1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/dcache.h>
12 #include <linux/kernel.h>
13 #include <linux/math64.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/i2c.h>
19 #include <linux/hwmon.h>
20 #include <linux/hwmon-sysfs.h>
21 #include <linux/pmbus.h>
22 #include <linux/regulator/driver.h>
23 #include <linux/regulator/machine.h>
24 #include <linux/of.h>
25 #include <linux/thermal.h>
26 #include "pmbus.h"
27
28 /*
29 * Number of additional attribute pointers to allocate
30 * with each call to krealloc
31 */
32 #define PMBUS_ATTR_ALLOC_SIZE 32
33 #define PMBUS_NAME_SIZE 24
34
35 static int wp = -1;
36 module_param(wp, int, 0444);
37
38 struct pmbus_sensor {
39 struct pmbus_sensor *next;
40 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
41 struct device_attribute attribute;
42 u8 page; /* page number */
43 u8 phase; /* phase number, 0xff for all phases */
44 u16 reg; /* register */
45 enum pmbus_sensor_classes class; /* sensor class */
46 bool update; /* runtime sensor update needed */
47 bool convert; /* Whether or not to apply linear/vid/direct */
48 int data; /* Sensor data; negative if there was a read error */
49 };
50 #define to_pmbus_sensor(_attr) \
51 container_of(_attr, struct pmbus_sensor, attribute)
52
53 struct pmbus_boolean {
54 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
55 struct sensor_device_attribute attribute;
56 struct pmbus_sensor *s1;
57 struct pmbus_sensor *s2;
58 };
59 #define to_pmbus_boolean(_attr) \
60 container_of(_attr, struct pmbus_boolean, attribute)
61
62 struct pmbus_label {
63 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
64 struct device_attribute attribute;
65 char label[PMBUS_NAME_SIZE]; /* label */
66 };
67 #define to_pmbus_label(_attr) \
68 container_of(_attr, struct pmbus_label, attribute)
69
70 /* Macros for converting between sensor index and register/page/status mask */
71
72 #define PB_STATUS_MASK 0xffff
73 #define PB_REG_SHIFT 16
74 #define PB_REG_MASK 0x3ff
75 #define PB_PAGE_SHIFT 26
76 #define PB_PAGE_MASK 0x3f
77
78 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
79 ((reg) << PB_REG_SHIFT) | (mask))
80
81 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
82 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
83 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
84
85 struct pmbus_data {
86 struct device *dev;
87 struct device *hwmon_dev;
88 struct regulator_dev **rdevs;
89
90 u32 flags; /* from platform data */
91
92 u8 revision; /* The PMBus revision the device is compliant with */
93
94 int exponent[PMBUS_PAGES];
95 /* linear mode: exponent for output voltages */
96
97 const struct pmbus_driver_info *info;
98
99 int max_attributes;
100 int num_attributes;
101 struct attribute_group group;
102 const struct attribute_group **groups;
103
104 struct pmbus_sensor *sensors;
105
106 struct mutex update_lock;
107
108 bool has_status_word; /* device uses STATUS_WORD register */
109 int (*read_status)(struct i2c_client *client, int page);
110
111 s16 currpage; /* current page, -1 for unknown/unset */
112 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
113
114 int vout_low[PMBUS_PAGES]; /* voltage low margin */
115 int vout_high[PMBUS_PAGES]; /* voltage high margin */
116 ktime_t write_time; /* Last SMBUS write timestamp */
117 ktime_t access_time; /* Last SMBUS access timestamp */
118 };
119
120 struct pmbus_debugfs_entry {
121 struct i2c_client *client;
122 u8 page;
123 u8 reg;
124 };
125
126 static const int pmbus_fan_rpm_mask[] = {
127 PB_FAN_1_RPM,
128 PB_FAN_2_RPM,
129 PB_FAN_1_RPM,
130 PB_FAN_2_RPM,
131 };
132
133 static const int pmbus_fan_config_registers[] = {
134 PMBUS_FAN_CONFIG_12,
135 PMBUS_FAN_CONFIG_12,
136 PMBUS_FAN_CONFIG_34,
137 PMBUS_FAN_CONFIG_34
138 };
139
140 static const int pmbus_fan_command_registers[] = {
141 PMBUS_FAN_COMMAND_1,
142 PMBUS_FAN_COMMAND_2,
143 PMBUS_FAN_COMMAND_3,
144 PMBUS_FAN_COMMAND_4,
145 };
146
pmbus_clear_cache(struct i2c_client * client)147 void pmbus_clear_cache(struct i2c_client *client)
148 {
149 struct pmbus_data *data = i2c_get_clientdata(client);
150 struct pmbus_sensor *sensor;
151
152 for (sensor = data->sensors; sensor; sensor = sensor->next)
153 sensor->data = -ENODATA;
154 }
155 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
156
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)157 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
158 {
159 struct pmbus_data *data = i2c_get_clientdata(client);
160 struct pmbus_sensor *sensor;
161
162 for (sensor = data->sensors; sensor; sensor = sensor->next)
163 if (sensor->reg == reg)
164 sensor->update = update;
165 }
166 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
167
168 /* Some chips need a delay between accesses. */
pmbus_wait(struct i2c_client * client)169 static void pmbus_wait(struct i2c_client *client)
170 {
171 struct pmbus_data *data = i2c_get_clientdata(client);
172 const struct pmbus_driver_info *info = data->info;
173 s64 delta;
174
175 if (info->access_delay) {
176 delta = ktime_us_delta(ktime_get(), data->access_time);
177
178 if (delta < info->access_delay)
179 fsleep(info->access_delay - delta);
180 } else if (info->write_delay) {
181 delta = ktime_us_delta(ktime_get(), data->write_time);
182
183 if (delta < info->write_delay)
184 fsleep(info->write_delay - delta);
185 }
186 }
187
188 /* Sets the last accessed timestamp for pmbus_wait */
pmbus_update_ts(struct i2c_client * client,bool write_op)189 static void pmbus_update_ts(struct i2c_client *client, bool write_op)
190 {
191 struct pmbus_data *data = i2c_get_clientdata(client);
192 const struct pmbus_driver_info *info = data->info;
193
194 if (info->access_delay)
195 data->access_time = ktime_get();
196 else if (info->write_delay && write_op)
197 data->write_time = ktime_get();
198 }
199
pmbus_set_page(struct i2c_client * client,int page,int phase)200 int pmbus_set_page(struct i2c_client *client, int page, int phase)
201 {
202 struct pmbus_data *data = i2c_get_clientdata(client);
203 int rv;
204
205 if (page < 0)
206 return 0;
207
208 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
209 data->info->pages > 1 && page != data->currpage) {
210 pmbus_wait(client);
211 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
212 pmbus_update_ts(client, true);
213 if (rv < 0)
214 return rv;
215
216 pmbus_wait(client);
217 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
218 pmbus_update_ts(client, false);
219 if (rv < 0)
220 return rv;
221
222 if (rv != page)
223 return -EIO;
224 }
225 data->currpage = page;
226
227 if (data->info->phases[page] && data->currphase != phase &&
228 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
229 pmbus_wait(client);
230 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
231 phase);
232 pmbus_update_ts(client, true);
233 if (rv)
234 return rv;
235 }
236 data->currphase = phase;
237
238 return 0;
239 }
240 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
241
pmbus_write_byte(struct i2c_client * client,int page,u8 value)242 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
243 {
244 int rv;
245
246 rv = pmbus_set_page(client, page, 0xff);
247 if (rv < 0)
248 return rv;
249
250 pmbus_wait(client);
251 rv = i2c_smbus_write_byte(client, value);
252 pmbus_update_ts(client, true);
253
254 return rv;
255 }
256 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
257
258 /*
259 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
260 * a device specific mapping function exists and calls it if necessary.
261 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)262 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
263 {
264 struct pmbus_data *data = i2c_get_clientdata(client);
265 const struct pmbus_driver_info *info = data->info;
266 int status;
267
268 if (info->write_byte) {
269 status = info->write_byte(client, page, value);
270 if (status != -ENODATA)
271 return status;
272 }
273 return pmbus_write_byte(client, page, value);
274 }
275
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)276 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
277 u16 word)
278 {
279 int rv;
280
281 rv = pmbus_set_page(client, page, 0xff);
282 if (rv < 0)
283 return rv;
284
285 pmbus_wait(client);
286 rv = i2c_smbus_write_word_data(client, reg, word);
287 pmbus_update_ts(client, true);
288
289 return rv;
290 }
291 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
292
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)293 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
294 u16 word)
295 {
296 int bit;
297 int id;
298 int rv;
299
300 switch (reg) {
301 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
302 id = reg - PMBUS_VIRT_FAN_TARGET_1;
303 bit = pmbus_fan_rpm_mask[id];
304 rv = pmbus_update_fan(client, page, id, bit, bit, word);
305 break;
306 default:
307 rv = -ENXIO;
308 break;
309 }
310
311 return rv;
312 }
313
314 /*
315 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
316 * a device specific mapping function exists and calls it if necessary.
317 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)318 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
319 u16 word)
320 {
321 struct pmbus_data *data = i2c_get_clientdata(client);
322 const struct pmbus_driver_info *info = data->info;
323 int status;
324
325 if (info->write_word_data) {
326 status = info->write_word_data(client, page, reg, word);
327 if (status != -ENODATA)
328 return status;
329 }
330
331 if (reg >= PMBUS_VIRT_BASE)
332 return pmbus_write_virt_reg(client, page, reg, word);
333
334 return pmbus_write_word_data(client, page, reg, word);
335 }
336
337 /*
338 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
339 * a device specific mapping function exists and calls it if necessary.
340 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)341 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
342 {
343 struct pmbus_data *data = i2c_get_clientdata(client);
344 const struct pmbus_driver_info *info = data->info;
345 int status;
346
347 if (info->write_byte_data) {
348 status = info->write_byte_data(client, page, reg, value);
349 if (status != -ENODATA)
350 return status;
351 }
352 return pmbus_write_byte_data(client, page, reg, value);
353 }
354
355 /*
356 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
357 * a device specific mapping function exists and calls it if necessary.
358 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)359 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
360 {
361 struct pmbus_data *data = i2c_get_clientdata(client);
362 const struct pmbus_driver_info *info = data->info;
363 int status;
364
365 if (info->read_byte_data) {
366 status = info->read_byte_data(client, page, reg);
367 if (status != -ENODATA)
368 return status;
369 }
370 return pmbus_read_byte_data(client, page, reg);
371 }
372
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)373 int pmbus_update_fan(struct i2c_client *client, int page, int id,
374 u8 config, u8 mask, u16 command)
375 {
376 int from;
377 int rv;
378 u8 to;
379
380 from = _pmbus_read_byte_data(client, page,
381 pmbus_fan_config_registers[id]);
382 if (from < 0)
383 return from;
384
385 to = (from & ~mask) | (config & mask);
386 if (to != from) {
387 rv = _pmbus_write_byte_data(client, page,
388 pmbus_fan_config_registers[id], to);
389 if (rv < 0)
390 return rv;
391 }
392
393 return _pmbus_write_word_data(client, page,
394 pmbus_fan_command_registers[id], command);
395 }
396 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
397
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)398 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
399 {
400 int rv;
401
402 rv = pmbus_set_page(client, page, phase);
403 if (rv < 0)
404 return rv;
405
406 pmbus_wait(client);
407 rv = i2c_smbus_read_word_data(client, reg);
408 pmbus_update_ts(client, false);
409
410 return rv;
411 }
412 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
413
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)414 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
415 {
416 int rv;
417 int id;
418
419 switch (reg) {
420 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
421 id = reg - PMBUS_VIRT_FAN_TARGET_1;
422 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
423 break;
424 default:
425 rv = -ENXIO;
426 break;
427 }
428
429 return rv;
430 }
431
432 /*
433 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
434 * a device specific mapping function exists and calls it if necessary.
435 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)436 static int _pmbus_read_word_data(struct i2c_client *client, int page,
437 int phase, int reg)
438 {
439 struct pmbus_data *data = i2c_get_clientdata(client);
440 const struct pmbus_driver_info *info = data->info;
441 int status;
442
443 if (info->read_word_data) {
444 status = info->read_word_data(client, page, phase, reg);
445 if (status != -ENODATA)
446 return status;
447 }
448
449 if (reg >= PMBUS_VIRT_BASE)
450 return pmbus_read_virt_reg(client, page, reg);
451
452 return pmbus_read_word_data(client, page, phase, reg);
453 }
454
455 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)456 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
457 {
458 return _pmbus_read_word_data(client, page, 0xff, reg);
459 }
460
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)461 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
462 {
463 int rv;
464
465 rv = pmbus_set_page(client, page, 0xff);
466 if (rv < 0)
467 return rv;
468
469 pmbus_wait(client);
470 rv = i2c_smbus_read_byte_data(client, reg);
471 pmbus_update_ts(client, false);
472
473 return rv;
474 }
475 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
476
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)477 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
478 {
479 int rv;
480
481 rv = pmbus_set_page(client, page, 0xff);
482 if (rv < 0)
483 return rv;
484
485 pmbus_wait(client);
486 rv = i2c_smbus_write_byte_data(client, reg, value);
487 pmbus_update_ts(client, true);
488
489 return rv;
490 }
491 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
492
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)493 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
494 u8 mask, u8 value)
495 {
496 unsigned int tmp;
497 int rv;
498
499 rv = _pmbus_read_byte_data(client, page, reg);
500 if (rv < 0)
501 return rv;
502
503 tmp = (rv & ~mask) | (value & mask);
504
505 if (tmp != rv)
506 rv = _pmbus_write_byte_data(client, page, reg, tmp);
507
508 return rv;
509 }
510 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
511
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)512 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
513 char *data_buf)
514 {
515 int rv;
516
517 rv = pmbus_set_page(client, page, 0xff);
518 if (rv < 0)
519 return rv;
520
521 pmbus_wait(client);
522 rv = i2c_smbus_read_block_data(client, reg, data_buf);
523 pmbus_update_ts(client, false);
524
525 return rv;
526 }
527
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)528 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
529 int reg)
530 {
531 struct pmbus_sensor *sensor;
532
533 for (sensor = data->sensors; sensor; sensor = sensor->next) {
534 if (sensor->page == page && sensor->reg == reg)
535 return sensor;
536 }
537
538 return ERR_PTR(-EINVAL);
539 }
540
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)541 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
542 enum pmbus_fan_mode mode,
543 bool from_cache)
544 {
545 struct pmbus_data *data = i2c_get_clientdata(client);
546 bool want_rpm, have_rpm;
547 struct pmbus_sensor *s;
548 int config;
549 int reg;
550
551 want_rpm = (mode == rpm);
552
553 if (from_cache) {
554 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
555 s = pmbus_find_sensor(data, page, reg + id);
556 if (IS_ERR(s))
557 return PTR_ERR(s);
558
559 return s->data;
560 }
561
562 config = _pmbus_read_byte_data(client, page,
563 pmbus_fan_config_registers[id]);
564 if (config < 0)
565 return config;
566
567 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
568 if (want_rpm == have_rpm)
569 return pmbus_read_word_data(client, page, 0xff,
570 pmbus_fan_command_registers[id]);
571
572 /* Can't sensibly map between RPM and PWM, just return zero */
573 return 0;
574 }
575
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)576 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
577 enum pmbus_fan_mode mode)
578 {
579 return pmbus_get_fan_rate(client, page, id, mode, false);
580 }
581 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
582
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)583 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
584 enum pmbus_fan_mode mode)
585 {
586 return pmbus_get_fan_rate(client, page, id, mode, true);
587 }
588 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
589
pmbus_clear_fault_page(struct i2c_client * client,int page)590 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
591 {
592 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
593 }
594
pmbus_clear_faults(struct i2c_client * client)595 void pmbus_clear_faults(struct i2c_client *client)
596 {
597 struct pmbus_data *data = i2c_get_clientdata(client);
598 int i;
599
600 for (i = 0; i < data->info->pages; i++)
601 pmbus_clear_fault_page(client, i);
602 }
603 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
604
pmbus_check_status_cml(struct i2c_client * client)605 static int pmbus_check_status_cml(struct i2c_client *client)
606 {
607 struct pmbus_data *data = i2c_get_clientdata(client);
608 int status, status2;
609
610 status = data->read_status(client, -1);
611 if (status < 0 || (status & PB_STATUS_CML)) {
612 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
613 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
614 return -EIO;
615 }
616 return 0;
617 }
618
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)619 static bool pmbus_check_register(struct i2c_client *client,
620 int (*func)(struct i2c_client *client,
621 int page, int reg),
622 int page, int reg)
623 {
624 int rv;
625 struct pmbus_data *data = i2c_get_clientdata(client);
626
627 rv = func(client, page, reg);
628 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
629 rv = pmbus_check_status_cml(client);
630 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
631 data->read_status(client, -1);
632 if (reg < PMBUS_VIRT_BASE)
633 pmbus_clear_fault_page(client, -1);
634 return rv >= 0;
635 }
636
pmbus_check_status_register(struct i2c_client * client,int page)637 static bool pmbus_check_status_register(struct i2c_client *client, int page)
638 {
639 int status;
640 struct pmbus_data *data = i2c_get_clientdata(client);
641
642 status = data->read_status(client, page);
643 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
644 (status & PB_STATUS_CML)) {
645 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
646 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
647 status = -EIO;
648 }
649
650 pmbus_clear_fault_page(client, -1);
651 return status >= 0;
652 }
653
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)654 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
655 {
656 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
657 }
658 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
659
pmbus_check_word_register(struct i2c_client * client,int page,int reg)660 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
661 {
662 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
663 }
664 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
665
pmbus_check_block_register(struct i2c_client * client,int page,int reg)666 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
667 int page, int reg)
668 {
669 int rv;
670 struct pmbus_data *data = i2c_get_clientdata(client);
671 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
672
673 rv = pmbus_read_block_data(client, page, reg, data_buf);
674 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
675 rv = pmbus_check_status_cml(client);
676 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
677 data->read_status(client, -1);
678 pmbus_clear_fault_page(client, -1);
679 return rv >= 0;
680 }
681
pmbus_get_driver_info(struct i2c_client * client)682 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
683 {
684 struct pmbus_data *data = i2c_get_clientdata(client);
685
686 return data->info;
687 }
688 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
689
pmbus_get_status(struct i2c_client * client,int page,int reg)690 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
691 {
692 struct pmbus_data *data = i2c_get_clientdata(client);
693 int status;
694
695 switch (reg) {
696 case PMBUS_STATUS_WORD:
697 status = data->read_status(client, page);
698 break;
699 default:
700 status = _pmbus_read_byte_data(client, page, reg);
701 break;
702 }
703 if (status < 0)
704 pmbus_clear_faults(client);
705 return status;
706 }
707
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)708 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
709 {
710 if (sensor->data < 0 || sensor->update)
711 sensor->data = _pmbus_read_word_data(client, sensor->page,
712 sensor->phase, sensor->reg);
713 }
714
715 /*
716 * Convert ieee754 sensor values to milli- or micro-units
717 * depending on sensor type.
718 *
719 * ieee754 data format:
720 * bit 15: sign
721 * bit 10..14: exponent
722 * bit 0..9: mantissa
723 * exponent=0:
724 * v=(−1)^signbit * 2^(−14) * 0.significantbits
725 * exponent=1..30:
726 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
727 * exponent=31:
728 * v=NaN
729 *
730 * Add the number mantissa bits into the calculations for simplicity.
731 * To do that, add '10' to the exponent. By doing that, we can just add
732 * 0x400 to normal values and get the expected result.
733 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)734 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
735 struct pmbus_sensor *sensor)
736 {
737 int exponent;
738 bool sign;
739 long val;
740
741 /* only support half precision for now */
742 sign = sensor->data & 0x8000;
743 exponent = (sensor->data >> 10) & 0x1f;
744 val = sensor->data & 0x3ff;
745
746 if (exponent == 0) { /* subnormal */
747 exponent = -(14 + 10);
748 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
749 exponent = 0;
750 val = 65504;
751 } else {
752 exponent -= (15 + 10); /* normal */
753 val |= 0x400;
754 }
755
756 /* scale result to milli-units for all sensors except fans */
757 if (sensor->class != PSC_FAN)
758 val = val * 1000L;
759
760 /* scale result to micro-units for power sensors */
761 if (sensor->class == PSC_POWER)
762 val = val * 1000L;
763
764 if (exponent >= 0)
765 val <<= exponent;
766 else
767 val >>= -exponent;
768
769 if (sign)
770 val = -val;
771
772 return val;
773 }
774
775 /*
776 * Convert linear sensor values to milli- or micro-units
777 * depending on sensor type.
778 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)779 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
780 struct pmbus_sensor *sensor)
781 {
782 s16 exponent;
783 s32 mantissa;
784 s64 val;
785
786 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
787 exponent = data->exponent[sensor->page];
788 mantissa = (u16)sensor->data;
789 } else { /* LINEAR11 */
790 exponent = ((s16)sensor->data) >> 11;
791 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
792 }
793
794 val = mantissa;
795
796 /* scale result to milli-units for all sensors except fans */
797 if (sensor->class != PSC_FAN)
798 val = val * 1000LL;
799
800 /* scale result to micro-units for power sensors */
801 if (sensor->class == PSC_POWER)
802 val = val * 1000LL;
803
804 if (exponent >= 0)
805 val <<= exponent;
806 else
807 val >>= -exponent;
808
809 return val;
810 }
811
812 /*
813 * Convert direct sensor values to milli- or micro-units
814 * depending on sensor type.
815 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)816 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
817 struct pmbus_sensor *sensor)
818 {
819 s64 b, val = (s16)sensor->data;
820 s32 m, R;
821
822 m = data->info->m[sensor->class];
823 b = data->info->b[sensor->class];
824 R = data->info->R[sensor->class];
825
826 if (m == 0)
827 return 0;
828
829 /* X = 1/m * (Y * 10^-R - b) */
830 R = -R;
831 /* scale result to milli-units for everything but fans */
832 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
833 R += 3;
834 b *= 1000;
835 }
836
837 /* scale result to micro-units for power sensors */
838 if (sensor->class == PSC_POWER) {
839 R += 3;
840 b *= 1000;
841 }
842
843 while (R > 0) {
844 val *= 10;
845 R--;
846 }
847 while (R < 0) {
848 val = div_s64(val + 5LL, 10L); /* round closest */
849 R++;
850 }
851
852 val = div_s64(val - b, m);
853 return val;
854 }
855
856 /*
857 * Convert VID sensor values to milli- or micro-units
858 * depending on sensor type.
859 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)860 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
861 struct pmbus_sensor *sensor)
862 {
863 long val = sensor->data;
864 long rv = 0;
865
866 switch (data->info->vrm_version[sensor->page]) {
867 case vr11:
868 if (val >= 0x02 && val <= 0xb2)
869 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
870 break;
871 case vr12:
872 if (val >= 0x01)
873 rv = 250 + (val - 1) * 5;
874 break;
875 case vr13:
876 if (val >= 0x01)
877 rv = 500 + (val - 1) * 10;
878 break;
879 case imvp9:
880 if (val >= 0x01)
881 rv = 200 + (val - 1) * 10;
882 break;
883 case amd625mv:
884 if (val >= 0x0 && val <= 0xd8)
885 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
886 break;
887 }
888 return rv;
889 }
890
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)891 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
892 {
893 s64 val;
894
895 if (!sensor->convert)
896 return sensor->data;
897
898 switch (data->info->format[sensor->class]) {
899 case direct:
900 val = pmbus_reg2data_direct(data, sensor);
901 break;
902 case vid:
903 val = pmbus_reg2data_vid(data, sensor);
904 break;
905 case ieee754:
906 val = pmbus_reg2data_ieee754(data, sensor);
907 break;
908 case linear:
909 default:
910 val = pmbus_reg2data_linear(data, sensor);
911 break;
912 }
913 return val;
914 }
915
916 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
917 #define MIN_IEEE_MANTISSA (0x400 * 1000)
918
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)919 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
920 struct pmbus_sensor *sensor, long val)
921 {
922 u16 exponent = (15 + 10);
923 long mantissa;
924 u16 sign = 0;
925
926 /* simple case */
927 if (val == 0)
928 return 0;
929
930 if (val < 0) {
931 sign = 0x8000;
932 val = -val;
933 }
934
935 /* Power is in uW. Convert to mW before converting. */
936 if (sensor->class == PSC_POWER)
937 val = DIV_ROUND_CLOSEST(val, 1000L);
938
939 /*
940 * For simplicity, convert fan data to milli-units
941 * before calculating the exponent.
942 */
943 if (sensor->class == PSC_FAN)
944 val = val * 1000;
945
946 /* Reduce large mantissa until it fits into 10 bit */
947 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
948 exponent++;
949 val >>= 1;
950 }
951 /*
952 * Increase small mantissa to generate valid 'normal'
953 * number
954 */
955 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
956 exponent--;
957 val <<= 1;
958 }
959
960 /* Convert mantissa from milli-units to units */
961 mantissa = DIV_ROUND_CLOSEST(val, 1000);
962
963 /*
964 * Ensure that the resulting number is within range.
965 * Valid range is 0x400..0x7ff, where bit 10 reflects
966 * the implied high bit in normalized ieee754 numbers.
967 * Set the range to 0x400..0x7ff to reflect this.
968 * The upper bit is then removed by the mask against
969 * 0x3ff in the final assignment.
970 */
971 if (mantissa > 0x7ff)
972 mantissa = 0x7ff;
973 else if (mantissa < 0x400)
974 mantissa = 0x400;
975
976 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
977 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
978 }
979
980 #define MAX_LIN_MANTISSA (1023 * 1000)
981 #define MIN_LIN_MANTISSA (511 * 1000)
982
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)983 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
984 struct pmbus_sensor *sensor, s64 val)
985 {
986 s16 exponent = 0, mantissa;
987 bool negative = false;
988
989 /* simple case */
990 if (val == 0)
991 return 0;
992
993 if (sensor->class == PSC_VOLTAGE_OUT) {
994 /* LINEAR16 does not support negative voltages */
995 if (val < 0)
996 return 0;
997
998 /*
999 * For a static exponents, we don't have a choice
1000 * but to adjust the value to it.
1001 */
1002 if (data->exponent[sensor->page] < 0)
1003 val <<= -data->exponent[sensor->page];
1004 else
1005 val >>= data->exponent[sensor->page];
1006 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007 return clamp_val(val, 0, 0xffff);
1008 }
1009
1010 if (val < 0) {
1011 negative = true;
1012 val = -val;
1013 }
1014
1015 /* Power is in uW. Convert to mW before converting. */
1016 if (sensor->class == PSC_POWER)
1017 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018
1019 /*
1020 * For simplicity, convert fan data to milli-units
1021 * before calculating the exponent.
1022 */
1023 if (sensor->class == PSC_FAN)
1024 val = val * 1000LL;
1025
1026 /* Reduce large mantissa until it fits into 10 bit */
1027 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028 exponent++;
1029 val >>= 1;
1030 }
1031 /* Increase small mantissa to improve precision */
1032 while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033 exponent--;
1034 val <<= 1;
1035 }
1036
1037 /* Convert mantissa from milli-units to units */
1038 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1039
1040 /* restore sign */
1041 if (negative)
1042 mantissa = -mantissa;
1043
1044 /* Convert to 5 bit exponent, 11 bit mantissa */
1045 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046 }
1047
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1048 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049 struct pmbus_sensor *sensor, s64 val)
1050 {
1051 s64 b;
1052 s32 m, R;
1053
1054 m = data->info->m[sensor->class];
1055 b = data->info->b[sensor->class];
1056 R = data->info->R[sensor->class];
1057
1058 /* Power is in uW. Adjust R and b. */
1059 if (sensor->class == PSC_POWER) {
1060 R -= 3;
1061 b *= 1000;
1062 }
1063
1064 /* Calculate Y = (m * X + b) * 10^R */
1065 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066 R -= 3; /* Adjust R and b for data in milli-units */
1067 b *= 1000;
1068 }
1069 val = val * m + b;
1070
1071 while (R > 0) {
1072 val *= 10;
1073 R--;
1074 }
1075 while (R < 0) {
1076 val = div_s64(val + 5LL, 10L); /* round closest */
1077 R++;
1078 }
1079
1080 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081 }
1082
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1083 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084 struct pmbus_sensor *sensor, s64 val)
1085 {
1086 val = clamp_val(val, 500, 1600);
1087
1088 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089 }
1090
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1091 static u16 pmbus_data2reg(struct pmbus_data *data,
1092 struct pmbus_sensor *sensor, s64 val)
1093 {
1094 u16 regval;
1095
1096 if (!sensor->convert)
1097 return val;
1098
1099 switch (data->info->format[sensor->class]) {
1100 case direct:
1101 regval = pmbus_data2reg_direct(data, sensor, val);
1102 break;
1103 case vid:
1104 regval = pmbus_data2reg_vid(data, sensor, val);
1105 break;
1106 case ieee754:
1107 regval = pmbus_data2reg_ieee754(data, sensor, val);
1108 break;
1109 case linear:
1110 default:
1111 regval = pmbus_data2reg_linear(data, sensor, val);
1112 break;
1113 }
1114 return regval;
1115 }
1116
1117 /*
1118 * Return boolean calculated from converted data.
1119 * <index> defines a status register index and mask.
1120 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1121 *
1122 * The associated pmbus_boolean structure contains optional pointers to two
1123 * sensor attributes. If specified, those attributes are compared against each
1124 * other to determine if a limit has been exceeded.
1125 *
1126 * If the sensor attribute pointers are NULL, the function returns true if
1127 * (status[reg] & mask) is true.
1128 *
1129 * If sensor attribute pointers are provided, a comparison against a specified
1130 * limit has to be performed to determine the boolean result.
1131 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132 * sensor values referenced by sensor attribute pointers s1 and s2).
1133 *
1134 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136 *
1137 * If a negative value is stored in any of the referenced registers, this value
1138 * reflects an error code which will be returned.
1139 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1140 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141 int index)
1142 {
1143 struct pmbus_data *data = i2c_get_clientdata(client);
1144 struct pmbus_sensor *s1 = b->s1;
1145 struct pmbus_sensor *s2 = b->s2;
1146 u16 mask = pb_index_to_mask(index);
1147 u8 page = pb_index_to_page(index);
1148 u16 reg = pb_index_to_reg(index);
1149 int ret, status;
1150 u16 regval;
1151
1152 mutex_lock(&data->update_lock);
1153 status = pmbus_get_status(client, page, reg);
1154 if (status < 0) {
1155 ret = status;
1156 goto unlock;
1157 }
1158
1159 if (s1)
1160 pmbus_update_sensor_data(client, s1);
1161 if (s2)
1162 pmbus_update_sensor_data(client, s2);
1163
1164 regval = status & mask;
1165 if (regval) {
1166 if (data->revision >= PMBUS_REV_12) {
1167 ret = _pmbus_write_byte_data(client, page, reg, regval);
1168 if (ret)
1169 goto unlock;
1170 } else {
1171 pmbus_clear_fault_page(client, page);
1172 }
1173 }
1174 if (s1 && s2) {
1175 s64 v1, v2;
1176
1177 if (s1->data < 0) {
1178 ret = s1->data;
1179 goto unlock;
1180 }
1181 if (s2->data < 0) {
1182 ret = s2->data;
1183 goto unlock;
1184 }
1185
1186 v1 = pmbus_reg2data(data, s1);
1187 v2 = pmbus_reg2data(data, s2);
1188 ret = !!(regval && v1 >= v2);
1189 } else {
1190 ret = !!regval;
1191 }
1192 unlock:
1193 mutex_unlock(&data->update_lock);
1194 return ret;
1195 }
1196
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1197 static ssize_t pmbus_show_boolean(struct device *dev,
1198 struct device_attribute *da, char *buf)
1199 {
1200 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1201 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1202 struct i2c_client *client = to_i2c_client(dev->parent);
1203 int val;
1204
1205 val = pmbus_get_boolean(client, boolean, attr->index);
1206 if (val < 0)
1207 return val;
1208 return sysfs_emit(buf, "%d\n", val);
1209 }
1210
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1211 static ssize_t pmbus_show_sensor(struct device *dev,
1212 struct device_attribute *devattr, char *buf)
1213 {
1214 struct i2c_client *client = to_i2c_client(dev->parent);
1215 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1216 struct pmbus_data *data = i2c_get_clientdata(client);
1217 ssize_t ret;
1218
1219 mutex_lock(&data->update_lock);
1220 pmbus_update_sensor_data(client, sensor);
1221 if (sensor->data < 0)
1222 ret = sensor->data;
1223 else
1224 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1225 mutex_unlock(&data->update_lock);
1226 return ret;
1227 }
1228
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1229 static ssize_t pmbus_set_sensor(struct device *dev,
1230 struct device_attribute *devattr,
1231 const char *buf, size_t count)
1232 {
1233 struct i2c_client *client = to_i2c_client(dev->parent);
1234 struct pmbus_data *data = i2c_get_clientdata(client);
1235 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1236 ssize_t rv = count;
1237 s64 val;
1238 int ret;
1239 u16 regval;
1240
1241 if (kstrtos64(buf, 10, &val) < 0)
1242 return -EINVAL;
1243
1244 mutex_lock(&data->update_lock);
1245 regval = pmbus_data2reg(data, sensor, val);
1246 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1247 if (ret < 0)
1248 rv = ret;
1249 else
1250 sensor->data = -ENODATA;
1251 mutex_unlock(&data->update_lock);
1252 return rv;
1253 }
1254
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1255 static ssize_t pmbus_show_label(struct device *dev,
1256 struct device_attribute *da, char *buf)
1257 {
1258 struct pmbus_label *label = to_pmbus_label(da);
1259
1260 return sysfs_emit(buf, "%s\n", label->label);
1261 }
1262
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1263 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1264 {
1265 if (data->num_attributes >= data->max_attributes - 1) {
1266 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1267 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1268 new_max_attrs, sizeof(void *),
1269 GFP_KERNEL);
1270 if (!new_attrs)
1271 return -ENOMEM;
1272 data->group.attrs = new_attrs;
1273 data->max_attributes = new_max_attrs;
1274 }
1275
1276 data->group.attrs[data->num_attributes++] = attr;
1277 data->group.attrs[data->num_attributes] = NULL;
1278 return 0;
1279 }
1280
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1281 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1282 const char *name,
1283 umode_t mode,
1284 ssize_t (*show)(struct device *dev,
1285 struct device_attribute *attr,
1286 char *buf),
1287 ssize_t (*store)(struct device *dev,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count))
1290 {
1291 sysfs_attr_init(&dev_attr->attr);
1292 dev_attr->attr.name = name;
1293 dev_attr->attr.mode = mode;
1294 dev_attr->show = show;
1295 dev_attr->store = store;
1296 }
1297
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1298 static void pmbus_attr_init(struct sensor_device_attribute *a,
1299 const char *name,
1300 umode_t mode,
1301 ssize_t (*show)(struct device *dev,
1302 struct device_attribute *attr,
1303 char *buf),
1304 ssize_t (*store)(struct device *dev,
1305 struct device_attribute *attr,
1306 const char *buf, size_t count),
1307 int idx)
1308 {
1309 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1310 a->index = idx;
1311 }
1312
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1313 static int pmbus_add_boolean(struct pmbus_data *data,
1314 const char *name, const char *type, int seq,
1315 struct pmbus_sensor *s1,
1316 struct pmbus_sensor *s2,
1317 u8 page, u16 reg, u16 mask)
1318 {
1319 struct pmbus_boolean *boolean;
1320 struct sensor_device_attribute *a;
1321
1322 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1323 return -EINVAL;
1324
1325 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1326 if (!boolean)
1327 return -ENOMEM;
1328
1329 a = &boolean->attribute;
1330
1331 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1332 name, seq, type);
1333 boolean->s1 = s1;
1334 boolean->s2 = s2;
1335 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1336 pb_reg_to_index(page, reg, mask));
1337
1338 return pmbus_add_attribute(data, &a->dev_attr.attr);
1339 }
1340
1341 /* of thermal for pmbus temperature sensors */
1342 struct pmbus_thermal_data {
1343 struct pmbus_data *pmbus_data;
1344 struct pmbus_sensor *sensor;
1345 };
1346
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1347 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1348 {
1349 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1350 struct pmbus_sensor *sensor = tdata->sensor;
1351 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1352 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1353 struct device *dev = pmbus_data->hwmon_dev;
1354 int ret = 0;
1355
1356 if (!dev) {
1357 /* May not even get to hwmon yet */
1358 *temp = 0;
1359 return 0;
1360 }
1361
1362 mutex_lock(&pmbus_data->update_lock);
1363 pmbus_update_sensor_data(client, sensor);
1364 if (sensor->data < 0)
1365 ret = sensor->data;
1366 else
1367 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1368 mutex_unlock(&pmbus_data->update_lock);
1369
1370 return ret;
1371 }
1372
1373 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1374 .get_temp = pmbus_thermal_get_temp,
1375 };
1376
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1377 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1378 struct pmbus_sensor *sensor, int index)
1379 {
1380 struct device *dev = pmbus_data->dev;
1381 struct pmbus_thermal_data *tdata;
1382 struct thermal_zone_device *tzd;
1383
1384 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1385 if (!tdata)
1386 return -ENOMEM;
1387
1388 tdata->sensor = sensor;
1389 tdata->pmbus_data = pmbus_data;
1390
1391 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1392 &pmbus_thermal_ops);
1393 /*
1394 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1395 * so ignore that error but forward any other error.
1396 */
1397 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1398 return PTR_ERR(tzd);
1399
1400 return 0;
1401 }
1402
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1403 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1404 const char *name, const char *type,
1405 int seq, int page, int phase,
1406 int reg,
1407 enum pmbus_sensor_classes class,
1408 bool update, bool readonly,
1409 bool convert)
1410 {
1411 struct pmbus_sensor *sensor;
1412 struct device_attribute *a;
1413
1414 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1415 if (!sensor)
1416 return NULL;
1417 a = &sensor->attribute;
1418
1419 if (type)
1420 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1421 name, seq, type);
1422 else
1423 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1424 name, seq);
1425
1426 if (data->flags & PMBUS_WRITE_PROTECTED)
1427 readonly = true;
1428
1429 sensor->page = page;
1430 sensor->phase = phase;
1431 sensor->reg = reg;
1432 sensor->class = class;
1433 sensor->update = update;
1434 sensor->convert = convert;
1435 sensor->data = -ENODATA;
1436 pmbus_dev_attr_init(a, sensor->name,
1437 readonly ? 0444 : 0644,
1438 pmbus_show_sensor, pmbus_set_sensor);
1439
1440 if (pmbus_add_attribute(data, &a->attr))
1441 return NULL;
1442
1443 sensor->next = data->sensors;
1444 data->sensors = sensor;
1445
1446 /* temperature sensors with _input values are registered with thermal */
1447 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1448 pmbus_thermal_add_sensor(data, sensor, seq);
1449
1450 return sensor;
1451 }
1452
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1453 static int pmbus_add_label(struct pmbus_data *data,
1454 const char *name, int seq,
1455 const char *lstring, int index, int phase)
1456 {
1457 struct pmbus_label *label;
1458 struct device_attribute *a;
1459
1460 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1461 if (!label)
1462 return -ENOMEM;
1463
1464 a = &label->attribute;
1465
1466 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1467 if (!index) {
1468 if (phase == 0xff)
1469 strscpy(label->label, lstring);
1470 else
1471 snprintf(label->label, sizeof(label->label), "%s.%d",
1472 lstring, phase);
1473 } else {
1474 if (phase == 0xff)
1475 snprintf(label->label, sizeof(label->label), "%s%d",
1476 lstring, index);
1477 else
1478 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1479 lstring, index, phase);
1480 }
1481
1482 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1483 return pmbus_add_attribute(data, &a->attr);
1484 }
1485
1486 /*
1487 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1488 */
1489
1490 /*
1491 * The pmbus_limit_attr structure describes a single limit attribute
1492 * and its associated alarm attribute.
1493 */
1494 struct pmbus_limit_attr {
1495 u16 reg; /* Limit register */
1496 u16 sbit; /* Alarm attribute status bit */
1497 bool update; /* True if register needs updates */
1498 bool low; /* True if low limit; for limits with compare functions only */
1499 const char *attr; /* Attribute name */
1500 const char *alarm; /* Alarm attribute name */
1501 };
1502
1503 /*
1504 * The pmbus_sensor_attr structure describes one sensor attribute. This
1505 * description includes a reference to the associated limit attributes.
1506 */
1507 struct pmbus_sensor_attr {
1508 u16 reg; /* sensor register */
1509 u16 gbit; /* generic status bit */
1510 u8 nlimit; /* # of limit registers */
1511 enum pmbus_sensor_classes class;/* sensor class */
1512 const char *label; /* sensor label */
1513 bool paged; /* true if paged sensor */
1514 bool update; /* true if update needed */
1515 bool compare; /* true if compare function needed */
1516 u32 func; /* sensor mask */
1517 u32 sfunc; /* sensor status mask */
1518 int sreg; /* status register */
1519 const struct pmbus_limit_attr *limit;/* limit registers */
1520 };
1521
1522 /*
1523 * Add a set of limit attributes and, if supported, the associated
1524 * alarm attributes.
1525 * returns 0 if no alarm register found, 1 if an alarm register was found,
1526 * < 0 on errors.
1527 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1528 static int pmbus_add_limit_attrs(struct i2c_client *client,
1529 struct pmbus_data *data,
1530 const struct pmbus_driver_info *info,
1531 const char *name, int index, int page,
1532 struct pmbus_sensor *base,
1533 const struct pmbus_sensor_attr *attr)
1534 {
1535 const struct pmbus_limit_attr *l = attr->limit;
1536 int nlimit = attr->nlimit;
1537 int have_alarm = 0;
1538 int i, ret;
1539 struct pmbus_sensor *curr;
1540
1541 for (i = 0; i < nlimit; i++) {
1542 if (pmbus_check_word_register(client, page, l->reg)) {
1543 curr = pmbus_add_sensor(data, name, l->attr, index,
1544 page, 0xff, l->reg, attr->class,
1545 attr->update || l->update,
1546 false, true);
1547 if (!curr)
1548 return -ENOMEM;
1549 if (l->sbit && (info->func[page] & attr->sfunc)) {
1550 ret = pmbus_add_boolean(data, name,
1551 l->alarm, index,
1552 attr->compare ? l->low ? curr : base
1553 : NULL,
1554 attr->compare ? l->low ? base : curr
1555 : NULL,
1556 page, attr->sreg, l->sbit);
1557 if (ret)
1558 return ret;
1559 have_alarm = 1;
1560 }
1561 }
1562 l++;
1563 }
1564 return have_alarm;
1565 }
1566
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1567 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1568 struct pmbus_data *data,
1569 const struct pmbus_driver_info *info,
1570 const char *name,
1571 int index, int page, int phase,
1572 const struct pmbus_sensor_attr *attr,
1573 bool paged)
1574 {
1575 struct pmbus_sensor *base;
1576 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1577 int ret;
1578
1579 if (attr->label) {
1580 ret = pmbus_add_label(data, name, index, attr->label,
1581 paged ? page + 1 : 0, phase);
1582 if (ret)
1583 return ret;
1584 }
1585 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1586 attr->reg, attr->class, true, true, true);
1587 if (!base)
1588 return -ENOMEM;
1589 /* No limit and alarm attributes for phase specific sensors */
1590 if (attr->sfunc && phase == 0xff) {
1591 ret = pmbus_add_limit_attrs(client, data, info, name,
1592 index, page, base, attr);
1593 if (ret < 0)
1594 return ret;
1595 /*
1596 * Add generic alarm attribute only if there are no individual
1597 * alarm attributes, if there is a global alarm bit, and if
1598 * the generic status register (word or byte, depending on
1599 * which global bit is set) for this page is accessible.
1600 */
1601 if (!ret && attr->gbit &&
1602 (!upper || data->has_status_word) &&
1603 pmbus_check_status_register(client, page)) {
1604 ret = pmbus_add_boolean(data, name, "alarm", index,
1605 NULL, NULL,
1606 page, PMBUS_STATUS_WORD,
1607 attr->gbit);
1608 if (ret)
1609 return ret;
1610 }
1611 }
1612 return 0;
1613 }
1614
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1615 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1616 const struct pmbus_sensor_attr *attr)
1617 {
1618 int p;
1619
1620 if (attr->paged)
1621 return true;
1622
1623 /*
1624 * Some attributes may be present on more than one page despite
1625 * not being marked with the paged attribute. If that is the case,
1626 * then treat the sensor as being paged and add the page suffix to the
1627 * attribute name.
1628 * We don't just add the paged attribute to all such attributes, in
1629 * order to maintain the un-suffixed labels in the case where the
1630 * attribute is only on page 0.
1631 */
1632 for (p = 1; p < info->pages; p++) {
1633 if (info->func[p] & attr->func)
1634 return true;
1635 }
1636 return false;
1637 }
1638
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1639 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1640 struct pmbus_data *data,
1641 const char *name,
1642 const struct pmbus_sensor_attr *attrs,
1643 int nattrs)
1644 {
1645 const struct pmbus_driver_info *info = data->info;
1646 int index, i;
1647 int ret;
1648
1649 index = 1;
1650 for (i = 0; i < nattrs; i++) {
1651 int page, pages;
1652 bool paged = pmbus_sensor_is_paged(info, attrs);
1653
1654 pages = paged ? info->pages : 1;
1655 for (page = 0; page < pages; page++) {
1656 if (info->func[page] & attrs->func) {
1657 ret = pmbus_add_sensor_attrs_one(client, data, info,
1658 name, index, page,
1659 0xff, attrs, paged);
1660 if (ret)
1661 return ret;
1662 index++;
1663 }
1664 if (info->phases[page]) {
1665 int phase;
1666
1667 for (phase = 0; phase < info->phases[page];
1668 phase++) {
1669 if (!(info->pfunc[phase] & attrs->func))
1670 continue;
1671 ret = pmbus_add_sensor_attrs_one(client,
1672 data, info, name, index, page,
1673 phase, attrs, paged);
1674 if (ret)
1675 return ret;
1676 index++;
1677 }
1678 }
1679 }
1680 attrs++;
1681 }
1682 return 0;
1683 }
1684
1685 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1686 {
1687 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1688 .attr = "min",
1689 .alarm = "min_alarm",
1690 .sbit = PB_VOLTAGE_UV_WARNING,
1691 }, {
1692 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1693 .attr = "lcrit",
1694 .alarm = "lcrit_alarm",
1695 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1696 }, {
1697 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1698 .attr = "max",
1699 .alarm = "max_alarm",
1700 .sbit = PB_VOLTAGE_OV_WARNING,
1701 }, {
1702 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1703 .attr = "crit",
1704 .alarm = "crit_alarm",
1705 .sbit = PB_VOLTAGE_OV_FAULT,
1706 }, {
1707 .reg = PMBUS_VIRT_READ_VIN_AVG,
1708 .update = true,
1709 .attr = "average",
1710 }, {
1711 .reg = PMBUS_VIRT_READ_VIN_MIN,
1712 .update = true,
1713 .attr = "lowest",
1714 }, {
1715 .reg = PMBUS_VIRT_READ_VIN_MAX,
1716 .update = true,
1717 .attr = "highest",
1718 }, {
1719 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1720 .attr = "reset_history",
1721 }, {
1722 .reg = PMBUS_MFR_VIN_MIN,
1723 .attr = "rated_min",
1724 }, {
1725 .reg = PMBUS_MFR_VIN_MAX,
1726 .attr = "rated_max",
1727 },
1728 };
1729
1730 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1731 {
1732 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1733 .attr = "min",
1734 .alarm = "min_alarm",
1735 .sbit = PB_VOLTAGE_UV_WARNING,
1736 }, {
1737 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1738 .attr = "lcrit",
1739 .alarm = "lcrit_alarm",
1740 .sbit = PB_VOLTAGE_UV_FAULT,
1741 }, {
1742 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1743 .attr = "max",
1744 .alarm = "max_alarm",
1745 .sbit = PB_VOLTAGE_OV_WARNING,
1746 }, {
1747 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1748 .attr = "crit",
1749 .alarm = "crit_alarm",
1750 .sbit = PB_VOLTAGE_OV_FAULT,
1751 }
1752 };
1753
1754 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1755 {
1756 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1757 .attr = "min",
1758 .alarm = "min_alarm",
1759 .sbit = PB_VOLTAGE_UV_WARNING,
1760 }, {
1761 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1762 .attr = "lcrit",
1763 .alarm = "lcrit_alarm",
1764 .sbit = PB_VOLTAGE_UV_FAULT,
1765 }, {
1766 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1767 .attr = "max",
1768 .alarm = "max_alarm",
1769 .sbit = PB_VOLTAGE_OV_WARNING,
1770 }, {
1771 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1772 .attr = "crit",
1773 .alarm = "crit_alarm",
1774 .sbit = PB_VOLTAGE_OV_FAULT,
1775 }, {
1776 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1777 .update = true,
1778 .attr = "average",
1779 }, {
1780 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1781 .update = true,
1782 .attr = "lowest",
1783 }, {
1784 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1785 .update = true,
1786 .attr = "highest",
1787 }, {
1788 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1789 .attr = "reset_history",
1790 }, {
1791 .reg = PMBUS_MFR_VOUT_MIN,
1792 .attr = "rated_min",
1793 }, {
1794 .reg = PMBUS_MFR_VOUT_MAX,
1795 .attr = "rated_max",
1796 },
1797 };
1798
1799 static const struct pmbus_sensor_attr voltage_attributes[] = {
1800 {
1801 .reg = PMBUS_READ_VIN,
1802 .class = PSC_VOLTAGE_IN,
1803 .label = "vin",
1804 .func = PMBUS_HAVE_VIN,
1805 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1806 .sreg = PMBUS_STATUS_INPUT,
1807 .gbit = PB_STATUS_VIN_UV,
1808 .limit = vin_limit_attrs,
1809 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1810 }, {
1811 .reg = PMBUS_VIRT_READ_VMON,
1812 .class = PSC_VOLTAGE_IN,
1813 .label = "vmon",
1814 .func = PMBUS_HAVE_VMON,
1815 .sfunc = PMBUS_HAVE_STATUS_VMON,
1816 .sreg = PMBUS_VIRT_STATUS_VMON,
1817 .limit = vmon_limit_attrs,
1818 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1819 }, {
1820 .reg = PMBUS_READ_VCAP,
1821 .class = PSC_VOLTAGE_IN,
1822 .label = "vcap",
1823 .func = PMBUS_HAVE_VCAP,
1824 }, {
1825 .reg = PMBUS_READ_VOUT,
1826 .class = PSC_VOLTAGE_OUT,
1827 .label = "vout",
1828 .paged = true,
1829 .func = PMBUS_HAVE_VOUT,
1830 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1831 .sreg = PMBUS_STATUS_VOUT,
1832 .gbit = PB_STATUS_VOUT_OV,
1833 .limit = vout_limit_attrs,
1834 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1835 }
1836 };
1837
1838 /* Current attributes */
1839
1840 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1841 {
1842 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1843 .attr = "max",
1844 .alarm = "max_alarm",
1845 .sbit = PB_IIN_OC_WARNING,
1846 }, {
1847 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1848 .attr = "crit",
1849 .alarm = "crit_alarm",
1850 .sbit = PB_IIN_OC_FAULT,
1851 }, {
1852 .reg = PMBUS_VIRT_READ_IIN_AVG,
1853 .update = true,
1854 .attr = "average",
1855 }, {
1856 .reg = PMBUS_VIRT_READ_IIN_MIN,
1857 .update = true,
1858 .attr = "lowest",
1859 }, {
1860 .reg = PMBUS_VIRT_READ_IIN_MAX,
1861 .update = true,
1862 .attr = "highest",
1863 }, {
1864 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1865 .attr = "reset_history",
1866 }, {
1867 .reg = PMBUS_MFR_IIN_MAX,
1868 .attr = "rated_max",
1869 },
1870 };
1871
1872 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1873 {
1874 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1875 .attr = "max",
1876 .alarm = "max_alarm",
1877 .sbit = PB_IOUT_OC_WARNING,
1878 }, {
1879 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1880 .attr = "lcrit",
1881 .alarm = "lcrit_alarm",
1882 .sbit = PB_IOUT_UC_FAULT,
1883 }, {
1884 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1885 .attr = "crit",
1886 .alarm = "crit_alarm",
1887 .sbit = PB_IOUT_OC_FAULT,
1888 }, {
1889 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1890 .update = true,
1891 .attr = "average",
1892 }, {
1893 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1894 .update = true,
1895 .attr = "lowest",
1896 }, {
1897 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1898 .update = true,
1899 .attr = "highest",
1900 }, {
1901 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1902 .attr = "reset_history",
1903 }, {
1904 .reg = PMBUS_MFR_IOUT_MAX,
1905 .attr = "rated_max",
1906 },
1907 };
1908
1909 static const struct pmbus_sensor_attr current_attributes[] = {
1910 {
1911 .reg = PMBUS_READ_IIN,
1912 .class = PSC_CURRENT_IN,
1913 .label = "iin",
1914 .func = PMBUS_HAVE_IIN,
1915 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1916 .sreg = PMBUS_STATUS_INPUT,
1917 .gbit = PB_STATUS_INPUT,
1918 .limit = iin_limit_attrs,
1919 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1920 }, {
1921 .reg = PMBUS_READ_IOUT,
1922 .class = PSC_CURRENT_OUT,
1923 .label = "iout",
1924 .paged = true,
1925 .func = PMBUS_HAVE_IOUT,
1926 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1927 .sreg = PMBUS_STATUS_IOUT,
1928 .gbit = PB_STATUS_IOUT_OC,
1929 .limit = iout_limit_attrs,
1930 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1931 }
1932 };
1933
1934 /* Power attributes */
1935
1936 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1937 {
1938 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1939 .attr = "max",
1940 .alarm = "alarm",
1941 .sbit = PB_PIN_OP_WARNING,
1942 }, {
1943 .reg = PMBUS_VIRT_READ_PIN_AVG,
1944 .update = true,
1945 .attr = "average",
1946 }, {
1947 .reg = PMBUS_VIRT_READ_PIN_MIN,
1948 .update = true,
1949 .attr = "input_lowest",
1950 }, {
1951 .reg = PMBUS_VIRT_READ_PIN_MAX,
1952 .update = true,
1953 .attr = "input_highest",
1954 }, {
1955 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1956 .attr = "reset_history",
1957 }, {
1958 .reg = PMBUS_MFR_PIN_MAX,
1959 .attr = "rated_max",
1960 },
1961 };
1962
1963 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1964 {
1965 .reg = PMBUS_POUT_MAX,
1966 .attr = "cap",
1967 .alarm = "cap_alarm",
1968 .sbit = PB_POWER_LIMITING,
1969 }, {
1970 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1971 .attr = "max",
1972 .alarm = "max_alarm",
1973 .sbit = PB_POUT_OP_WARNING,
1974 }, {
1975 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1976 .attr = "crit",
1977 .alarm = "crit_alarm",
1978 .sbit = PB_POUT_OP_FAULT,
1979 }, {
1980 .reg = PMBUS_VIRT_READ_POUT_AVG,
1981 .update = true,
1982 .attr = "average",
1983 }, {
1984 .reg = PMBUS_VIRT_READ_POUT_MIN,
1985 .update = true,
1986 .attr = "input_lowest",
1987 }, {
1988 .reg = PMBUS_VIRT_READ_POUT_MAX,
1989 .update = true,
1990 .attr = "input_highest",
1991 }, {
1992 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1993 .attr = "reset_history",
1994 }, {
1995 .reg = PMBUS_MFR_POUT_MAX,
1996 .attr = "rated_max",
1997 },
1998 };
1999
2000 static const struct pmbus_sensor_attr power_attributes[] = {
2001 {
2002 .reg = PMBUS_READ_PIN,
2003 .class = PSC_POWER,
2004 .label = "pin",
2005 .func = PMBUS_HAVE_PIN,
2006 .sfunc = PMBUS_HAVE_STATUS_INPUT,
2007 .sreg = PMBUS_STATUS_INPUT,
2008 .gbit = PB_STATUS_INPUT,
2009 .limit = pin_limit_attrs,
2010 .nlimit = ARRAY_SIZE(pin_limit_attrs),
2011 }, {
2012 .reg = PMBUS_READ_POUT,
2013 .class = PSC_POWER,
2014 .label = "pout",
2015 .paged = true,
2016 .func = PMBUS_HAVE_POUT,
2017 .sfunc = PMBUS_HAVE_STATUS_IOUT,
2018 .sreg = PMBUS_STATUS_IOUT,
2019 .limit = pout_limit_attrs,
2020 .nlimit = ARRAY_SIZE(pout_limit_attrs),
2021 }
2022 };
2023
2024 /* Temperature atributes */
2025
2026 static const struct pmbus_limit_attr temp_limit_attrs[] = {
2027 {
2028 .reg = PMBUS_UT_WARN_LIMIT,
2029 .low = true,
2030 .attr = "min",
2031 .alarm = "min_alarm",
2032 .sbit = PB_TEMP_UT_WARNING,
2033 }, {
2034 .reg = PMBUS_UT_FAULT_LIMIT,
2035 .low = true,
2036 .attr = "lcrit",
2037 .alarm = "lcrit_alarm",
2038 .sbit = PB_TEMP_UT_FAULT,
2039 }, {
2040 .reg = PMBUS_OT_WARN_LIMIT,
2041 .attr = "max",
2042 .alarm = "max_alarm",
2043 .sbit = PB_TEMP_OT_WARNING,
2044 }, {
2045 .reg = PMBUS_OT_FAULT_LIMIT,
2046 .attr = "crit",
2047 .alarm = "crit_alarm",
2048 .sbit = PB_TEMP_OT_FAULT,
2049 }, {
2050 .reg = PMBUS_VIRT_READ_TEMP_MIN,
2051 .attr = "lowest",
2052 }, {
2053 .reg = PMBUS_VIRT_READ_TEMP_AVG,
2054 .attr = "average",
2055 }, {
2056 .reg = PMBUS_VIRT_READ_TEMP_MAX,
2057 .attr = "highest",
2058 }, {
2059 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2060 .attr = "reset_history",
2061 }, {
2062 .reg = PMBUS_MFR_MAX_TEMP_1,
2063 .attr = "rated_max",
2064 },
2065 };
2066
2067 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2068 {
2069 .reg = PMBUS_UT_WARN_LIMIT,
2070 .low = true,
2071 .attr = "min",
2072 .alarm = "min_alarm",
2073 .sbit = PB_TEMP_UT_WARNING,
2074 }, {
2075 .reg = PMBUS_UT_FAULT_LIMIT,
2076 .low = true,
2077 .attr = "lcrit",
2078 .alarm = "lcrit_alarm",
2079 .sbit = PB_TEMP_UT_FAULT,
2080 }, {
2081 .reg = PMBUS_OT_WARN_LIMIT,
2082 .attr = "max",
2083 .alarm = "max_alarm",
2084 .sbit = PB_TEMP_OT_WARNING,
2085 }, {
2086 .reg = PMBUS_OT_FAULT_LIMIT,
2087 .attr = "crit",
2088 .alarm = "crit_alarm",
2089 .sbit = PB_TEMP_OT_FAULT,
2090 }, {
2091 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2092 .attr = "lowest",
2093 }, {
2094 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2095 .attr = "average",
2096 }, {
2097 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2098 .attr = "highest",
2099 }, {
2100 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2101 .attr = "reset_history",
2102 }, {
2103 .reg = PMBUS_MFR_MAX_TEMP_2,
2104 .attr = "rated_max",
2105 },
2106 };
2107
2108 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2109 {
2110 .reg = PMBUS_UT_WARN_LIMIT,
2111 .low = true,
2112 .attr = "min",
2113 .alarm = "min_alarm",
2114 .sbit = PB_TEMP_UT_WARNING,
2115 }, {
2116 .reg = PMBUS_UT_FAULT_LIMIT,
2117 .low = true,
2118 .attr = "lcrit",
2119 .alarm = "lcrit_alarm",
2120 .sbit = PB_TEMP_UT_FAULT,
2121 }, {
2122 .reg = PMBUS_OT_WARN_LIMIT,
2123 .attr = "max",
2124 .alarm = "max_alarm",
2125 .sbit = PB_TEMP_OT_WARNING,
2126 }, {
2127 .reg = PMBUS_OT_FAULT_LIMIT,
2128 .attr = "crit",
2129 .alarm = "crit_alarm",
2130 .sbit = PB_TEMP_OT_FAULT,
2131 }, {
2132 .reg = PMBUS_MFR_MAX_TEMP_3,
2133 .attr = "rated_max",
2134 },
2135 };
2136
2137 static const struct pmbus_sensor_attr temp_attributes[] = {
2138 {
2139 .reg = PMBUS_READ_TEMPERATURE_1,
2140 .class = PSC_TEMPERATURE,
2141 .paged = true,
2142 .update = true,
2143 .compare = true,
2144 .func = PMBUS_HAVE_TEMP,
2145 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2146 .sreg = PMBUS_STATUS_TEMPERATURE,
2147 .gbit = PB_STATUS_TEMPERATURE,
2148 .limit = temp_limit_attrs,
2149 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2150 }, {
2151 .reg = PMBUS_READ_TEMPERATURE_2,
2152 .class = PSC_TEMPERATURE,
2153 .paged = true,
2154 .update = true,
2155 .compare = true,
2156 .func = PMBUS_HAVE_TEMP2,
2157 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2158 .sreg = PMBUS_STATUS_TEMPERATURE,
2159 .gbit = PB_STATUS_TEMPERATURE,
2160 .limit = temp_limit_attrs2,
2161 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2162 }, {
2163 .reg = PMBUS_READ_TEMPERATURE_3,
2164 .class = PSC_TEMPERATURE,
2165 .paged = true,
2166 .update = true,
2167 .compare = true,
2168 .func = PMBUS_HAVE_TEMP3,
2169 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2170 .sreg = PMBUS_STATUS_TEMPERATURE,
2171 .gbit = PB_STATUS_TEMPERATURE,
2172 .limit = temp_limit_attrs3,
2173 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2174 }
2175 };
2176
2177 static const int pmbus_fan_registers[] = {
2178 PMBUS_READ_FAN_SPEED_1,
2179 PMBUS_READ_FAN_SPEED_2,
2180 PMBUS_READ_FAN_SPEED_3,
2181 PMBUS_READ_FAN_SPEED_4
2182 };
2183
2184 static const int pmbus_fan_status_registers[] = {
2185 PMBUS_STATUS_FAN_12,
2186 PMBUS_STATUS_FAN_12,
2187 PMBUS_STATUS_FAN_34,
2188 PMBUS_STATUS_FAN_34
2189 };
2190
2191 static const u32 pmbus_fan_flags[] = {
2192 PMBUS_HAVE_FAN12,
2193 PMBUS_HAVE_FAN12,
2194 PMBUS_HAVE_FAN34,
2195 PMBUS_HAVE_FAN34
2196 };
2197
2198 static const u32 pmbus_fan_status_flags[] = {
2199 PMBUS_HAVE_STATUS_FAN12,
2200 PMBUS_HAVE_STATUS_FAN12,
2201 PMBUS_HAVE_STATUS_FAN34,
2202 PMBUS_HAVE_STATUS_FAN34
2203 };
2204
2205 /* Fans */
2206
2207 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2208 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2209 struct pmbus_data *data, int index, int page,
2210 int id, u8 config)
2211 {
2212 struct pmbus_sensor *sensor;
2213
2214 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2215 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2216 false, false, true);
2217
2218 if (!sensor)
2219 return -ENOMEM;
2220
2221 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2222 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2223 return 0;
2224
2225 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2226 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2227 false, false, true);
2228
2229 if (!sensor)
2230 return -ENOMEM;
2231
2232 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2233 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2234 true, false, false);
2235
2236 if (!sensor)
2237 return -ENOMEM;
2238
2239 return 0;
2240 }
2241
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2242 static int pmbus_add_fan_attributes(struct i2c_client *client,
2243 struct pmbus_data *data)
2244 {
2245 const struct pmbus_driver_info *info = data->info;
2246 int index = 1;
2247 int page;
2248 int ret;
2249
2250 for (page = 0; page < info->pages; page++) {
2251 int f;
2252
2253 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2254 int regval;
2255
2256 if (!(info->func[page] & pmbus_fan_flags[f]))
2257 break;
2258
2259 if (!pmbus_check_word_register(client, page,
2260 pmbus_fan_registers[f]))
2261 break;
2262
2263 /*
2264 * Skip fan if not installed.
2265 * Each fan configuration register covers multiple fans,
2266 * so we have to do some magic.
2267 */
2268 regval = _pmbus_read_byte_data(client, page,
2269 pmbus_fan_config_registers[f]);
2270 if (regval < 0 ||
2271 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2272 continue;
2273
2274 if (pmbus_add_sensor(data, "fan", "input", index,
2275 page, 0xff, pmbus_fan_registers[f],
2276 PSC_FAN, true, true, true) == NULL)
2277 return -ENOMEM;
2278
2279 /* Fan control */
2280 if (pmbus_check_word_register(client, page,
2281 pmbus_fan_command_registers[f])) {
2282 ret = pmbus_add_fan_ctrl(client, data, index,
2283 page, f, regval);
2284 if (ret < 0)
2285 return ret;
2286 }
2287
2288 /*
2289 * Each fan status register covers multiple fans,
2290 * so we have to do some magic.
2291 */
2292 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2293 pmbus_check_byte_register(client,
2294 page, pmbus_fan_status_registers[f])) {
2295 int reg;
2296
2297 if (f > 1) /* fan 3, 4 */
2298 reg = PMBUS_STATUS_FAN_34;
2299 else
2300 reg = PMBUS_STATUS_FAN_12;
2301 ret = pmbus_add_boolean(data, "fan",
2302 "alarm", index, NULL, NULL, page, reg,
2303 PB_FAN_FAN1_WARNING >> (f & 1));
2304 if (ret)
2305 return ret;
2306 ret = pmbus_add_boolean(data, "fan",
2307 "fault", index, NULL, NULL, page, reg,
2308 PB_FAN_FAN1_FAULT >> (f & 1));
2309 if (ret)
2310 return ret;
2311 }
2312 index++;
2313 }
2314 }
2315 return 0;
2316 }
2317
2318 struct pmbus_samples_attr {
2319 int reg;
2320 char *name;
2321 };
2322
2323 struct pmbus_samples_reg {
2324 int page;
2325 struct pmbus_samples_attr *attr;
2326 struct device_attribute dev_attr;
2327 };
2328
2329 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2330 {
2331 .reg = PMBUS_VIRT_SAMPLES,
2332 .name = "samples",
2333 }, {
2334 .reg = PMBUS_VIRT_IN_SAMPLES,
2335 .name = "in_samples",
2336 }, {
2337 .reg = PMBUS_VIRT_CURR_SAMPLES,
2338 .name = "curr_samples",
2339 }, {
2340 .reg = PMBUS_VIRT_POWER_SAMPLES,
2341 .name = "power_samples",
2342 }, {
2343 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2344 .name = "temp_samples",
2345 }
2346 };
2347
2348 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2349
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2350 static ssize_t pmbus_show_samples(struct device *dev,
2351 struct device_attribute *devattr, char *buf)
2352 {
2353 int val;
2354 struct i2c_client *client = to_i2c_client(dev->parent);
2355 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2356 struct pmbus_data *data = i2c_get_clientdata(client);
2357
2358 mutex_lock(&data->update_lock);
2359 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2360 mutex_unlock(&data->update_lock);
2361 if (val < 0)
2362 return val;
2363
2364 return sysfs_emit(buf, "%d\n", val);
2365 }
2366
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2367 static ssize_t pmbus_set_samples(struct device *dev,
2368 struct device_attribute *devattr,
2369 const char *buf, size_t count)
2370 {
2371 int ret;
2372 long val;
2373 struct i2c_client *client = to_i2c_client(dev->parent);
2374 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2375 struct pmbus_data *data = i2c_get_clientdata(client);
2376
2377 if (kstrtol(buf, 0, &val) < 0)
2378 return -EINVAL;
2379
2380 mutex_lock(&data->update_lock);
2381 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2382 mutex_unlock(&data->update_lock);
2383
2384 return ret ? : count;
2385 }
2386
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2387 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2388 struct pmbus_samples_attr *attr)
2389 {
2390 struct pmbus_samples_reg *reg;
2391
2392 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2393 if (!reg)
2394 return -ENOMEM;
2395
2396 reg->attr = attr;
2397 reg->page = page;
2398
2399 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2400 pmbus_show_samples, pmbus_set_samples);
2401
2402 return pmbus_add_attribute(data, ®->dev_attr.attr);
2403 }
2404
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2405 static int pmbus_add_samples_attributes(struct i2c_client *client,
2406 struct pmbus_data *data)
2407 {
2408 const struct pmbus_driver_info *info = data->info;
2409 int s;
2410
2411 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2412 return 0;
2413
2414 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2415 struct pmbus_samples_attr *attr;
2416 int ret;
2417
2418 attr = &pmbus_samples_registers[s];
2419 if (!pmbus_check_word_register(client, 0, attr->reg))
2420 continue;
2421
2422 ret = pmbus_add_samples_attr(data, 0, attr);
2423 if (ret)
2424 return ret;
2425 }
2426
2427 return 0;
2428 }
2429
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2430 static int pmbus_find_attributes(struct i2c_client *client,
2431 struct pmbus_data *data)
2432 {
2433 int ret;
2434
2435 /* Voltage sensors */
2436 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2437 ARRAY_SIZE(voltage_attributes));
2438 if (ret)
2439 return ret;
2440
2441 /* Current sensors */
2442 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2443 ARRAY_SIZE(current_attributes));
2444 if (ret)
2445 return ret;
2446
2447 /* Power sensors */
2448 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2449 ARRAY_SIZE(power_attributes));
2450 if (ret)
2451 return ret;
2452
2453 /* Temperature sensors */
2454 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2455 ARRAY_SIZE(temp_attributes));
2456 if (ret)
2457 return ret;
2458
2459 /* Fans */
2460 ret = pmbus_add_fan_attributes(client, data);
2461 if (ret)
2462 return ret;
2463
2464 ret = pmbus_add_samples_attributes(client, data);
2465 return ret;
2466 }
2467
2468 /*
2469 * The pmbus_class_attr_map structure maps one sensor class to
2470 * it's corresponding sensor attributes array.
2471 */
2472 struct pmbus_class_attr_map {
2473 enum pmbus_sensor_classes class;
2474 int nattr;
2475 const struct pmbus_sensor_attr *attr;
2476 };
2477
2478 static const struct pmbus_class_attr_map class_attr_map[] = {
2479 {
2480 .class = PSC_VOLTAGE_IN,
2481 .attr = voltage_attributes,
2482 .nattr = ARRAY_SIZE(voltage_attributes),
2483 }, {
2484 .class = PSC_VOLTAGE_OUT,
2485 .attr = voltage_attributes,
2486 .nattr = ARRAY_SIZE(voltage_attributes),
2487 }, {
2488 .class = PSC_CURRENT_IN,
2489 .attr = current_attributes,
2490 .nattr = ARRAY_SIZE(current_attributes),
2491 }, {
2492 .class = PSC_CURRENT_OUT,
2493 .attr = current_attributes,
2494 .nattr = ARRAY_SIZE(current_attributes),
2495 }, {
2496 .class = PSC_POWER,
2497 .attr = power_attributes,
2498 .nattr = ARRAY_SIZE(power_attributes),
2499 }, {
2500 .class = PSC_TEMPERATURE,
2501 .attr = temp_attributes,
2502 .nattr = ARRAY_SIZE(temp_attributes),
2503 }
2504 };
2505
2506 /*
2507 * Read the coefficients for direct mode.
2508 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2509 static int pmbus_read_coefficients(struct i2c_client *client,
2510 struct pmbus_driver_info *info,
2511 const struct pmbus_sensor_attr *attr)
2512 {
2513 int rv;
2514 union i2c_smbus_data data;
2515 enum pmbus_sensor_classes class = attr->class;
2516 s8 R;
2517 s16 m, b;
2518
2519 data.block[0] = 2;
2520 data.block[1] = attr->reg;
2521 data.block[2] = 0x01;
2522
2523 pmbus_wait(client);
2524 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2525 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2526 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2527 pmbus_update_ts(client, true);
2528
2529 if (rv < 0)
2530 return rv;
2531
2532 if (data.block[0] != 5)
2533 return -EIO;
2534
2535 m = data.block[1] | (data.block[2] << 8);
2536 b = data.block[3] | (data.block[4] << 8);
2537 R = data.block[5];
2538 info->m[class] = m;
2539 info->b[class] = b;
2540 info->R[class] = R;
2541
2542 return rv;
2543 }
2544
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2545 static int pmbus_init_coefficients(struct i2c_client *client,
2546 struct pmbus_driver_info *info)
2547 {
2548 int i, n, ret = -EINVAL;
2549 const struct pmbus_class_attr_map *map;
2550 const struct pmbus_sensor_attr *attr;
2551
2552 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2553 map = &class_attr_map[i];
2554 if (info->format[map->class] != direct)
2555 continue;
2556 for (n = 0; n < map->nattr; n++) {
2557 attr = &map->attr[n];
2558 if (map->class != attr->class)
2559 continue;
2560 ret = pmbus_read_coefficients(client, info, attr);
2561 if (ret >= 0)
2562 break;
2563 }
2564 if (ret < 0) {
2565 dev_err(&client->dev,
2566 "No coefficients found for sensor class %d\n",
2567 map->class);
2568 return -EINVAL;
2569 }
2570 }
2571
2572 return 0;
2573 }
2574
2575 /*
2576 * Identify chip parameters.
2577 * This function is called for all chips.
2578 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2579 static int pmbus_identify_common(struct i2c_client *client,
2580 struct pmbus_data *data, int page)
2581 {
2582 int vout_mode = -1;
2583
2584 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2585 vout_mode = _pmbus_read_byte_data(client, page,
2586 PMBUS_VOUT_MODE);
2587 if (vout_mode >= 0 && vout_mode != 0xff) {
2588 /*
2589 * Not all chips support the VOUT_MODE command,
2590 * so a failure to read it is not an error.
2591 */
2592 switch (vout_mode >> 5) {
2593 case 0: /* linear mode */
2594 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2595 return -ENODEV;
2596
2597 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2598 break;
2599 case 1: /* VID mode */
2600 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2601 return -ENODEV;
2602 break;
2603 case 2: /* direct mode */
2604 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2605 return -ENODEV;
2606 break;
2607 case 3: /* ieee 754 half precision */
2608 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2609 return -ENODEV;
2610 break;
2611 default:
2612 return -ENODEV;
2613 }
2614 }
2615
2616 return 0;
2617 }
2618
pmbus_read_status_byte(struct i2c_client * client,int page)2619 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2620 {
2621 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2622 }
2623
pmbus_read_status_word(struct i2c_client * client,int page)2624 static int pmbus_read_status_word(struct i2c_client *client, int page)
2625 {
2626 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2627 }
2628
2629 /* PEC attribute support */
2630
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2631 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2632 char *buf)
2633 {
2634 struct i2c_client *client = to_i2c_client(dev);
2635
2636 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2637 }
2638
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2639 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2640 const char *buf, size_t count)
2641 {
2642 struct i2c_client *client = to_i2c_client(dev);
2643 bool enable;
2644 int err;
2645
2646 err = kstrtobool(buf, &enable);
2647 if (err < 0)
2648 return err;
2649
2650 if (enable)
2651 client->flags |= I2C_CLIENT_PEC;
2652 else
2653 client->flags &= ~I2C_CLIENT_PEC;
2654
2655 return count;
2656 }
2657
2658 static DEVICE_ATTR_RW(pec);
2659
pmbus_remove_pec(void * dev)2660 static void pmbus_remove_pec(void *dev)
2661 {
2662 device_remove_file(dev, &dev_attr_pec);
2663 }
2664
pmbus_init_wp(struct i2c_client * client,struct pmbus_data * data)2665 static void pmbus_init_wp(struct i2c_client *client, struct pmbus_data *data)
2666 {
2667 int ret;
2668
2669 switch (wp) {
2670 case 0:
2671 _pmbus_write_byte_data(client, -1,
2672 PMBUS_WRITE_PROTECT, 0);
2673 break;
2674
2675 case 1:
2676 _pmbus_write_byte_data(client, -1,
2677 PMBUS_WRITE_PROTECT, PB_WP_VOUT);
2678 break;
2679
2680 case 2:
2681 _pmbus_write_byte_data(client, -1,
2682 PMBUS_WRITE_PROTECT, PB_WP_OP);
2683 break;
2684
2685 case 3:
2686 _pmbus_write_byte_data(client, -1,
2687 PMBUS_WRITE_PROTECT, PB_WP_ALL);
2688 break;
2689
2690 default:
2691 /* Ignore the other values */
2692 break;
2693 }
2694
2695 ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2696 if (ret < 0)
2697 return;
2698
2699 switch (ret & PB_WP_ANY) {
2700 case PB_WP_ALL:
2701 data->flags |= PMBUS_OP_PROTECTED;
2702 fallthrough;
2703 case PB_WP_OP:
2704 data->flags |= PMBUS_VOUT_PROTECTED;
2705 fallthrough;
2706 case PB_WP_VOUT:
2707 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2708 break;
2709
2710 default:
2711 break;
2712 }
2713 }
2714
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2715 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2716 struct pmbus_driver_info *info)
2717 {
2718 struct device *dev = &client->dev;
2719 int page, ret;
2720
2721 /*
2722 * Figure out if PEC is enabled before accessing any other register.
2723 * Make sure PEC is disabled, will be enabled later if needed.
2724 */
2725 client->flags &= ~I2C_CLIENT_PEC;
2726
2727 /* Enable PEC if the controller and bus supports it */
2728 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2729 pmbus_wait(client);
2730 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2731 pmbus_update_ts(client, false);
2732
2733 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2734 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2735 client->flags |= I2C_CLIENT_PEC;
2736 }
2737 }
2738
2739 /*
2740 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2741 * to use PMBUS_STATUS_BYTE instead if that is the case.
2742 * Bail out if both registers are not supported.
2743 */
2744 data->read_status = pmbus_read_status_word;
2745 pmbus_wait(client);
2746 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2747 pmbus_update_ts(client, false);
2748
2749 if (ret < 0 || ret == 0xffff) {
2750 data->read_status = pmbus_read_status_byte;
2751 pmbus_wait(client);
2752 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2753 pmbus_update_ts(client, false);
2754
2755 if (ret < 0 || ret == 0xff) {
2756 dev_err(dev, "PMBus status register not found\n");
2757 return -ENODEV;
2758 }
2759 } else {
2760 data->has_status_word = true;
2761 }
2762
2763 /*
2764 * Check if the chip is write protected. If it is, we can not clear
2765 * faults, and we should not try it. Also, in that case, writes into
2766 * limit registers need to be disabled.
2767 */
2768 if (!(data->flags & PMBUS_NO_WRITE_PROTECT))
2769 pmbus_init_wp(client, data);
2770
2771 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2772 if (ret >= 0)
2773 data->revision = ret;
2774
2775 if (data->info->pages)
2776 pmbus_clear_faults(client);
2777 else
2778 pmbus_clear_fault_page(client, -1);
2779
2780 if (info->identify) {
2781 ret = (*info->identify)(client, info);
2782 if (ret < 0) {
2783 dev_err(dev, "Chip identification failed\n");
2784 return ret;
2785 }
2786 }
2787
2788 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2789 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2790 return -ENODEV;
2791 }
2792
2793 for (page = 0; page < info->pages; page++) {
2794 ret = pmbus_identify_common(client, data, page);
2795 if (ret < 0) {
2796 dev_err(dev, "Failed to identify chip capabilities\n");
2797 return ret;
2798 }
2799 }
2800
2801 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2802 if (!i2c_check_functionality(client->adapter,
2803 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2804 return -ENODEV;
2805
2806 ret = pmbus_init_coefficients(client, info);
2807 if (ret < 0)
2808 return ret;
2809 }
2810
2811 if (client->flags & I2C_CLIENT_PEC) {
2812 /*
2813 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2814 * chip support PEC. Add 'pec' attribute to client device to let
2815 * the user control it.
2816 */
2817 ret = device_create_file(dev, &dev_attr_pec);
2818 if (ret)
2819 return ret;
2820 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2821 if (ret)
2822 return ret;
2823 }
2824
2825 return 0;
2826 }
2827
2828 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2829 struct pmbus_status_assoc {
2830 int pflag, rflag, eflag;
2831 };
2832
2833 /* PMBus->regulator bit mappings for a PMBus status register */
2834 struct pmbus_status_category {
2835 int func;
2836 int reg;
2837 const struct pmbus_status_assoc *bits; /* zero-terminated */
2838 };
2839
2840 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2841 {
2842 .func = PMBUS_HAVE_STATUS_VOUT,
2843 .reg = PMBUS_STATUS_VOUT,
2844 .bits = (const struct pmbus_status_assoc[]) {
2845 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2846 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2847 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2848 REGULATOR_EVENT_UNDER_VOLTAGE },
2849 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2850 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2851 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2852 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2853 { },
2854 },
2855 }, {
2856 .func = PMBUS_HAVE_STATUS_IOUT,
2857 .reg = PMBUS_STATUS_IOUT,
2858 .bits = (const struct pmbus_status_assoc[]) {
2859 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2860 REGULATOR_EVENT_OVER_CURRENT_WARN },
2861 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2862 REGULATOR_EVENT_OVER_CURRENT },
2863 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2864 REGULATOR_EVENT_OVER_CURRENT },
2865 { },
2866 },
2867 }, {
2868 .func = PMBUS_HAVE_STATUS_TEMP,
2869 .reg = PMBUS_STATUS_TEMPERATURE,
2870 .bits = (const struct pmbus_status_assoc[]) {
2871 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2872 REGULATOR_EVENT_OVER_TEMP_WARN },
2873 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2874 REGULATOR_EVENT_OVER_TEMP },
2875 { },
2876 },
2877 },
2878 };
2879
_pmbus_is_enabled(struct i2c_client * client,u8 page)2880 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2881 {
2882 int ret;
2883
2884 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2885
2886 if (ret < 0)
2887 return ret;
2888
2889 return !!(ret & PB_OPERATION_CONTROL_ON);
2890 }
2891
pmbus_is_enabled(struct i2c_client * client,u8 page)2892 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2893 {
2894 struct pmbus_data *data = i2c_get_clientdata(client);
2895 int ret;
2896
2897 mutex_lock(&data->update_lock);
2898 ret = _pmbus_is_enabled(client, page);
2899 mutex_unlock(&data->update_lock);
2900
2901 return ret;
2902 }
2903
2904 #define to_dev_attr(_dev_attr) \
2905 container_of(_dev_attr, struct device_attribute, attr)
2906
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2907 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2908 {
2909 int i;
2910
2911 for (i = 0; i < data->num_attributes; i++) {
2912 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2913 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2914 int index = attr->index;
2915 u16 smask = pb_index_to_mask(index);
2916 u8 spage = pb_index_to_page(index);
2917 u16 sreg = pb_index_to_reg(index);
2918
2919 if (reg == sreg && page == spage && (smask & flags)) {
2920 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2921 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2922 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2923 flags &= ~smask;
2924 }
2925
2926 if (!flags)
2927 break;
2928 }
2929 }
2930
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2931 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2932 unsigned int *event, bool notify)
2933 {
2934 int i, status;
2935 const struct pmbus_status_category *cat;
2936 const struct pmbus_status_assoc *bit;
2937 struct device *dev = data->dev;
2938 struct i2c_client *client = to_i2c_client(dev);
2939 int func = data->info->func[page];
2940
2941 *flags = 0;
2942 *event = 0;
2943
2944 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2945 cat = &pmbus_status_flag_map[i];
2946 if (!(func & cat->func))
2947 continue;
2948
2949 status = _pmbus_read_byte_data(client, page, cat->reg);
2950 if (status < 0)
2951 return status;
2952
2953 for (bit = cat->bits; bit->pflag; bit++)
2954 if (status & bit->pflag) {
2955 *flags |= bit->rflag;
2956 *event |= bit->eflag;
2957 }
2958
2959 if (notify && status)
2960 pmbus_notify(data, page, cat->reg, status);
2961 }
2962
2963 /*
2964 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2965 * bits. Some of the other bits are tempting (especially for cases
2966 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2967 * functionality), but there's an unfortunate ambiguity in that
2968 * they're defined as indicating a fault *or* a warning, so we can't
2969 * easily determine whether to report REGULATOR_ERROR_<foo> or
2970 * REGULATOR_ERROR_<foo>_WARN.
2971 */
2972 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2973 if (status < 0)
2974 return status;
2975
2976 if (_pmbus_is_enabled(client, page)) {
2977 if (status & PB_STATUS_OFF) {
2978 *flags |= REGULATOR_ERROR_FAIL;
2979 *event |= REGULATOR_EVENT_FAIL;
2980 }
2981
2982 if (status & PB_STATUS_POWER_GOOD_N) {
2983 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2984 *event |= REGULATOR_EVENT_REGULATION_OUT;
2985 }
2986 }
2987 /*
2988 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2989 * defined strictly as fault indicators (not warnings).
2990 */
2991 if (status & PB_STATUS_IOUT_OC) {
2992 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2993 *event |= REGULATOR_EVENT_OVER_CURRENT;
2994 }
2995 if (status & PB_STATUS_VOUT_OV) {
2996 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2997 *event |= REGULATOR_EVENT_FAIL;
2998 }
2999
3000 /*
3001 * If we haven't discovered any thermal faults or warnings via
3002 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
3003 * a (conservative) best-effort interpretation.
3004 */
3005 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
3006 (status & PB_STATUS_TEMPERATURE)) {
3007 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
3008 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
3009 }
3010
3011 return 0;
3012 }
3013
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)3014 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
3015 unsigned int *event, bool notify)
3016 {
3017 int ret;
3018
3019 mutex_lock(&data->update_lock);
3020 ret = _pmbus_get_flags(data, page, flags, event, notify);
3021 mutex_unlock(&data->update_lock);
3022
3023 return ret;
3024 }
3025
3026 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)3027 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
3028 {
3029 struct device *dev = rdev_get_dev(rdev);
3030 struct i2c_client *client = to_i2c_client(dev->parent);
3031
3032 return pmbus_is_enabled(client, rdev_get_id(rdev));
3033 }
3034
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)3035 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
3036 {
3037 struct device *dev = rdev_get_dev(rdev);
3038 struct i2c_client *client = to_i2c_client(dev->parent);
3039 struct pmbus_data *data = i2c_get_clientdata(client);
3040 u8 page = rdev_get_id(rdev);
3041 int ret;
3042
3043 mutex_lock(&data->update_lock);
3044 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3045 PB_OPERATION_CONTROL_ON,
3046 enable ? PB_OPERATION_CONTROL_ON : 0);
3047 mutex_unlock(&data->update_lock);
3048
3049 return ret;
3050 }
3051
pmbus_regulator_enable(struct regulator_dev * rdev)3052 static int pmbus_regulator_enable(struct regulator_dev *rdev)
3053 {
3054 return _pmbus_regulator_on_off(rdev, 1);
3055 }
3056
pmbus_regulator_disable(struct regulator_dev * rdev)3057 static int pmbus_regulator_disable(struct regulator_dev *rdev)
3058 {
3059 return _pmbus_regulator_on_off(rdev, 0);
3060 }
3061
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3062 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3063 {
3064 struct device *dev = rdev_get_dev(rdev);
3065 struct i2c_client *client = to_i2c_client(dev->parent);
3066 struct pmbus_data *data = i2c_get_clientdata(client);
3067 int event;
3068
3069 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3070 }
3071
pmbus_regulator_get_status(struct regulator_dev * rdev)3072 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3073 {
3074 struct device *dev = rdev_get_dev(rdev);
3075 struct i2c_client *client = to_i2c_client(dev->parent);
3076 struct pmbus_data *data = i2c_get_clientdata(client);
3077 u8 page = rdev_get_id(rdev);
3078 int status, ret;
3079 int event;
3080
3081 mutex_lock(&data->update_lock);
3082 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3083 if (status < 0) {
3084 ret = status;
3085 goto unlock;
3086 }
3087
3088 if (status & PB_STATUS_OFF) {
3089 ret = REGULATOR_STATUS_OFF;
3090 goto unlock;
3091 }
3092
3093 /* If regulator is ON & reports power good then return ON */
3094 if (!(status & PB_STATUS_POWER_GOOD_N)) {
3095 ret = REGULATOR_STATUS_ON;
3096 goto unlock;
3097 }
3098
3099 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3100 if (ret)
3101 goto unlock;
3102
3103 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3104 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3105 ret = REGULATOR_STATUS_ERROR;
3106 goto unlock;
3107 }
3108
3109 ret = REGULATOR_STATUS_UNDEFINED;
3110
3111 unlock:
3112 mutex_unlock(&data->update_lock);
3113 return ret;
3114 }
3115
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)3116 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3117 {
3118 struct pmbus_data *data = i2c_get_clientdata(client);
3119 struct pmbus_sensor s = {
3120 .page = page,
3121 .class = PSC_VOLTAGE_OUT,
3122 .convert = true,
3123 .data = -1,
3124 };
3125
3126 if (data->vout_low[page] < 0) {
3127 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3128 s.data = _pmbus_read_word_data(client, page, 0xff,
3129 PMBUS_MFR_VOUT_MIN);
3130 if (s.data < 0) {
3131 s.data = _pmbus_read_word_data(client, page, 0xff,
3132 PMBUS_VOUT_MARGIN_LOW);
3133 if (s.data < 0)
3134 return s.data;
3135 }
3136 data->vout_low[page] = pmbus_reg2data(data, &s);
3137 }
3138
3139 return data->vout_low[page];
3140 }
3141
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3142 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3143 {
3144 struct pmbus_data *data = i2c_get_clientdata(client);
3145 struct pmbus_sensor s = {
3146 .page = page,
3147 .class = PSC_VOLTAGE_OUT,
3148 .convert = true,
3149 .data = -1,
3150 };
3151
3152 if (data->vout_high[page] < 0) {
3153 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3154 s.data = _pmbus_read_word_data(client, page, 0xff,
3155 PMBUS_MFR_VOUT_MAX);
3156 if (s.data < 0) {
3157 s.data = _pmbus_read_word_data(client, page, 0xff,
3158 PMBUS_VOUT_MARGIN_HIGH);
3159 if (s.data < 0)
3160 return s.data;
3161 }
3162 data->vout_high[page] = pmbus_reg2data(data, &s);
3163 }
3164
3165 return data->vout_high[page];
3166 }
3167
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3168 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3169 {
3170 struct device *dev = rdev_get_dev(rdev);
3171 struct i2c_client *client = to_i2c_client(dev->parent);
3172 struct pmbus_data *data = i2c_get_clientdata(client);
3173 struct pmbus_sensor s = {
3174 .page = rdev_get_id(rdev),
3175 .class = PSC_VOLTAGE_OUT,
3176 .convert = true,
3177 };
3178
3179 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3180 if (s.data < 0)
3181 return s.data;
3182
3183 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3184 }
3185
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3186 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3187 int max_uv, unsigned int *selector)
3188 {
3189 struct device *dev = rdev_get_dev(rdev);
3190 struct i2c_client *client = to_i2c_client(dev->parent);
3191 struct pmbus_data *data = i2c_get_clientdata(client);
3192 struct pmbus_sensor s = {
3193 .page = rdev_get_id(rdev),
3194 .class = PSC_VOLTAGE_OUT,
3195 .convert = true,
3196 .data = -1,
3197 };
3198 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3199 int low, high;
3200
3201 *selector = 0;
3202
3203 low = pmbus_regulator_get_low_margin(client, s.page);
3204 if (low < 0)
3205 return low;
3206
3207 high = pmbus_regulator_get_high_margin(client, s.page);
3208 if (high < 0)
3209 return high;
3210
3211 /* Make sure we are within margins */
3212 if (low > val)
3213 val = low;
3214 if (high < val)
3215 val = high;
3216
3217 val = pmbus_data2reg(data, &s, val);
3218
3219 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3220 }
3221
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3222 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3223 unsigned int selector)
3224 {
3225 struct device *dev = rdev_get_dev(rdev);
3226 struct i2c_client *client = to_i2c_client(dev->parent);
3227 struct pmbus_data *data = i2c_get_clientdata(client);
3228 int val, low, high;
3229
3230 if (data->flags & PMBUS_VOUT_PROTECTED)
3231 return 0;
3232
3233 if (selector >= rdev->desc->n_voltages ||
3234 selector < rdev->desc->linear_min_sel)
3235 return -EINVAL;
3236
3237 selector -= rdev->desc->linear_min_sel;
3238 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3239 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3240
3241 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3242 if (low < 0)
3243 return low;
3244
3245 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3246 if (high < 0)
3247 return high;
3248
3249 if (val >= low && val <= high)
3250 return val * 1000; /* unit is uV */
3251
3252 return 0;
3253 }
3254
3255 const struct regulator_ops pmbus_regulator_ops = {
3256 .enable = pmbus_regulator_enable,
3257 .disable = pmbus_regulator_disable,
3258 .is_enabled = pmbus_regulator_is_enabled,
3259 .get_error_flags = pmbus_regulator_get_error_flags,
3260 .get_status = pmbus_regulator_get_status,
3261 .get_voltage = pmbus_regulator_get_voltage,
3262 .set_voltage = pmbus_regulator_set_voltage,
3263 .list_voltage = pmbus_regulator_list_voltage,
3264 };
3265 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3266
pmbus_regulator_init_cb(struct regulator_dev * rdev,struct regulator_config * config)3267 int pmbus_regulator_init_cb(struct regulator_dev *rdev,
3268 struct regulator_config *config)
3269 {
3270 struct pmbus_data *data = config->driver_data;
3271 struct regulation_constraints *constraints = rdev->constraints;
3272
3273 if (data->flags & PMBUS_OP_PROTECTED)
3274 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_STATUS;
3275
3276 if (data->flags & PMBUS_VOUT_PROTECTED)
3277 constraints->valid_ops_mask &= ~REGULATOR_CHANGE_VOLTAGE;
3278
3279 return 0;
3280 }
3281 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_init_cb, "PMBUS");
3282
pmbus_regulator_register(struct pmbus_data * data)3283 static int pmbus_regulator_register(struct pmbus_data *data)
3284 {
3285 struct device *dev = data->dev;
3286 const struct pmbus_driver_info *info = data->info;
3287 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3288 int i;
3289
3290 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3291 GFP_KERNEL);
3292 if (!data->rdevs)
3293 return -ENOMEM;
3294
3295 for (i = 0; i < info->num_regulators; i++) {
3296 struct regulator_config config = { };
3297
3298 config.dev = dev;
3299 config.driver_data = data;
3300
3301 if (pdata && pdata->reg_init_data)
3302 config.init_data = &pdata->reg_init_data[i];
3303
3304 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3305 &config);
3306 if (IS_ERR(data->rdevs[i]))
3307 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3308 "Failed to register %s regulator\n",
3309 info->reg_desc[i].name);
3310 }
3311
3312 return 0;
3313 }
3314
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3315 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3316 {
3317 int j;
3318
3319 for (j = 0; j < data->info->num_regulators; j++) {
3320 if (page == rdev_get_id(data->rdevs[j])) {
3321 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3322 break;
3323 }
3324 }
3325 }
3326 #else
pmbus_regulator_register(struct pmbus_data * data)3327 static int pmbus_regulator_register(struct pmbus_data *data)
3328 {
3329 return 0;
3330 }
3331
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3332 static void pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3333 {
3334 }
3335 #endif
3336
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3337 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3338 {
3339 int ret;
3340
3341 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3342
3343 /*
3344 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3345 * is not supported by the chip.
3346 */
3347 pmbus_clear_fault_page(client, page);
3348
3349 return ret;
3350 }
3351
pmbus_fault_handler(int irq,void * pdata)3352 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3353 {
3354 struct pmbus_data *data = pdata;
3355 struct i2c_client *client = to_i2c_client(data->dev);
3356 int i, status, event;
3357
3358 mutex_lock(&data->update_lock);
3359 for (i = 0; i < data->info->pages; i++) {
3360 _pmbus_get_flags(data, i, &status, &event, true);
3361
3362 if (event)
3363 pmbus_regulator_notify(data, i, event);
3364 }
3365
3366 pmbus_clear_faults(client);
3367 mutex_unlock(&data->update_lock);
3368
3369 return IRQ_HANDLED;
3370 }
3371
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3372 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3373 {
3374 struct device *dev = &client->dev;
3375 const struct pmbus_status_category *cat;
3376 const struct pmbus_status_assoc *bit;
3377 int i, j, err, func;
3378 u8 mask;
3379
3380 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3381 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3382 PMBUS_STATUS_FAN_34};
3383
3384 if (!client->irq)
3385 return 0;
3386
3387 for (i = 0; i < data->info->pages; i++) {
3388 func = data->info->func[i];
3389
3390 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3391 cat = &pmbus_status_flag_map[j];
3392 if (!(func & cat->func))
3393 continue;
3394 mask = 0;
3395 for (bit = cat->bits; bit->pflag; bit++)
3396 mask |= bit->pflag;
3397
3398 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3399 if (err)
3400 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3401 cat->reg);
3402 }
3403
3404 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3405 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3406 }
3407
3408 /* Register notifiers */
3409 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3410 IRQF_ONESHOT, "pmbus-irq", data);
3411 if (err) {
3412 dev_err(dev, "failed to request an irq %d\n", err);
3413 return err;
3414 }
3415
3416 return 0;
3417 }
3418
3419 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3420
pmbus_debugfs_get(void * data,u64 * val)3421 static int pmbus_debugfs_get(void *data, u64 *val)
3422 {
3423 int rc;
3424 struct pmbus_debugfs_entry *entry = data;
3425 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3426
3427 rc = mutex_lock_interruptible(&pdata->update_lock);
3428 if (rc)
3429 return rc;
3430 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3431 mutex_unlock(&pdata->update_lock);
3432 if (rc < 0)
3433 return rc;
3434
3435 *val = rc;
3436
3437 return 0;
3438 }
3439 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3440 "0x%02llx\n");
3441
pmbus_debugfs_get_status(void * data,u64 * val)3442 static int pmbus_debugfs_get_status(void *data, u64 *val)
3443 {
3444 int rc;
3445 struct pmbus_debugfs_entry *entry = data;
3446 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3447
3448 rc = mutex_lock_interruptible(&pdata->update_lock);
3449 if (rc)
3450 return rc;
3451 rc = pdata->read_status(entry->client, entry->page);
3452 mutex_unlock(&pdata->update_lock);
3453 if (rc < 0)
3454 return rc;
3455
3456 *val = rc;
3457
3458 return 0;
3459 }
3460 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3461 NULL, "0x%04llx\n");
3462
pmbus_debugfs_block_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3463 static ssize_t pmbus_debugfs_block_read(struct file *file, char __user *buf,
3464 size_t count, loff_t *ppos)
3465 {
3466 int rc;
3467 struct pmbus_debugfs_entry *entry = file->private_data;
3468 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3469 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3470
3471 rc = mutex_lock_interruptible(&pdata->update_lock);
3472 if (rc)
3473 return rc;
3474 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3475 data);
3476 mutex_unlock(&pdata->update_lock);
3477 if (rc < 0)
3478 return rc;
3479
3480 /* Add newline at the end of a read data */
3481 data[rc] = '\n';
3482
3483 /* Include newline into the length */
3484 rc += 1;
3485
3486 return simple_read_from_buffer(buf, count, ppos, data, rc);
3487 }
3488
3489 static const struct file_operations pmbus_debugfs_block_ops = {
3490 .llseek = noop_llseek,
3491 .read = pmbus_debugfs_block_read,
3492 .write = NULL,
3493 .open = simple_open,
3494 };
3495
pmbus_remove_symlink(void * symlink)3496 static void pmbus_remove_symlink(void *symlink)
3497 {
3498 debugfs_remove(symlink);
3499 }
3500
3501 struct pmbus_debugfs_data {
3502 u8 reg;
3503 u32 flag;
3504 const char *name;
3505 };
3506
3507 static const struct pmbus_debugfs_data pmbus_debugfs_block_data[] = {
3508 { .reg = PMBUS_MFR_ID, .name = "mfr_id" },
3509 { .reg = PMBUS_MFR_MODEL, .name = "mfr_model" },
3510 { .reg = PMBUS_MFR_REVISION, .name = "mfr_revision" },
3511 { .reg = PMBUS_MFR_LOCATION, .name = "mfr_location" },
3512 { .reg = PMBUS_MFR_DATE, .name = "mfr_date" },
3513 { .reg = PMBUS_MFR_SERIAL, .name = "mfr_serial" },
3514 };
3515
3516 static const struct pmbus_debugfs_data pmbus_debugfs_status_data[] = {
3517 { .reg = PMBUS_STATUS_VOUT, .flag = PMBUS_HAVE_STATUS_VOUT, .name = "status%d_vout" },
3518 { .reg = PMBUS_STATUS_IOUT, .flag = PMBUS_HAVE_STATUS_IOUT, .name = "status%d_iout" },
3519 { .reg = PMBUS_STATUS_INPUT, .flag = PMBUS_HAVE_STATUS_INPUT, .name = "status%d_input" },
3520 { .reg = PMBUS_STATUS_TEMPERATURE, .flag = PMBUS_HAVE_STATUS_TEMP,
3521 .name = "status%d_temp" },
3522 { .reg = PMBUS_STATUS_FAN_12, .flag = PMBUS_HAVE_STATUS_FAN12, .name = "status%d_fan12" },
3523 { .reg = PMBUS_STATUS_FAN_34, .flag = PMBUS_HAVE_STATUS_FAN34, .name = "status%d_fan34" },
3524 { .reg = PMBUS_STATUS_CML, .name = "status%d_cml" },
3525 { .reg = PMBUS_STATUS_OTHER, .name = "status%d_other" },
3526 { .reg = PMBUS_STATUS_MFR_SPECIFIC, .name = "status%d_mfr" },
3527 };
3528
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3529 static void pmbus_init_debugfs(struct i2c_client *client,
3530 struct pmbus_data *data)
3531 {
3532 struct dentry *symlink_d, *debugfs = client->debugfs;
3533 struct pmbus_debugfs_entry *entries;
3534 const char *pathname, *symlink;
3535 char name[PMBUS_NAME_SIZE];
3536 int page, i, idx = 0;
3537
3538 /*
3539 * client->debugfs may be NULL or an ERR_PTR(). dentry_path_raw()
3540 * does not check if its parameters are valid, so validate
3541 * client->debugfs before using it.
3542 */
3543 if (!pmbus_debugfs_dir || IS_ERR_OR_NULL(debugfs))
3544 return;
3545
3546 /*
3547 * Backwards compatibility: Create symlink from /pmbus/<hwmon_device>
3548 * to i2c debugfs directory.
3549 */
3550 pathname = dentry_path_raw(debugfs, name, sizeof(name));
3551 if (IS_ERR(pathname))
3552 return;
3553
3554 /*
3555 * The path returned by dentry_path_raw() starts with '/'. Prepend it
3556 * with ".." to get the symlink relative to the pmbus root directory.
3557 */
3558 symlink = kasprintf(GFP_KERNEL, "..%s", pathname);
3559 if (!symlink)
3560 return;
3561
3562 symlink_d = debugfs_create_symlink(dev_name(data->hwmon_dev),
3563 pmbus_debugfs_dir, symlink);
3564 kfree(symlink);
3565
3566 devm_add_action_or_reset(data->dev, pmbus_remove_symlink, symlink_d);
3567
3568 /*
3569 * Allocate the max possible entries we need.
3570 * device specific:
3571 * ARRAY_SIZE(pmbus_debugfs_block_data) + 2
3572 * page specific:
3573 * ARRAY_SIZE(pmbus_debugfs_status_data) + 1
3574 */
3575 entries = devm_kcalloc(data->dev,
3576 ARRAY_SIZE(pmbus_debugfs_block_data) + 2 +
3577 data->info->pages * (ARRAY_SIZE(pmbus_debugfs_status_data) + 1),
3578 sizeof(*entries), GFP_KERNEL);
3579 if (!entries)
3580 return;
3581
3582 /*
3583 * Add device-specific entries.
3584 * Please note that the PMBUS standard allows all registers to be
3585 * page-specific.
3586 * To reduce the number of debugfs entries for devices with many pages
3587 * assume that values of the following registers are the same for all
3588 * pages and report values only for page 0.
3589 */
3590 if (!(data->flags & PMBUS_NO_CAPABILITY) &&
3591 pmbus_check_byte_register(client, 0, PMBUS_CAPABILITY)) {
3592 entries[idx].client = client;
3593 entries[idx].page = 0;
3594 entries[idx].reg = PMBUS_CAPABILITY;
3595 debugfs_create_file("capability", 0444, debugfs,
3596 &entries[idx++],
3597 &pmbus_debugfs_ops);
3598 }
3599 if (pmbus_check_byte_register(client, 0, PMBUS_REVISION)) {
3600 entries[idx].client = client;
3601 entries[idx].page = 0;
3602 entries[idx].reg = PMBUS_REVISION;
3603 debugfs_create_file("pmbus_revision", 0444, debugfs,
3604 &entries[idx++],
3605 &pmbus_debugfs_ops);
3606 }
3607
3608 for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_block_data); i++) {
3609 const struct pmbus_debugfs_data *d = &pmbus_debugfs_block_data[i];
3610
3611 if (pmbus_check_block_register(client, 0, d->reg)) {
3612 entries[idx].client = client;
3613 entries[idx].page = 0;
3614 entries[idx].reg = d->reg;
3615 debugfs_create_file(d->name, 0444, debugfs,
3616 &entries[idx++],
3617 &pmbus_debugfs_block_ops);
3618 }
3619 }
3620
3621 /* Add page specific entries */
3622 for (page = 0; page < data->info->pages; ++page) {
3623 /* Check accessibility of status register if it's not page 0 */
3624 if (!page || pmbus_check_status_register(client, page)) {
3625 /* No need to set reg as we have special read op. */
3626 entries[idx].client = client;
3627 entries[idx].page = page;
3628 scnprintf(name, PMBUS_NAME_SIZE, "status%d", page);
3629 debugfs_create_file(name, 0444, debugfs,
3630 &entries[idx++],
3631 &pmbus_debugfs_ops_status);
3632 }
3633
3634 for (i = 0; i < ARRAY_SIZE(pmbus_debugfs_status_data); i++) {
3635 const struct pmbus_debugfs_data *d =
3636 &pmbus_debugfs_status_data[i];
3637
3638 if ((data->info->func[page] & d->flag) ||
3639 (!d->flag && pmbus_check_byte_register(client, page, d->reg))) {
3640 entries[idx].client = client;
3641 entries[idx].page = page;
3642 entries[idx].reg = d->reg;
3643 scnprintf(name, PMBUS_NAME_SIZE, d->name, page);
3644 debugfs_create_file(name, 0444, debugfs,
3645 &entries[idx++],
3646 &pmbus_debugfs_ops);
3647 }
3648 }
3649 }
3650 }
3651
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3652 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3653 {
3654 struct device *dev = &client->dev;
3655 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3656 struct pmbus_data *data;
3657 size_t groups_num = 0;
3658 int ret;
3659 int i;
3660 char *name;
3661
3662 if (!info)
3663 return -ENODEV;
3664
3665 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3666 | I2C_FUNC_SMBUS_BYTE_DATA
3667 | I2C_FUNC_SMBUS_WORD_DATA))
3668 return -ENODEV;
3669
3670 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3671 if (!data)
3672 return -ENOMEM;
3673
3674 if (info->groups)
3675 while (info->groups[groups_num])
3676 groups_num++;
3677
3678 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3679 GFP_KERNEL);
3680 if (!data->groups)
3681 return -ENOMEM;
3682
3683 i2c_set_clientdata(client, data);
3684 mutex_init(&data->update_lock);
3685 data->dev = dev;
3686
3687 if (pdata)
3688 data->flags = pdata->flags;
3689 data->info = info;
3690 data->currpage = -1;
3691 data->currphase = -1;
3692
3693 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3694 data->vout_low[i] = -1;
3695 data->vout_high[i] = -1;
3696 }
3697
3698 ret = pmbus_init_common(client, data, info);
3699 if (ret < 0)
3700 return ret;
3701
3702 ret = pmbus_find_attributes(client, data);
3703 if (ret)
3704 return ret;
3705
3706 /*
3707 * If there are no attributes, something is wrong.
3708 * Bail out instead of trying to register nothing.
3709 */
3710 if (!data->num_attributes) {
3711 dev_err(dev, "No attributes found\n");
3712 return -ENODEV;
3713 }
3714
3715 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3716 if (!name)
3717 return -ENOMEM;
3718 strreplace(name, '-', '_');
3719
3720 data->groups[0] = &data->group;
3721 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3722 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, name,
3723 data, data->groups);
3724 if (IS_ERR(data->hwmon_dev)) {
3725 dev_err(dev, "Failed to register hwmon device\n");
3726 return PTR_ERR(data->hwmon_dev);
3727 }
3728
3729 ret = pmbus_regulator_register(data);
3730 if (ret)
3731 return ret;
3732
3733 ret = pmbus_irq_setup(client, data);
3734 if (ret)
3735 return ret;
3736
3737 pmbus_init_debugfs(client, data);
3738
3739 return 0;
3740 }
3741 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3742
pmbus_get_debugfs_dir(struct i2c_client * client)3743 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3744 {
3745 /*
3746 * client->debugfs may be an ERR_PTR(). Returning that to
3747 * the calling code would potentially require additional
3748 * complexity in the calling code and otherwise add no
3749 * value. Return NULL in that case.
3750 */
3751 if (IS_ERR_OR_NULL(client->debugfs))
3752 return NULL;
3753 return client->debugfs;
3754 }
3755 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3756
pmbus_lock_interruptible(struct i2c_client * client)3757 int pmbus_lock_interruptible(struct i2c_client *client)
3758 {
3759 struct pmbus_data *data = i2c_get_clientdata(client);
3760
3761 return mutex_lock_interruptible(&data->update_lock);
3762 }
3763 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3764
pmbus_unlock(struct i2c_client * client)3765 void pmbus_unlock(struct i2c_client *client)
3766 {
3767 struct pmbus_data *data = i2c_get_clientdata(client);
3768
3769 mutex_unlock(&data->update_lock);
3770 }
3771 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3772
pmbus_core_init(void)3773 static int __init pmbus_core_init(void)
3774 {
3775 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3776 if (IS_ERR(pmbus_debugfs_dir))
3777 pmbus_debugfs_dir = NULL;
3778
3779 return 0;
3780 }
3781
pmbus_core_exit(void)3782 static void __exit pmbus_core_exit(void)
3783 {
3784 debugfs_remove_recursive(pmbus_debugfs_dir);
3785 }
3786
3787 module_init(pmbus_core_init);
3788 module_exit(pmbus_core_exit);
3789
3790 MODULE_AUTHOR("Guenter Roeck");
3791 MODULE_DESCRIPTION("PMBus core driver");
3792 MODULE_LICENSE("GPL");
3793