1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Analog Devices AD7944/85/86 PulSAR ADC family driver.
4 *
5 * Copyright 2024 Analog Devices, Inc.
6 * Copyright 2024 BayLibre, SAS
7 */
8
9 #include <linux/align.h>
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/spi/offload/consumer.h>
20 #include <linux/spi/spi.h>
21 #include <linux/string_helpers.h>
22 #include <linux/units.h>
23
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer-dmaengine.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29
30 #define AD7944_INTERNAL_REF_MV 4096
31
32 struct ad7944_timing_spec {
33 /* Normal mode max conversion time (t_{CONV}). */
34 unsigned int conv_ns;
35 /* TURBO mode max conversion time (t_{CONV}). */
36 unsigned int turbo_conv_ns;
37 };
38
39 enum ad7944_spi_mode {
40 /* datasheet calls this "4-wire mode" */
41 AD7944_SPI_MODE_DEFAULT,
42 /* datasheet calls this "3-wire mode" (not related to SPI_3WIRE!) */
43 AD7944_SPI_MODE_SINGLE,
44 /* datasheet calls this "chain mode" */
45 AD7944_SPI_MODE_CHAIN,
46 };
47
48 /* maps adi,spi-mode property value to enum */
49 static const char * const ad7944_spi_modes[] = {
50 [AD7944_SPI_MODE_DEFAULT] = "",
51 [AD7944_SPI_MODE_SINGLE] = "single",
52 [AD7944_SPI_MODE_CHAIN] = "chain",
53 };
54
55 struct ad7944_adc {
56 struct spi_device *spi;
57 enum ad7944_spi_mode spi_mode;
58 struct spi_transfer xfers[3];
59 struct spi_message msg;
60 struct spi_transfer offload_xfers[2];
61 struct spi_message offload_msg;
62 struct spi_offload *offload;
63 struct spi_offload_trigger *offload_trigger;
64 unsigned long offload_trigger_hz;
65 int sample_freq_range[3];
66 void *chain_mode_buf;
67 /* Chip-specific timing specifications. */
68 const struct ad7944_timing_spec *timing_spec;
69 /* GPIO connected to CNV pin. */
70 struct gpio_desc *cnv;
71 /* Optional GPIO to enable turbo mode. */
72 struct gpio_desc *turbo;
73 /* Indicates TURBO is hard-wired to be always enabled. */
74 bool always_turbo;
75 /* Reference voltage (millivolts). */
76 unsigned int ref_mv;
77
78 /*
79 * DMA (thus cache coherency maintenance) requires the
80 * transfer buffers to live in their own cache lines.
81 */
82 struct {
83 union {
84 u16 u16;
85 u32 u32;
86 } raw;
87 aligned_s64 timestamp;
88 } sample __aligned(IIO_DMA_MINALIGN);
89 };
90
91 /* quite time before CNV rising edge */
92 #define AD7944_T_QUIET_NS 20
93 /* minimum CNV high time to trigger conversion */
94 #define AD7944_T_CNVH_NS 10
95
96 static const struct ad7944_timing_spec ad7944_timing_spec = {
97 .conv_ns = 420,
98 .turbo_conv_ns = 320,
99 };
100
101 static const struct ad7944_timing_spec ad7986_timing_spec = {
102 .conv_ns = 500,
103 .turbo_conv_ns = 400,
104 };
105
106 struct ad7944_chip_info {
107 const char *name;
108 const struct ad7944_timing_spec *timing_spec;
109 u32 max_sample_rate_hz;
110 const struct iio_chan_spec channels[2];
111 const struct iio_chan_spec offload_channels[1];
112 };
113
114 /* get number of bytes for SPI xfer */
115 #define AD7944_SPI_BYTES(scan_type) ((scan_type).realbits > 16 ? 4 : 2)
116
117 /*
118 * AD7944_DEFINE_CHIP_INFO - Define a chip info structure for a specific chip
119 * @_name: The name of the chip
120 * @_ts: The timing specification for the chip
121 * @_max: The maximum sample rate in Hz
122 * @_bits: The number of bits in the conversion result
123 * @_diff: Whether the chip is true differential or not
124 */
125 #define AD7944_DEFINE_CHIP_INFO(_name, _ts, _max, _bits, _diff) \
126 static const struct ad7944_chip_info _name##_chip_info = { \
127 .name = #_name, \
128 .timing_spec = &_ts##_timing_spec, \
129 .max_sample_rate_hz = _max, \
130 .channels = { \
131 { \
132 .type = IIO_VOLTAGE, \
133 .indexed = 1, \
134 .differential = _diff, \
135 .channel = 0, \
136 .channel2 = _diff ? 1 : 0, \
137 .scan_index = 0, \
138 .scan_type.sign = _diff ? 's' : 'u', \
139 .scan_type.realbits = _bits, \
140 .scan_type.storagebits = _bits > 16 ? 32 : 16, \
141 .scan_type.endianness = IIO_CPU, \
142 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
143 | BIT(IIO_CHAN_INFO_SCALE), \
144 }, \
145 IIO_CHAN_SOFT_TIMESTAMP(1), \
146 }, \
147 .offload_channels = { \
148 { \
149 .type = IIO_VOLTAGE, \
150 .indexed = 1, \
151 .differential = _diff, \
152 .channel = 0, \
153 .channel2 = _diff ? 1 : 0, \
154 .scan_index = 0, \
155 .scan_type.sign = _diff ? 's' : 'u', \
156 .scan_type.realbits = _bits, \
157 .scan_type.storagebits = 32, \
158 .scan_type.endianness = IIO_CPU, \
159 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
160 | BIT(IIO_CHAN_INFO_SCALE) \
161 | BIT(IIO_CHAN_INFO_SAMP_FREQ), \
162 .info_mask_separate_available = \
163 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
164 }, \
165 }, \
166 }
167
168 /*
169 * Notes on the offload channels:
170 * - There is no soft timestamp since everything is done in hardware.
171 * - There is a sampling frequency attribute added. This controls the SPI
172 * offload trigger.
173 * - The storagebits value depends on the SPI offload provider. Currently there
174 * is only one supported provider, namely the ADI PULSAR ADC HDL project,
175 * which always uses 32-bit words for data values, even for <= 16-bit ADCs.
176 * So the value is just hardcoded to 32 for now.
177 */
178
179 /* pseudo-differential with ground sense */
180 AD7944_DEFINE_CHIP_INFO(ad7944, ad7944, 2.5 * MEGA, 14, 0);
181 AD7944_DEFINE_CHIP_INFO(ad7985, ad7944, 2.5 * MEGA, 16, 0);
182 /* fully differential */
183 AD7944_DEFINE_CHIP_INFO(ad7986, ad7986, 2 * MEGA, 18, 1);
184
ad7944_3wire_cs_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)185 static int ad7944_3wire_cs_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
186 const struct iio_chan_spec *chan)
187 {
188 unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
189 : adc->timing_spec->conv_ns;
190 struct spi_transfer *xfers = adc->xfers;
191
192 /*
193 * NB: can get better performance from some SPI controllers if we use
194 * the same bits_per_word in every transfer.
195 */
196 xfers[0].bits_per_word = chan->scan_type.realbits;
197 /*
198 * CS is tied to CNV and we need a low to high transition to start the
199 * conversion, so place CNV low for t_QUIET to prepare for this.
200 */
201 xfers[0].delay.value = AD7944_T_QUIET_NS;
202 xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
203
204 /*
205 * CS has to be high for full conversion time to avoid triggering the
206 * busy indication.
207 */
208 xfers[1].cs_off = 1;
209 xfers[1].delay.value = t_conv_ns;
210 xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
211 xfers[1].bits_per_word = chan->scan_type.realbits;
212
213 /* Then we can read the data during the acquisition phase */
214 xfers[2].rx_buf = &adc->sample.raw;
215 xfers[2].len = AD7944_SPI_BYTES(chan->scan_type);
216 xfers[2].bits_per_word = chan->scan_type.realbits;
217
218 spi_message_init_with_transfers(&adc->msg, xfers, 3);
219
220 return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
221 }
222
ad7944_4wire_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)223 static int ad7944_4wire_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
224 const struct iio_chan_spec *chan)
225 {
226 unsigned int t_conv_ns = adc->always_turbo ? adc->timing_spec->turbo_conv_ns
227 : adc->timing_spec->conv_ns;
228 struct spi_transfer *xfers = adc->xfers;
229
230 /*
231 * NB: can get better performance from some SPI controllers if we use
232 * the same bits_per_word in every transfer.
233 */
234 xfers[0].bits_per_word = chan->scan_type.realbits;
235 /*
236 * CS has to be high for full conversion time to avoid triggering the
237 * busy indication.
238 */
239 xfers[0].cs_off = 1;
240 xfers[0].delay.value = t_conv_ns;
241 xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
242
243 xfers[1].rx_buf = &adc->sample.raw;
244 xfers[1].len = AD7944_SPI_BYTES(chan->scan_type);
245 xfers[1].bits_per_word = chan->scan_type.realbits;
246
247 spi_message_init_with_transfers(&adc->msg, xfers, 2);
248
249 return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
250 }
251
ad7944_chain_mode_init_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan,u32 n_chain_dev)252 static int ad7944_chain_mode_init_msg(struct device *dev, struct ad7944_adc *adc,
253 const struct iio_chan_spec *chan,
254 u32 n_chain_dev)
255 {
256 struct spi_transfer *xfers = adc->xfers;
257
258 /*
259 * NB: SCLK has to be low before we toggle CS to avoid triggering the
260 * busy indication.
261 */
262 if (adc->spi->mode & SPI_CPOL)
263 return dev_err_probe(dev, -EINVAL,
264 "chain mode requires ~SPI_CPOL\n");
265
266 /*
267 * We only support CNV connected to CS in chain mode and we need CNV
268 * to be high during the transfer to trigger the conversion.
269 */
270 if (!(adc->spi->mode & SPI_CS_HIGH))
271 return dev_err_probe(dev, -EINVAL,
272 "chain mode requires SPI_CS_HIGH\n");
273
274 /* CNV has to be high for full conversion time before reading data. */
275 xfers[0].delay.value = adc->timing_spec->conv_ns;
276 xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
277
278 xfers[1].rx_buf = adc->chain_mode_buf;
279 xfers[1].len = AD7944_SPI_BYTES(chan->scan_type) * n_chain_dev;
280 xfers[1].bits_per_word = chan->scan_type.realbits;
281
282 spi_message_init_with_transfers(&adc->msg, xfers, 2);
283
284 return devm_spi_optimize_message(dev, adc->spi, &adc->msg);
285 }
286
287 /*
288 * Unlike ad7944_3wire_cs_mode_init_msg(), this creates a message that reads
289 * during the conversion phase instead of the acquisition phase when reading
290 * a sample from the ADC. This is needed to be able to read at the maximum
291 * sample rate. It requires the SPI controller to have offload support and a
292 * high enough SCLK rate to read the sample during the conversion phase.
293 */
ad7944_3wire_cs_mode_init_offload_msg(struct device * dev,struct ad7944_adc * adc,const struct iio_chan_spec * chan)294 static int ad7944_3wire_cs_mode_init_offload_msg(struct device *dev,
295 struct ad7944_adc *adc,
296 const struct iio_chan_spec *chan)
297 {
298 struct spi_transfer *xfers = adc->offload_xfers;
299 int ret;
300
301 /*
302 * CS is tied to CNV and we need a low to high transition to start the
303 * conversion, so place CNV low for t_QUIET to prepare for this.
304 */
305 xfers[0].delay.value = AD7944_T_QUIET_NS;
306 xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS;
307 /* CNV has to be high for a minimum time to trigger conversion. */
308 xfers[0].cs_change = 1;
309 xfers[0].cs_change_delay.value = AD7944_T_CNVH_NS;
310 xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
311
312 /* Then we can read the previous sample during the conversion phase */
313 xfers[1].offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
314 xfers[1].len = AD7944_SPI_BYTES(chan->scan_type);
315 xfers[1].bits_per_word = chan->scan_type.realbits;
316
317 spi_message_init_with_transfers(&adc->offload_msg, xfers,
318 ARRAY_SIZE(adc->offload_xfers));
319
320 adc->offload_msg.offload = adc->offload;
321
322 ret = devm_spi_optimize_message(dev, adc->spi, &adc->offload_msg);
323 if (ret)
324 return dev_err_probe(dev, ret, "failed to prepare offload msg\n");
325
326 return 0;
327 }
328
329 /**
330 * ad7944_convert_and_acquire - Perform a single conversion and acquisition
331 * @adc: The ADC device structure
332 * Return: 0 on success, a negative error code on failure
333 *
334 * Perform a conversion and acquisition of a single sample using the
335 * pre-optimized adc->msg.
336 *
337 * Upon successful return adc->sample.raw will contain the conversion result
338 * (or adc->chain_mode_buf if the device is using chain mode).
339 */
ad7944_convert_and_acquire(struct ad7944_adc * adc)340 static int ad7944_convert_and_acquire(struct ad7944_adc *adc)
341 {
342 int ret;
343
344 /*
345 * In 4-wire mode, the CNV line is held high for the entire conversion
346 * and acquisition process. In other modes adc->cnv is NULL and is
347 * ignored (CS is wired to CNV in those cases).
348 */
349 gpiod_set_value_cansleep(adc->cnv, 1);
350 ret = spi_sync(adc->spi, &adc->msg);
351 gpiod_set_value_cansleep(adc->cnv, 0);
352
353 return ret;
354 }
355
ad7944_single_conversion(struct ad7944_adc * adc,const struct iio_chan_spec * chan,int * val)356 static int ad7944_single_conversion(struct ad7944_adc *adc,
357 const struct iio_chan_spec *chan,
358 int *val)
359 {
360 int ret;
361
362 ret = ad7944_convert_and_acquire(adc);
363 if (ret)
364 return ret;
365
366 if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
367 if (chan->scan_type.realbits > 16)
368 *val = ((u32 *)adc->chain_mode_buf)[chan->scan_index];
369 else
370 *val = ((u16 *)adc->chain_mode_buf)[chan->scan_index];
371 } else {
372 if (chan->scan_type.realbits > 16)
373 *val = adc->sample.raw.u32;
374 else
375 *val = adc->sample.raw.u16;
376 }
377
378 if (chan->scan_type.sign == 's')
379 *val = sign_extend32(*val, chan->scan_type.realbits - 1);
380
381 return IIO_VAL_INT;
382 }
383
ad7944_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)384 static int ad7944_read_avail(struct iio_dev *indio_dev,
385 struct iio_chan_spec const *chan,
386 const int **vals, int *type, int *length,
387 long mask)
388 {
389 struct ad7944_adc *adc = iio_priv(indio_dev);
390
391 switch (mask) {
392 case IIO_CHAN_INFO_SAMP_FREQ:
393 *vals = adc->sample_freq_range;
394 *type = IIO_VAL_INT;
395 return IIO_AVAIL_RANGE;
396 default:
397 return -EINVAL;
398 }
399 }
400
ad7944_read_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long info)401 static int ad7944_read_raw(struct iio_dev *indio_dev,
402 const struct iio_chan_spec *chan,
403 int *val, int *val2, long info)
404 {
405 struct ad7944_adc *adc = iio_priv(indio_dev);
406 int ret;
407
408 switch (info) {
409 case IIO_CHAN_INFO_RAW:
410 if (!iio_device_claim_direct(indio_dev))
411 return -EBUSY;
412
413 ret = ad7944_single_conversion(adc, chan, val);
414 iio_device_release_direct(indio_dev);
415 return ret;
416
417 case IIO_CHAN_INFO_SCALE:
418 switch (chan->type) {
419 case IIO_VOLTAGE:
420 *val = adc->ref_mv;
421
422 if (chan->scan_type.sign == 's')
423 *val2 = chan->scan_type.realbits - 1;
424 else
425 *val2 = chan->scan_type.realbits;
426
427 return IIO_VAL_FRACTIONAL_LOG2;
428 default:
429 return -EINVAL;
430 }
431
432 case IIO_CHAN_INFO_SAMP_FREQ:
433 *val = adc->offload_trigger_hz;
434 return IIO_VAL_INT;
435
436 default:
437 return -EINVAL;
438 }
439 }
440
ad7944_set_sample_freq(struct ad7944_adc * adc,int val)441 static int ad7944_set_sample_freq(struct ad7944_adc *adc, int val)
442 {
443 struct spi_offload_trigger_config config = {
444 .type = SPI_OFFLOAD_TRIGGER_PERIODIC,
445 .periodic = {
446 .frequency_hz = val,
447 },
448 };
449 int ret;
450
451 ret = spi_offload_trigger_validate(adc->offload_trigger, &config);
452 if (ret)
453 return ret;
454
455 adc->offload_trigger_hz = config.periodic.frequency_hz;
456
457 return 0;
458 }
459
ad7944_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long info)460 static int ad7944_write_raw(struct iio_dev *indio_dev,
461 const struct iio_chan_spec *chan,
462 int val, int val2, long info)
463 {
464 struct ad7944_adc *adc = iio_priv(indio_dev);
465
466 switch (info) {
467 case IIO_CHAN_INFO_SAMP_FREQ:
468 if (val < 1 || val > adc->sample_freq_range[2])
469 return -EINVAL;
470
471 return ad7944_set_sample_freq(adc, val);
472 default:
473 return -EINVAL;
474 }
475 }
476
ad7944_write_raw_get_fmt(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,long mask)477 static int ad7944_write_raw_get_fmt(struct iio_dev *indio_dev,
478 const struct iio_chan_spec *chan,
479 long mask)
480 {
481 switch (mask) {
482 case IIO_CHAN_INFO_SAMP_FREQ:
483 return IIO_VAL_INT;
484 default:
485 return IIO_VAL_INT_PLUS_MICRO;
486 }
487 }
488
489 static const struct iio_info ad7944_iio_info = {
490 .read_avail = &ad7944_read_avail,
491 .read_raw = &ad7944_read_raw,
492 .write_raw = &ad7944_write_raw,
493 .write_raw_get_fmt = &ad7944_write_raw_get_fmt,
494 };
495
ad7944_offload_buffer_postenable(struct iio_dev * indio_dev)496 static int ad7944_offload_buffer_postenable(struct iio_dev *indio_dev)
497 {
498 struct ad7944_adc *adc = iio_priv(indio_dev);
499 struct spi_offload_trigger_config config = {
500 .type = SPI_OFFLOAD_TRIGGER_PERIODIC,
501 .periodic = {
502 .frequency_hz = adc->offload_trigger_hz,
503 },
504 };
505 int ret;
506
507 gpiod_set_value_cansleep(adc->turbo, 1);
508
509 ret = spi_offload_trigger_enable(adc->offload, adc->offload_trigger,
510 &config);
511 if (ret)
512 gpiod_set_value_cansleep(adc->turbo, 0);
513
514 return ret;
515 }
516
ad7944_offload_buffer_predisable(struct iio_dev * indio_dev)517 static int ad7944_offload_buffer_predisable(struct iio_dev *indio_dev)
518 {
519 struct ad7944_adc *adc = iio_priv(indio_dev);
520
521 spi_offload_trigger_disable(adc->offload, adc->offload_trigger);
522 gpiod_set_value_cansleep(adc->turbo, 0);
523
524 return 0;
525 }
526
527 static const struct iio_buffer_setup_ops ad7944_offload_buffer_setup_ops = {
528 .postenable = &ad7944_offload_buffer_postenable,
529 .predisable = &ad7944_offload_buffer_predisable,
530 };
531
ad7944_trigger_handler(int irq,void * p)532 static irqreturn_t ad7944_trigger_handler(int irq, void *p)
533 {
534 struct iio_poll_func *pf = p;
535 struct iio_dev *indio_dev = pf->indio_dev;
536 struct ad7944_adc *adc = iio_priv(indio_dev);
537 int ret;
538
539 ret = ad7944_convert_and_acquire(adc);
540 if (ret)
541 goto out;
542
543 if (adc->spi_mode == AD7944_SPI_MODE_CHAIN)
544 iio_push_to_buffers_with_timestamp(indio_dev, adc->chain_mode_buf,
545 pf->timestamp);
546 else
547 iio_push_to_buffers_with_timestamp(indio_dev, &adc->sample.raw,
548 pf->timestamp);
549
550 out:
551 iio_trigger_notify_done(indio_dev->trig);
552
553 return IRQ_HANDLED;
554 }
555
556 /**
557 * ad7944_chain_mode_alloc - allocate and initialize channel specs and buffers
558 * for daisy-chained devices
559 * @dev: The device for devm_ functions
560 * @chan_template: The channel template for the devices (array of 2 channels
561 * voltage and timestamp)
562 * @n_chain_dev: The number of devices in the chain
563 * @chain_chan: Pointer to receive the allocated channel specs
564 * @chain_mode_buf: Pointer to receive the allocated rx buffer
565 * @chain_scan_masks: Pointer to receive the allocated scan masks
566 * Return: 0 on success, a negative error code on failure
567 */
ad7944_chain_mode_alloc(struct device * dev,const struct iio_chan_spec * chan_template,u32 n_chain_dev,struct iio_chan_spec ** chain_chan,void ** chain_mode_buf,unsigned long ** chain_scan_masks)568 static int ad7944_chain_mode_alloc(struct device *dev,
569 const struct iio_chan_spec *chan_template,
570 u32 n_chain_dev,
571 struct iio_chan_spec **chain_chan,
572 void **chain_mode_buf,
573 unsigned long **chain_scan_masks)
574 {
575 struct iio_chan_spec *chan;
576 size_t chain_mode_buf_size;
577 unsigned long *scan_masks;
578 void *buf;
579 int i;
580
581 /* 1 channel for each device in chain plus 1 for soft timestamp */
582
583 chan = devm_kcalloc(dev, n_chain_dev + 1, sizeof(*chan), GFP_KERNEL);
584 if (!chan)
585 return -ENOMEM;
586
587 for (i = 0; i < n_chain_dev; i++) {
588 chan[i] = chan_template[0];
589
590 if (chan_template[0].differential) {
591 chan[i].channel = 2 * i;
592 chan[i].channel2 = 2 * i + 1;
593 } else {
594 chan[i].channel = i;
595 }
596
597 chan[i].scan_index = i;
598 }
599
600 /* soft timestamp */
601 chan[i] = chan_template[1];
602 chan[i].scan_index = i;
603
604 *chain_chan = chan;
605
606 /* 1 word for each voltage channel + aligned u64 for timestamp */
607
608 chain_mode_buf_size = ALIGN(n_chain_dev *
609 AD7944_SPI_BYTES(chan[0].scan_type), sizeof(u64)) + sizeof(u64);
610 buf = devm_kzalloc(dev, chain_mode_buf_size, GFP_KERNEL);
611 if (!buf)
612 return -ENOMEM;
613
614 *chain_mode_buf = buf;
615
616 /*
617 * Have to limit n_chain_dev due to current implementation of
618 * available_scan_masks.
619 */
620 if (n_chain_dev > BITS_PER_LONG)
621 return dev_err_probe(dev, -EINVAL,
622 "chain is limited to 32 devices\n");
623
624 scan_masks = devm_kcalloc(dev, 2, sizeof(*scan_masks), GFP_KERNEL);
625 if (!scan_masks)
626 return -ENOMEM;
627
628 /*
629 * Scan mask is needed since we always have to read all devices in the
630 * chain in one SPI transfer.
631 */
632 scan_masks[0] = GENMASK(n_chain_dev - 1, 0);
633
634 *chain_scan_masks = scan_masks;
635
636 return 0;
637 }
638
639 static const char * const ad7944_power_supplies[] = {
640 "avdd", "dvdd", "bvdd", "vio"
641 };
642
643 static const struct spi_offload_config ad7944_offload_config = {
644 .capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
645 SPI_OFFLOAD_CAP_RX_STREAM_DMA,
646 };
647
ad7944_probe(struct spi_device * spi)648 static int ad7944_probe(struct spi_device *spi)
649 {
650 const struct ad7944_chip_info *chip_info;
651 struct device *dev = &spi->dev;
652 struct iio_dev *indio_dev;
653 struct ad7944_adc *adc;
654 bool have_refin;
655 struct iio_chan_spec *chain_chan;
656 unsigned long *chain_scan_masks;
657 u32 n_chain_dev;
658 int ret, ref_mv;
659
660 indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
661 if (!indio_dev)
662 return -ENOMEM;
663
664 adc = iio_priv(indio_dev);
665 adc->spi = spi;
666
667 chip_info = spi_get_device_match_data(spi);
668 if (!chip_info)
669 return dev_err_probe(dev, -EINVAL, "no chip info\n");
670
671 adc->timing_spec = chip_info->timing_spec;
672
673 adc->sample_freq_range[0] = 1; /* min */
674 adc->sample_freq_range[1] = 1; /* step */
675 adc->sample_freq_range[2] = chip_info->max_sample_rate_hz; /* max */
676
677 ret = device_property_match_property_string(dev, "adi,spi-mode",
678 ad7944_spi_modes,
679 ARRAY_SIZE(ad7944_spi_modes));
680 /* absence of adi,spi-mode property means default mode */
681 if (ret == -EINVAL)
682 adc->spi_mode = AD7944_SPI_MODE_DEFAULT;
683 else if (ret < 0)
684 return dev_err_probe(dev, ret,
685 "getting adi,spi-mode property failed\n");
686 else
687 adc->spi_mode = ret;
688
689 /*
690 * Some chips use unusual word sizes, so check now instead of waiting
691 * for the first xfer.
692 */
693 if (!spi_is_bpw_supported(spi, chip_info->channels[0].scan_type.realbits))
694 return dev_err_probe(dev, -EINVAL,
695 "SPI host does not support %d bits per word\n",
696 chip_info->channels[0].scan_type.realbits);
697
698 ret = devm_regulator_bulk_get_enable(dev,
699 ARRAY_SIZE(ad7944_power_supplies),
700 ad7944_power_supplies);
701 if (ret)
702 return dev_err_probe(dev, ret,
703 "failed to get and enable supplies\n");
704
705 /*
706 * Sort out what is being used for the reference voltage. Options are:
707 * - internal reference: neither REF or REFIN is connected
708 * - internal reference with external buffer: REF not connected, REFIN
709 * is connected
710 * - external reference: REF is connected, REFIN is not connected
711 */
712
713 ret = devm_regulator_get_enable_read_voltage(dev, "ref");
714 if (ret < 0 && ret != -ENODEV)
715 return dev_err_probe(dev, ret, "failed to get REF voltage\n");
716
717 ref_mv = ret == -ENODEV ? 0 : ret / 1000;
718
719 ret = devm_regulator_get_enable_optional(dev, "refin");
720 if (ret < 0 && ret != -ENODEV)
721 return dev_err_probe(dev, ret, "failed to get REFIN voltage\n");
722
723 have_refin = ret != -ENODEV;
724
725 if (have_refin && ref_mv)
726 return dev_err_probe(dev, -EINVAL,
727 "cannot have both refin and ref supplies\n");
728
729 adc->ref_mv = ref_mv ?: AD7944_INTERNAL_REF_MV;
730
731 adc->cnv = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_LOW);
732 if (IS_ERR(adc->cnv))
733 return dev_err_probe(dev, PTR_ERR(adc->cnv),
734 "failed to get CNV GPIO\n");
735
736 if (!adc->cnv && adc->spi_mode == AD7944_SPI_MODE_DEFAULT)
737 return dev_err_probe(&spi->dev, -EINVAL, "CNV GPIO is required\n");
738 if (adc->cnv && adc->spi_mode != AD7944_SPI_MODE_DEFAULT)
739 return dev_err_probe(&spi->dev, -EINVAL,
740 "CNV GPIO in single and chain mode is not currently supported\n");
741
742 adc->turbo = devm_gpiod_get_optional(dev, "turbo", GPIOD_OUT_LOW);
743 if (IS_ERR(adc->turbo))
744 return dev_err_probe(dev, PTR_ERR(adc->turbo),
745 "failed to get TURBO GPIO\n");
746
747 adc->always_turbo = device_property_present(dev, "adi,always-turbo");
748
749 if (adc->turbo && adc->always_turbo)
750 return dev_err_probe(dev, -EINVAL,
751 "cannot have both turbo-gpios and adi,always-turbo\n");
752
753 if (adc->spi_mode == AD7944_SPI_MODE_CHAIN && adc->always_turbo)
754 return dev_err_probe(dev, -EINVAL,
755 "cannot have both chain mode and always turbo\n");
756
757 switch (adc->spi_mode) {
758 case AD7944_SPI_MODE_DEFAULT:
759 ret = ad7944_4wire_mode_init_msg(dev, adc, &chip_info->channels[0]);
760 if (ret)
761 return ret;
762
763 break;
764 case AD7944_SPI_MODE_SINGLE:
765 ret = ad7944_3wire_cs_mode_init_msg(dev, adc, &chip_info->channels[0]);
766 if (ret)
767 return ret;
768
769 break;
770 case AD7944_SPI_MODE_CHAIN:
771 ret = device_property_read_u32(dev, "#daisy-chained-devices",
772 &n_chain_dev);
773 if (ret)
774 return dev_err_probe(dev, ret,
775 "failed to get #daisy-chained-devices\n");
776
777 ret = ad7944_chain_mode_alloc(dev, chip_info->channels,
778 n_chain_dev, &chain_chan,
779 &adc->chain_mode_buf,
780 &chain_scan_masks);
781 if (ret)
782 return ret;
783
784 ret = ad7944_chain_mode_init_msg(dev, adc, &chain_chan[0],
785 n_chain_dev);
786 if (ret)
787 return ret;
788
789 break;
790 }
791
792 indio_dev->name = chip_info->name;
793 indio_dev->modes = INDIO_DIRECT_MODE;
794 indio_dev->info = &ad7944_iio_info;
795
796 adc->offload = devm_spi_offload_get(dev, spi, &ad7944_offload_config);
797 ret = PTR_ERR_OR_ZERO(adc->offload);
798 if (ret && ret != -ENODEV)
799 return dev_err_probe(dev, ret, "failed to get offload\n");
800
801 /* Fall back to low speed usage when no SPI offload available. */
802 if (ret == -ENODEV) {
803 if (adc->spi_mode == AD7944_SPI_MODE_CHAIN) {
804 indio_dev->available_scan_masks = chain_scan_masks;
805 indio_dev->channels = chain_chan;
806 indio_dev->num_channels = n_chain_dev + 1;
807 } else {
808 indio_dev->channels = chip_info->channels;
809 indio_dev->num_channels = ARRAY_SIZE(chip_info->channels);
810 }
811
812 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
813 iio_pollfunc_store_time,
814 ad7944_trigger_handler,
815 NULL);
816 if (ret)
817 return ret;
818 } else {
819 struct dma_chan *rx_dma;
820
821 if (adc->spi_mode != AD7944_SPI_MODE_SINGLE)
822 return dev_err_probe(dev, -EINVAL,
823 "offload only supported in single mode\n");
824
825 indio_dev->setup_ops = &ad7944_offload_buffer_setup_ops;
826 indio_dev->channels = chip_info->offload_channels;
827 indio_dev->num_channels = ARRAY_SIZE(chip_info->offload_channels);
828
829 adc->offload_trigger = devm_spi_offload_trigger_get(dev,
830 adc->offload, SPI_OFFLOAD_TRIGGER_PERIODIC);
831 if (IS_ERR(adc->offload_trigger))
832 return dev_err_probe(dev, PTR_ERR(adc->offload_trigger),
833 "failed to get offload trigger\n");
834
835 ret = ad7944_set_sample_freq(adc, 2 * MEGA);
836 if (ret)
837 return dev_err_probe(dev, ret,
838 "failed to init sample rate\n");
839
840 rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev,
841 adc->offload);
842 if (IS_ERR(rx_dma))
843 return dev_err_probe(dev, PTR_ERR(rx_dma),
844 "failed to get offload RX DMA\n");
845
846 /*
847 * REVISIT: ideally, we would confirm that the offload RX DMA
848 * buffer layout is the same as what is hard-coded in
849 * offload_channels. Right now, the only supported offload
850 * is the pulsar_adc project which always uses 32-bit word
851 * size for data values, regardless of the SPI bits per word.
852 */
853
854 ret = devm_iio_dmaengine_buffer_setup_with_handle(dev,
855 indio_dev, rx_dma, IIO_BUFFER_DIRECTION_IN);
856 if (ret)
857 return ret;
858
859 ret = ad7944_3wire_cs_mode_init_offload_msg(dev, adc,
860 &chip_info->offload_channels[0]);
861 if (ret)
862 return ret;
863 }
864
865 return devm_iio_device_register(dev, indio_dev);
866 }
867
868 static const struct of_device_id ad7944_of_match[] = {
869 { .compatible = "adi,ad7944", .data = &ad7944_chip_info },
870 { .compatible = "adi,ad7985", .data = &ad7985_chip_info },
871 { .compatible = "adi,ad7986", .data = &ad7986_chip_info },
872 { }
873 };
874 MODULE_DEVICE_TABLE(of, ad7944_of_match);
875
876 static const struct spi_device_id ad7944_spi_id[] = {
877 { "ad7944", (kernel_ulong_t)&ad7944_chip_info },
878 { "ad7985", (kernel_ulong_t)&ad7985_chip_info },
879 { "ad7986", (kernel_ulong_t)&ad7986_chip_info },
880 { }
881
882 };
883 MODULE_DEVICE_TABLE(spi, ad7944_spi_id);
884
885 static struct spi_driver ad7944_driver = {
886 .driver = {
887 .name = "ad7944",
888 .of_match_table = ad7944_of_match,
889 },
890 .probe = ad7944_probe,
891 .id_table = ad7944_spi_id,
892 };
893 module_spi_driver(ad7944_driver);
894
895 MODULE_AUTHOR("David Lechner <dlechner@baylibre.com>");
896 MODULE_DESCRIPTION("Analog Devices AD7944 PulSAR ADC family driver");
897 MODULE_LICENSE("GPL");
898 MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");
899