client * c)2194 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2195 {
2196 struct dm_io_request io_req = {
2197 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2198 .mem.type = DM_IO_KMEM,
2199 .mem.ptr.addr = NULL,
2200 .client = c->dm_io,
2201 };
2202 struct dm_io_region io_reg = {
2203 .bdev = c->bdev,
2204 .sector = 0,
2205 .count = 0,
2206 };
2207
2208 if (WARN_ON_ONCE(dm_bufio_in_request()))
2209 return -EINVAL;
2210
2211 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2212 }
2213 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2214
2215 /*
2216 * Use dm-io to send a discard request to flush the device.
2217 */
dm_bufio_issue_discard(struct dm_bufio_client * c,sector_t block,sector_t count)2218 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2219 {
2220 struct dm_io_request io_req = {
2221 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2222 .mem.type = DM_IO_KMEM,
2223 .mem.ptr.addr = NULL,
2224 .client = c->dm_io,
2225 };
2226 struct dm_io_region io_reg = {
2227 .bdev = c->bdev,
2228 .sector = block_to_sector(c, block),
2229 .count = block_to_sector(c, count),
2230 };
2231
2232 if (WARN_ON_ONCE(dm_bufio_in_request()))
2233 return -EINVAL; /* discards are optional */
2234
2235 return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2236 }
2237 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2238
forget_buffer(struct dm_bufio_client * c,sector_t block)2239 static void forget_buffer(struct dm_bufio_client *c, sector_t block)
2240 {
2241 struct dm_buffer *b;
2242
2243 b = cache_get(&c->cache, block);
2244 if (b) {
2245 if (likely(!smp_load_acquire(&b->state))) {
2246 if (cache_remove(&c->cache, b))
2247 __free_buffer_wake(b);
2248 else
2249 cache_put_and_wake(c, b);
2250 } else {
2251 cache_put_and_wake(c, b);
2252 }
2253 }
2254 }
2255
2256 /*
2257 * Free the given buffer.
2258 *
2259 * This is just a hint, if the buffer is in use or dirty, this function
2260 * does nothing.
2261 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)2262 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2263 {
2264 dm_bufio_lock(c);
2265 forget_buffer(c, block);
2266 dm_bufio_unlock(c);
2267 }
2268 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2269
idle(struct dm_buffer * b,void * context)2270 static enum evict_result idle(struct dm_buffer *b, void *context)
2271 {
2272 return b->state ? ER_DONT_EVICT : ER_EVICT;
2273 }
2274
dm_bufio_forget_buffers(struct dm_bufio_client * c,sector_t block,sector_t n_blocks)2275 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2276 {
2277 dm_bufio_lock(c);
2278 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2279 dm_bufio_unlock(c);
2280 }
2281 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2282
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned int n)2283 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2284 {
2285 c->minimum_buffers = n;
2286 }
2287 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2288
dm_bufio_get_block_size(struct dm_bufio_client * c)2289 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2290 {
2291 return c->block_size;
2292 }
2293 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2294
dm_bufio_get_device_size(struct dm_bufio_client * c)2295 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2296 {
2297 sector_t s = bdev_nr_sectors(c->bdev);
2298
2299 if (s >= c->start)
2300 s -= c->start;
2301 else
2302 s = 0;
2303 if (likely(c->sectors_per_block_bits >= 0))
2304 s >>= c->sectors_per_block_bits;
2305 else
2306 sector_div(s, c->block_size >> SECTOR_SHIFT);
2307 return s;
2308 }
2309 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2310
dm_bufio_get_dm_io_client(struct dm_bufio_client * c)2311 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2312 {
2313 return c->dm_io;
2314 }
2315 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2316
dm_bufio_get_block_number(struct dm_buffer * b)2317 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2318 {
2319 return b->block;
2320 }
2321 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2322
dm_bufio_get_block_data(struct dm_buffer * b)2323 void *dm_bufio_get_block_data(struct dm_buffer *b)
2324 {
2325 return b->data;
2326 }
2327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2328
dm_bufio_get_aux_data(struct dm_buffer * b)2329 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2330 {
2331 return b + 1;
2332 }
2333 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2334
dm_bufio_get_client(struct dm_buffer * b)2335 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2336 {
2337 return b->c;
2338 }
2339 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2340
warn_leak(struct dm_buffer * b,void * context)2341 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2342 {
2343 bool *warned = context;
2344
2345 WARN_ON(!(*warned));
2346 *warned = true;
2347 DMERR("leaked buffer %llx, hold count %u, list %d",
2348 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2349 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2350 stack_trace_print(b->stack_entries, b->stack_len, 1);
2351 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2352 atomic_set(&b->hold_count, 0);
2353 #endif
2354 return IT_NEXT;
2355 }
2356
drop_buffers(struct dm_bufio_client * c)2357 static void drop_buffers(struct dm_bufio_client *c)
2358 {
2359 int i;
2360 struct dm_buffer *b;
2361
2362 if (WARN_ON(dm_bufio_in_request()))
2363 return; /* should never happen */
2364
2365 /*
2366 * An optimization so that the buffers are not written one-by-one.
2367 */
2368 dm_bufio_write_dirty_buffers_async(c);
2369
2370 dm_bufio_lock(c);
2371
2372 while ((b = __get_unclaimed_buffer(c)))
2373 __free_buffer_wake(b);
2374
2375 for (i = 0; i < LIST_SIZE; i++) {
2376 bool warned = false;
2377
2378 cache_iterate(&c->cache, i, warn_leak, &warned);
2379 }
2380
2381 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2382 while ((b = __get_unclaimed_buffer(c)))
2383 __free_buffer_wake(b);
2384 #endif
2385
2386 for (i = 0; i < LIST_SIZE; i++)
2387 WARN_ON(cache_count(&c->cache, i));
2388
2389 dm_bufio_unlock(c);
2390 }
2391
get_retain_buffers(struct dm_bufio_client * c)2392 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2393 {
2394 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2395
2396 if (likely(c->sectors_per_block_bits >= 0))
2397 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2398 else
2399 retain_bytes /= c->block_size;
2400
2401 return retain_bytes;
2402 }
2403
__scan(struct dm_bufio_client * c)2404 static void __scan(struct dm_bufio_client *c)
2405 {
2406 int l;
2407 struct dm_buffer *b;
2408 unsigned long freed = 0;
2409 unsigned long retain_target = get_retain_buffers(c);
2410 unsigned long count = cache_total(&c->cache);
2411
2412 for (l = 0; l < LIST_SIZE; l++) {
2413 while (true) {
2414 if (count - freed <= retain_target)
2415 atomic_long_set(&c->need_shrink, 0);
2416 if (!atomic_long_read(&c->need_shrink))
2417 break;
2418
2419 b = cache_evict(&c->cache, l,
2420 l == LIST_CLEAN ? is_clean : is_dirty, c);
2421 if (!b)
2422 break;
2423
2424 __make_buffer_clean(b);
2425 __free_buffer_wake(b);
2426
2427 atomic_long_dec(&c->need_shrink);
2428 freed++;
2429
2430 if (unlikely(freed % SCAN_RESCHED_CYCLE == 0)) {
2431 dm_bufio_unlock(c);
2432 cond_resched();
2433 dm_bufio_lock(c);
2434 }
2435 }
2436 }
2437 }
2438
shrink_work(struct work_struct * w)2439 static void shrink_work(struct work_struct *w)
2440 {
2441 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2442
2443 dm_bufio_lock(c);
2444 __scan(c);
2445 dm_bufio_unlock(c);
2446 }
2447
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)2448 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2449 {
2450 struct dm_bufio_client *c;
2451
2452 c = shrink->private_data;
2453 atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2454 queue_work(dm_bufio_wq, &c->shrink_work);
2455
2456 return sc->nr_to_scan;
2457 }
2458
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)2459 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2460 {
2461 struct dm_bufio_client *c = shrink->private_data;
2462 unsigned long count = cache_total(&c->cache);
2463 unsigned long retain_target = get_retain_buffers(c);
2464 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2465
2466 if (unlikely(count < retain_target))
2467 count = 0;
2468 else
2469 count -= retain_target;
2470
2471 if (unlikely(count < queued_for_cleanup))
2472 count = 0;
2473 else
2474 count -= queued_for_cleanup;
2475
2476 return count;
2477 }
2478
2479 /*
2480 * Create the buffering interface
2481 */
dm_bufio_client_create(struct block_device * bdev,unsigned int block_size,unsigned int reserved_buffers,unsigned int aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *),unsigned int flags)2482 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2483 unsigned int reserved_buffers, unsigned int aux_size,
2484 void (*alloc_callback)(struct dm_buffer *),
2485 void (*write_callback)(struct dm_buffer *),
2486 unsigned int flags)
2487 {
2488 int r;
2489 unsigned int num_locks;
2490 struct dm_bufio_client *c;
2491 char slab_name[64];
2492 static atomic_t seqno = ATOMIC_INIT(0);
2493
2494 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2495 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2496 r = -EINVAL;
2497 goto bad_client;
2498 }
2499
2500 num_locks = dm_num_hash_locks();
2501 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2502 if (!c) {
2503 r = -ENOMEM;
2504 goto bad_client;
2505 }
2506 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2507
2508 c->bdev = bdev;
2509 c->block_size = block_size;
2510 if (is_power_of_2(block_size))
2511 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2512 else
2513 c->sectors_per_block_bits = -1;
2514
2515 c->alloc_callback = alloc_callback;
2516 c->write_callback = write_callback;
2517
2518 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2519 c->no_sleep = true;
2520 static_branch_inc(&no_sleep_enabled);
2521 }
2522
2523 mutex_init(&c->lock);
2524 spin_lock_init(&c->spinlock);
2525 INIT_LIST_HEAD(&c->reserved_buffers);
2526 c->need_reserved_buffers = reserved_buffers;
2527
2528 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2529
2530 init_waitqueue_head(&c->free_buffer_wait);
2531 c->async_write_error = 0;
2532
2533 c->dm_io = dm_io_client_create();
2534 if (IS_ERR(c->dm_io)) {
2535 r = PTR_ERR(c->dm_io);
2536 goto bad_dm_io;
2537 }
2538
2539 if (block_size <= KMALLOC_MAX_SIZE && !is_power_of_2(block_size)) {
2540 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2541
2542 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u-%u",
2543 block_size, atomic_inc_return(&seqno));
2544 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2545 SLAB_RECLAIM_ACCOUNT, NULL);
2546 if (!c->slab_cache) {
2547 r = -ENOMEM;
2548 goto bad;
2549 }
2550 }
2551 if (aux_size)
2552 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u-%u",
2553 aux_size, atomic_inc_return(&seqno));
2554 else
2555 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u",
2556 atomic_inc_return(&seqno));
2557 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2558 0, SLAB_RECLAIM_ACCOUNT, NULL);
2559 if (!c->slab_buffer) {
2560 r = -ENOMEM;
2561 goto bad;
2562 }
2563
2564 while (c->need_reserved_buffers) {
2565 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2566
2567 if (!b) {
2568 r = -ENOMEM;
2569 goto bad;
2570 }
2571 __free_buffer_wake(b);
2572 }
2573
2574 INIT_WORK(&c->shrink_work, shrink_work);
2575 atomic_long_set(&c->need_shrink, 0);
2576
2577 c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2578 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2579 if (!c->shrinker) {
2580 r = -ENOMEM;
2581 goto bad;
2582 }
2583
2584 c->shrinker->count_objects = dm_bufio_shrink_count;
2585 c->shrinker->scan_objects = dm_bufio_shrink_scan;
2586 c->shrinker->seeks = 1;
2587 c->shrinker->batch = 0;
2588 c->shrinker->private_data = c;
2589
2590 shrinker_register(c->shrinker);
2591
2592 mutex_lock(&dm_bufio_clients_lock);
2593 dm_bufio_client_count++;
2594 list_add(&c->client_list, &dm_bufio_all_clients);
2595 __cache_size_refresh();
2596 mutex_unlock(&dm_bufio_clients_lock);
2597
2598 return c;
2599
2600 bad:
2601 while (!list_empty(&c->reserved_buffers)) {
2602 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2603
2604 list_del(&b->lru.list);
2605 free_buffer(b);
2606 }
2607 kmem_cache_destroy(c->slab_cache);
2608 kmem_cache_destroy(c->slab_buffer);
2609 dm_io_client_destroy(c->dm_io);
2610 bad_dm_io:
2611 mutex_destroy(&c->lock);
2612 if (c->no_sleep)
2613 static_branch_dec(&no_sleep_enabled);
2614 kfree(c);
2615 bad_client:
2616 return ERR_PTR(r);
2617 }
2618 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2619
2620 /*
2621 * Free the buffering interface.
2622 * It is required that there are no references on any buffers.
2623 */
dm_bufio_client_destroy(struct dm_bufio_client * c)2624 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2625 {
2626 unsigned int i;
2627
2628 drop_buffers(c);
2629
2630 shrinker_free(c->shrinker);
2631 flush_work(&c->shrink_work);
2632
2633 mutex_lock(&dm_bufio_clients_lock);
2634
2635 list_del(&c->client_list);
2636 dm_bufio_client_count--;
2637 __cache_size_refresh();
2638
2639 mutex_unlock(&dm_bufio_clients_lock);
2640
2641 WARN_ON(c->need_reserved_buffers);
2642
2643 while (!list_empty(&c->reserved_buffers)) {
2644 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2645
2646 list_del(&b->lru.list);
2647 free_buffer(b);
2648 }
2649
2650 for (i = 0; i < LIST_SIZE; i++)
2651 if (cache_count(&c->cache, i))
2652 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2653
2654 for (i = 0; i < LIST_SIZE; i++)
2655 WARN_ON(cache_count(&c->cache, i));
2656
2657 cache_destroy(&c->cache);
2658 kmem_cache_destroy(c->slab_cache);
2659 kmem_cache_destroy(c->slab_buffer);
2660 dm_io_client_destroy(c->dm_io);
2661 mutex_destroy(&c->lock);
2662 if (c->no_sleep)
2663 static_branch_dec(&no_sleep_enabled);
2664 kfree(c);
2665 }
2666 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2667
dm_bufio_client_reset(struct dm_bufio_client * c)2668 void dm_bufio_client_reset(struct dm_bufio_client *c)
2669 {
2670 drop_buffers(c);
2671 flush_work(&c->shrink_work);
2672 }
2673 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2674
dm_bufio_set_sector_offset(struct dm_bufio_client * c,sector_t start)2675 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2676 {
2677 c->start = start;
2678 }
2679 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2680
2681 /*--------------------------------------------------------------*/
2682
get_max_age_hz(void)2683 static unsigned int get_max_age_hz(void)
2684 {
2685 unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2686
2687 if (max_age > UINT_MAX / HZ)
2688 max_age = UINT_MAX / HZ;
2689
2690 return max_age * HZ;
2691 }
2692
older_than(struct dm_buffer * b,unsigned long age_hz)2693 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2694 {
2695 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2696 }
2697
2698 struct evict_params {
2699 gfp_t gfp;
2700 unsigned long age_hz;
2701
2702 /*
2703 * This gets updated with the largest last_accessed (ie. most
2704 * recently used) of the evicted buffers. It will not be reinitialised
2705 * by __evict_many(), so you can use it across multiple invocations.
2706 */
2707 unsigned long last_accessed;
2708 };
2709
2710 /*
2711 * We may not be able to evict this buffer if IO pending or the client
2712 * is still using it.
2713 *
2714 * And if GFP_NOFS is used, we must not do any I/O because we hold
2715 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2716 * rerouted to different bufio client.
2717 */
select_for_evict(struct dm_buffer * b,void * context)2718 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2719 {
2720 struct evict_params *params = context;
2721
2722 if (!(params->gfp & __GFP_FS) ||
2723 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2724 if (test_bit_acquire(B_READING, &b->state) ||
2725 test_bit(B_WRITING, &b->state) ||
2726 test_bit(B_DIRTY, &b->state))
2727 return ER_DONT_EVICT;
2728 }
2729
2730 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2731 }
2732
__evict_many(struct dm_bufio_client * c,struct evict_params * params,int list_mode,unsigned long max_count)2733 static unsigned long __evict_many(struct dm_bufio_client *c,
2734 struct evict_params *params,
2735 int list_mode, unsigned long max_count)
2736 {
2737 unsigned long count;
2738 unsigned long last_accessed;
2739 struct dm_buffer *b;
2740
2741 for (count = 0; count < max_count; count++) {
2742 b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2743 if (!b)
2744 break;
2745
2746 last_accessed = READ_ONCE(b->last_accessed);
2747 if (time_after_eq(params->last_accessed, last_accessed))
2748 params->last_accessed = last_accessed;
2749
2750 __make_buffer_clean(b);
2751 __free_buffer_wake(b);
2752
2753 cond_resched();
2754 }
2755
2756 return count;
2757 }
2758
evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)2759 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2760 {
2761 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2762 unsigned long retain = get_retain_buffers(c);
2763 unsigned long count;
2764 LIST_HEAD(write_list);
2765
2766 dm_bufio_lock(c);
2767
2768 __check_watermark(c, &write_list);
2769 if (unlikely(!list_empty(&write_list))) {
2770 dm_bufio_unlock(c);
2771 __flush_write_list(&write_list);
2772 dm_bufio_lock(c);
2773 }
2774
2775 count = cache_total(&c->cache);
2776 if (count > retain)
2777 __evict_many(c, ¶ms, LIST_CLEAN, count - retain);
2778
2779 dm_bufio_unlock(c);
2780 }
2781
cleanup_old_buffers(void)2782 static void cleanup_old_buffers(void)
2783 {
2784 unsigned long max_age_hz = get_max_age_hz();
2785 struct dm_bufio_client *c;
2786
2787 mutex_lock(&dm_bufio_clients_lock);
2788
2789 __cache_size_refresh();
2790
2791 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2792 evict_old_buffers(c, max_age_hz);
2793
2794 mutex_unlock(&dm_bufio_clients_lock);
2795 }
2796
work_fn(struct work_struct * w)2797 static void work_fn(struct work_struct *w)
2798 {
2799 cleanup_old_buffers();
2800
2801 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2802 DM_BUFIO_WORK_TIMER_SECS * HZ);
2803 }
2804
2805 /*--------------------------------------------------------------*/
2806
2807 /*
2808 * Global cleanup tries to evict the oldest buffers from across _all_
2809 * the clients. It does this by repeatedly evicting a few buffers from
2810 * the client that holds the oldest buffer. It's approximate, but hopefully
2811 * good enough.
2812 */
__pop_client(void)2813 static struct dm_bufio_client *__pop_client(void)
2814 {
2815 struct list_head *h;
2816
2817 if (list_empty(&dm_bufio_all_clients))
2818 return NULL;
2819
2820 h = dm_bufio_all_clients.next;
2821 list_del(h);
2822 return container_of(h, struct dm_bufio_client, client_list);
2823 }
2824
2825 /*
2826 * Inserts the client in the global client list based on its
2827 * 'oldest_buffer' field.
2828 */
__insert_client(struct dm_bufio_client * new_client)2829 static void __insert_client(struct dm_bufio_client *new_client)
2830 {
2831 struct dm_bufio_client *c;
2832 struct list_head *h = dm_bufio_all_clients.next;
2833
2834 while (h != &dm_bufio_all_clients) {
2835 c = container_of(h, struct dm_bufio_client, client_list);
2836 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2837 break;
2838 h = h->next;
2839 }
2840
2841 list_add_tail(&new_client->client_list, h);
2842 }
2843
__evict_a_few(unsigned long nr_buffers)2844 static unsigned long __evict_a_few(unsigned long nr_buffers)
2845 {
2846 unsigned long count;
2847 struct dm_bufio_client *c;
2848 struct evict_params params = {
2849 .gfp = GFP_KERNEL,
2850 .age_hz = 0,
2851 /* set to jiffies in case there are no buffers in this client */
2852 .last_accessed = jiffies
2853 };
2854
2855 c = __pop_client();
2856 if (!c)
2857 return 0;
2858
2859 dm_bufio_lock(c);
2860 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers);
2861 dm_bufio_unlock(c);
2862
2863 if (count)
2864 c->oldest_buffer = params.last_accessed;
2865 __insert_client(c);
2866
2867 return count;
2868 }
2869
check_watermarks(void)2870 static void check_watermarks(void)
2871 {
2872 LIST_HEAD(write_list);
2873 struct dm_bufio_client *c;
2874
2875 mutex_lock(&dm_bufio_clients_lock);
2876 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2877 dm_bufio_lock(c);
2878 __check_watermark(c, &write_list);
2879 dm_bufio_unlock(c);
2880 }
2881 mutex_unlock(&dm_bufio_clients_lock);
2882
2883 __flush_write_list(&write_list);
2884 }
2885
evict_old(void)2886 static void evict_old(void)
2887 {
2888 unsigned long threshold = dm_bufio_cache_size -
2889 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2890
2891 mutex_lock(&dm_bufio_clients_lock);
2892 while (dm_bufio_current_allocated > threshold) {
2893 if (!__evict_a_few(64))
2894 break;
2895 cond_resched();
2896 }
2897 mutex_unlock(&dm_bufio_clients_lock);
2898 }
2899
do_global_cleanup(struct work_struct * w)2900 static void do_global_cleanup(struct work_struct *w)
2901 {
2902 check_watermarks();
2903 evict_old();
2904 }
2905
2906 /*
2907 *--------------------------------------------------------------
2908 * Module setup
2909 *--------------------------------------------------------------
2910 */
2911
2912 /*
2913 * This is called only once for the whole dm_bufio module.
2914 * It initializes memory limit.
2915 */
dm_bufio_init(void)2916 static int __init dm_bufio_init(void)
2917 {
2918 __u64 mem;
2919
2920 dm_bufio_allocated_kmem_cache = 0;
2921 dm_bufio_allocated_kmalloc = 0;
2922 dm_bufio_allocated_get_free_pages = 0;
2923 dm_bufio_allocated_vmalloc = 0;
2924 dm_bufio_current_allocated = 0;
2925
2926 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2927 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2928
2929 if (mem > ULONG_MAX)
2930 mem = ULONG_MAX;
2931
2932 #ifdef CONFIG_MMU
2933 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2934 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2935 #endif
2936
2937 dm_bufio_default_cache_size = mem;
2938
2939 mutex_lock(&dm_bufio_clients_lock);
2940 __cache_size_refresh();
2941 mutex_unlock(&dm_bufio_clients_lock);
2942
2943 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2944 if (!dm_bufio_wq)
2945 return -ENOMEM;
2946
2947 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2948 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2949 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2950 DM_BUFIO_WORK_TIMER_SECS * HZ);
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * This is called once when unloading the dm_bufio module.
2957 */
dm_bufio_exit(void)2958 static void __exit dm_bufio_exit(void)
2959 {
2960 int bug = 0;
2961
2962 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2963 destroy_workqueue(dm_bufio_wq);
2964
2965 if (dm_bufio_client_count) {
2966 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2967 __func__, dm_bufio_client_count);
2968 bug = 1;
2969 }
2970
2971 if (dm_bufio_current_allocated) {
2972 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2973 __func__, dm_bufio_current_allocated);
2974 bug = 1;
2975 }
2976
2977 if (dm_bufio_allocated_get_free_pages) {
2978 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2979 __func__, dm_bufio_allocated_get_free_pages);
2980 bug = 1;
2981 }
2982
2983 if (dm_bufio_allocated_vmalloc) {
2984 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2985 __func__, dm_bufio_allocated_vmalloc);
2986 bug = 1;
2987 }
2988
2989 WARN_ON(bug); /* leaks are not worth crashing the system */
2990 }
2991
2992 module_init(dm_bufio_init)
2993 module_exit(dm_bufio_exit)
2994
2995 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2996 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2997
2998 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2999 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
3000
3001 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
3002 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
3003
3004 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
3005 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
3006
3007 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
3008 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
3009
3010 module_param_named(allocated_kmalloc_bytes, dm_bufio_allocated_kmalloc, ulong, 0444);
3011 MODULE_PARM_DESC(allocated_kmalloc_bytes, "Memory allocated with kmalloc_alloc");
3012
3013 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
3014 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
3015
3016 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
3017 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
3018
3019 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
3020 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3021
3022 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3023 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3024 MODULE_LICENSE("GPL");
3025