1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Hardware monitoring driver for PMBus devices
4  *
5  * Copyright (c) 2010, 2011 Ericsson AB.
6  * Copyright (c) 2012 Guenter Roeck
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/dcache.h>
12 #include <linux/kernel.h>
13 #include <linux/math64.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/i2c.h>
19 #include <linux/hwmon.h>
20 #include <linux/hwmon-sysfs.h>
21 #include <linux/pmbus.h>
22 #include <linux/regulator/driver.h>
23 #include <linux/regulator/machine.h>
24 #include <linux/of.h>
25 #include <linux/thermal.h>
26 #include "pmbus.h"
27 
28 /*
29  * Number of additional attribute pointers to allocate
30  * with each call to krealloc
31  */
32 #define PMBUS_ATTR_ALLOC_SIZE	32
33 #define PMBUS_NAME_SIZE		24
34 
35 static int wp = -1;
36 module_param(wp, int, 0444);
37 
38 struct pmbus_sensor {
39 	struct pmbus_sensor *next;
40 	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
41 	struct device_attribute attribute;
42 	u8 page;		/* page number */
43 	u8 phase;		/* phase number, 0xff for all phases */
44 	u16 reg;		/* register */
45 	enum pmbus_sensor_classes class;	/* sensor class */
46 	bool update;		/* runtime sensor update needed */
47 	bool convert;		/* Whether or not to apply linear/vid/direct */
48 	int data;		/* Sensor data; negative if there was a read error */
49 };
50 #define to_pmbus_sensor(_attr) \
51 	container_of(_attr, struct pmbus_sensor, attribute)
52 
53 struct pmbus_boolean {
54 	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
55 	struct sensor_device_attribute attribute;
56 	struct pmbus_sensor *s1;
57 	struct pmbus_sensor *s2;
58 };
59 #define to_pmbus_boolean(_attr) \
60 	container_of(_attr, struct pmbus_boolean, attribute)
61 
62 struct pmbus_label {
63 	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
64 	struct device_attribute attribute;
65 	char label[PMBUS_NAME_SIZE];	/* label */
66 };
67 #define to_pmbus_label(_attr) \
68 	container_of(_attr, struct pmbus_label, attribute)
69 
70 /* Macros for converting between sensor index and register/page/status mask */
71 
72 #define PB_STATUS_MASK	0xffff
73 #define PB_REG_SHIFT	16
74 #define PB_REG_MASK	0x3ff
75 #define PB_PAGE_SHIFT	26
76 #define PB_PAGE_MASK	0x3f
77 
78 #define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
79 						 ((reg) << PB_REG_SHIFT) | (mask))
80 
81 #define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
82 #define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
83 #define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
84 
85 struct pmbus_data {
86 	struct device *dev;
87 	struct device *hwmon_dev;
88 	struct regulator_dev **rdevs;
89 
90 	u32 flags;		/* from platform data */
91 
92 	u8 revision;	/* The PMBus revision the device is compliant with */
93 
94 	int exponent[PMBUS_PAGES];
95 				/* linear mode: exponent for output voltages */
96 
97 	const struct pmbus_driver_info *info;
98 
99 	int max_attributes;
100 	int num_attributes;
101 	struct attribute_group group;
102 	const struct attribute_group **groups;
103 
104 	struct pmbus_sensor *sensors;
105 
106 	struct mutex update_lock;
107 
108 	bool has_status_word;		/* device uses STATUS_WORD register */
109 	int (*read_status)(struct i2c_client *client, int page);
110 
111 	s16 currpage;	/* current page, -1 for unknown/unset */
112 	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
113 
114 	int vout_low[PMBUS_PAGES];	/* voltage low margin */
115 	int vout_high[PMBUS_PAGES];	/* voltage high margin */
116 	ktime_t write_time;		/* Last SMBUS write timestamp */
117 	ktime_t access_time;		/* Last SMBUS access timestamp */
118 };
119 
120 struct pmbus_debugfs_entry {
121 	struct i2c_client *client;
122 	u8 page;
123 	u8 reg;
124 };
125 
126 static const int pmbus_fan_rpm_mask[] = {
127 	PB_FAN_1_RPM,
128 	PB_FAN_2_RPM,
129 	PB_FAN_1_RPM,
130 	PB_FAN_2_RPM,
131 };
132 
133 static const int pmbus_fan_config_registers[] = {
134 	PMBUS_FAN_CONFIG_12,
135 	PMBUS_FAN_CONFIG_12,
136 	PMBUS_FAN_CONFIG_34,
137 	PMBUS_FAN_CONFIG_34
138 };
139 
140 static const int pmbus_fan_command_registers[] = {
141 	PMBUS_FAN_COMMAND_1,
142 	PMBUS_FAN_COMMAND_2,
143 	PMBUS_FAN_COMMAND_3,
144 	PMBUS_FAN_COMMAND_4,
145 };
146 
pmbus_clear_cache(struct i2c_client * client)147 void pmbus_clear_cache(struct i2c_client *client)
148 {
149 	struct pmbus_data *data = i2c_get_clientdata(client);
150 	struct pmbus_sensor *sensor;
151 
152 	for (sensor = data->sensors; sensor; sensor = sensor->next)
153 		sensor->data = -ENODATA;
154 }
155 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
156 
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)157 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
158 {
159 	struct pmbus_data *data = i2c_get_clientdata(client);
160 	struct pmbus_sensor *sensor;
161 
162 	for (sensor = data->sensors; sensor; sensor = sensor->next)
163 		if (sensor->reg == reg)
164 			sensor->update = update;
165 }
166 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
167 
168 /* Some chips need a delay between accesses. */
pmbus_wait(struct i2c_client * client)169 static void pmbus_wait(struct i2c_client *client)
170 {
171 	struct pmbus_data *data = i2c_get_clientdata(client);
172 	const struct pmbus_driver_info *info = data->info;
173 	s64 delta;
174 
175 	if (info->access_delay) {
176 		delta = ktime_us_delta(ktime_get(), data->access_time);
177 
178 		if (delta < info->access_delay)
179 			fsleep(info->access_delay - delta);
180 	} else if (info->write_delay) {
181 		delta = ktime_us_delta(ktime_get(), data->write_time);
182 
183 		if (delta < info->write_delay)
184 			fsleep(info->write_delay - delta);
185 	}
186 }
187 
188 /* Sets the last accessed timestamp for pmbus_wait */
pmbus_update_ts(struct i2c_client * client,bool write_op)189 static void pmbus_update_ts(struct i2c_client *client, bool write_op)
190 {
191 	struct pmbus_data *data = i2c_get_clientdata(client);
192 	const struct pmbus_driver_info *info = data->info;
193 
194 	if (info->access_delay)
195 		data->access_time = ktime_get();
196 	else if (info->write_delay && write_op)
197 		data->write_time = ktime_get();
198 }
199 
pmbus_set_page(struct i2c_client * client,int page,int phase)200 int pmbus_set_page(struct i2c_client *client, int page, int phase)
201 {
202 	struct pmbus_data *data = i2c_get_clientdata(client);
203 	int rv;
204 
205 	if (page < 0)
206 		return 0;
207 
208 	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
209 	    data->info->pages > 1 && page != data->currpage) {
210 		pmbus_wait(client);
211 		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
212 		pmbus_update_ts(client, true);
213 		if (rv < 0)
214 			return rv;
215 
216 		pmbus_wait(client);
217 		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
218 		pmbus_update_ts(client, false);
219 		if (rv < 0)
220 			return rv;
221 
222 		if (rv != page)
223 			return -EIO;
224 	}
225 	data->currpage = page;
226 
227 	if (data->info->phases[page] && data->currphase != phase &&
228 	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
229 		pmbus_wait(client);
230 		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
231 					       phase);
232 		pmbus_update_ts(client, true);
233 		if (rv)
234 			return rv;
235 	}
236 	data->currphase = phase;
237 
238 	return 0;
239 }
240 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
241 
pmbus_write_byte(struct i2c_client * client,int page,u8 value)242 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
243 {
244 	int rv;
245 
246 	rv = pmbus_set_page(client, page, 0xff);
247 	if (rv < 0)
248 		return rv;
249 
250 	pmbus_wait(client);
251 	rv = i2c_smbus_write_byte(client, value);
252 	pmbus_update_ts(client, true);
253 
254 	return rv;
255 }
256 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
257 
258 /*
259  * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
260  * a device specific mapping function exists and calls it if necessary.
261  */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)262 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
263 {
264 	struct pmbus_data *data = i2c_get_clientdata(client);
265 	const struct pmbus_driver_info *info = data->info;
266 	int status;
267 
268 	if (info->write_byte) {
269 		status = info->write_byte(client, page, value);
270 		if (status != -ENODATA)
271 			return status;
272 	}
273 	return pmbus_write_byte(client, page, value);
274 }
275 
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)276 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
277 			  u16 word)
278 {
279 	int rv;
280 
281 	rv = pmbus_set_page(client, page, 0xff);
282 	if (rv < 0)
283 		return rv;
284 
285 	pmbus_wait(client);
286 	rv = i2c_smbus_write_word_data(client, reg, word);
287 	pmbus_update_ts(client, true);
288 
289 	return rv;
290 }
291 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
292 
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)293 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
294 				u16 word)
295 {
296 	int bit;
297 	int id;
298 	int rv;
299 
300 	switch (reg) {
301 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
302 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
303 		bit = pmbus_fan_rpm_mask[id];
304 		rv = pmbus_update_fan(client, page, id, bit, bit, word);
305 		break;
306 	default:
307 		rv = -ENXIO;
308 		break;
309 	}
310 
311 	return rv;
312 }
313 
314 /*
315  * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
316  * a device specific mapping function exists and calls it if necessary.
317  */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)318 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
319 				  u16 word)
320 {
321 	struct pmbus_data *data = i2c_get_clientdata(client);
322 	const struct pmbus_driver_info *info = data->info;
323 	int status;
324 
325 	if (info->write_word_data) {
326 		status = info->write_word_data(client, page, reg, word);
327 		if (status != -ENODATA)
328 			return status;
329 	}
330 
331 	if (reg >= PMBUS_VIRT_BASE)
332 		return pmbus_write_virt_reg(client, page, reg, word);
333 
334 	return pmbus_write_word_data(client, page, reg, word);
335 }
336 
337 /*
338  * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
339  * a device specific mapping function exists and calls it if necessary.
340  */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)341 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
342 {
343 	struct pmbus_data *data = i2c_get_clientdata(client);
344 	const struct pmbus_driver_info *info = data->info;
345 	int status;
346 
347 	if (info->write_byte_data) {
348 		status = info->write_byte_data(client, page, reg, value);
349 		if (status != -ENODATA)
350 			return status;
351 	}
352 	return pmbus_write_byte_data(client, page, reg, value);
353 }
354 
355 /*
356  * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
357  * a device specific mapping function exists and calls it if necessary.
358  */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)359 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
360 {
361 	struct pmbus_data *data = i2c_get_clientdata(client);
362 	const struct pmbus_driver_info *info = data->info;
363 	int status;
364 
365 	if (info->read_byte_data) {
366 		status = info->read_byte_data(client, page, reg);
367 		if (status != -ENODATA)
368 			return status;
369 	}
370 	return pmbus_read_byte_data(client, page, reg);
371 }
372 
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)373 int pmbus_update_fan(struct i2c_client *client, int page, int id,
374 		     u8 config, u8 mask, u16 command)
375 {
376 	int from;
377 	int rv;
378 	u8 to;
379 
380 	from = _pmbus_read_byte_data(client, page,
381 				     pmbus_fan_config_registers[id]);
382 	if (from < 0)
383 		return from;
384 
385 	to = (from & ~mask) | (config & mask);
386 	if (to != from) {
387 		rv = _pmbus_write_byte_data(client, page,
388 					    pmbus_fan_config_registers[id], to);
389 		if (rv < 0)
390 			return rv;
391 	}
392 
393 	return _pmbus_write_word_data(client, page,
394 				      pmbus_fan_command_registers[id], command);
395 }
396 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
397 
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)398 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
399 {
400 	int rv;
401 
402 	rv = pmbus_set_page(client, page, phase);
403 	if (rv < 0)
404 		return rv;
405 
406 	pmbus_wait(client);
407 	rv = i2c_smbus_read_word_data(client, reg);
408 	pmbus_update_ts(client, false);
409 
410 	return rv;
411 }
412 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
413 
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)414 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
415 {
416 	int rv;
417 	int id;
418 
419 	switch (reg) {
420 	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
421 		id = reg - PMBUS_VIRT_FAN_TARGET_1;
422 		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
423 		break;
424 	default:
425 		rv = -ENXIO;
426 		break;
427 	}
428 
429 	return rv;
430 }
431 
432 /*
433  * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
434  * a device specific mapping function exists and calls it if necessary.
435  */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)436 static int _pmbus_read_word_data(struct i2c_client *client, int page,
437 				 int phase, int reg)
438 {
439 	struct pmbus_data *data = i2c_get_clientdata(client);
440 	const struct pmbus_driver_info *info = data->info;
441 	int status;
442 
443 	if (info->read_word_data) {
444 		status = info->read_word_data(client, page, phase, reg);
445 		if (status != -ENODATA)
446 			return status;
447 	}
448 
449 	if (reg >= PMBUS_VIRT_BASE)
450 		return pmbus_read_virt_reg(client, page, reg);
451 
452 	return pmbus_read_word_data(client, page, phase, reg);
453 }
454 
455 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)456 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
457 {
458 	return _pmbus_read_word_data(client, page, 0xff, reg);
459 }
460 
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)461 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
462 {
463 	int rv;
464 
465 	rv = pmbus_set_page(client, page, 0xff);
466 	if (rv < 0)
467 		return rv;
468 
469 	pmbus_wait(client);
470 	rv = i2c_smbus_read_byte_data(client, reg);
471 	pmbus_update_ts(client, false);
472 
473 	return rv;
474 }
475 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
476 
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)477 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
478 {
479 	int rv;
480 
481 	rv = pmbus_set_page(client, page, 0xff);
482 	if (rv < 0)
483 		return rv;
484 
485 	pmbus_wait(client);
486 	rv = i2c_smbus_write_byte_data(client, reg, value);
487 	pmbus_update_ts(client, true);
488 
489 	return rv;
490 }
491 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
492 
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)493 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
494 			   u8 mask, u8 value)
495 {
496 	unsigned int tmp;
497 	int rv;
498 
499 	rv = _pmbus_read_byte_data(client, page, reg);
500 	if (rv < 0)
501 		return rv;
502 
503 	tmp = (rv & ~mask) | (value & mask);
504 
505 	if (tmp != rv)
506 		rv = _pmbus_write_byte_data(client, page, reg, tmp);
507 
508 	return rv;
509 }
510 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
511 
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)512 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
513 				 char *data_buf)
514 {
515 	int rv;
516 
517 	rv = pmbus_set_page(client, page, 0xff);
518 	if (rv < 0)
519 		return rv;
520 
521 	pmbus_wait(client);
522 	rv = i2c_smbus_read_block_data(client, reg, data_buf);
523 	pmbus_update_ts(client, false);
524 
525 	return rv;
526 }
527 
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)528 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
529 					      int reg)
530 {
531 	struct pmbus_sensor *sensor;
532 
533 	for (sensor = data->sensors; sensor; sensor = sensor->next) {
534 		if (sensor->page == page && sensor->reg == reg)
535 			return sensor;
536 	}
537 
538 	return ERR_PTR(-EINVAL);
539 }
540 
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)541 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
542 			      enum pmbus_fan_mode mode,
543 			      bool from_cache)
544 {
545 	struct pmbus_data *data = i2c_get_clientdata(client);
546 	bool want_rpm, have_rpm;
547 	struct pmbus_sensor *s;
548 	int config;
549 	int reg;
550 
551 	want_rpm = (mode == rpm);
552 
553 	if (from_cache) {
554 		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
555 		s = pmbus_find_sensor(data, page, reg + id);
556 		if (IS_ERR(s))
557 			return PTR_ERR(s);
558 
559 		return s->data;
560 	}
561 
562 	config = _pmbus_read_byte_data(client, page,
563 				       pmbus_fan_config_registers[id]);
564 	if (config < 0)
565 		return config;
566 
567 	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
568 	if (want_rpm == have_rpm)
569 		return pmbus_read_word_data(client, page, 0xff,
570 					    pmbus_fan_command_registers[id]);
571 
572 	/* Can't sensibly map between RPM and PWM, just return zero */
573 	return 0;
574 }
575 
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)576 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
577 			      enum pmbus_fan_mode mode)
578 {
579 	return pmbus_get_fan_rate(client, page, id, mode, false);
580 }
581 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
582 
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)583 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
584 			      enum pmbus_fan_mode mode)
585 {
586 	return pmbus_get_fan_rate(client, page, id, mode, true);
587 }
588 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
589 
pmbus_clear_fault_page(struct i2c_client * client,int page)590 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
591 {
592 	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
593 }
594 
pmbus_clear_faults(struct i2c_client * client)595 void pmbus_clear_faults(struct i2c_client *client)
596 {
597 	struct pmbus_data *data = i2c_get_clientdata(client);
598 	int i;
599 
600 	for (i = 0; i < data->info->pages; i++)
601 		pmbus_clear_fault_page(client, i);
602 }
603 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
604 
pmbus_check_status_cml(struct i2c_client * client)605 static int pmbus_check_status_cml(struct i2c_client *client)
606 {
607 	struct pmbus_data *data = i2c_get_clientdata(client);
608 	int status, status2;
609 
610 	status = data->read_status(client, -1);
611 	if (status < 0 || (status & PB_STATUS_CML)) {
612 		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
613 		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
614 			return -EIO;
615 	}
616 	return 0;
617 }
618 
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)619 static bool pmbus_check_register(struct i2c_client *client,
620 				 int (*func)(struct i2c_client *client,
621 					     int page, int reg),
622 				 int page, int reg)
623 {
624 	int rv;
625 	struct pmbus_data *data = i2c_get_clientdata(client);
626 
627 	rv = func(client, page, reg);
628 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
629 		rv = pmbus_check_status_cml(client);
630 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
631 		data->read_status(client, -1);
632 	if (reg < PMBUS_VIRT_BASE)
633 		pmbus_clear_fault_page(client, -1);
634 	return rv >= 0;
635 }
636 
pmbus_check_status_register(struct i2c_client * client,int page)637 static bool pmbus_check_status_register(struct i2c_client *client, int page)
638 {
639 	int status;
640 	struct pmbus_data *data = i2c_get_clientdata(client);
641 
642 	status = data->read_status(client, page);
643 	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
644 	    (status & PB_STATUS_CML)) {
645 		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
646 		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
647 			status = -EIO;
648 	}
649 
650 	pmbus_clear_fault_page(client, -1);
651 	return status >= 0;
652 }
653 
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)654 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
655 {
656 	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
657 }
658 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
659 
pmbus_check_word_register(struct i2c_client * client,int page,int reg)660 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
661 {
662 	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
663 }
664 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
665 
pmbus_check_block_register(struct i2c_client * client,int page,int reg)666 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
667 						      int page, int reg)
668 {
669 	int rv;
670 	struct pmbus_data *data = i2c_get_clientdata(client);
671 	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
672 
673 	rv = pmbus_read_block_data(client, page, reg, data_buf);
674 	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
675 		rv = pmbus_check_status_cml(client);
676 	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
677 		data->read_status(client, -1);
678 	pmbus_clear_fault_page(client, -1);
679 	return rv >= 0;
680 }
681 
pmbus_get_driver_info(struct i2c_client * client)682 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
683 {
684 	struct pmbus_data *data = i2c_get_clientdata(client);
685 
686 	return data->info;
687 }
688 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
689 
pmbus_get_status(struct i2c_client * client,int page,int reg)690 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
691 {
692 	struct pmbus_data *data = i2c_get_clientdata(client);
693 	int status;
694 
695 	switch (reg) {
696 	case PMBUS_STATUS_WORD:
697 		status = data->read_status(client, page);
698 		break;
699 	default:
700 		status = _pmbus_read_byte_data(client, page, reg);
701 		break;
702 	}
703 	if (status < 0)
704 		pmbus_clear_faults(client);
705 	return status;
706 }
707 
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)708 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
709 {
710 	if (sensor->data < 0 || sensor->update)
711 		sensor->data = _pmbus_read_word_data(client, sensor->page,
712 						     sensor->phase, sensor->reg);
713 }
714 
715 /*
716  * Convert ieee754 sensor values to milli- or micro-units
717  * depending on sensor type.
718  *
719  * ieee754 data format:
720  *	bit 15:		sign
721  *	bit 10..14:	exponent
722  *	bit 0..9:	mantissa
723  * exponent=0:
724  *	v=(−1)^signbit * 2^(−14) * 0.significantbits
725  * exponent=1..30:
726  *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
727  * exponent=31:
728  *	v=NaN
729  *
730  * Add the number mantissa bits into the calculations for simplicity.
731  * To do that, add '10' to the exponent. By doing that, we can just add
732  * 0x400 to normal values and get the expected result.
733  */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)734 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
735 				   struct pmbus_sensor *sensor)
736 {
737 	int exponent;
738 	bool sign;
739 	long val;
740 
741 	/* only support half precision for now */
742 	sign = sensor->data & 0x8000;
743 	exponent = (sensor->data >> 10) & 0x1f;
744 	val = sensor->data & 0x3ff;
745 
746 	if (exponent == 0) {			/* subnormal */
747 		exponent = -(14 + 10);
748 	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
749 		exponent = 0;
750 		val = 65504;
751 	} else {
752 		exponent -= (15 + 10);		/* normal */
753 		val |= 0x400;
754 	}
755 
756 	/* scale result to milli-units for all sensors except fans */
757 	if (sensor->class != PSC_FAN)
758 		val = val * 1000L;
759 
760 	/* scale result to micro-units for power sensors */
761 	if (sensor->class == PSC_POWER)
762 		val = val * 1000L;
763 
764 	if (exponent >= 0)
765 		val <<= exponent;
766 	else
767 		val >>= -exponent;
768 
769 	if (sign)
770 		val = -val;
771 
772 	return val;
773 }
774 
775 /*
776  * Convert linear sensor values to milli- or micro-units
777  * depending on sensor type.
778  */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)779 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
780 				 struct pmbus_sensor *sensor)
781 {
782 	s16 exponent;
783 	s32 mantissa;
784 	s64 val;
785 
786 	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
787 		exponent = data->exponent[sensor->page];
788 		mantissa = (u16)sensor->data;
789 	} else {				/* LINEAR11 */
790 		exponent = ((s16)sensor->data) >> 11;
791 		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
792 	}
793 
794 	val = mantissa;
795 
796 	/* scale result to milli-units for all sensors except fans */
797 	if (sensor->class != PSC_FAN)
798 		val = val * 1000LL;
799 
800 	/* scale result to micro-units for power sensors */
801 	if (sensor->class == PSC_POWER)
802 		val = val * 1000LL;
803 
804 	if (exponent >= 0)
805 		val <<= exponent;
806 	else
807 		val >>= -exponent;
808 
809 	return val;
810 }
811 
812 /*
813  * Convert direct sensor values to milli- or micro-units
814  * depending on sensor type.
815  */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)816 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
817 				 struct pmbus_sensor *sensor)
818 {
819 	s64 b, val = (s16)sensor->data;
820 	s32 m, R;
821 
822 	m = data->info->m[sensor->class];
823 	b = data->info->b[sensor->class];
824 	R = data->info->R[sensor->class];
825 
826 	if (m == 0)
827 		return 0;
828 
829 	/* X = 1/m * (Y * 10^-R - b) */
830 	R = -R;
831 	/* scale result to milli-units for everything but fans */
832 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
833 		R += 3;
834 		b *= 1000;
835 	}
836 
837 	/* scale result to micro-units for power sensors */
838 	if (sensor->class == PSC_POWER) {
839 		R += 3;
840 		b *= 1000;
841 	}
842 
843 	while (R > 0) {
844 		val *= 10;
845 		R--;
846 	}
847 	while (R < 0) {
848 		val = div_s64(val + 5LL, 10L);  /* round closest */
849 		R++;
850 	}
851 
852 	val = div_s64(val - b, m);
853 	return val;
854 }
855 
856 /*
857  * Convert VID sensor values to milli- or micro-units
858  * depending on sensor type.
859  */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)860 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
861 			      struct pmbus_sensor *sensor)
862 {
863 	long val = sensor->data;
864 	long rv = 0;
865 
866 	switch (data->info->vrm_version[sensor->page]) {
867 	case vr11:
868 		if (val >= 0x02 && val <= 0xb2)
869 			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
870 		break;
871 	case vr12:
872 		if (val >= 0x01)
873 			rv = 250 + (val - 1) * 5;
874 		break;
875 	case vr13:
876 		if (val >= 0x01)
877 			rv = 500 + (val - 1) * 10;
878 		break;
879 	case imvp9:
880 		if (val >= 0x01)
881 			rv = 200 + (val - 1) * 10;
882 		break;
883 	case amd625mv:
884 		if (val >= 0x0 && val <= 0xd8)
885 			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
886 		break;
887 	}
888 	return rv;
889 }
890 
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)891 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
892 {
893 	s64 val;
894 
895 	if (!sensor->convert)
896 		return sensor->data;
897 
898 	switch (data->info->format[sensor->class]) {
899 	case direct:
900 		val = pmbus_reg2data_direct(data, sensor);
901 		break;
902 	case vid:
903 		val = pmbus_reg2data_vid(data, sensor);
904 		break;
905 	case ieee754:
906 		val = pmbus_reg2data_ieee754(data, sensor);
907 		break;
908 	case linear:
909 	default:
910 		val = pmbus_reg2data_linear(data, sensor);
911 		break;
912 	}
913 	return val;
914 }
915 
916 #define MAX_IEEE_MANTISSA	(0x7ff * 1000)
917 #define MIN_IEEE_MANTISSA	(0x400 * 1000)
918 
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)919 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
920 				  struct pmbus_sensor *sensor, long val)
921 {
922 	u16 exponent = (15 + 10);
923 	long mantissa;
924 	u16 sign = 0;
925 
926 	/* simple case */
927 	if (val == 0)
928 		return 0;
929 
930 	if (val < 0) {
931 		sign = 0x8000;
932 		val = -val;
933 	}
934 
935 	/* Power is in uW. Convert to mW before converting. */
936 	if (sensor->class == PSC_POWER)
937 		val = DIV_ROUND_CLOSEST(val, 1000L);
938 
939 	/*
940 	 * For simplicity, convert fan data to milli-units
941 	 * before calculating the exponent.
942 	 */
943 	if (sensor->class == PSC_FAN)
944 		val = val * 1000;
945 
946 	/* Reduce large mantissa until it fits into 10 bit */
947 	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
948 		exponent++;
949 		val >>= 1;
950 	}
951 	/*
952 	 * Increase small mantissa to generate valid 'normal'
953 	 * number
954 	 */
955 	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
956 		exponent--;
957 		val <<= 1;
958 	}
959 
960 	/* Convert mantissa from milli-units to units */
961 	mantissa = DIV_ROUND_CLOSEST(val, 1000);
962 
963 	/*
964 	 * Ensure that the resulting number is within range.
965 	 * Valid range is 0x400..0x7ff, where bit 10 reflects
966 	 * the implied high bit in normalized ieee754 numbers.
967 	 * Set the range to 0x400..0x7ff to reflect this.
968 	 * The upper bit is then removed by the mask against
969 	 * 0x3ff in the final assignment.
970 	 */
971 	if (mantissa > 0x7ff)
972 		mantissa = 0x7ff;
973 	else if (mantissa < 0x400)
974 		mantissa = 0x400;
975 
976 	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
977 	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
978 }
979 
980 #define MAX_LIN_MANTISSA	(1023 * 1000)
981 #define MIN_LIN_MANTISSA	(511 * 1000)
982 
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)983 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
984 				 struct pmbus_sensor *sensor, s64 val)
985 {
986 	s16 exponent = 0, mantissa;
987 	bool negative = false;
988 
989 	/* simple case */
990 	if (val == 0)
991 		return 0;
992 
993 	if (sensor->class == PSC_VOLTAGE_OUT) {
994 		/* LINEAR16 does not support negative voltages */
995 		if (val < 0)
996 			return 0;
997 
998 		/*
999 		 * For a static exponents, we don't have a choice
1000 		 * but to adjust the value to it.
1001 		 */
1002 		if (data->exponent[sensor->page] < 0)
1003 			val <<= -data->exponent[sensor->page];
1004 		else
1005 			val >>= data->exponent[sensor->page];
1006 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007 		return clamp_val(val, 0, 0xffff);
1008 	}
1009 
1010 	if (val < 0) {
1011 		negative = true;
1012 		val = -val;
1013 	}
1014 
1015 	/* Power is in uW. Convert to mW before converting. */
1016 	if (sensor->class == PSC_POWER)
1017 		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018 
1019 	/*
1020 	 * For simplicity, convert fan data to milli-units
1021 	 * before calculating the exponent.
1022 	 */
1023 	if (sensor->class == PSC_FAN)
1024 		val = val * 1000LL;
1025 
1026 	/* Reduce large mantissa until it fits into 10 bit */
1027 	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028 		exponent++;
1029 		val >>= 1;
1030 	}
1031 	/* Increase small mantissa to improve precision */
1032 	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033 		exponent--;
1034 		val <<= 1;
1035 	}
1036 
1037 	/* Convert mantissa from milli-units to units */
1038 	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1039 
1040 	/* restore sign */
1041 	if (negative)
1042 		mantissa = -mantissa;
1043 
1044 	/* Convert to 5 bit exponent, 11 bit mantissa */
1045 	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046 }
1047 
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1048 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049 				 struct pmbus_sensor *sensor, s64 val)
1050 {
1051 	s64 b;
1052 	s32 m, R;
1053 
1054 	m = data->info->m[sensor->class];
1055 	b = data->info->b[sensor->class];
1056 	R = data->info->R[sensor->class];
1057 
1058 	/* Power is in uW. Adjust R and b. */
1059 	if (sensor->class == PSC_POWER) {
1060 		R -= 3;
1061 		b *= 1000;
1062 	}
1063 
1064 	/* Calculate Y = (m * X + b) * 10^R */
1065 	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066 		R -= 3;		/* Adjust R and b for data in milli-units */
1067 		b *= 1000;
1068 	}
1069 	val = val * m + b;
1070 
1071 	while (R > 0) {
1072 		val *= 10;
1073 		R--;
1074 	}
1075 	while (R < 0) {
1076 		val = div_s64(val + 5LL, 10L);  /* round closest */
1077 		R++;
1078 	}
1079 
1080 	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081 }
1082 
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1083 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084 			      struct pmbus_sensor *sensor, s64 val)
1085 {
1086 	val = clamp_val(val, 500, 1600);
1087 
1088 	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089 }
1090 
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1091 static u16 pmbus_data2reg(struct pmbus_data *data,
1092 			  struct pmbus_sensor *sensor, s64 val)
1093 {
1094 	u16 regval;
1095 
1096 	if (!sensor->convert)
1097 		return val;
1098 
1099 	switch (data->info->format[sensor->class]) {
1100 	case direct:
1101 		regval = pmbus_data2reg_direct(data, sensor, val);
1102 		break;
1103 	case vid:
1104 		regval = pmbus_data2reg_vid(data, sensor, val);
1105 		break;
1106 	case ieee754:
1107 		regval = pmbus_data2reg_ieee754(data, sensor, val);
1108 		break;
1109 	case linear:
1110 	default:
1111 		regval = pmbus_data2reg_linear(data, sensor, val);
1112 		break;
1113 	}
1114 	return regval;
1115 }
1116 
1117 /*
1118  * Return boolean calculated from converted data.
1119  * <index> defines a status register index and mask.
1120  * The mask is in the lower 8 bits, the register index is in bits 8..23.
1121  *
1122  * The associated pmbus_boolean structure contains optional pointers to two
1123  * sensor attributes. If specified, those attributes are compared against each
1124  * other to determine if a limit has been exceeded.
1125  *
1126  * If the sensor attribute pointers are NULL, the function returns true if
1127  * (status[reg] & mask) is true.
1128  *
1129  * If sensor attribute pointers are provided, a comparison against a specified
1130  * limit has to be performed to determine the boolean result.
1131  * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132  * sensor values referenced by sensor attribute pointers s1 and s2).
1133  *
1134  * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135  * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136  *
1137  * If a negative value is stored in any of the referenced registers, this value
1138  * reflects an error code which will be returned.
1139  */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1140 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141 			     int index)
1142 {
1143 	struct pmbus_data *data = i2c_get_clientdata(client);
1144 	struct pmbus_sensor *s1 = b->s1;
1145 	struct pmbus_sensor *s2 = b->s2;
1146 	u16 mask = pb_index_to_mask(index);
1147 	u8 page = pb_index_to_page(index);
1148 	u16 reg = pb_index_to_reg(index);
1149 	int ret, status;
1150 	u16 regval;
1151 
1152 	mutex_lock(&data->update_lock);
1153 	status = pmbus_get_status(client, page, reg);
1154 	if (status < 0) {
1155 		ret = status;
1156 		goto unlock;
1157 	}
1158 
1159 	if (s1)
1160 		pmbus_update_sensor_data(client, s1);
1161 	if (s2)
1162 		pmbus_update_sensor_data(client, s2);
1163 
1164 	regval = status & mask;
1165 	if (regval) {
1166 		if (data->revision >= PMBUS_REV_12) {
1167 			ret = _pmbus_write_byte_data(client, page, reg, regval);
1168 			if (ret)
1169 				goto unlock;
1170 		} else {
1171 			pmbus_clear_fault_page(client, page);
1172 		}
1173 	}
1174 	if (s1 && s2) {
1175 		s64 v1, v2;
1176 
1177 		if (s1->data < 0) {
1178 			ret = s1->data;
1179 			goto unlock;
1180 		}
1181 		if (s2->data < 0) {
1182 			ret = s2->data;
1183 			goto unlock;
1184 		}
1185 
1186 		v1 = pmbus_reg2data(data, s1);
1187 		v2 = pmbus_reg2data(data, s2);
1188 		ret = !!(regval && v1 >= v2);
1189 	} else {
1190 		ret = !!regval;
1191 	}
1192 unlock:
1193 	mutex_unlock(&data->update_lock);
1194 	return ret;
1195 }
1196 
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1197 static ssize_t pmbus_show_boolean(struct device *dev,
1198 				  struct device_attribute *da, char *buf)
1199 {
1200 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1201 	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1202 	struct i2c_client *client = to_i2c_client(dev->parent);
1203 	int val;
1204 
1205 	val = pmbus_get_boolean(client, boolean, attr->index);
1206 	if (val < 0)
1207 		return val;
1208 	return sysfs_emit(buf, "%d\n", val);
1209 }
1210 
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1211 static ssize_t pmbus_show_sensor(struct device *dev,
1212 				 struct device_attribute *devattr, char *buf)
1213 {
1214 	struct i2c_client *client = to_i2c_client(dev->parent);
1215 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1216 	struct pmbus_data *data = i2c_get_clientdata(client);
1217 	ssize_t ret;
1218 
1219 	mutex_lock(&data->update_lock);
1220 	pmbus_update_sensor_data(client, sensor);
1221 	if (sensor->data < 0)
1222 		ret = sensor->data;
1223 	else
1224 		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1225 	mutex_unlock(&data->update_lock);
1226 	return ret;
1227 }
1228 
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1229 static ssize_t pmbus_set_sensor(struct device *dev,
1230 				struct device_attribute *devattr,
1231 				const char *buf, size_t count)
1232 {
1233 	struct i2c_client *client = to_i2c_client(dev->parent);
1234 	struct pmbus_data *data = i2c_get_clientdata(client);
1235 	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1236 	ssize_t rv = count;
1237 	s64 val;
1238 	int ret;
1239 	u16 regval;
1240 
1241 	if (kstrtos64(buf, 10, &val) < 0)
1242 		return -EINVAL;
1243 
1244 	mutex_lock(&data->update_lock);
1245 	regval = pmbus_data2reg(data, sensor, val);
1246 	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1247 	if (ret < 0)
1248 		rv = ret;
1249 	else
1250 		sensor->data = -ENODATA;
1251 	mutex_unlock(&data->update_lock);
1252 	return rv;
1253 }
1254 
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1255 static ssize_t pmbus_show_label(struct device *dev,
1256 				struct device_attribute *da, char *buf)
1257 {
1258 	struct pmbus_label *label = to_pmbus_label(da);
1259 
1260 	return sysfs_emit(buf, "%s\n", label->label);
1261 }
1262 
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1263 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1264 {
1265 	if (data->num_attributes >= data->max_attributes - 1) {
1266 		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1267 		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1268 						      new_max_attrs, sizeof(void *),
1269 						      GFP_KERNEL);
1270 		if (!new_attrs)
1271 			return -ENOMEM;
1272 		data->group.attrs = new_attrs;
1273 		data->max_attributes = new_max_attrs;
1274 	}
1275 
1276 	data->group.attrs[data->num_attributes++] = attr;
1277 	data->group.attrs[data->num_attributes] = NULL;
1278 	return 0;
1279 }
1280 
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1281 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1282 				const char *name,
1283 				umode_t mode,
1284 				ssize_t (*show)(struct device *dev,
1285 						struct device_attribute *attr,
1286 						char *buf),
1287 				ssize_t (*store)(struct device *dev,
1288 						 struct device_attribute *attr,
1289 						 const char *buf, size_t count))
1290 {
1291 	sysfs_attr_init(&dev_attr->attr);
1292 	dev_attr->attr.name = name;
1293 	dev_attr->attr.mode = mode;
1294 	dev_attr->show = show;
1295 	dev_attr->store = store;
1296 }
1297 
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1298 static void pmbus_attr_init(struct sensor_device_attribute *a,
1299 			    const char *name,
1300 			    umode_t mode,
1301 			    ssize_t (*show)(struct device *dev,
1302 					    struct device_attribute *attr,
1303 					    char *buf),
1304 			    ssize_t (*store)(struct device *dev,
1305 					     struct device_attribute *attr,
1306 					     const char *buf, size_t count),
1307 			    int idx)
1308 {
1309 	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1310 	a->index = idx;
1311 }
1312 
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1313 static int pmbus_add_boolean(struct pmbus_data *data,
1314 			     const char *name, const char *type, int seq,
1315 			     struct pmbus_sensor *s1,
1316 			     struct pmbus_sensor *s2,
1317 			     u8 page, u16 reg, u16 mask)
1318 {
1319 	struct pmbus_boolean *boolean;
1320 	struct sensor_device_attribute *a;
1321 
1322 	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1323 		return -EINVAL;
1324 
1325 	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1326 	if (!boolean)
1327 		return -ENOMEM;
1328 
1329 	a = &boolean->attribute;
1330 
1331 	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1332 		 name, seq, type);
1333 	boolean->s1 = s1;
1334 	boolean->s2 = s2;
1335 	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1336 			pb_reg_to_index(page, reg, mask));
1337 
1338 	return pmbus_add_attribute(data, &a->dev_attr.attr);
1339 }
1340 
1341 /* of thermal for pmbus temperature sensors */
1342 struct pmbus_thermal_data {
1343 	struct pmbus_data *pmbus_data;
1344 	struct pmbus_sensor *sensor;
1345 };
1346 
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1347 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1348 {
1349 	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1350 	struct pmbus_sensor *sensor = tdata->sensor;
1351 	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1352 	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1353 	struct device *dev = pmbus_data->hwmon_dev;
1354 	int ret = 0;
1355 
1356 	if (!dev) {
1357 		/* May not even get to hwmon yet */
1358 		*temp = 0;
1359 		return 0;
1360 	}
1361 
1362 	mutex_lock(&pmbus_data->update_lock);
1363 	pmbus_update_sensor_data(client, sensor);
1364 	if (sensor->data < 0)
1365 		ret = sensor->data;
1366 	else
1367 		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1368 	mutex_unlock(&pmbus_data->update_lock);
1369 
1370 	return ret;
1371 }
1372 
1373 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1374 	.get_temp = pmbus_thermal_get_temp,
1375 };
1376 
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1377 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1378 				    struct pmbus_sensor *sensor, int index)
1379 {
1380 	struct device *dev = pmbus_data->dev;
1381 	struct pmbus_thermal_data *tdata;
1382 	struct thermal_zone_device *tzd;
1383 
1384 	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1385 	if (!tdata)
1386 		return -ENOMEM;
1387 
1388 	tdata->sensor = sensor;
1389 	tdata->pmbus_data = pmbus_data;
1390 
1391 	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1392 					    &pmbus_thermal_ops);
1393 	/*
1394 	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1395 	 * so ignore that error but forward any other error.
1396 	 */
1397 	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1398 		return PTR_ERR(tzd);
1399 
1400 	return 0;
1401 }
1402 
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1403 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1404 					     const char *name, const char *type,
1405 					     int seq, int page, int phase,
1406 					     int reg,
1407 					     enum pmbus_sensor_classes class,
1408 					     bool update, bool readonly,
1409 					     bool convert)
1410 {
1411 	struct pmbus_sensor *sensor;
1412 	struct device_attribute *a;
1413 
1414 	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1415 	if (!sensor)
1416 		return NULL;
1417 	a = &sensor->attribute;
1418 
1419 	if (type)
1420 		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1421 			 name, seq, type);
1422 	else
1423 		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1424 			 name, seq);
1425 
1426 	if (data->flags & PMBUS_WRITE_PROTECTED)
1427 		readonly = true;
1428 
1429 	sensor->page = page;
1430 	sensor->phase = phase;
1431 	sensor->reg = reg;
1432 	sensor->class = class;
1433 	sensor->update = update;
1434 	sensor->convert = convert;
1435 	sensor->data = -ENODATA;
1436 	pmbus_dev_attr_init(a, sensor->name,
1437 			    readonly ? 0444 : 0644,
1438 			    pmbus_show_sensor, pmbus_set_sensor);
1439 
1440 	if (pmbus_add_attribute(data, &a->attr))
1441 		return NULL;
1442 
1443 	sensor->next = data->sensors;
1444 	data->sensors = sensor;
1445 
1446 	/* temperature sensors with _input values are registered with thermal */
1447 	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1448 		pmbus_thermal_add_sensor(data, sensor, seq);
1449 
1450 	return sensor;
1451 }
1452 
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1453 static int pmbus_add_label(struct pmbus_data *data,
1454 			   const char *name, int seq,
1455 			   const char *lstring, int index, int phase)
1456 {
1457 	struct pmbus_label *label;
1458 	struct device_attribute *a;
1459 
1460 	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1461 	if (!label)
1462 		return -ENOMEM;
1463 
1464 	a = &label->attribute;
1465 
1466 	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1467 	if (!index) {
1468 		if (phase == 0xff)
1469 			strscpy(label->label, lstring);
1470 		else
1471 			snprintf(label->label, sizeof(label->label), "%s.%d",
1472 				 lstring, phase);
1473 	} else {
1474 		if (phase == 0xff)
1475 			snprintf(label->label, sizeof(label->label), "%s%d",
1476 				 lstring, index);
1477 		else
1478 			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1479 				 lstring, index, phase);
1480 	}
1481 
1482 	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1483 	return pmbus_add_attribute(data, &a->attr);
1484 }
1485 
1486 /*
1487  * Search for attributes. Allocate sensors, booleans, and labels as needed.
1488  */
1489 
1490 /*
1491  * The pmbus_limit_attr structure describes a single limit attribute
1492  * and its associated alarm attribute.
1493  */
1494 struct pmbus_limit_attr {
1495 	u16 reg;		/* Limit register */
1496 	u16 sbit;		/* Alarm attribute status bit */
1497 	bool update;		/* True if register needs updates */
1498 	bool low;		/* True if low limit; for limits with compare functions only */
1499 	const char *attr;	/* Attribute name */
1500 	const char *alarm;	/* Alarm attribute name */
1501 };
1502 
1503 /*
1504  * The pmbus_sensor_attr structure describes one sensor attribute. This
1505  * description includes a reference to the associated limit attributes.
1506  */
1507 struct pmbus_sensor_attr {
1508 	u16 reg;			/* sensor register */
1509 	u16 gbit;			/* generic status bit */
1510 	u8 nlimit;			/* # of limit registers */
1511 	enum pmbus_sensor_classes class;/* sensor class */
1512 	const char *label;		/* sensor label */
1513 	bool paged;			/* true if paged sensor */
1514 	bool update;			/* true if update needed */
1515 	bool compare;			/* true if compare function needed */
1516 	u32 func;			/* sensor mask */
1517 	u32 sfunc;			/* sensor status mask */
1518 	int sreg;			/* status register */
1519 	const struct pmbus_limit_attr *limit;/* limit registers */
1520 };
1521 
1522 /*
1523  * Add a set of limit attributes and, if supported, the associated
1524  * alarm attributes.
1525  * returns 0 if no alarm register found, 1 if an alarm register was found,
1526  * < 0 on errors.
1527  */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1528 static int pmbus_add_limit_attrs(struct i2c_client *client,
1529 				 struct pmbus_data *data,
1530 				 const struct pmbus_driver_info *info,
1531 				 const char *name, int index, int page,
1532 				 struct pmbus_sensor *base,
1533 				 const struct pmbus_sensor_attr *attr)
1534 {
1535 	const struct pmbus_limit_attr *l = attr->limit;
1536 	int nlimit = attr->nlimit;
1537 	int have_alarm = 0;
1538 	int i, ret;
1539 	struct pmbus_sensor *curr;
1540 
1541 	for (i = 0; i < nlimit; i++) {
1542 		if (pmbus_check_word_register(client, page, l->reg)) {
1543 			curr = pmbus_add_sensor(data, name, l->attr, index,
1544 						page, 0xff, l->reg, attr->class,
1545 						attr->update || l->update,
1546 						false, true);
1547 			if (!curr)
1548 				return -ENOMEM;
1549 			if (l->sbit && (info->func[page] & attr->sfunc)) {
1550 				ret = pmbus_add_boolean(data, name,
1551 					l->alarm, index,
1552 					attr->compare ?  l->low ? curr : base
1553 						      : NULL,
1554 					attr->compare ? l->low ? base : curr
1555 						      : NULL,
1556 					page, attr->sreg, l->sbit);
1557 				if (ret)
1558 					return ret;
1559 				have_alarm = 1;
1560 			}
1561 		}
1562 		l++;
1563 	}
1564 	return have_alarm;
1565 }
1566 
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1567 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1568 				      struct pmbus_data *data,
1569 				      const struct pmbus_driver_info *info,
1570 				      const char *name,
1571 				      int index, int page, int phase,
1572 				      const struct pmbus_sensor_attr *attr,
1573 				      bool paged)
1574 {
1575 	struct pmbus_sensor *base;
1576 	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1577 	int ret;
1578 
1579 	if (attr->label) {
1580 		ret = pmbus_add_label(data, name, index, attr->label,
1581 				      paged ? page + 1 : 0, phase);
1582 		if (ret)
1583 			return ret;
1584 	}
1585 	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1586 				attr->reg, attr->class, true, true, true);
1587 	if (!base)
1588 		return -ENOMEM;
1589 	/* No limit and alarm attributes for phase specific sensors */
1590 	if (attr->sfunc && phase == 0xff) {
1591 		ret = pmbus_add_limit_attrs(client, data, info, name,
1592 					    index, page, base, attr);
1593 		if (ret < 0)
1594 			return ret;
1595 		/*
1596 		 * Add generic alarm attribute only if there are no individual
1597 		 * alarm attributes, if there is a global alarm bit, and if
1598 		 * the generic status register (word or byte, depending on
1599 		 * which global bit is set) for this page is accessible.
1600 		 */
1601 		if (!ret && attr->gbit &&
1602 		    (!upper || data->has_status_word) &&
1603 		    pmbus_check_status_register(client, page)) {
1604 			ret = pmbus_add_boolean(data, name, "alarm", index,
1605 						NULL, NULL,
1606 						page, PMBUS_STATUS_WORD,
1607 						attr->gbit);
1608 			if (ret)
1609 				return ret;
1610 		}
1611 	}
1612 	return 0;
1613 }
1614 
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1615 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1616 				  const struct pmbus_sensor_attr *attr)
1617 {
1618 	int p;
1619 
1620 	if (attr->paged)
1621 		return true;
1622 
1623 	/*
1624 	 * Some attributes may be present on more than one page despite
1625 	 * not being marked with the paged attribute. If that is the case,
1626 	 * then treat the sensor as being paged and add the page suffix to the
1627 	 * attribute name.
1628 	 * We don't just add the paged attribute to all such attributes, in
1629 	 * order to maintain the un-suffixed labels in the case where the
1630 	 * attribute is only on page 0.
1631 	 */
1632 	for (p = 1; p < info->pages; p++) {
1633 		if (info->func[p] & attr->func)
1634 			return true;
1635 	}
1636 	return false;
1637 }
1638 
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1639 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1640 				  struct pmbus_data *data,
1641 				  const char *name,
1642 				  const struct pmbus_sensor_attr *attrs,
1643 				  int nattrs)
1644 {
1645 	const struct pmbus_driver_info *info = data->info;
1646 	int index, i;
1647 	int ret;
1648 
1649 	index = 1;
1650 	for (i = 0; i < nattrs; i++) {
1651 		int page, pages;
1652 		bool paged = pmbus_sensor_is_paged(info, attrs);
1653 
1654 		pages = paged ? info->pages : 1;
1655 		for (page = 0; page < pages; page++) {
1656 			if (info->func[page] & attrs->func) {
1657 				ret = pmbus_add_sensor_attrs_one(client, data, info,
1658 								 name, index, page,
1659 								 0xff, attrs, paged);
1660 				if (ret)
1661 					return ret;
1662 				index++;
1663 			}
1664 			if (info->phases[page]) {
1665 				int phase;
1666 
1667 				for (phase = 0; phase < info->phases[page];
1668 				     phase++) {
1669 					if (!(info->pfunc[phase] & attrs->func))
1670 						continue;
1671 					ret = pmbus_add_sensor_attrs_one(client,
1672 						data, info, name, index, page,
1673 						phase, attrs, paged);
1674 					if (ret)
1675 						return ret;
1676 					index++;
1677 				}
1678 			}
1679 		}
1680 		attrs++;
1681 	}
1682 	return 0;
1683 }
1684 
1685 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1686 	{
1687 		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1688 		.attr = "min",
1689 		.alarm = "min_alarm",
1690 		.sbit = PB_VOLTAGE_UV_WARNING,
1691 	}, {
1692 		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1693 		.attr = "lcrit",
1694 		.alarm = "lcrit_alarm",
1695 		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1696 	}, {
1697 		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1698 		.attr = "max",
1699 		.alarm = "max_alarm",
1700 		.sbit = PB_VOLTAGE_OV_WARNING,
1701 	}, {
1702 		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1703 		.attr = "crit",
1704 		.alarm = "crit_alarm",
1705 		.sbit = PB_VOLTAGE_OV_FAULT,
1706 	}, {
1707 		.reg = PMBUS_VIRT_READ_VIN_AVG,
1708 		.update = true,
1709 		.attr = "average",
1710 	}, {
1711 		.reg = PMBUS_VIRT_READ_VIN_MIN,
1712 		.update = true,
1713 		.attr = "lowest",
1714 	}, {
1715 		.reg = PMBUS_VIRT_READ_VIN_MAX,
1716 		.update = true,
1717 		.attr = "highest",
1718 	}, {
1719 		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1720 		.attr = "reset_history",
1721 	}, {
1722 		.reg = PMBUS_MFR_VIN_MIN,
1723 		.attr = "rated_min",
1724 	}, {
1725 		.reg = PMBUS_MFR_VIN_MAX,
1726 		.attr = "rated_max",
1727 	},
1728 };
1729 
1730 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1731 	{
1732 		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1733 		.attr = "min",
1734 		.alarm = "min_alarm",
1735 		.sbit = PB_VOLTAGE_UV_WARNING,
1736 	}, {
1737 		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1738 		.attr = "lcrit",
1739 		.alarm = "lcrit_alarm",
1740 		.sbit = PB_VOLTAGE_UV_FAULT,
1741 	}, {
1742 		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1743 		.attr = "max",
1744 		.alarm = "max_alarm",
1745 		.sbit = PB_VOLTAGE_OV_WARNING,
1746 	}, {
1747 		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1748 		.attr = "crit",
1749 		.alarm = "crit_alarm",
1750 		.sbit = PB_VOLTAGE_OV_FAULT,
1751 	}
1752 };
1753 
1754 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1755 	{
1756 		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1757 		.attr = "min",
1758 		.alarm = "min_alarm",
1759 		.sbit = PB_VOLTAGE_UV_WARNING,
1760 	}, {
1761 		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1762 		.attr = "lcrit",
1763 		.alarm = "lcrit_alarm",
1764 		.sbit = PB_VOLTAGE_UV_FAULT,
1765 	}, {
1766 		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1767 		.attr = "max",
1768 		.alarm = "max_alarm",
1769 		.sbit = PB_VOLTAGE_OV_WARNING,
1770 	}, {
1771 		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1772 		.attr = "crit",
1773 		.alarm = "crit_alarm",
1774 		.sbit = PB_VOLTAGE_OV_FAULT,
1775 	}, {
1776 		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1777 		.update = true,
1778 		.attr = "average",
1779 	}, {
1780 		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1781 		.update = true,
1782 		.attr = "lowest",
1783 	}, {
1784 		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1785 		.update = true,
1786 		.attr = "highest",
1787 	}, {
1788 		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1789 		.attr = "reset_history",
1790 	}, {
1791 		.reg = PMBUS_MFR_VOUT_MIN,
1792 		.attr = "rated_min",
1793 	}, {
1794 		.reg = PMBUS_MFR_VOUT_MAX,
1795 		.attr = "rated_max",
1796 	},
1797 };
1798 
1799 static const struct pmbus_sensor_attr voltage_attributes[] = {
1800 	{
1801 		.reg = PMBUS_READ_VIN,
1802 		.class = PSC_VOLTAGE_IN,
1803 		.label = "vin",
1804 		.func = PMBUS_HAVE_VIN,
1805 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1806 		.sreg = PMBUS_STATUS_INPUT,
1807 		.gbit = PB_STATUS_VIN_UV,
1808 		.limit = vin_limit_attrs,
1809 		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1810 	}, {
1811 		.reg = PMBUS_VIRT_READ_VMON,
1812 		.class = PSC_VOLTAGE_IN,
1813 		.label = "vmon",
1814 		.func = PMBUS_HAVE_VMON,
1815 		.sfunc = PMBUS_HAVE_STATUS_VMON,
1816 		.sreg = PMBUS_VIRT_STATUS_VMON,
1817 		.limit = vmon_limit_attrs,
1818 		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1819 	}, {
1820 		.reg = PMBUS_READ_VCAP,
1821 		.class = PSC_VOLTAGE_IN,
1822 		.label = "vcap",
1823 		.func = PMBUS_HAVE_VCAP,
1824 	}, {
1825 		.reg = PMBUS_READ_VOUT,
1826 		.class = PSC_VOLTAGE_OUT,
1827 		.label = "vout",
1828 		.paged = true,
1829 		.func = PMBUS_HAVE_VOUT,
1830 		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1831 		.sreg = PMBUS_STATUS_VOUT,
1832 		.gbit = PB_STATUS_VOUT_OV,
1833 		.limit = vout_limit_attrs,
1834 		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1835 	}
1836 };
1837 
1838 /* Current attributes */
1839 
1840 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1841 	{
1842 		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1843 		.attr = "max",
1844 		.alarm = "max_alarm",
1845 		.sbit = PB_IIN_OC_WARNING,
1846 	}, {
1847 		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1848 		.attr = "crit",
1849 		.alarm = "crit_alarm",
1850 		.sbit = PB_IIN_OC_FAULT,
1851 	}, {
1852 		.reg = PMBUS_VIRT_READ_IIN_AVG,
1853 		.update = true,
1854 		.attr = "average",
1855 	}, {
1856 		.reg = PMBUS_VIRT_READ_IIN_MIN,
1857 		.update = true,
1858 		.attr = "lowest",
1859 	}, {
1860 		.reg = PMBUS_VIRT_READ_IIN_MAX,
1861 		.update = true,
1862 		.attr = "highest",
1863 	}, {
1864 		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1865 		.attr = "reset_history",
1866 	}, {
1867 		.reg = PMBUS_MFR_IIN_MAX,
1868 		.attr = "rated_max",
1869 	},
1870 };
1871 
1872 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1873 	{
1874 		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1875 		.attr = "max",
1876 		.alarm = "max_alarm",
1877 		.sbit = PB_IOUT_OC_WARNING,
1878 	}, {
1879 		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1880 		.attr = "lcrit",
1881 		.alarm = "lcrit_alarm",
1882 		.sbit = PB_IOUT_UC_FAULT,
1883 	}, {
1884 		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1885 		.attr = "crit",
1886 		.alarm = "crit_alarm",
1887 		.sbit = PB_IOUT_OC_FAULT,
1888 	}, {
1889 		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1890 		.update = true,
1891 		.attr = "average",
1892 	}, {
1893 		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1894 		.update = true,
1895 		.attr = "lowest",
1896 	}, {
1897 		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1898 		.update = true,
1899 		.attr = "highest",
1900 	}, {
1901 		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1902 		.attr = "reset_history",
1903 	}, {
1904 		.reg = PMBUS_MFR_IOUT_MAX,
1905 		.attr = "rated_max",
1906 	},
1907 };
1908 
1909 static const struct pmbus_sensor_attr current_attributes[] = {
1910 	{
1911 		.reg = PMBUS_READ_IIN,
1912 		.class = PSC_CURRENT_IN,
1913 		.label = "iin",
1914 		.func = PMBUS_HAVE_IIN,
1915 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1916 		.sreg = PMBUS_STATUS_INPUT,
1917 		.gbit = PB_STATUS_INPUT,
1918 		.limit = iin_limit_attrs,
1919 		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1920 	}, {
1921 		.reg = PMBUS_READ_IOUT,
1922 		.class = PSC_CURRENT_OUT,
1923 		.label = "iout",
1924 		.paged = true,
1925 		.func = PMBUS_HAVE_IOUT,
1926 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1927 		.sreg = PMBUS_STATUS_IOUT,
1928 		.gbit = PB_STATUS_IOUT_OC,
1929 		.limit = iout_limit_attrs,
1930 		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1931 	}
1932 };
1933 
1934 /* Power attributes */
1935 
1936 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1937 	{
1938 		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1939 		.attr = "max",
1940 		.alarm = "alarm",
1941 		.sbit = PB_PIN_OP_WARNING,
1942 	}, {
1943 		.reg = PMBUS_VIRT_READ_PIN_AVG,
1944 		.update = true,
1945 		.attr = "average",
1946 	}, {
1947 		.reg = PMBUS_VIRT_READ_PIN_MIN,
1948 		.update = true,
1949 		.attr = "input_lowest",
1950 	}, {
1951 		.reg = PMBUS_VIRT_READ_PIN_MAX,
1952 		.update = true,
1953 		.attr = "input_highest",
1954 	}, {
1955 		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1956 		.attr = "reset_history",
1957 	}, {
1958 		.reg = PMBUS_MFR_PIN_MAX,
1959 		.attr = "rated_max",
1960 	},
1961 };
1962 
1963 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1964 	{
1965 		.reg = PMBUS_POUT_MAX,
1966 		.attr = "cap",
1967 		.alarm = "cap_alarm",
1968 		.sbit = PB_POWER_LIMITING,
1969 	}, {
1970 		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1971 		.attr = "max",
1972 		.alarm = "max_alarm",
1973 		.sbit = PB_POUT_OP_WARNING,
1974 	}, {
1975 		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1976 		.attr = "crit",
1977 		.alarm = "crit_alarm",
1978 		.sbit = PB_POUT_OP_FAULT,
1979 	}, {
1980 		.reg = PMBUS_VIRT_READ_POUT_AVG,
1981 		.update = true,
1982 		.attr = "average",
1983 	}, {
1984 		.reg = PMBUS_VIRT_READ_POUT_MIN,
1985 		.update = true,
1986 		.attr = "input_lowest",
1987 	}, {
1988 		.reg = PMBUS_VIRT_READ_POUT_MAX,
1989 		.update = true,
1990 		.attr = "input_highest",
1991 	}, {
1992 		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1993 		.attr = "reset_history",
1994 	}, {
1995 		.reg = PMBUS_MFR_POUT_MAX,
1996 		.attr = "rated_max",
1997 	},
1998 };
1999 
2000 static const struct pmbus_sensor_attr power_attributes[] = {
2001 	{
2002 		.reg = PMBUS_READ_PIN,
2003 		.class = PSC_POWER,
2004 		.label = "pin",
2005 		.func = PMBUS_HAVE_PIN,
2006 		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2007 		.sreg = PMBUS_STATUS_INPUT,
2008 		.gbit = PB_STATUS_INPUT,
2009 		.limit = pin_limit_attrs,
2010 		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2011 	}, {
2012 		.reg = PMBUS_READ_POUT,
2013 		.class = PSC_POWER,
2014 		.label = "pout",
2015 		.paged = true,
2016 		.func = PMBUS_HAVE_POUT,
2017 		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2018 		.sreg = PMBUS_STATUS_IOUT,
2019 		.limit = pout_limit_attrs,
2020 		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2021 	}
2022 };
2023 
2024 /* Temperature atributes */
2025 
2026 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2027 	{
2028 		.reg = PMBUS_UT_WARN_LIMIT,
2029 		.low = true,
2030 		.attr = "min",
2031 		.alarm = "min_alarm",
2032 		.sbit = PB_TEMP_UT_WARNING,
2033 	}, {
2034 		.reg = PMBUS_UT_FAULT_LIMIT,
2035 		.low = true,
2036 		.attr = "lcrit",
2037 		.alarm = "lcrit_alarm",
2038 		.sbit = PB_TEMP_UT_FAULT,
2039 	}, {
2040 		.reg = PMBUS_OT_WARN_LIMIT,
2041 		.attr = "max",
2042 		.alarm = "max_alarm",
2043 		.sbit = PB_TEMP_OT_WARNING,
2044 	}, {
2045 		.reg = PMBUS_OT_FAULT_LIMIT,
2046 		.attr = "crit",
2047 		.alarm = "crit_alarm",
2048 		.sbit = PB_TEMP_OT_FAULT,
2049 	}, {
2050 		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2051 		.attr = "lowest",
2052 	}, {
2053 		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2054 		.attr = "average",
2055 	}, {
2056 		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2057 		.attr = "highest",
2058 	}, {
2059 		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2060 		.attr = "reset_history",
2061 	}, {
2062 		.reg = PMBUS_MFR_MAX_TEMP_1,
2063 		.attr = "rated_max",
2064 	},
2065 };
2066 
2067 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2068 	{
2069 		.reg = PMBUS_UT_WARN_LIMIT,
2070 		.low = true,
2071 		.attr = "min",
2072 		.alarm = "min_alarm",
2073 		.sbit = PB_TEMP_UT_WARNING,
2074 	}, {
2075 		.reg = PMBUS_UT_FAULT_LIMIT,
2076 		.low = true,
2077 		.attr = "lcrit",
2078 		.alarm = "lcrit_alarm",
2079 		.sbit = PB_TEMP_UT_FAULT,
2080 	}, {
2081 		.reg = PMBUS_OT_WARN_LIMIT,
2082 		.attr = "max",
2083 		.alarm = "max_alarm",
2084 		.sbit = PB_TEMP_OT_WARNING,
2085 	}, {
2086 		.reg = PMBUS_OT_FAULT_LIMIT,
2087 		.attr = "crit",
2088 		.alarm = "crit_alarm",
2089 		.sbit = PB_TEMP_OT_FAULT,
2090 	}, {
2091 		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2092 		.attr = "lowest",
2093 	}, {
2094 		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2095 		.attr = "average",
2096 	}, {
2097 		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2098 		.attr = "highest",
2099 	}, {
2100 		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2101 		.attr = "reset_history",
2102 	}, {
2103 		.reg = PMBUS_MFR_MAX_TEMP_2,
2104 		.attr = "rated_max",
2105 	},
2106 };
2107 
2108 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2109 	{
2110 		.reg = PMBUS_UT_WARN_LIMIT,
2111 		.low = true,
2112 		.attr = "min",
2113 		.alarm = "min_alarm",
2114 		.sbit = PB_TEMP_UT_WARNING,
2115 	}, {
2116 		.reg = PMBUS_UT_FAULT_LIMIT,
2117 		.low = true,
2118 		.attr = "lcrit",
2119 		.alarm = "lcrit_alarm",
2120 		.sbit = PB_TEMP_UT_FAULT,
2121 	}, {
2122 		.reg = PMBUS_OT_WARN_LIMIT,
2123 		.attr = "max",
2124 		.alarm = "max_alarm",
2125 		.sbit = PB_TEMP_OT_WARNING,
2126 	}, {
2127 		.reg = PMBUS_OT_FAULT_LIMIT,
2128 		.attr = "crit",
2129 		.alarm = "crit_alarm",
2130 		.sbit = PB_TEMP_OT_FAULT,
2131 	}, {
2132 		.reg = PMBUS_MFR_MAX_TEMP_3,
2133 		.attr = "rated_max",
2134 	},
2135 };
2136 
2137 static const struct pmbus_sensor_attr temp_attributes[] = {
2138 	{
2139 		.reg = PMBUS_READ_TEMPERATURE_1,
2140 		.class = PSC_TEMPERATURE,
2141 		.paged = true,
2142 		.update = true,
2143 		.compare = true,
2144 		.func = PMBUS_HAVE_TEMP,
2145 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2146 		.sreg = PMBUS_STATUS_TEMPERATURE,
2147 		.gbit = PB_STATUS_TEMPERATURE,
2148 		.limit = temp_limit_attrs,
2149 		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2150 	}, {
2151 		.reg = PMBUS_READ_TEMPERATURE_2,
2152 		.class = PSC_TEMPERATURE,
2153 		.paged = true,
2154 		.update = true,
2155 		.compare = true,
2156 		.func = PMBUS_HAVE_TEMP2,
2157 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2158 		.sreg = PMBUS_STATUS_TEMPERATURE,
2159 		.gbit = PB_STATUS_TEMPERATURE,
2160 		.limit = temp_limit_attrs2,
2161 		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2162 	}, {
2163 		.reg = PMBUS_READ_TEMPERATURE_3,
2164 		.class = PSC_TEMPERATURE,
2165 		.paged = true,
2166 		.update = true,
2167 		.compare = true,
2168 		.func = PMBUS_HAVE_TEMP3,
2169 		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2170 		.sreg = PMBUS_STATUS_TEMPERATURE,
2171 		.gbit = PB_STATUS_TEMPERATURE,
2172 		.limit = temp_limit_attrs3,
2173 		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2174 	}
2175 };
2176 
2177 static const int pmbus_fan_registers[] = {
2178 	PMBUS_READ_FAN_SPEED_1,
2179 	PMBUS_READ_FAN_SPEED_2,
2180 	PMBUS_READ_FAN_SPEED_3,
2181 	PMBUS_READ_FAN_SPEED_4
2182 };
2183 
2184 static const int pmbus_fan_status_registers[] = {
2185 	PMBUS_STATUS_FAN_12,
2186 	PMBUS_STATUS_FAN_12,
2187 	PMBUS_STATUS_FAN_34,
2188 	PMBUS_STATUS_FAN_34
2189 };
2190 
2191 static const u32 pmbus_fan_flags[] = {
2192 	PMBUS_HAVE_FAN12,
2193 	PMBUS_HAVE_FAN12,
2194 	PMBUS_HAVE_FAN34,
2195 	PMBUS_HAVE_FAN34
2196 };
2197 
2198 static const u32 pmbus_fan_status_flags[] = {
2199 	PMBUS_HAVE_STATUS_FAN12,
2200 	PMBUS_HAVE_STATUS_FAN12,
2201 	PMBUS_HAVE_STATUS_FAN34,
2202 	PMBUS_HAVE_STATUS_FAN34
2203 };
2204 
2205 /* Fans */
2206 
2207 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2208 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2209 			      struct pmbus_data *data, int index, int page,
2210 			      int id, u8 config)
2211 {
2212 	struct pmbus_sensor *sensor;
2213 
2214 	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2215 				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2216 				  false, false, true);
2217 
2218 	if (!sensor)
2219 		return -ENOMEM;
2220 
2221 	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2222 	      (data->info->func[page] & PMBUS_HAVE_PWM34)))
2223 		return 0;
2224 
2225 	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2226 				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2227 				  false, false, true);
2228 
2229 	if (!sensor)
2230 		return -ENOMEM;
2231 
2232 	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2233 				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2234 				  true, false, false);
2235 
2236 	if (!sensor)
2237 		return -ENOMEM;
2238 
2239 	return 0;
2240 }
2241 
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2242 static int pmbus_add_fan_attributes(struct i2c_client *client,
2243 				    struct pmbus_data *data)
2244 {
2245 	const struct pmbus_driver_info *info = data->info;
2246 	int index = 1;
2247 	int page;
2248 	int ret;
2249 
2250 	for (page = 0; page < info->pages; page++) {
2251 		int f;
2252 
2253 		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2254 			int regval;
2255 
2256 			if (!(info->func[page] & pmbus_fan_flags[f]))
2257 				break;
2258 
2259 			if (!pmbus_check_word_register(client, page,
2260 						       pmbus_fan_registers[f]))
2261 				break;
2262 
2263 			/*
2264 			 * Skip fan if not installed.
2265 			 * Each fan configuration register covers multiple fans,
2266 			 * so we have to do some magic.
2267 			 */
2268 			regval = _pmbus_read_byte_data(client, page,
2269 				pmbus_fan_config_registers[f]);
2270 			if (regval < 0 ||
2271 			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2272 				continue;
2273 
2274 			if (pmbus_add_sensor(data, "fan", "input", index,
2275 					     page, 0xff, pmbus_fan_registers[f],
2276 					     PSC_FAN, true, true, true) == NULL)
2277 				return -ENOMEM;
2278 
2279 			/* Fan control */
2280 			if (pmbus_check_word_register(client, page,
2281 					pmbus_fan_command_registers[f])) {
2282 				ret = pmbus_add_fan_ctrl(client, data, index,
2283 							 page, f, regval);
2284 				if (ret < 0)
2285 					return ret;
2286 			}
2287 
2288 			/*
2289 			 * Each fan status register covers multiple fans,
2290 			 * so we have to do some magic.
2291 			 */
2292 			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2293 			    pmbus_check_byte_register(client,
2294 					page, pmbus_fan_status_registers[f])) {
2295 				int reg;
2296 
2297 				if (f > 1)	/* fan 3, 4 */
2298 					reg = PMBUS_STATUS_FAN_34;
2299 				else
2300 					reg = PMBUS_STATUS_FAN_12;
2301 				ret = pmbus_add_boolean(data, "fan",
2302 					"alarm", index, NULL, NULL, page, reg,
2303 					PB_FAN_FAN1_WARNING >> (f & 1));
2304 				if (ret)
2305 					return ret;
2306 				ret = pmbus_add_boolean(data, "fan",
2307 					"fault", index, NULL, NULL, page, reg,
2308 					PB_FAN_FAN1_FAULT >> (f & 1));
2309 				if (ret)
2310 					return ret;
2311 			}
2312 			index++;
2313 		}
2314 	}
2315 	return 0;
2316 }
2317 
2318 struct pmbus_samples_attr {
2319 	int reg;
2320 	char *name;
2321 };
2322 
2323 struct pmbus_samples_reg {
2324 	int page;
2325 	struct pmbus_samples_attr *attr;
2326 	struct device_attribute dev_attr;
2327 };
2328 
2329 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2330 	{
2331 		.reg = PMBUS_VIRT_SAMPLES,
2332 		.name = "samples",
2333 	}, {
2334 		.reg = PMBUS_VIRT_IN_SAMPLES,
2335 		.name = "in_samples",
2336 	}, {
2337 		.reg = PMBUS_VIRT_CURR_SAMPLES,
2338 		.name = "curr_samples",
2339 	}, {
2340 		.reg = PMBUS_VIRT_POWER_SAMPLES,
2341 		.name = "power_samples",
2342 	}, {
2343 		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2344 		.name = "temp_samples",
2345 	}
2346 };
2347 
2348 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2349 
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2350 static ssize_t pmbus_show_samples(struct device *dev,
2351 				  struct device_attribute *devattr, char *buf)
2352 {
2353 	int val;
2354 	struct i2c_client *client = to_i2c_client(dev->parent);
2355 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2356 	struct pmbus_data *data = i2c_get_clientdata(client);
2357 
2358 	mutex_lock(&data->update_lock);
2359 	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2360 	mutex_unlock(&data->update_lock);
2361 	if (val < 0)
2362 		return val;
2363 
2364 	return sysfs_emit(buf, "%d\n", val);
2365 }
2366 
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2367 static ssize_t pmbus_set_samples(struct device *dev,
2368 				 struct device_attribute *devattr,
2369 				 const char *buf, size_t count)
2370 {
2371 	int ret;
2372 	long val;
2373 	struct i2c_client *client = to_i2c_client(dev->parent);
2374 	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2375 	struct pmbus_data *data = i2c_get_clientdata(client);
2376 
2377 	if (kstrtol(buf, 0, &val) < 0)
2378 		return -EINVAL;
2379 
2380 	mutex_lock(&data->update_lock);
2381 	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2382 	mutex_unlock(&data->update_lock);
2383 
2384 	return ret ? : count;
2385 }
2386 
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2387 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2388 				  struct pmbus_samples_attr *attr)
2389 {
2390 	struct pmbus_samples_reg *reg;
2391 
2392 	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2393 	if (!reg)
2394 		return -ENOMEM;
2395 
2396 	reg->attr = attr;
2397 	reg->page = page;
2398 
2399 	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2400 			    pmbus_show_samples, pmbus_set_samples);
2401 
2402 	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2403 }
2404 
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2405 static int pmbus_add_samples_attributes(struct i2c_client *client,
2406 					struct pmbus_data *data)
2407 {
2408 	const struct pmbus_driver_info *info = data->info;
2409 	int s;
2410 
2411 	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2412 		return 0;
2413 
2414 	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2415 		struct pmbus_samples_attr *attr;
2416 		int ret;
2417 
2418 		attr = &pmbus_samples_registers[s];
2419 		if (!pmbus_check_word_register(client, 0, attr->reg))
2420 			continue;
2421 
2422 		ret = pmbus_add_samples_attr(data, 0, attr);
2423 		if (ret)
2424 			return ret;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2430 static int pmbus_find_attributes(struct i2c_client *client,
2431 				 struct pmbus_data *data)
2432 {
2433 	int ret;
2434 
2435 	/* Voltage sensors */
2436 	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2437 				     ARRAY_SIZE(voltage_attributes));
2438 	if (ret)
2439 		return ret;
2440 
2441 	/* Current sensors */
2442 	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2443 				     ARRAY_SIZE(current_attributes));
2444 	if (ret)
2445 		return ret;
2446 
2447 	/* Power sensors */
2448 	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2449 				     ARRAY_SIZE(power_attributes));
2450 	if (ret)
2451 		return ret;
2452 
2453 	/* Temperature sensors */
2454 	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2455 				     ARRAY_SIZE(temp_attributes));
2456 	if (ret)
2457 		return ret;
2458 
2459 	/* Fans */
2460 	ret = pmbus_add_fan_attributes(client, data);
2461 	if (ret)
2462 		return ret;
2463 
2464 	ret = pmbus_add_samples_attributes(client, data);
2465 	return ret;
2466 }
2467 
2468 /*
2469  * The pmbus_class_attr_map structure maps one sensor class to
2470  * it's corresponding sensor attributes array.
2471  */
2472 struct pmbus_class_attr_map {
2473 	enum pmbus_sensor_classes class;
2474 	int nattr;
2475 	const struct pmbus_sensor_attr *attr;
2476 };
2477 
2478 static const struct pmbus_class_attr_map class_attr_map[] = {
2479 	{
2480 		.class = PSC_VOLTAGE_IN,
2481 		.attr = voltage_attributes,
2482 		.nattr = ARRAY_SIZE(voltage_attributes),
2483 	}, {
2484 		.class = PSC_VOLTAGE_OUT,
2485 		.attr = voltage_attributes,
2486 		.nattr = ARRAY_SIZE(voltage_attributes),
2487 	}, {
2488 		.class = PSC_CURRENT_IN,
2489 		.attr = current_attributes,
2490 		.nattr = ARRAY_SIZE(current_attributes),
2491 	}, {
2492 		.class = PSC_CURRENT_OUT,
2493 		.attr = current_attributes,
2494 		.nattr = ARRAY_SIZE(current_attributes),
2495 	}, {
2496 		.class = PSC_POWER,
2497 		.attr = power_attributes,
2498 		.nattr = ARRAY_SIZE(power_attributes),
2499 	}, {
2500 		.class = PSC_TEMPERATURE,
2501 		.attr = temp_attributes,
2502 		.nattr = ARRAY_SIZE(temp_attributes),
2503 	}
2504 };
2505 
2506 /*
2507  * Read the coefficients for direct mode.
2508  */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2509 static int pmbus_read_coefficients(struct i2c_client *client,
2510 				   struct pmbus_driver_info *info,
2511 				   const struct pmbus_sensor_attr *attr)
2512 {
2513 	int rv;
2514 	union i2c_smbus_data data;
2515 	enum pmbus_sensor_classes class = attr->class;
2516 	s8 R;
2517 	s16 m, b;
2518 
2519 	data.block[0] = 2;
2520 	data.block[1] = attr->reg;
2521 	data.block[2] = 0x01;
2522 
2523 	pmbus_wait(client);
2524 	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2525 			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2526 			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2527 	pmbus_update_ts(client, true);
2528 
2529 	if (rv < 0)
2530 		return rv;
2531 
2532 	if (data.block[0] != 5)
2533 		return -EIO;
2534 
2535 	m = data.block[1] | (data.block[2] << 8);
2536 	b = data.block[3] | (data.block[4] << 8);
2537 	R = data.block[5];
2538 	info->m[class] = m;
2539 	info->b[class] = b;
2540 	info->R[class] = R;
2541 
2542 	return rv;
2543 }
2544 
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2545 static int pmbus_init_coefficients(struct i2c_client *client,
2546 				   struct pmbus_driver_info *info)
2547 {
2548 	int i, n, ret = -EINVAL;
2549 	const struct pmbus_class_attr_map *map;
2550 	const struct pmbus_sensor_attr *attr;
2551 
2552 	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2553 		map = &class_attr_map[i];
2554 		if (info->format[map->class] != direct)
2555 			continue;
2556 		for (n = 0; n < map->nattr; n++) {
2557 			attr = &map->attr[n];
2558 			if (map->class != attr->class)
2559 				continue;
2560 			ret = pmbus_read_coefficients(client, info, attr);
2561 			if (ret >= 0)
2562 				break;
2563 		}
2564 		if (ret < 0) {
2565 			dev_err(&client->dev,
2566 				"No coefficients found for sensor class %d\n",
2567 				map->class);
2568 			return -EINVAL;
2569 		}
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 /*
2576  * Identify chip parameters.
2577  * This function is called for all chips.
2578  */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2579 static int pmbus_identify_common(struct i2c_client *client,
2580 				 struct pmbus_data *data, int page)
2581 {
2582 	int vout_mode = -1;
2583 
2584 	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2585 		vout_mode = _pmbus_read_byte_data(client, page,
2586 						  PMBUS_VOUT_MODE);
2587 	if (vout_mode >= 0 && vout_mode != 0xff) {
2588 		/*
2589 		 * Not all chips support the VOUT_MODE command,
2590 		 * so a failure to read it is not an error.
2591 		 */
2592 		switch (vout_mode >> 5) {
2593 		case 0:	/* linear mode      */
2594 			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2595 				return -ENODEV;
2596 
2597 			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2598 			break;
2599 		case 1: /* VID mode         */
2600 			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2601 				return -ENODEV;
2602 			break;
2603 		case 2:	/* direct mode      */
2604 			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2605 				return -ENODEV;
2606 			break;
2607 		case 3:	/* ieee 754 half precision */
2608 			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2609 				return -ENODEV;
2610 			break;
2611 		default:
2612 			return -ENODEV;
2613 		}
2614 	}
2615 
2616 	return 0;
2617 }
2618 
pmbus_read_status_byte(struct i2c_client * client,int page)2619 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2620 {
2621 	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2622 }
2623 
pmbus_read_status_word(struct i2c_client * client,int page)2624 static int pmbus_read_status_word(struct i2c_client *client, int page)
2625 {
2626 	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2627 }
2628 
2629 /* PEC attribute support */
2630 
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2631 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2632 			char *buf)
2633 {
2634 	struct i2c_client *client = to_i2c_client(dev);
2635 
2636 	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2637 }
2638 
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2639 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2640 			 const char *buf, size_t count)
2641 {
2642 	struct i2c_client *client = to_i2c_client(dev);
2643 	bool enable;
2644 	int err;
2645 
2646 	err = kstrtobool(buf, &enable);
2647 	if (err < 0)
2648 		return err;
2649 
2650 	if (enable)
2651 		client->flags |= I2C_CLIENT_PEC;
2652 	else
2653 		client->flags &= ~I2C_CLIENT_PEC;
2654 
2655 	return count;
2656 }
2657 
2658 static DEVICE_ATTR_RW(pec);
2659 
pmbus_remove_pec(void * dev)2660 static void pmbus_remove_pec(void *dev)
2661 {
2662 	device_remove_file(dev, &dev_attr_pec);
2663 }
2664 
pmbus_init_wp(struct i2c_client * client,struct pmbus_data * data)2665 static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2666 {
2667 	int ret;
2668 
2669 	switch (wp) {
2670 	case 0:
2671 		_pmbus_write_byte_data(client, -1,
2672 				       PMBUS_WRITE_PROTECT, 0);
2673 		break;
2674 
2675 	case 1:
2676 		_pmbus_write_byte_data(client, -1,
2677 				       PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2678 		break;
2679 
2680 	case 2:
2681 		_pmbus_write_byte_data(client, -1,
2682 				       PMBUS_WRITE_PROTECT, PB_WP_OP);
2683 		break;
2684 
2685 	case 3:
2686 		_pmbus_write_byte_data(client, -1,
2687 				       PMBUS_WRITE_PROTECT, PB_WP_ALL);
2688 		break;
2689 
2690 	default:
2691 		/* Ignore the other values */
2692 		break;
2693 	}
2694 
2695 	ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2696 	if (ret < 0)
2697 		return;
2698 
2699 	switch (ret & PB_WP_ANY) {
2700 	case PB_WP_ALL:
2701 		data->flags |= PMBUS_OP_PROTECTED;
2702 		fallthrough;
2703 	case PB_WP_OP:
2704 		data->flags |= PMBUS_VOUT_PROTECTED;
2705 		fallthrough;
2706 	case PB_WP_VOUT:
2707 		data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2708 		break;
2709 
2710 	default:
2711 		break;
2712 	}
2713 }
2714 
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2715 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2716 			     struct pmbus_driver_info *info)
2717 {
2718 	struct device *dev = &client->dev;
2719 	int page, ret;
2720 
2721 	/*
2722 	 * Figure out if PEC is enabled before accessing any other register.
2723 	 * Make sure PEC is disabled, will be enabled later if needed.
2724 	 */
2725 	client->flags &= ~I2C_CLIENT_PEC;
2726 
2727 	/* Enable PEC if the controller and bus supports it */
2728 	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2729 		pmbus_wait(client);
2730 		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2731 		pmbus_update_ts(client, false);
2732 
2733 		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2734 			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2735 				client->flags |= I2C_CLIENT_PEC;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2741 	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2742 	 * Bail out if both registers are not supported.
2743 	 */
2744 	data->read_status = pmbus_read_status_word;
2745 	pmbus_wait(client);
2746 	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2747 	pmbus_update_ts(client, false);
2748 
2749 	if (ret < 0 || ret == 0xffff) {
2750 		data->read_status = pmbus_read_status_byte;
2751 		pmbus_wait(client);
2752 		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2753 		pmbus_update_ts(client, false);
2754 
2755 		if (ret < 0 || ret == 0xff) {
2756 			dev_err(dev, "PMBus status register not found\n");
2757 			return -ENODEV;
2758 		}
2759 	} else {
2760 		data->has_status_word = true;
2761 	}
2762 
2763 	/*
2764 	 * Check if the chip is write protected. If it is, we can not clear
2765 	 * faults, and we should not try it. Also, in that case, writes into
2766 	 * limit registers need to be disabled.
2767 	 */
2768 	if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2769 		pmbus_init_wp(client, data);
2770 
2771 	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2772 	if (ret >= 0)
2773 		data->revision = ret;
2774 
2775 	if (data->info->pages)
2776 		pmbus_clear_faults(client);
2777 	else
2778 		pmbus_clear_fault_page(client, -1);
2779 
2780 	if (info->identify) {
2781 		ret = (*info->identify)(client, info);
2782 		if (ret < 0) {
2783 			dev_err(dev, "Chip identification failed\n");
2784 			return ret;
2785 		}
2786 	}
2787 
2788 	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2789 		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2790 		return -ENODEV;
2791 	}
2792 
2793 	for (page = 0; page < info->pages; page++) {
2794 		ret = pmbus_identify_common(client, data, page);
2795 		if (ret < 0) {
2796 			dev_err(dev, "Failed to identify chip capabilities\n");
2797 			return ret;
2798 		}
2799 	}
2800 
2801 	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2802 		if (!i2c_check_functionality(client->adapter,
2803 					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2804 			return -ENODEV;
2805 
2806 		ret = pmbus_init_coefficients(client, info);
2807 		if (ret < 0)
2808 			return ret;
2809 	}
2810 
2811 	if (client->flags & I2C_CLIENT_PEC) {
2812 		/*
2813 		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2814 		 * chip support PEC. Add 'pec' attribute to client device to let
2815 		 * the user control it.
2816 		 */
2817 		ret = device_create_file(dev, &dev_attr_pec);
2818 		if (ret)
2819 			return ret;
2820 		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2821 		if (ret)
2822 			return ret;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2829 struct pmbus_status_assoc {
2830 	int pflag, rflag, eflag;
2831 };
2832 
2833 /* PMBus->regulator bit mappings for a PMBus status register */
2834 struct pmbus_status_category {
2835 	int func;
2836 	int reg;
2837 	const struct pmbus_status_assoc *bits; /* zero-terminated */
2838 };
2839 
2840 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2841 	{
2842 		.func = PMBUS_HAVE_STATUS_VOUT,
2843 		.reg = PMBUS_STATUS_VOUT,
2844 		.bits = (const struct pmbus_status_assoc[]) {
2845 			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2846 			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2847 			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2848 			REGULATOR_EVENT_UNDER_VOLTAGE },
2849 			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2850 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2851 			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2852 			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2853 			{ },
2854 		},
2855 	}, {
2856 		.func = PMBUS_HAVE_STATUS_IOUT,
2857 		.reg = PMBUS_STATUS_IOUT,
2858 		.bits = (const struct pmbus_status_assoc[]) {
2859 			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2860 			REGULATOR_EVENT_OVER_CURRENT_WARN },
2861 			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2862 			REGULATOR_EVENT_OVER_CURRENT },
2863 			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2864 			REGULATOR_EVENT_OVER_CURRENT },
2865 			{ },
2866 		},
2867 	}, {
2868 		.func = PMBUS_HAVE_STATUS_TEMP,
2869 		.reg = PMBUS_STATUS_TEMPERATURE,
2870 		.bits = (const struct pmbus_status_assoc[]) {
2871 			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2872 			REGULATOR_EVENT_OVER_TEMP_WARN },
2873 			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2874 			REGULATOR_EVENT_OVER_TEMP },
2875 			{ },
2876 		},
2877 	},
2878 };
2879 
_pmbus_is_enabled(struct i2c_client * client,u8 page)2880 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2881 {
2882 	int ret;
2883 
2884 	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2885 
2886 	if (ret < 0)
2887 		return ret;
2888 
2889 	return !!(ret & PB_OPERATION_CONTROL_ON);
2890 }
2891 
pmbus_is_enabled(struct i2c_client * client,u8 page)2892 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2893 {
2894 	struct pmbus_data *data = i2c_get_clientdata(client);
2895 	int ret;
2896 
2897 	mutex_lock(&data->update_lock);
2898 	ret = _pmbus_is_enabled(client, page);
2899 	mutex_unlock(&data->update_lock);
2900 
2901 	return ret;
2902 }
2903 
2904 #define to_dev_attr(_dev_attr) \
2905 	container_of(_dev_attr, struct device_attribute, attr)
2906 
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2907 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2908 {
2909 	int i;
2910 
2911 	for (i = 0; i < data->num_attributes; i++) {
2912 		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2913 		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2914 		int index = attr->index;
2915 		u16 smask = pb_index_to_mask(index);
2916 		u8 spage = pb_index_to_page(index);
2917 		u16 sreg = pb_index_to_reg(index);
2918 
2919 		if (reg == sreg && page == spage && (smask & flags)) {
2920 			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2921 			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2922 			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2923 			flags &= ~smask;
2924 		}
2925 
2926 		if (!flags)
2927 			break;
2928 	}
2929 }
2930 
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2931 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2932 			    unsigned int *event, bool notify)
2933 {
2934 	int i, status;
2935 	const struct pmbus_status_category *cat;
2936 	const struct pmbus_status_assoc *bit;
2937 	struct device *dev = data->dev;
2938 	struct i2c_client *client = to_i2c_client(dev);
2939 	int func = data->info->func[page];
2940 
2941 	*flags = 0;
2942 	*event = 0;
2943 
2944 	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2945 		cat = &pmbus_status_flag_map[i];
2946 		if (!(func & cat->func))
2947 			continue;
2948 
2949 		status = _pmbus_read_byte_data(client, page, cat->reg);
2950 		if (status < 0)
2951 			return status;
2952 
2953 		for (bit = cat->bits; bit->pflag; bit++)
2954 			if (status & bit->pflag) {
2955 				*flags |= bit->rflag;
2956 				*event |= bit->eflag;
2957 			}
2958 
2959 		if (notify && status)
2960 			pmbus_notify(data, page, cat->reg, status);
2961 	}
2962 
2963 	/*
2964 	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2965 	 * bits.  Some of the other bits are tempting (especially for cases
2966 	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2967 	 * functionality), but there's an unfortunate ambiguity in that
2968 	 * they're defined as indicating a fault *or* a warning, so we can't
2969 	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2970 	 * REGULATOR_ERROR_<foo>_WARN.
2971 	 */
2972 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2973 	if (status < 0)
2974 		return status;
2975 
2976 	if (_pmbus_is_enabled(client, page)) {
2977 		if (status & PB_STATUS_OFF) {
2978 			*flags |= REGULATOR_ERROR_FAIL;
2979 			*event |= REGULATOR_EVENT_FAIL;
2980 		}
2981 
2982 		if (status & PB_STATUS_POWER_GOOD_N) {
2983 			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2984 			*event |= REGULATOR_EVENT_REGULATION_OUT;
2985 		}
2986 	}
2987 	/*
2988 	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2989 	 * defined strictly as fault indicators (not warnings).
2990 	 */
2991 	if (status & PB_STATUS_IOUT_OC) {
2992 		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2993 		*event |= REGULATOR_EVENT_OVER_CURRENT;
2994 	}
2995 	if (status & PB_STATUS_VOUT_OV) {
2996 		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2997 		*event |= REGULATOR_EVENT_FAIL;
2998 	}
2999 
3000 	/*
3001 	 * If we haven't discovered any thermal faults or warnings via
3002 	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3003 	 * a (conservative) best-effort interpretation.
3004 	 */
3005 	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3006 	    (status & PB_STATUS_TEMPERATURE)) {
3007 		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3008 		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)3014 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3015 					  unsigned int *event, bool notify)
3016 {
3017 	int ret;
3018 
3019 	mutex_lock(&data->update_lock);
3020 	ret = _pmbus_get_flags(data, page, flags, event, notify);
3021 	mutex_unlock(&data->update_lock);
3022 
3023 	return ret;
3024 }
3025 
3026 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)3027 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3028 {
3029 	struct device *dev = rdev_get_dev(rdev);
3030 	struct i2c_client *client = to_i2c_client(dev->parent);
3031 
3032 	return pmbus_is_enabled(client, rdev_get_id(rdev));
3033 }
3034 
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)3035 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3036 {
3037 	struct device *dev = rdev_get_dev(rdev);
3038 	struct i2c_client *client = to_i2c_client(dev->parent);
3039 	struct pmbus_data *data = i2c_get_clientdata(client);
3040 	u8 page = rdev_get_id(rdev);
3041 	int ret;
3042 
3043 	mutex_lock(&data->update_lock);
3044 	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3045 				     PB_OPERATION_CONTROL_ON,
3046 				     enable ? PB_OPERATION_CONTROL_ON : 0);
3047 	mutex_unlock(&data->update_lock);
3048 
3049 	return ret;
3050 }
3051 
pmbus_regulator_enable(struct regulator_dev * rdev)3052 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3053 {
3054 	return _pmbus_regulator_on_off(rdev, 1);
3055 }
3056 
pmbus_regulator_disable(struct regulator_dev * rdev)3057 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3058 {
3059 	return _pmbus_regulator_on_off(rdev, 0);
3060 }
3061 
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3062 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3063 {
3064 	struct device *dev = rdev_get_dev(rdev);
3065 	struct i2c_client *client = to_i2c_client(dev->parent);
3066 	struct pmbus_data *data = i2c_get_clientdata(client);
3067 	int event;
3068 
3069 	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3070 }
3071 
pmbus_regulator_get_status(struct regulator_dev * rdev)3072 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3073 {
3074 	struct device *dev = rdev_get_dev(rdev);
3075 	struct i2c_client *client = to_i2c_client(dev->parent);
3076 	struct pmbus_data *data = i2c_get_clientdata(client);
3077 	u8 page = rdev_get_id(rdev);
3078 	int status, ret;
3079 	int event;
3080 
3081 	mutex_lock(&data->update_lock);
3082 	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3083 	if (status < 0) {
3084 		ret = status;
3085 		goto unlock;
3086 	}
3087 
3088 	if (status & PB_STATUS_OFF) {
3089 		ret = REGULATOR_STATUS_OFF;
3090 		goto unlock;
3091 	}
3092 
3093 	/* If regulator is ON & reports power good then return ON */
3094 	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3095 		ret = REGULATOR_STATUS_ON;
3096 		goto unlock;
3097 	}
3098 
3099 	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3100 	if (ret)
3101 		goto unlock;
3102 
3103 	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3104 	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3105 		ret = REGULATOR_STATUS_ERROR;
3106 		goto unlock;
3107 	}
3108 
3109 	ret = REGULATOR_STATUS_UNDEFINED;
3110 
3111 unlock:
3112 	mutex_unlock(&data->update_lock);
3113 	return ret;
3114 }
3115 
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3116 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3117 {
3118 	struct pmbus_data *data = i2c_get_clientdata(client);
3119 	struct pmbus_sensor s = {
3120 		.page = page,
3121 		.class = PSC_VOLTAGE_OUT,
3122 		.convert = true,
3123 		.data = -1,
3124 	};
3125 
3126 	if (data->vout_low[page] < 0) {
3127 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3128 			s.data = _pmbus_read_word_data(client, page, 0xff,
3129 						       PMBUS_MFR_VOUT_MIN);
3130 		if (s.data < 0) {
3131 			s.data = _pmbus_read_word_data(client, page, 0xff,
3132 						       PMBUS_VOUT_MARGIN_LOW);
3133 			if (s.data < 0)
3134 				return s.data;
3135 		}
3136 		data->vout_low[page] = pmbus_reg2data(data, &s);
3137 	}
3138 
3139 	return data->vout_low[page];
3140 }
3141 
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3142 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3143 {
3144 	struct pmbus_data *data = i2c_get_clientdata(client);
3145 	struct pmbus_sensor s = {
3146 		.page = page,
3147 		.class = PSC_VOLTAGE_OUT,
3148 		.convert = true,
3149 		.data = -1,
3150 	};
3151 
3152 	if (data->vout_high[page] < 0) {
3153 		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3154 			s.data = _pmbus_read_word_data(client, page, 0xff,
3155 						       PMBUS_MFR_VOUT_MAX);
3156 		if (s.data < 0) {
3157 			s.data = _pmbus_read_word_data(client, page, 0xff,
3158 						       PMBUS_VOUT_MARGIN_HIGH);
3159 			if (s.data < 0)
3160 				return s.data;
3161 		}
3162 		data->vout_high[page] = pmbus_reg2data(data, &s);
3163 	}
3164 
3165 	return data->vout_high[page];
3166 }
3167 
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3168 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3169 {
3170 	struct device *dev = rdev_get_dev(rdev);
3171 	struct i2c_client *client = to_i2c_client(dev->parent);
3172 	struct pmbus_data *data = i2c_get_clientdata(client);
3173 	struct pmbus_sensor s = {
3174 		.page = rdev_get_id(rdev),
3175 		.class = PSC_VOLTAGE_OUT,
3176 		.convert = true,
3177 	};
3178 
3179 	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3180 	if (s.data < 0)
3181 		return s.data;
3182 
3183 	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3184 }
3185 
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3186 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3187 				       int max_uv, unsigned int *selector)
3188 {
3189 	struct device *dev = rdev_get_dev(rdev);
3190 	struct i2c_client *client = to_i2c_client(dev->parent);
3191 	struct pmbus_data *data = i2c_get_clientdata(client);
3192 	struct pmbus_sensor s = {
3193 		.page = rdev_get_id(rdev),
3194 		.class = PSC_VOLTAGE_OUT,
3195 		.convert = true,
3196 		.data = -1,
3197 	};
3198 	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3199 	int low, high;
3200 
3201 	*selector = 0;
3202 
3203 	low = pmbus_regulator_get_low_margin(client, s.page);
3204 	if (low < 0)
3205 		return low;
3206 
3207 	high = pmbus_regulator_get_high_margin(client, s.page);
3208 	if (high < 0)
3209 		return high;
3210 
3211 	/* Make sure we are within margins */
3212 	if (low > val)
3213 		val = low;
3214 	if (high < val)
3215 		val = high;
3216 
3217 	val = pmbus_data2reg(data, &s, val);
3218 
3219 	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3220 }
3221 
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3222 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3223 					unsigned int selector)
3224 {
3225 	struct device *dev = rdev_get_dev(rdev);
3226 	struct i2c_client *client = to_i2c_client(dev->parent);
3227 	struct pmbus_data *data = i2c_get_clientdata(client);
3228 	int val, low, high;
3229 
3230 	if (data->flags & PMBUS_VOUT_PROTECTED)
3231 		return 0;
3232 
3233 	if (selector >= rdev->desc->n_voltages ||
3234 	    selector < rdev->desc->linear_min_sel)
3235 		return -EINVAL;
3236 
3237 	selector -= rdev->desc->linear_min_sel;
3238 	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3239 				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3240 
3241 	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3242 	if (low < 0)
3243 		return low;
3244 
3245 	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3246 	if (high < 0)
3247 		return high;
3248 
3249 	if (val >= low && val <= high)
3250 		return val * 1000; /* unit is uV */
3251 
3252 	return 0;
3253 }
3254 
3255 const struct regulator_ops pmbus_regulator_ops = {
3256 	.enable = pmbus_regulator_enable,
3257 	.disable = pmbus_regulator_disable,
3258 	.is_enabled = pmbus_regulator_is_enabled,
3259 	.get_error_flags = pmbus_regulator_get_error_flags,
3260 	.get_status = pmbus_regulator_get_status,
3261 	.get_voltage = pmbus_regulator_get_voltage,
3262 	.set_voltage = pmbus_regulator_set_voltage,
3263 	.list_voltage = pmbus_regulator_list_voltage,
3264 };
3265 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3266 
pmbus_regulator_init_cb(struct regulator_dev * rdev,struct regulator_config * config)3267 int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3268 			    struct regulator_config *config)
3269 {
3270 	struct pmbus_data *data = config->driver_data;
3271 	struct regulation_constraints *constraints = rdev->constraints;
3272 
3273 	if (data->flags & PMBUS_OP_PROTECTED)
3274 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3275 
3276 	if (data->flags & PMBUS_VOUT_PROTECTED)
3277 		constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3278 
3279 	return 0;
3280 }
3281 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3282 
pmbus_regulator_register(struct pmbus_data * data)3283 static int pmbus_regulator_register(struct pmbus_data *data)
3284 {
3285 	struct device *dev = data->dev;
3286 	const struct pmbus_driver_info *info = data->info;
3287 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3288 	int i;
3289 
3290 	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3291 				   GFP_KERNEL);
3292 	if (!data->rdevs)
3293 		return -ENOMEM;
3294 
3295 	for (i = 0; i < info->num_regulators; i++) {
3296 		struct regulator_config config = { };
3297 
3298 		config.dev = dev;
3299 		config.driver_data = data;
3300 
3301 		if (pdata && pdata->reg_init_data)
3302 			config.init_data = &pdata->reg_init_data[i];
3303 
3304 		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3305 							 &config);
3306 		if (IS_ERR(data->rdevs[i]))
3307 			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3308 					     "Failed to register %s regulator\n",
3309 					     info->reg_desc[i].name);
3310 	}
3311 
3312 	return 0;
3313 }
3314 
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3315 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3316 {
3317 	int j;
3318 
3319 	for (j = 0; j < data->info->num_regulators; j++) {
3320 		if (page == rdev_get_id(data->rdevs[j])) {
3321 			regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3322 			break;
3323 		}
3324 	}
3325 }
3326 #else
pmbus_regulator_register(struct pmbus_data * data)3327 static int pmbus_regulator_register(struct pmbus_data *data)
3328 {
3329 	return 0;
3330 }
3331 
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3332 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3333 {
3334 }
3335 #endif
3336 
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3337 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3338 {
3339 	int ret;
3340 
3341 	ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3342 
3343 	/*
3344 	 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3345 	 * is not supported by the chip.
3346 	 */
3347 	pmbus_clear_fault_page(client, page);
3348 
3349 	return ret;
3350 }
3351 
pmbus_fault_handler(int irq,void * pdata)3352 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3353 {
3354 	struct pmbus_data *data = pdata;
3355 	struct i2c_client *client = to_i2c_client(data->dev);
3356 	int i, status, event;
3357 
3358 	mutex_lock(&data->update_lock);
3359 	for (i = 0; i < data->info->pages; i++) {
3360 		_pmbus_get_flags(data, i, &status, &event, true);
3361 
3362 		if (event)
3363 			pmbus_regulator_notify(data, i, event);
3364 	}
3365 
3366 	pmbus_clear_faults(client);
3367 	mutex_unlock(&data->update_lock);
3368 
3369 	return IRQ_HANDLED;
3370 }
3371 
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3372 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3373 {
3374 	struct device *dev = &client->dev;
3375 	const struct pmbus_status_category *cat;
3376 	const struct pmbus_status_assoc *bit;
3377 	int i, j, err, func;
3378 	u8 mask;
3379 
3380 	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3381 					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3382 					 PMBUS_STATUS_FAN_34};
3383 
3384 	if (!client->irq)
3385 		return 0;
3386 
3387 	for (i = 0; i < data->info->pages; i++) {
3388 		func = data->info->func[i];
3389 
3390 		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3391 			cat = &pmbus_status_flag_map[j];
3392 			if (!(func & cat->func))
3393 				continue;
3394 			mask = 0;
3395 			for (bit = cat->bits; bit->pflag; bit++)
3396 				mask |= bit->pflag;
3397 
3398 			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3399 			if (err)
3400 				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3401 					     cat->reg);
3402 		}
3403 
3404 		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3405 			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3406 	}
3407 
3408 	/* Register notifiers */
3409 	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3410 					IRQF_ONESHOT, "pmbus-irq", data);
3411 	if (err) {
3412 		dev_err(dev, "failed to request an irq %d\n", err);
3413 		return err;
3414 	}
3415 
3416 	return 0;
3417 }
3418 
3419 static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3420 
pmbus_debugfs_get(void * data,u64 * val)3421 static int pmbus_debugfs_get(void *data, u64 *val)
3422 {
3423 	int rc;
3424 	struct pmbus_debugfs_entry *entry = data;
3425 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3426 
3427 	rc = mutex_lock_interruptible(&pdata->update_lock);
3428 	if (rc)
3429 		return rc;
3430 	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3431 	mutex_unlock(&pdata->update_lock);
3432 	if (rc < 0)
3433 		return rc;
3434 
3435 	*val = rc;
3436 
3437 	return 0;
3438 }
3439 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3440 			 "0x%02llx\n");
3441 
pmbus_debugfs_get_status(void * data,u64 * val)3442 static int pmbus_debugfs_get_status(void *data, u64 *val)
3443 {
3444 	int rc;
3445 	struct pmbus_debugfs_entry *entry = data;
3446 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3447 
3448 	rc = mutex_lock_interruptible(&pdata->update_lock);
3449 	if (rc)
3450 		return rc;
3451 	rc = pdata->read_status(entry->client, entry->page);
3452 	mutex_unlock(&pdata->update_lock);
3453 	if (rc < 0)
3454 		return rc;
3455 
3456 	*val = rc;
3457 
3458 	return 0;
3459 }
3460 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3461 			 NULL, "0x%04llx\n");
3462 
pmbus_debugfs_block_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3463 static ssize_t pmbus_debugfs_block_read(struct file *file, char __user *buf,
3464 					size_t count, loff_t *ppos)
3465 {
3466 	int rc;
3467 	struct pmbus_debugfs_entry *entry = file->private_data;
3468 	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3469 	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3470 
3471 	rc = mutex_lock_interruptible(&pdata->update_lock);
3472 	if (rc)
3473 		return rc;
3474 	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3475 				   data);
3476 	mutex_unlock(&pdata->update_lock);
3477 	if (rc < 0)
3478 		return rc;
3479 
3480 	/* Add newline at the end of a read data */
3481 	data[rc] = '\n';
3482 
3483 	/* Include newline into the length */
3484 	rc += 1;
3485 
3486 	return simple_read_from_buffer(buf, count, ppos, data, rc);
3487 }
3488 
3489 static const struct file_operations pmbus_debugfs_block_ops = {
3490 	.llseek = noop_llseek,
3491 	.read = pmbus_debugfs_block_read,
3492 	.write = NULL,
3493 	.open = simple_open,
3494 };
3495 
pmbus_remove_symlink(void * symlink)3496 static void pmbus_remove_symlink(void *symlink)
3497 {
3498 	debugfs_remove(symlink);
3499 }
3500 
3501 struct pmbus_debugfs_data {
3502 	u8 reg;
3503 	u32 flag;
3504 	const char *name;
3505 };
3506 
3507 static const struct pmbus_debugfs_data pmbus_debugfs_block_data[] = {
3508 	{ .reg = PMBUS_MFR_ID, .name = "mfr_id" },
3509 	{ .reg = PMBUS_MFR_MODEL, .name = "mfr_model" },
3510 	{ .reg = PMBUS_MFR_REVISION, .name = "mfr_revision" },
3511 	{ .reg = PMBUS_MFR_LOCATION, .name = "mfr_location" },
3512 	{ .reg = PMBUS_MFR_DATE, .name = "mfr_date" },
3513 	{ .reg = PMBUS_MFR_SERIAL, .name = "mfr_serial" },
3514 };
3515 
3516 static const struct pmbus_debugfs_data pmbus_debugfs_status_data[] = {
3517 	{ .reg = PMBUS_STATUS_VOUT, .flag = PMBUS_HAVE_STATUS_VOUT, .name = "status%d_vout" },
3518 	{ .reg = PMBUS_STATUS_IOUT, .flag = PMBUS_HAVE_STATUS_IOUT, .name = "status%d_iout" },
3519 	{ .reg = PMBUS_STATUS_INPUT, .flag = PMBUS_HAVE_STATUS_INPUT, .name = "status%d_input" },
3520 	{ .reg = PMBUS_STATUS_TEMPERATURE, .flag = PMBUS_HAVE_STATUS_TEMP,
3521 	  .name = "status%d_temp" },
3522 	{ .reg = PMBUS_STATUS_FAN_12, .flag = PMBUS_HAVE_STATUS_FAN12, .name = "status%d_fan12" },
3523 	{ .reg = PMBUS_STATUS_FAN_34, .flag = PMBUS_HAVE_STATUS_FAN34, .name = "status%d_fan34" },
3524 	{ .reg = PMBUS_STATUS_CML, .name = "status%d_cml" },
3525 	{ .reg = PMBUS_STATUS_OTHER, .name = "status%d_other" },
3526 	{ .reg = PMBUS_STATUS_MFR_SPECIFIC, .name = "status%d_mfr" },
3527 };
3528 
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3529 static void pmbus_init_debugfs(struct i2c_client *client,
3530 			       struct pmbus_data *data)
3531 {
3532 	struct dentry *symlink_d, *debugfs = client->debugfs;
3533 	struct pmbus_debugfs_entry *entries;
3534 	const char *pathname, *symlink;
3535 	char name[PMBUS_NAME_SIZE];
3536 	int page, i, idx = 0;
3537 
3538 	/*
3539 	 * client->debugfs may be NULL or an ERR_PTR(). dentry_path_raw()
3540 	 * does not check if its parameters are valid, so validate
3541 	 * client->debugfs before using it.
3542 	 */
3543 	if (!pmbus_debugfs_dir || IS_ERR_OR_NULL(debugfs))
3544 		return;
3545 
3546 	/*
3547 	 * Backwards compatibility: Create symlink from /pmbus/<hwmon_device>
3548 	 * to i2c debugfs directory.
3549 	 */
3550 	pathname = dentry_path_raw(debugfs, name, sizeof(name));
3551 	if (IS_ERR(pathname))
3552 		return;
3553 
3554 	/*
3555 	 * The path returned by dentry_path_raw() starts with '/'. Prepend it
3556 	 * with ".." to get the symlink relative to the pmbus root directory.
3557 	 */
3558 	symlink = kasprintf(GFP_KERNEL, "..%s", pathname);
3559 	if (!symlink)
3560 		return;
3561 
3562 	symlink_d = debugfs_create_symlink(dev_name(data->hwmon_dev),
3563 					   pmbus_debugfs_dir, symlink);
3564 	kfree(symlink);
3565 
3566 	devm_add_action_or_reset(data->dev, pmbus_remove_symlink, symlink_d);
3567 
3568 	/*
3569 	 * Allocate the max possible entries we need.
3570 	 * device specific:
3571 	 *	ARRAY_SIZE(pmbus_debugfs_block_data) + 2
3572 	 * page specific:
3573 	 *	ARRAY_SIZE(pmbus_debugfs_status_data) + 1
3574 	 */
3575 	entries = devm_kcalloc(data->dev,
3576 			       ARRAY_SIZE(pmbus_debugfs_block_data) + 2 +
3577 			       data->info->pages * (ARRAY_SIZE(pmbus_debugfs_status_data) + 1),
3578 			       sizeof(*entries), GFP_KERNEL);
3579 	if (!entries)
3580 		return;
3581 
3582 	/*
3583 	 * Add device-specific entries.
3584 	 * Please note that the PMBUS standard allows all registers to be
3585 	 * page-specific.
3586 	 * To reduce the number of debugfs entries for devices with many pages
3587 	 * assume that values of the following registers are the same for all
3588 	 * pages and report values only for page 0.
3589 	 */
3590 	if (!(data->flags & PMBUS_NO_CAPABILITY) &&
3591 	    pmbus_check_byte_register(client, 0, PMBUS_CAPABILITY)) {
3592 		entries[idx].client = client;
3593 		entries[idx].page = 0;
3594 		entries[idx].reg = PMBUS_CAPABILITY;
3595 		debugfs_create_file("capability", 0444, debugfs,
3596 				    &entries[idx++],
3597 				    &pmbus_debugfs_ops);
3598 	}
3599 	if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3600 		entries[idx].client = client;
3601 		entries[idx].page = 0;
3602 		entries[idx].reg = PMBUS_REVISION;
3603 		debugfs_create_file("pmbus_revision", 0444, debugfs,
3604 				    &entries[idx++],
3605 				    &pmbus_debugfs_ops);
3606 	}
3607 
3608 	for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_block_data); i++) {
3609 		const struct pmbus_debugfs_data *d = &pmbus_debugfs_block_data[i];
3610 
3611 		if (pmbus_check_block_register(client, 0, d->reg)) {
3612 			entries[idx].client = client;
3613 			entries[idx].page = 0;
3614 			entries[idx].reg = d->reg;
3615 			debugfs_create_file(d->name, 0444, debugfs,
3616 					    &entries[idx++],
3617 					    &pmbus_debugfs_block_ops);
3618 		}
3619 	}
3620 
3621 	/* Add page specific entries */
3622 	for (page = 0; page < data->info->pages; ++page) {
3623 		/* Check accessibility of status register if it's not page 0 */
3624 		if (!page || pmbus_check_status_register(client, page)) {
3625 			/* No need to set reg as we have special read op. */
3626 			entries[idx].client = client;
3627 			entries[idx].page = page;
3628 			scnprintf(name, PMBUS_NAME_SIZE, "status%d", page);
3629 			debugfs_create_file(name, 0444, debugfs,
3630 					    &entries[idx++],
3631 					    &pmbus_debugfs_ops_status);
3632 		}
3633 
3634 		for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_status_data); i++) {
3635 			const struct pmbus_debugfs_data *d =
3636 					&pmbus_debugfs_status_data[i];
3637 
3638 			if ((data->info->func[page] & d->flag) ||
3639 			    (!d->flag && pmbus_check_byte_register(client, page, d->reg))) {
3640 				entries[idx].client = client;
3641 				entries[idx].page = page;
3642 				entries[idx].reg = d->reg;
3643 				scnprintf(name, PMBUS_NAME_SIZE, d->name, page);
3644 				debugfs_create_file(name, 0444, debugfs,
3645 						    &entries[idx++],
3646 						    &pmbus_debugfs_ops);
3647 			}
3648 		}
3649 	}
3650 }
3651 
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3652 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3653 {
3654 	struct device *dev = &client->dev;
3655 	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3656 	struct pmbus_data *data;
3657 	size_t groups_num = 0;
3658 	int ret;
3659 	int i;
3660 	char *name;
3661 
3662 	if (!info)
3663 		return -ENODEV;
3664 
3665 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3666 				     | I2C_FUNC_SMBUS_BYTE_DATA
3667 				     | I2C_FUNC_SMBUS_WORD_DATA))
3668 		return -ENODEV;
3669 
3670 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3671 	if (!data)
3672 		return -ENOMEM;
3673 
3674 	if (info->groups)
3675 		while (info->groups[groups_num])
3676 			groups_num++;
3677 
3678 	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3679 				    GFP_KERNEL);
3680 	if (!data->groups)
3681 		return -ENOMEM;
3682 
3683 	i2c_set_clientdata(client, data);
3684 	mutex_init(&data->update_lock);
3685 	data->dev = dev;
3686 
3687 	if (pdata)
3688 		data->flags = pdata->flags;
3689 	data->info = info;
3690 	data->currpage = -1;
3691 	data->currphase = -1;
3692 
3693 	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3694 		data->vout_low[i] = -1;
3695 		data->vout_high[i] = -1;
3696 	}
3697 
3698 	ret = pmbus_init_common(client, data, info);
3699 	if (ret < 0)
3700 		return ret;
3701 
3702 	ret = pmbus_find_attributes(client, data);
3703 	if (ret)
3704 		return ret;
3705 
3706 	/*
3707 	 * If there are no attributes, something is wrong.
3708 	 * Bail out instead of trying to register nothing.
3709 	 */
3710 	if (!data->num_attributes) {
3711 		dev_err(dev, "No attributes found\n");
3712 		return -ENODEV;
3713 	}
3714 
3715 	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3716 	if (!name)
3717 		return -ENOMEM;
3718 	strreplace(name, '-', '_');
3719 
3720 	data->groups[0] = &data->group;
3721 	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3722 	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, name,
3723 								 data, data->groups);
3724 	if (IS_ERR(data->hwmon_dev)) {
3725 		dev_err(dev, "Failed to register hwmon device\n");
3726 		return PTR_ERR(data->hwmon_dev);
3727 	}
3728 
3729 	ret = pmbus_regulator_register(data);
3730 	if (ret)
3731 		return ret;
3732 
3733 	ret = pmbus_irq_setup(client, data);
3734 	if (ret)
3735 		return ret;
3736 
3737 	pmbus_init_debugfs(client, data);
3738 
3739 	return 0;
3740 }
3741 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3742 
pmbus_get_debugfs_dir(struct i2c_client * client)3743 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3744 {
3745 	/*
3746 	 * client->debugfs may be an ERR_PTR(). Returning that to
3747 	 * the calling code would potentially require additional
3748 	 * complexity in the calling code and otherwise add no
3749 	 * value. Return NULL in that case.
3750 	 */
3751 	if (IS_ERR_OR_NULL(client->debugfs))
3752 		return NULL;
3753 	return client->debugfs;
3754 }
3755 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3756 
pmbus_lock_interruptible(struct i2c_client * client)3757 int pmbus_lock_interruptible(struct i2c_client *client)
3758 {
3759 	struct pmbus_data *data = i2c_get_clientdata(client);
3760 
3761 	return mutex_lock_interruptible(&data->update_lock);
3762 }
3763 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3764 
pmbus_unlock(struct i2c_client * client)3765 void pmbus_unlock(struct i2c_client *client)
3766 {
3767 	struct pmbus_data *data = i2c_get_clientdata(client);
3768 
3769 	mutex_unlock(&data->update_lock);
3770 }
3771 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3772 
pmbus_core_init(void)3773 static int __init pmbus_core_init(void)
3774 {
3775 	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3776 	if (IS_ERR(pmbus_debugfs_dir))
3777 		pmbus_debugfs_dir = NULL;
3778 
3779 	return 0;
3780 }
3781 
pmbus_core_exit(void)3782 static void __exit pmbus_core_exit(void)
3783 {
3784 	debugfs_remove_recursive(pmbus_debugfs_dir);
3785 }
3786 
3787 module_init(pmbus_core_init);
3788 module_exit(pmbus_core_exit);
3789 
3790 MODULE_AUTHOR("Guenter Roeck");
3791 MODULE_DESCRIPTION("PMBus core driver");
3792 MODULE_LICENSE("GPL");
3793