1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Analog Devices AD7944/85/86 PulSAR ADC family driver.
4  *
5  * Copyright 2024 Analog Devices, Inc.
6  * Copyright 2024 BayLibre, SAS
7  */
8 
9 #include <linux/align.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/spi/offload/consumer.h>
20 #include <linux/spi/spi.h>
21 #include <linux/string_helpers.h>
22 #include <linux/units.h>
23 
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer-dmaengine.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 
30 #define AD7944_INTERNAL_REF_MV		4096
31 
32 struct ad7944_timing_spec {
33 	/* Normal mode max conversion time (t_{CONV}). */
34 	unsigned int conv_ns;
35 	/* TURBO mode max conversion time (t_{CONV}). */
36 	unsigned int turbo_conv_ns;
37 };
38 
39 enum ad7944_spi_mode {
40 	/* datasheet calls this "4-wire mode" */
41 	AD7944_SPI_MODE_DEFAULT,
42 	/* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */
43 	AD7944_SPI_MODE_SINGLE,
44 	/* datasheet calls this "chain mode" */
45 	AD7944_SPI_MODE_CHAIN,
46 };
47 
48 /* maps adi,spi-mode property value to enum */
49 static const char * const ad7944_spi_modes[] = {
50 	[AD7944_SPI_MODE_DEFAULT] = "",
51 	[AD7944_SPI_MODE_SINGLE] = "single",
52 	[AD7944_SPI_MODE_CHAIN] = "chain",
53 };
54 
55 struct ad7944_adc {
56 	struct spi_device *spi;
57 	enum ad7944_spi_mode spi_mode;
58 	struct spi_transfer xfers[3];
59 	struct spi_message msg;
60 	struct spi_transfer offload_xfers[2];
61 	struct spi_message offload_msg;
62 	struct spi_offload *offload;
63 	struct spi_offload_trigger *offload_trigger;
64 	unsigned long offload_trigger_hz;
65 	int sample_freq_range[3];
66 	void *chain_mode_buf;
67 	/* Chip-specific timing specifications. */
68 	const struct ad7944_timing_spec *timing_spec;
69 	/* GPIO connected to CNV pin. */
70 	struct gpio_desc *cnv;
71 	/* Optional GPIO to enable turbo mode. */
72 	struct gpio_desc *turbo;
73 	/* Indicates TURBO is hard-wired to be always enabled. */
74 	bool always_turbo;
75 	/* Reference voltage (millivolts). */
76 	unsigned int ref_mv;
77 
78 	/*
79 	 * DMA (thus cache coherency maintenance) requires the
80 	 * transfer buffers to live in their own cache lines.
81 	 */
82 	struct {
83 		union {
84 			u16 u16;
85 			u32 u32;
86 		} raw;
87 		aligned_s64 timestamp;
88 	 } sample __aligned(IIO_DMA_MINALIGN);
89 };
90 
91 /* quite time before CNV rising edge */
92 #define AD7944_T_QUIET_NS	20
93 /* minimum CNV high time to trigger conversion */
94 #define AD7944_T_CNVH_NS	10
95 
96 static const struct ad7944_timing_spec ad7944_timing_spec = {
97 	.conv_ns = 420,
98 	.turbo_conv_ns = 320,
99 };
100 
101 static const struct ad7944_timing_spec ad7986_timing_spec = {
102 	.conv_ns = 500,
103 	.turbo_conv_ns = 400,
104 };
105 
106 struct ad7944_chip_info {
107 	const char *name;
108 	const struct ad7944_timing_spec *timing_spec;
109 	u32 max_sample_rate_hz;
110 	const struct iio_chan_spec channels[2];
111 	const struct iio_chan_spec offload_channels[1];
112 };
113 
114 /* get number of bytes for SPI xfer */
115 #define AD7944_SPI_BYTES(scan_type) ((scan_type).realbits > 16 ? 4 : 2)
116 
117 /*
118  * AD7944_DEFINE_CHIP_INFO - Define a chip info structure for a specific chip
119  * @_name: The name of the chip
120  * @_ts: The timing specification for the chip
121  * @_max: The maximum sample rate in Hz
122  * @_bits: The number of bits in the conversion result
123  * @_diff: Whether the chip is true differential or not
124  */
125 #define AD7944_DEFINE_CHIP_INFO(_name, _ts, _max, _bits, _diff)		\
126 static const struct ad7944_chip_info _name##_chip_info = {		\
127 	.name = #_name,							\
128 	.timing_spec = &_ts##_timing_spec,				\
129 	.max_sample_rate_hz = _max,					\
130 	.channels = {							\
131 		{							\
132 			.type = IIO_VOLTAGE,				\
133 			.indexed = 1,					\
134 			.differential = _diff,				\
135 			.channel = 0,					\
136 			.channel2 = _diff ? 1 : 0,			\
137 			.scan_index = 0,				\
138 			.scan_type.sign = _diff ? 's' : 'u',		\
139 			.scan_type.realbits = _bits,			\
140 			.scan_type.storagebits = _bits > 16 ? 32 : 16,	\
141 			.scan_type.endianness = IIO_CPU,		\
142 			.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
143 					| BIT(IIO_CHAN_INFO_SCALE),	\
144 		},							\
145 		IIO_CHAN_SOFT_TIMESTAMP(1),				\
146 	},								\
147 	.offload_channels = {						\
148 		{							\
149 			.type = IIO_VOLTAGE,				\
150 			.indexed = 1,					\
151 			.differential = _diff,				\
152 			.channel = 0,					\
153 			.channel2 = _diff ? 1 : 0,			\
154 			.scan_index = 0,				\
155 			.scan_type.sign = _diff ? 's' : 'u',		\
156 			.scan_type.realbits = _bits,			\
157 			.scan_type.storagebits = 32,			\
158 			.scan_type.endianness = IIO_CPU,		\
159 			.info_mask_separate = BIT(IIO_CHAN_INFO_RAW)	\
160 					| BIT(IIO_CHAN_INFO_SCALE)	\
161 					| BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
162 			.info_mask_separate_available =			\
163 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
164 		},							\
165 	},								\
166 }
167 
168 /*
169  * Notes on the offload channels:
170  * - There is no soft timestamp since everything is done in hardware.
171  * - There is a sampling frequency attribute added. This controls the SPI
172  *   offload trigger.
173  * - The storagebits value depends on the SPI offload provider. Currently there
174  *   is only one supported provider, namely the ADI PULSAR ADC HDL project,
175  *   which always uses 32-bit words for data values, even for <= 16-bit ADCs.
176  *   So the value is just hardcoded to 32 for now.
177  */
178 
179 /* pseudo-differential with ground sense */
180 AD7944_DEFINE_CHIP_INFO(ad7944, ad7944, 2.5 * MEGA, 14, 0);
181 AD7944_DEFINE_CHIP_INFO(ad7985, ad7944, 2.5 * MEGA, 16, 0);
182 /* fully differential */
183 AD7944_DEFINE_CHIP_INFO(ad7986, ad7986, 2 * MEGA, 18, 1);
184 
ad7944_3wire_cs_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)185 static int ad7944_3wire_cs_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
186 					 const struct iio_chan_spec *chan)
187 {
188 	unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
189 						   : adc->timing_spec->conv_ns;
190 	struct spi_transfer *xfers = adc->xfers;
191 
192 	/*
193 	 * NB: can get better performance from some SPI controllers if we use
194 	 * the same bits_per_word in every transfer.
195 	 */
196 	xfers[0].bits_per_word = chan->scan_type.realbits;
197 	/*
198 	 * CS is tied to CNV and we need a low to high transition to start the
199 	 * conversion, so place CNV low for t_QUIET to prepare for this.
200 	 */
201 	xfers[0].delay.value = AD7944_T_QUIET_NS;
202 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
203 
204 	/*
205 	 * CS has to be high for full conversion time to avoid triggering the
206 	 * busy indication.
207 	 */
208 	xfers[1].cs_off = 1;
209 	xfers[1].delay.value = t_conv_ns;
210 	xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
211 	xfers[1].bits_per_word = chan->scan_type.realbits;
212 
213 	/* Then we can read the data during the acquisition phase */
214 	xfers[2].rx_buf = &adc->sample.raw;
215 	xfers[2].len = AD7944_SPI_BYTES(chan->scan_type);
216 	xfers[2].bits_per_word = chan->scan_type.realbits;
217 
218 	spi_message_init_with_transfers(&adc->msg, xfers, 3);
219 
220 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
221 }
222 
ad7944_4wire_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)223 static int ad7944_4wire_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
224 				      const struct iio_chan_spec *chan)
225 {
226 	unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
227 						   : adc->timing_spec->conv_ns;
228 	struct spi_transfer *xfers = adc->xfers;
229 
230 	/*
231 	 * NB: can get better performance from some SPI controllers if we use
232 	 * the same bits_per_word in every transfer.
233 	 */
234 	xfers[0].bits_per_word = chan->scan_type.realbits;
235 	/*
236 	 * CS has to be high for full conversion time to avoid triggering the
237 	 * busy indication.
238 	 */
239 	xfers[0].cs_off = 1;
240 	xfers[0].delay.value = t_conv_ns;
241 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
242 
243 	xfers[1].rx_buf = &adc->sample.raw;
244 	xfers[1].len = AD7944_SPI_BYTES(chan->scan_type);
245 	xfers[1].bits_per_word = chan->scan_type.realbits;
246 
247 	spi_message_init_with_transfers(&adc->msg, xfers, 2);
248 
249 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
250 }
251 
ad7944_chain_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan,u32 n_chain_dev)252 static int ad7944_chain_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
253 				      const struct iio_chan_spec *chan,
254 				      u32 n_chain_dev)
255 {
256 	struct spi_transfer *xfers = adc->xfers;
257 
258 	/*
259 	 * NB: SCLK has to be low before we toggle CS to avoid triggering the
260 	 * busy indication.
261 	 */
262 	if (adc->spi->mode & SPI_CPOL)
263 		return dev_err_probe(dev, -EINVAL,
264 				     "chain mode requires ~SPI_CPOL\n");
265 
266 	/*
267 	 * We only support CNV connected to CS in chain mode and we need CNV
268 	 * to be high during the transfer to trigger the conversion.
269 	 */
270 	if (!(adc->spi->mode & SPI_CS_HIGH))
271 		return dev_err_probe(dev, -EINVAL,
272 				     "chain mode requires SPI_CS_HIGH\n");
273 
274 	/* CNV has to be high for full conversion time before reading data. */
275 	xfers[0].delay.value = adc->timing_spec->conv_ns;
276 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
277 
278 	xfers[1].rx_buf = adc->chain_mode_buf;
279 	xfers[1].len = AD7944_SPI_BYTES(chan->scan_type) * n_chain_dev;
280 	xfers[1].bits_per_word = chan->scan_type.realbits;
281 
282 	spi_message_init_with_transfers(&adc->msg, xfers, 2);
283 
284 	return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
285 }
286 
287 /*
288  * Unlike ad7944_3wire_cs_mode_init_msg(), this creates a message that reads
289  * during the conversion phase instead of the acquisition phase when reading
290  * a sample from the ADC. This is needed to be able to read at the maximum
291  * sample rate. It requires the SPI controller to have offload support and a
292  * high enough SCLK rate to read the sample during the conversion phase.
293  */
ad7944_3wire_cs_mode_init_offload_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)294 static int ad7944_3wire_cs_mode_init_offload_msg(struct device *dev,
295 						 struct ad7944_adc *adc,
296 						 const struct iio_chan_spec *chan)
297 {
298 	struct spi_transfer *xfers = adc->offload_xfers;
299 	int ret;
300 
301 	/*
302 	 * CS is tied to CNV and we need a low to high transition to start the
303 	 * conversion, so place CNV low for t_QUIET to prepare for this.
304 	 */
305 	xfers[0].delay.value = AD7944_T_QUIET_NS;
306 	xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
307 	/* CNV has to be high for a minimum time to trigger conversion. */
308 	xfers[0].cs_change = 1;
309 	xfers[0].cs_change_delay.value = AD7944_T_CNVH_NS;
310 	xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
311 
312 	/* Then we can read the previous sample during the conversion phase */
313 	xfers[1].offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
314 	xfers[1].len = AD7944_SPI_BYTES(chan->scan_type);
315 	xfers[1].bits_per_word = chan->scan_type.realbits;
316 
317 	spi_message_init_with_transfers(&adc->offload_msg, xfers,
318 					ARRAY_SIZE(adc->offload_xfers));
319 
320 	adc->offload_msg.offload = adc->offload;
321 
322 	ret = devm_spi_optimize_message(dev, adc->spi, &adc->offload_msg);
323 	if (ret)
324 		return dev_err_probe(dev, ret, "failed to prepare offload msg\n");
325 
326 	return 0;
327 }
328 
329 /**
330  * ad7944_convert_and_acquire - Perform a single conversion and acquisition
331  * @adc: The ADC device structure
332  * Return: 0 on success, a negative error code on failure
333  *
334  * Perform a conversion and acquisition of a single sample using the
335  * pre-optimized adc->msg.
336  *
337  * Upon successful return adc->sample.raw will contain the conversion result
338  * (or adc->chain_mode_buf if the device is using chain mode).
339  */
ad7944_convert_and_acquire(struct ad7944_adc * adc)340 static int ad7944_convert_and_acquire(struct ad7944_adc *adc)
341 {
342 	int ret;
343 
344 	/*
345 	 * In 4-wire mode, the CNV line is held high for the entire conversion
346 	 * and acquisition process. In other modes adc->cnv is NULL and is
347 	 * ignored (CS is wired to CNV in those cases).
348 	 */
349 	gpiod_set_value_cansleep(adc->cnv, 1);
350 	ret = spi_sync(adc->spi, &adc->msg);
351 	gpiod_set_value_cansleep(adc->cnv, 0);
352 
353 	return ret;
354 }
355 
ad7944_single_conversion(struct ad7944_adc * adc,const struct iio_chan_spec * chan,int * val)356 static int ad7944_single_conversion(struct ad7944_adc *adc,
357 				    const struct iio_chan_spec *chan,
358 				    int *val)
359 {
360 	int ret;
361 
362 	ret = ad7944_convert_and_acquire(adc);
363 	if (ret)
364 		return ret;
365 
366 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
367 		if (chan->scan_type.realbits > 16)
368 			*val = ((u32 *)adc->chain_mode_buf)[chan->scan_index];
369 		else
370 			*val = ((u16 *)adc->chain_mode_buf)[chan->scan_index];
371 	} else {
372 		if (chan->scan_type.realbits > 16)
373 			*val = adc->sample.raw.u32;
374 		else
375 			*val = adc->sample.raw.u16;
376 	}
377 
378 	if (chan->scan_type.sign == 's')
379 		*val = sign_extend32(*val, chan->scan_type.realbits - 1);
380 
381 	return IIO_VAL_INT;
382 }
383 
ad7944_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)384 static int ad7944_read_avail(struct iio_dev *indio_dev,
385 			     struct iio_chan_spec const *chan,
386 			     const int **vals, int *type, int *length,
387 			     long mask)
388 {
389 	struct ad7944_adc *adc = iio_priv(indio_dev);
390 
391 	switch (mask) {
392 	case IIO_CHAN_INFO_SAMP_FREQ:
393 		*vals = adc->sample_freq_range;
394 		*type = IIO_VAL_INT;
395 		return IIO_AVAIL_RANGE;
396 	default:
397 		return -EINVAL;
398 	}
399 }
400 
ad7944_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long info)401 static int ad7944_read_raw(struct iio_dev *indio_dev,
402 			   const struct iio_chan_spec *chan,
403 			   int *val, int *val2, long info)
404 {
405 	struct ad7944_adc *adc = iio_priv(indio_dev);
406 	int ret;
407 
408 	switch (info) {
409 	case IIO_CHAN_INFO_RAW:
410 		if (!iio_device_claim_direct(indio_dev))
411 			return -EBUSY;
412 
413 		ret = ad7944_single_conversion(adc, chan, val);
414 		iio_device_release_direct(indio_dev);
415 		return ret;
416 
417 	case IIO_CHAN_INFO_SCALE:
418 		switch (chan->type) {
419 		case IIO_VOLTAGE:
420 			*val = adc->ref_mv;
421 
422 			if (chan->scan_type.sign == 's')
423 				*val2 = chan->scan_type.realbits - 1;
424 			else
425 				*val2 = chan->scan_type.realbits;
426 
427 			return IIO_VAL_FRACTIONAL_LOG2;
428 		default:
429 			return -EINVAL;
430 		}
431 
432 	case IIO_CHAN_INFO_SAMP_FREQ:
433 		*val = adc->offload_trigger_hz;
434 		return IIO_VAL_INT;
435 
436 	default:
437 		return -EINVAL;
438 	}
439 }
440 
ad7944_set_sample_freq(struct ad7944_adc * adc,int val)441 static int ad7944_set_sample_freq(struct ad7944_adc *adc, int val)
442 {
443 	struct spi_offload_trigger_config config = {
444 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
445 		.periodic = {
446 			.frequency_hz = val,
447 		},
448 	};
449 	int ret;
450 
451 	ret = spi_offload_trigger_validate(adc->offload_trigger, &config);
452 	if (ret)
453 		return ret;
454 
455 	adc->offload_trigger_hz = config.periodic.frequency_hz;
456 
457 	return 0;
458 }
459 
ad7944_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long info)460 static int ad7944_write_raw(struct iio_dev *indio_dev,
461 			    const struct iio_chan_spec *chan,
462 			    int val, int val2, long info)
463 {
464 	struct ad7944_adc *adc = iio_priv(indio_dev);
465 
466 	switch (info) {
467 	case IIO_CHAN_INFO_SAMP_FREQ:
468 		if (val < 1 || val > adc->sample_freq_range[2])
469 			return -EINVAL;
470 
471 		return ad7944_set_sample_freq(adc, val);
472 	default:
473 		return -EINVAL;
474 	}
475 }
476 
ad7944_write_raw_get_fmt(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,long mask)477 static int ad7944_write_raw_get_fmt(struct iio_dev *indio_dev,
478 				    const struct iio_chan_spec *chan,
479 				    long mask)
480 {
481 	switch (mask) {
482 	case IIO_CHAN_INFO_SAMP_FREQ:
483 		return IIO_VAL_INT;
484 	default:
485 		return IIO_VAL_INT_PLUS_MICRO;
486 	}
487 }
488 
489 static const struct iio_info ad7944_iio_info = {
490 	.read_avail = &ad7944_read_avail,
491 	.read_raw = &ad7944_read_raw,
492 	.write_raw = &ad7944_write_raw,
493 	.write_raw_get_fmt = &ad7944_write_raw_get_fmt,
494 };
495 
ad7944_offload_buffer_postenable(struct iio_dev * indio_dev)496 static int ad7944_offload_buffer_postenable(struct iio_dev *indio_dev)
497 {
498 	struct ad7944_adc *adc = iio_priv(indio_dev);
499 	struct spi_offload_trigger_config config = {
500 		.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
501 		.periodic = {
502 			.frequency_hz = adc->offload_trigger_hz,
503 		},
504 	};
505 	int ret;
506 
507 	gpiod_set_value_cansleep(adc->turbo, 1);
508 
509 	ret = spi_offload_trigger_enable(adc->offload, adc->offload_trigger,
510 					 &config);
511 	if (ret)
512 		gpiod_set_value_cansleep(adc->turbo, 0);
513 
514 	return ret;
515 }
516 
ad7944_offload_buffer_predisable(struct iio_dev * indio_dev)517 static int ad7944_offload_buffer_predisable(struct iio_dev *indio_dev)
518 {
519 	struct ad7944_adc *adc = iio_priv(indio_dev);
520 
521 	spi_offload_trigger_disable(adc->offload, adc->offload_trigger);
522 	gpiod_set_value_cansleep(adc->turbo, 0);
523 
524 	return 0;
525 }
526 
527 static const struct iio_buffer_setup_ops ad7944_offload_buffer_setup_ops = {
528 	.postenable = &ad7944_offload_buffer_postenable,
529 	.predisable = &ad7944_offload_buffer_predisable,
530 };
531 
ad7944_trigger_handler(int irq,void * p)532 static irqreturn_t ad7944_trigger_handler(int irq, void *p)
533 {
534 	struct iio_poll_func *pf = p;
535 	struct iio_dev *indio_dev = pf->indio_dev;
536 	struct ad7944_adc *adc = iio_priv(indio_dev);
537 	int ret;
538 
539 	ret = ad7944_convert_and_acquire(adc);
540 	if (ret)
541 		goto out;
542 
543 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN)
544 		iio_push_to_buffers_with_timestamp(indio_dev, adc->chain_mode_buf,
545 						   pf->timestamp);
546 	else
547 		iio_push_to_buffers_with_timestamp(indio_dev, &adc->sample.raw,
548 						   pf->timestamp);
549 
550 out:
551 	iio_trigger_notify_done(indio_dev->trig);
552 
553 	return IRQ_HANDLED;
554 }
555 
556 /**
557  * ad7944_chain_mode_alloc - allocate and initialize channel specs and buffers
558  *                           for daisy-chained devices
559  * @dev: The device for devm_ functions
560  * @chan_template: The channel template for the devices (array of 2 channels
561  *                 voltage and timestamp)
562  * @n_chain_dev: The number of devices in the chain
563  * @chain_chan: Pointer to receive the allocated channel specs
564  * @chain_mode_buf: Pointer to receive the allocated rx buffer
565  * @chain_scan_masks: Pointer to receive the allocated scan masks
566  * Return: 0 on success, a negative error code on failure
567  */
ad7944_chain_mode_alloc(struct device * dev,const struct iio_chan_spec * chan_template,u32 n_chain_dev,struct iio_chan_spec ** chain_chan,void ** chain_mode_buf,unsigned long ** chain_scan_masks)568 static int ad7944_chain_mode_alloc(struct device *dev,
569 				   const struct iio_chan_spec *chan_template,
570 				   u32 n_chain_dev,
571 				   struct iio_chan_spec **chain_chan,
572 				   void **chain_mode_buf,
573 				   unsigned long **chain_scan_masks)
574 {
575 	struct iio_chan_spec *chan;
576 	size_t chain_mode_buf_size;
577 	unsigned long *scan_masks;
578 	void *buf;
579 	int i;
580 
581 	/* 1 channel for each device in chain plus 1 for soft timestamp */
582 
583 	chan = devm_kcalloc(dev, n_chain_dev + 1, sizeof(*chan), GFP_KERNEL);
584 	if (!chan)
585 		return -ENOMEM;
586 
587 	for (i = 0; i < n_chain_dev; i++) {
588 		chan[i] = chan_template[0];
589 
590 		if (chan_template[0].differential) {
591 			chan[i].channel = 2 * i;
592 			chan[i].channel2 = 2 * i + 1;
593 		} else {
594 			chan[i].channel = i;
595 		}
596 
597 		chan[i].scan_index = i;
598 	}
599 
600 	/* soft timestamp */
601 	chan[i] = chan_template[1];
602 	chan[i].scan_index = i;
603 
604 	*chain_chan = chan;
605 
606 	/* 1 word for each voltage channel + aligned u64 for timestamp */
607 
608 	chain_mode_buf_size = ALIGN(n_chain_dev *
609 		AD7944_SPI_BYTES(chan[0].scan_type), sizeof(u64)) + sizeof(u64);
610 	buf = devm_kzalloc(dev, chain_mode_buf_size, GFP_KERNEL);
611 	if (!buf)
612 		return -ENOMEM;
613 
614 	*chain_mode_buf = buf;
615 
616 	/*
617 	 * Have to limit n_chain_dev due to current implementation of
618 	 * available_scan_masks.
619 	 */
620 	if (n_chain_dev > BITS_PER_LONG)
621 		return dev_err_probe(dev, -EINVAL,
622 				     "chain is limited to 32 devices\n");
623 
624 	scan_masks = devm_kcalloc(dev, 2, sizeof(*scan_masks), GFP_KERNEL);
625 	if (!scan_masks)
626 		return -ENOMEM;
627 
628 	/*
629 	 * Scan mask is needed since we always have to read all devices in the
630 	 * chain in one SPI transfer.
631 	 */
632 	scan_masks[0] = GENMASK(n_chain_dev - 1, 0);
633 
634 	*chain_scan_masks = scan_masks;
635 
636 	return 0;
637 }
638 
639 static const char * const ad7944_power_supplies[] = {
640 	"avdd",	"dvdd",	"bvdd", "vio"
641 };
642 
643 static const struct spi_offload_config ad7944_offload_config = {
644 	.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
645 			    SPI_OFFLOAD_CAP_RX_STREAM_DMA,
646 };
647 
ad7944_probe(struct spi_device * spi)648 static int ad7944_probe(struct spi_device *spi)
649 {
650 	const struct ad7944_chip_info *chip_info;
651 	struct device *dev = &spi->dev;
652 	struct iio_dev *indio_dev;
653 	struct ad7944_adc *adc;
654 	bool have_refin;
655 	struct iio_chan_spec *chain_chan;
656 	unsigned long *chain_scan_masks;
657 	u32 n_chain_dev;
658 	int ret, ref_mv;
659 
660 	indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
661 	if (!indio_dev)
662 		return -ENOMEM;
663 
664 	adc = iio_priv(indio_dev);
665 	adc->spi = spi;
666 
667 	chip_info = spi_get_device_match_data(spi);
668 	if (!chip_info)
669 		return dev_err_probe(dev, -EINVAL, "no chip info\n");
670 
671 	adc->timing_spec = chip_info->timing_spec;
672 
673 	adc->sample_freq_range[0] = 1; /* min */
674 	adc->sample_freq_range[1] = 1; /* step */
675 	adc->sample_freq_range[2] = chip_info->max_sample_rate_hz; /* max */
676 
677 	ret = device_property_match_property_string(dev, "adi,spi-mode",
678 						    ad7944_spi_modes,
679 						    ARRAY_SIZE(ad7944_spi_modes));
680 	/* absence of adi,spi-mode property means default mode */
681 	if (ret == -EINVAL)
682 		adc->spi_mode = AD7944_SPI_MODE_DEFAULT;
683 	else if (ret < 0)
684 		return dev_err_probe(dev, ret,
685 				     "getting adi,spi-mode property failed\n");
686 	else
687 		adc->spi_mode = ret;
688 
689 	/*
690 	 * Some chips use unusual word sizes, so check now instead of waiting
691 	 * for the first xfer.
692 	 */
693 	if (!spi_is_bpw_supported(spi, chip_info->channels[0].scan_type.realbits))
694 		return dev_err_probe(dev, -EINVAL,
695 				"SPI host does not support %d bits per word\n",
696 				chip_info->channels[0].scan_type.realbits);
697 
698 	ret = devm_regulator_bulk_get_enable(dev,
699 					     ARRAY_SIZE(ad7944_power_supplies),
700 					     ad7944_power_supplies);
701 	if (ret)
702 		return dev_err_probe(dev, ret,
703 				     "failed to get and enable supplies\n");
704 
705 	/*
706 	 * Sort out what is being used for the reference voltage. Options are:
707 	 * - internal reference: neither REF or REFIN is connected
708 	 * - internal reference with external buffer: REF not connected, REFIN
709 	 *   is connected
710 	 * - external reference: REF is connected, REFIN is not connected
711 	 */
712 
713 	ret = devm_regulator_get_enable_read_voltage(dev, "ref");
714 	if (ret < 0 && ret != -ENODEV)
715 		return dev_err_probe(dev, ret, "failed to get REF voltage\n");
716 
717 	ref_mv = ret == -ENODEV ? 0 : ret / 1000;
718 
719 	ret = devm_regulator_get_enable_optional(dev, "refin");
720 	if (ret < 0 && ret != -ENODEV)
721 		return dev_err_probe(dev, ret, "failed to get REFIN voltage\n");
722 
723 	have_refin = ret != -ENODEV;
724 
725 	if (have_refin && ref_mv)
726 		return dev_err_probe(dev, -EINVAL,
727 				     "cannot have both refin and ref supplies\n");
728 
729 	adc->ref_mv = ref_mv ?: AD7944_INTERNAL_REF_MV;
730 
731 	adc->cnv = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_LOW);
732 	if (IS_ERR(adc->cnv))
733 		return dev_err_probe(dev, PTR_ERR(adc->cnv),
734 				     "failed to get CNV GPIO\n");
735 
736 	if (!adc->cnv && adc->spi_mode == AD7944_SPI_MODE_DEFAULT)
737 		return dev_err_probe(&spi->dev, -EINVAL, "CNV GPIO is required\n");
738 	if (adc->cnv && adc->spi_mode != AD7944_SPI_MODE_DEFAULT)
739 		return dev_err_probe(&spi->dev, -EINVAL,
740 				     "CNV GPIO in single and chain mode is not currently supported\n");
741 
742 	adc->turbo = devm_gpiod_get_optional(dev, "turbo", GPIOD_OUT_LOW);
743 	if (IS_ERR(adc->turbo))
744 		return dev_err_probe(dev, PTR_ERR(adc->turbo),
745 				     "failed to get TURBO GPIO\n");
746 
747 	adc->always_turbo = device_property_present(dev, "adi,always-turbo");
748 
749 	if (adc->turbo && adc->always_turbo)
750 		return dev_err_probe(dev, -EINVAL,
751 			"cannot have both turbo-gpios and adi,always-turbo\n");
752 
753 	if (adc->spi_mode == AD7944_SPI_MODE_CHAIN && adc->always_turbo)
754 		return dev_err_probe(dev, -EINVAL,
755 			"cannot have both chain mode and always turbo\n");
756 
757 	switch (adc->spi_mode) {
758 	case AD7944_SPI_MODE_DEFAULT:
759 		ret = ad7944_4wire_mode_init_msg(dev, adc, &chip_info->channels[0]);
760 		if (ret)
761 			return ret;
762 
763 		break;
764 	case AD7944_SPI_MODE_SINGLE:
765 		ret = ad7944_3wire_cs_mode_init_msg(dev, adc, &chip_info->channels[0]);
766 		if (ret)
767 			return ret;
768 
769 		break;
770 	case AD7944_SPI_MODE_CHAIN:
771 		ret = device_property_read_u32(dev, "#daisy-chained-devices",
772 					       &n_chain_dev);
773 		if (ret)
774 			return dev_err_probe(dev, ret,
775 					"failed to get #daisy-chained-devices\n");
776 
777 		ret = ad7944_chain_mode_alloc(dev, chip_info->channels,
778 					      n_chain_dev, &chain_chan,
779 					      &adc->chain_mode_buf,
780 					      &chain_scan_masks);
781 		if (ret)
782 			return ret;
783 
784 		ret = ad7944_chain_mode_init_msg(dev, adc, &chain_chan[0],
785 						 n_chain_dev);
786 		if (ret)
787 			return ret;
788 
789 		break;
790 	}
791 
792 	indio_dev->name = chip_info->name;
793 	indio_dev->modes = INDIO_DIRECT_MODE;
794 	indio_dev->info = &ad7944_iio_info;
795 
796 	adc->offload = devm_spi_offload_get(dev, spi, &ad7944_offload_config);
797 	ret = PTR_ERR_OR_ZERO(adc->offload);
798 	if (ret && ret != -ENODEV)
799 		return dev_err_probe(dev, ret, "failed to get offload\n");
800 
801 	/* Fall back to low speed usage when no SPI offload available. */
802 	if (ret == -ENODEV) {
803 		if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
804 			indio_dev->available_scan_masks = chain_scan_masks;
805 			indio_dev->channels = chain_chan;
806 			indio_dev->num_channels = n_chain_dev + 1;
807 		} else {
808 			indio_dev->channels = chip_info->channels;
809 			indio_dev->num_channels = ARRAY_SIZE(chip_info->channels);
810 		}
811 
812 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
813 						      iio_pollfunc_store_time,
814 						      ad7944_trigger_handler,
815 						      NULL);
816 		if (ret)
817 			return ret;
818 	} else {
819 		struct dma_chan *rx_dma;
820 
821 		if (adc->spi_mode != AD7944_SPI_MODE_SINGLE)
822 			return dev_err_probe(dev, -EINVAL,
823 				"offload only supported in single mode\n");
824 
825 		indio_dev->setup_ops = &ad7944_offload_buffer_setup_ops;
826 		indio_dev->channels = chip_info->offload_channels;
827 		indio_dev->num_channels = ARRAY_SIZE(chip_info->offload_channels);
828 
829 		adc->offload_trigger = devm_spi_offload_trigger_get(dev,
830 			adc->offload, SPI_OFFLOAD_TRIGGER_PERIODIC);
831 		if (IS_ERR(adc->offload_trigger))
832 			return dev_err_probe(dev, PTR_ERR(adc->offload_trigger),
833 					     "failed to get offload trigger\n");
834 
835 		ret = ad7944_set_sample_freq(adc, 2 * MEGA);
836 		if (ret)
837 			return dev_err_probe(dev, ret,
838 					     "failed to init sample rate\n");
839 
840 		rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev,
841 								     adc->offload);
842 		if (IS_ERR(rx_dma))
843 			return dev_err_probe(dev, PTR_ERR(rx_dma),
844 					     "failed to get offload RX DMA\n");
845 
846 		/*
847 		 * REVISIT: ideally, we would confirm that the offload RX DMA
848 		 * buffer layout is the same as what is hard-coded in
849 		 * offload_channels. Right now, the only supported offload
850 		 * is the pulsar_adc project which always uses 32-bit word
851 		 * size for data values, regardless of the SPI bits per word.
852 		 */
853 
854 		ret = devm_iio_dmaengine_buffer_setup_with_handle(dev,
855 			indio_dev, rx_dma, IIO_BUFFER_DIRECTION_IN);
856 		if (ret)
857 			return ret;
858 
859 		ret = ad7944_3wire_cs_mode_init_offload_msg(dev, adc,
860 			&chip_info->offload_channels[0]);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	return devm_iio_device_register(dev, indio_dev);
866 }
867 
868 static const struct of_device_id ad7944_of_match[] = {
869 	{ .compatible = "adi,ad7944", .data = &ad7944_chip_info },
870 	{ .compatible = "adi,ad7985", .data = &ad7985_chip_info },
871 	{ .compatible = "adi,ad7986", .data = &ad7986_chip_info },
872 	{ }
873 };
874 MODULE_DEVICE_TABLE(of, ad7944_of_match);
875 
876 static const struct spi_device_id ad7944_spi_id[] = {
877 	{ "ad7944", (kernel_ulong_t)&ad7944_chip_info },
878 	{ "ad7985", (kernel_ulong_t)&ad7985_chip_info },
879 	{ "ad7986", (kernel_ulong_t)&ad7986_chip_info },
880 	{ }
881 
882 };
883 MODULE_DEVICE_TABLE(spi, ad7944_spi_id);
884 
885 static struct spi_driver ad7944_driver = {
886 	.driver = {
887 		.name = "ad7944",
888 		.of_match_table = ad7944_of_match,
889 	},
890 	.probe = ad7944_probe,
891 	.id_table = ad7944_spi_id,
892 };
893 module_spi_driver(ad7944_driver);
894 
895 MODULE_AUTHOR("David Lechner <dlechner@baylibre.com>");
896 MODULE_DESCRIPTION("Analog Devices AD7944 PulSAR ADC family driver");
897 MODULE_LICENSE("GPL");
898 MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
899