1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/types.h>
9 #include <linux/units.h>
10 
11 #include <drm/drm_managed.h>
12 #include "regs/xe_gt_regs.h"
13 #include "regs/xe_mchbar_regs.h"
14 #include "regs/xe_pcode_regs.h"
15 #include "xe_device.h"
16 #include "xe_hwmon.h"
17 #include "xe_mmio.h"
18 #include "xe_pcode.h"
19 #include "xe_pcode_api.h"
20 #include "xe_sriov.h"
21 #include "xe_pm.h"
22 
23 enum xe_hwmon_reg {
24 	REG_TEMP,
25 	REG_PKG_RAPL_LIMIT,
26 	REG_PKG_POWER_SKU,
27 	REG_PKG_POWER_SKU_UNIT,
28 	REG_GT_PERF_STATUS,
29 	REG_PKG_ENERGY_STATUS,
30 };
31 
32 enum xe_hwmon_reg_operation {
33 	REG_READ32,
34 	REG_RMW32,
35 	REG_READ64,
36 };
37 
38 enum xe_hwmon_channel {
39 	CHANNEL_CARD,
40 	CHANNEL_PKG,
41 	CHANNEL_VRAM,
42 	CHANNEL_MAX,
43 };
44 
45 /*
46  * SF_* - scale factors for particular quantities according to hwmon spec.
47  */
48 #define SF_POWER	1000000		/* microwatts */
49 #define SF_CURR		1000		/* milliamperes */
50 #define SF_VOLTAGE	1000		/* millivolts */
51 #define SF_ENERGY	1000000		/* microjoules */
52 #define SF_TIME		1000		/* milliseconds */
53 
54 /**
55  * struct xe_hwmon_energy_info - to accumulate energy
56  */
57 struct xe_hwmon_energy_info {
58 	/** @reg_val_prev: previous energy reg val */
59 	u32 reg_val_prev;
60 	/** @accum_energy: accumulated energy */
61 	long accum_energy;
62 };
63 
64 /**
65  * struct xe_hwmon - xe hwmon data structure
66  */
67 struct xe_hwmon {
68 	/** @hwmon_dev: hwmon device for xe */
69 	struct device *hwmon_dev;
70 	/** @xe: Xe device */
71 	struct xe_device *xe;
72 	/** @hwmon_lock: lock for rw attributes*/
73 	struct mutex hwmon_lock;
74 	/** @scl_shift_power: pkg power unit */
75 	int scl_shift_power;
76 	/** @scl_shift_energy: pkg energy unit */
77 	int scl_shift_energy;
78 	/** @scl_shift_time: pkg time unit */
79 	int scl_shift_time;
80 	/** @ei: Energy info for energyN_input */
81 	struct xe_hwmon_energy_info ei[CHANNEL_MAX];
82 };
83 
xe_hwmon_get_reg(struct xe_hwmon * hwmon,enum xe_hwmon_reg hwmon_reg,int channel)84 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
85 				      int channel)
86 {
87 	struct xe_device *xe = hwmon->xe;
88 
89 	switch (hwmon_reg) {
90 	case REG_TEMP:
91 		if (xe->info.platform == XE_BATTLEMAGE) {
92 			if (channel == CHANNEL_PKG)
93 				return BMG_PACKAGE_TEMPERATURE;
94 			else if (channel == CHANNEL_VRAM)
95 				return BMG_VRAM_TEMPERATURE;
96 		} else if (xe->info.platform == XE_DG2) {
97 			if (channel == CHANNEL_PKG)
98 				return PCU_CR_PACKAGE_TEMPERATURE;
99 			else if (channel == CHANNEL_VRAM)
100 				return BMG_VRAM_TEMPERATURE;
101 		}
102 		break;
103 	case REG_PKG_RAPL_LIMIT:
104 		if (xe->info.platform == XE_BATTLEMAGE) {
105 			if (channel == CHANNEL_PKG)
106 				return BMG_PACKAGE_RAPL_LIMIT;
107 			else
108 				return BMG_PLATFORM_POWER_LIMIT;
109 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
110 			return PVC_GT0_PACKAGE_RAPL_LIMIT;
111 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
112 			return PCU_CR_PACKAGE_RAPL_LIMIT;
113 		}
114 		break;
115 	case REG_PKG_POWER_SKU:
116 		if (xe->info.platform == XE_BATTLEMAGE)
117 			return BMG_PACKAGE_POWER_SKU;
118 		else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
119 			return PVC_GT0_PACKAGE_POWER_SKU;
120 		else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
121 			return PCU_CR_PACKAGE_POWER_SKU;
122 		break;
123 	case REG_PKG_POWER_SKU_UNIT:
124 		if (xe->info.platform == XE_BATTLEMAGE)
125 			return BMG_PACKAGE_POWER_SKU_UNIT;
126 		else if (xe->info.platform == XE_PVC)
127 			return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
128 		else if (xe->info.platform == XE_DG2)
129 			return PCU_CR_PACKAGE_POWER_SKU_UNIT;
130 		break;
131 	case REG_GT_PERF_STATUS:
132 		if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
133 			return GT_PERF_STATUS;
134 		break;
135 	case REG_PKG_ENERGY_STATUS:
136 		if (xe->info.platform == XE_BATTLEMAGE) {
137 			if (channel == CHANNEL_PKG)
138 				return BMG_PACKAGE_ENERGY_STATUS;
139 			else
140 				return BMG_PLATFORM_ENERGY_STATUS;
141 		} else if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
142 			return PVC_GT0_PLATFORM_ENERGY_STATUS;
143 		} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
144 			return PCU_CR_PACKAGE_ENERGY_STATUS;
145 		}
146 		break;
147 	default:
148 		drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
149 		break;
150 	}
151 
152 	return XE_REG(0);
153 }
154 
155 #define PL1_DISABLE 0
156 
157 /*
158  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
159  * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
160  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
161  * clamped values when read.
162  */
xe_hwmon_power_max_read(struct xe_hwmon * hwmon,int channel,long * value)163 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, int channel, long *value)
164 {
165 	u64 reg_val, min, max;
166 	struct xe_device *xe = hwmon->xe;
167 	struct xe_reg rapl_limit, pkg_power_sku;
168 	struct xe_mmio *mmio = xe_root_tile_mmio(xe);
169 
170 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
171 	pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
172 
173 	/*
174 	 * Valid check of REG_PKG_RAPL_LIMIT is already done in xe_hwmon_power_is_visible.
175 	 * So not checking it again here.
176 	 */
177 	if (!xe_reg_is_valid(pkg_power_sku)) {
178 		drm_warn(&xe->drm, "pkg_power_sku invalid\n");
179 		*value = 0;
180 		return;
181 	}
182 
183 	mutex_lock(&hwmon->hwmon_lock);
184 
185 	reg_val = xe_mmio_read32(mmio, rapl_limit);
186 	/* Check if PL1 limit is disabled */
187 	if (!(reg_val & PKG_PWR_LIM_1_EN)) {
188 		*value = PL1_DISABLE;
189 		goto unlock;
190 	}
191 
192 	reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val);
193 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
194 
195 	reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
196 	min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
197 	min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
198 	max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
199 	max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
200 
201 	if (min && max)
202 		*value = clamp_t(u64, *value, min, max);
203 unlock:
204 	mutex_unlock(&hwmon->hwmon_lock);
205 }
206 
xe_hwmon_power_max_write(struct xe_hwmon * hwmon,int channel,long value)207 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, int channel, long value)
208 {
209 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
210 	int ret = 0;
211 	u64 reg_val;
212 	struct xe_reg rapl_limit;
213 
214 	rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
215 
216 	mutex_lock(&hwmon->hwmon_lock);
217 
218 	/* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */
219 	if (value == PL1_DISABLE) {
220 		reg_val = xe_mmio_rmw32(mmio, rapl_limit, PKG_PWR_LIM_1_EN, 0);
221 		reg_val = xe_mmio_read32(mmio, rapl_limit);
222 		if (reg_val & PKG_PWR_LIM_1_EN) {
223 			drm_warn(&hwmon->xe->drm, "PL1 disable is not supported!\n");
224 			ret = -EOPNOTSUPP;
225 		}
226 		goto unlock;
227 	}
228 
229 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
230 	reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
231 	reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val);
232 	reg_val = xe_mmio_rmw32(mmio, rapl_limit, PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val);
233 
234 unlock:
235 	mutex_unlock(&hwmon->hwmon_lock);
236 	return ret;
237 }
238 
xe_hwmon_power_rated_max_read(struct xe_hwmon * hwmon,int channel,long * value)239 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, int channel, long *value)
240 {
241 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
242 	struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
243 	u64 reg_val;
244 
245 	/*
246 	 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
247 	 * for this register can be skipped.
248 	 * See xe_hwmon_power_is_visible.
249 	 */
250 	reg_val = xe_mmio_read32(mmio, reg);
251 	reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
252 	*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
253 }
254 
255 /*
256  * xe_hwmon_energy_get - Obtain energy value
257  *
258  * The underlying energy hardware register is 32-bits and is subject to
259  * overflow. How long before overflow? For example, with an example
260  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
261  * a power draw of 1000 watts, the 32-bit counter will overflow in
262  * approximately 4.36 minutes.
263  *
264  * Examples:
265  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
266  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
267  *
268  * The function significantly increases overflow duration (from 4.36
269  * minutes) by accumulating the energy register into a 'long' as allowed by
270  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
271  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
272  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
273  * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
274  */
275 static void
xe_hwmon_energy_get(struct xe_hwmon * hwmon,int channel,long * energy)276 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
277 {
278 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
279 	struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
280 	u64 reg_val;
281 
282 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
283 							channel));
284 
285 	if (reg_val >= ei->reg_val_prev)
286 		ei->accum_energy += reg_val - ei->reg_val_prev;
287 	else
288 		ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
289 
290 	ei->reg_val_prev = reg_val;
291 
292 	*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
293 				  hwmon->scl_shift_energy);
294 }
295 
296 static ssize_t
xe_hwmon_power_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)297 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
298 				 char *buf)
299 {
300 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
301 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
302 	u32 x, y, x_w = 2; /* 2 bits */
303 	u64 r, tau4, out;
304 	int sensor_index = to_sensor_dev_attr(attr)->index;
305 
306 	xe_pm_runtime_get(hwmon->xe);
307 
308 	mutex_lock(&hwmon->hwmon_lock);
309 
310 	r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index));
311 
312 	mutex_unlock(&hwmon->hwmon_lock);
313 
314 	xe_pm_runtime_put(hwmon->xe);
315 
316 	x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
317 	y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
318 
319 	/*
320 	 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
321 	 *     = (4 | x) << (y - 2)
322 	 *
323 	 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
324 	 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
325 	 *
326 	 * As y can be < 2, we compute tau4 = (4 | x) << y
327 	 * and then add 2 when doing the final right shift to account for units
328 	 */
329 	tau4 = (u64)((1 << x_w) | x) << y;
330 
331 	/* val in hwmon interface units (millisec) */
332 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
333 
334 	return sysfs_emit(buf, "%llu\n", out);
335 }
336 
337 static ssize_t
xe_hwmon_power_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)338 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
339 				  const char *buf, size_t count)
340 {
341 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
342 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
343 	u32 x, y, rxy, x_w = 2; /* 2 bits */
344 	u64 tau4, r, max_win;
345 	unsigned long val;
346 	int ret;
347 	int sensor_index = to_sensor_dev_attr(attr)->index;
348 
349 	ret = kstrtoul(buf, 0, &val);
350 	if (ret)
351 		return ret;
352 
353 	/*
354 	 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12.
355 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
356 	 *
357 	 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
358 	 * However, it is observed that existing discrete GPUs does not provide correct
359 	 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
360 	 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
361 	 */
362 #define PKG_MAX_WIN_DEFAULT 0x12ull
363 
364 	/*
365 	 * val must be < max in hwmon interface units. The steps below are
366 	 * explained in xe_hwmon_power_max_interval_show()
367 	 */
368 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
369 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
370 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
371 	tau4 = (u64)((1 << x_w) | x) << y;
372 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
373 
374 	if (val > max_win)
375 		return -EINVAL;
376 
377 	/* val in hw units */
378 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
379 
380 	/*
381 	 * Convert val to 1.x * power(2,y)
382 	 * y = ilog2(val)
383 	 * x = (val - (1 << y)) >> (y - 2)
384 	 */
385 	if (!val) {
386 		y = 0;
387 		x = 0;
388 	} else {
389 		y = ilog2(val);
390 		x = (val - (1ul << y)) << x_w >> y;
391 	}
392 
393 	rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
394 
395 	xe_pm_runtime_get(hwmon->xe);
396 
397 	mutex_lock(&hwmon->hwmon_lock);
398 
399 	r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, sensor_index),
400 			  PKG_PWR_LIM_1_TIME, rxy);
401 
402 	mutex_unlock(&hwmon->hwmon_lock);
403 
404 	xe_pm_runtime_put(hwmon->xe);
405 
406 	return count;
407 }
408 
409 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
410 			  xe_hwmon_power_max_interval_show,
411 			  xe_hwmon_power_max_interval_store, CHANNEL_CARD);
412 
413 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
414 			  xe_hwmon_power_max_interval_show,
415 			  xe_hwmon_power_max_interval_store, CHANNEL_PKG);
416 
417 static struct attribute *hwmon_attributes[] = {
418 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
419 	&sensor_dev_attr_power2_max_interval.dev_attr.attr,
420 	NULL
421 };
422 
xe_hwmon_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)423 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
424 					   struct attribute *attr, int index)
425 {
426 	struct device *dev = kobj_to_dev(kobj);
427 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
428 	int ret = 0;
429 
430 	xe_pm_runtime_get(hwmon->xe);
431 
432 	ret = xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, index)) ? attr->mode : 0;
433 
434 	xe_pm_runtime_put(hwmon->xe);
435 
436 	return ret;
437 }
438 
439 static const struct attribute_group hwmon_attrgroup = {
440 	.attrs = hwmon_attributes,
441 	.is_visible = xe_hwmon_attributes_visible,
442 };
443 
444 static const struct attribute_group *hwmon_groups[] = {
445 	&hwmon_attrgroup,
446 	NULL
447 };
448 
449 static const struct hwmon_channel_info * const hwmon_info[] = {
450 	HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
451 			   HWMON_T_INPUT | HWMON_T_LABEL),
452 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL,
453 			   HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT | HWMON_P_LABEL),
454 	HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
455 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
456 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
457 	NULL
458 };
459 
460 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
xe_hwmon_pcode_read_i1(const struct xe_hwmon * hwmon,u32 * uval)461 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
462 {
463 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
464 
465 	/* Avoid Illegal Subcommand error */
466 	if (hwmon->xe->info.platform == XE_DG2)
467 		return -ENXIO;
468 
469 	return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
470 			     POWER_SETUP_SUBCOMMAND_READ_I1, 0),
471 			     uval, NULL);
472 }
473 
xe_hwmon_pcode_write_i1(const struct xe_hwmon * hwmon,u32 uval)474 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
475 {
476 	struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
477 
478 	return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
479 			      POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
480 			      (uval & POWER_SETUP_I1_DATA_MASK));
481 }
482 
xe_hwmon_power_curr_crit_read(struct xe_hwmon * hwmon,int channel,long * value,u32 scale_factor)483 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
484 					 long *value, u32 scale_factor)
485 {
486 	int ret;
487 	u32 uval;
488 
489 	mutex_lock(&hwmon->hwmon_lock);
490 
491 	ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
492 	if (ret)
493 		goto unlock;
494 
495 	*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
496 				 scale_factor, POWER_SETUP_I1_SHIFT);
497 unlock:
498 	mutex_unlock(&hwmon->hwmon_lock);
499 	return ret;
500 }
501 
xe_hwmon_power_curr_crit_write(struct xe_hwmon * hwmon,int channel,long value,u32 scale_factor)502 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
503 					  long value, u32 scale_factor)
504 {
505 	int ret;
506 	u32 uval;
507 
508 	mutex_lock(&hwmon->hwmon_lock);
509 
510 	uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
511 	ret = xe_hwmon_pcode_write_i1(hwmon, uval);
512 
513 	mutex_unlock(&hwmon->hwmon_lock);
514 	return ret;
515 }
516 
xe_hwmon_get_voltage(struct xe_hwmon * hwmon,int channel,long * value)517 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
518 {
519 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
520 	u64 reg_val;
521 
522 	reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
523 	/* HW register value in units of 2.5 millivolt */
524 	*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
525 }
526 
527 static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)528 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
529 {
530 	switch (attr) {
531 	case hwmon_temp_input:
532 	case hwmon_temp_label:
533 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
534 	default:
535 		return 0;
536 	}
537 }
538 
539 static int
xe_hwmon_temp_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)540 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
541 {
542 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
543 	u64 reg_val;
544 
545 	switch (attr) {
546 	case hwmon_temp_input:
547 		reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
548 
549 		/* HW register value is in degrees Celsius, convert to millidegrees. */
550 		*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
551 		return 0;
552 	default:
553 		return -EOPNOTSUPP;
554 	}
555 }
556 
557 static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)558 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
559 {
560 	u32 uval;
561 
562 	switch (attr) {
563 	case hwmon_power_max:
564 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT,
565 				       channel)) ? 0664 : 0;
566 	case hwmon_power_rated_max:
567 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU,
568 				       channel)) ? 0444 : 0;
569 	case hwmon_power_crit:
570 		if (channel == CHANNEL_PKG)
571 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
572 				!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
573 		break;
574 	case hwmon_power_label:
575 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
576 				       channel)) ? 0444 : 0;
577 	default:
578 		return 0;
579 	}
580 	return 0;
581 }
582 
583 static int
xe_hwmon_power_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)584 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
585 {
586 	switch (attr) {
587 	case hwmon_power_max:
588 		xe_hwmon_power_max_read(hwmon, channel, val);
589 		return 0;
590 	case hwmon_power_rated_max:
591 		xe_hwmon_power_rated_max_read(hwmon, channel, val);
592 		return 0;
593 	case hwmon_power_crit:
594 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
595 	default:
596 		return -EOPNOTSUPP;
597 	}
598 }
599 
600 static int
xe_hwmon_power_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)601 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
602 {
603 	switch (attr) {
604 	case hwmon_power_max:
605 		return xe_hwmon_power_max_write(hwmon, channel, val);
606 	case hwmon_power_crit:
607 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
608 	default:
609 		return -EOPNOTSUPP;
610 	}
611 }
612 
613 static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon * hwmon,u32 attr,int channel)614 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
615 {
616 	u32 uval;
617 
618 	/* hwmon sysfs attribute of current available only for package */
619 	if (channel != CHANNEL_PKG)
620 		return 0;
621 
622 	switch (attr) {
623 	case hwmon_curr_crit:
624 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
625 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
626 	case hwmon_curr_label:
627 			return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
628 				(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
629 		break;
630 	default:
631 		return 0;
632 	}
633 	return 0;
634 }
635 
636 static int
xe_hwmon_curr_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)637 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
638 {
639 	switch (attr) {
640 	case hwmon_curr_crit:
641 		return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
642 	default:
643 		return -EOPNOTSUPP;
644 	}
645 }
646 
647 static int
xe_hwmon_curr_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)648 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
649 {
650 	switch (attr) {
651 	case hwmon_curr_crit:
652 		return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
653 	default:
654 		return -EOPNOTSUPP;
655 	}
656 }
657 
658 static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)659 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
660 {
661 	switch (attr) {
662 	case hwmon_in_input:
663 	case hwmon_in_label:
664 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
665 				       channel)) ? 0444 : 0;
666 	default:
667 		return 0;
668 	}
669 }
670 
671 static int
xe_hwmon_in_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)672 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
673 {
674 	switch (attr) {
675 	case hwmon_in_input:
676 		xe_hwmon_get_voltage(hwmon, channel, val);
677 		return 0;
678 	default:
679 		return -EOPNOTSUPP;
680 	}
681 }
682 
683 static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)684 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
685 {
686 	switch (attr) {
687 	case hwmon_energy_input:
688 	case hwmon_energy_label:
689 		return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
690 				       channel)) ? 0444 : 0;
691 	default:
692 		return 0;
693 	}
694 }
695 
696 static int
xe_hwmon_energy_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)697 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
698 {
699 	switch (attr) {
700 	case hwmon_energy_input:
701 		xe_hwmon_energy_get(hwmon, channel, val);
702 		return 0;
703 	default:
704 		return -EOPNOTSUPP;
705 	}
706 }
707 
708 static umode_t
xe_hwmon_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)709 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
710 		    u32 attr, int channel)
711 {
712 	struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
713 	int ret;
714 
715 	xe_pm_runtime_get(hwmon->xe);
716 
717 	switch (type) {
718 	case hwmon_temp:
719 		ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
720 		break;
721 	case hwmon_power:
722 		ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
723 		break;
724 	case hwmon_curr:
725 		ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
726 		break;
727 	case hwmon_in:
728 		ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
729 		break;
730 	case hwmon_energy:
731 		ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
732 		break;
733 	default:
734 		ret = 0;
735 		break;
736 	}
737 
738 	xe_pm_runtime_put(hwmon->xe);
739 
740 	return ret;
741 }
742 
743 static int
xe_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)744 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
745 	      int channel, long *val)
746 {
747 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
748 	int ret;
749 
750 	xe_pm_runtime_get(hwmon->xe);
751 
752 	switch (type) {
753 	case hwmon_temp:
754 		ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
755 		break;
756 	case hwmon_power:
757 		ret = xe_hwmon_power_read(hwmon, attr, channel, val);
758 		break;
759 	case hwmon_curr:
760 		ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
761 		break;
762 	case hwmon_in:
763 		ret = xe_hwmon_in_read(hwmon, attr, channel, val);
764 		break;
765 	case hwmon_energy:
766 		ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
767 		break;
768 	default:
769 		ret = -EOPNOTSUPP;
770 		break;
771 	}
772 
773 	xe_pm_runtime_put(hwmon->xe);
774 
775 	return ret;
776 }
777 
778 static int
xe_hwmon_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)779 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
780 	       int channel, long val)
781 {
782 	struct xe_hwmon *hwmon = dev_get_drvdata(dev);
783 	int ret;
784 
785 	xe_pm_runtime_get(hwmon->xe);
786 
787 	switch (type) {
788 	case hwmon_power:
789 		ret = xe_hwmon_power_write(hwmon, attr, channel, val);
790 		break;
791 	case hwmon_curr:
792 		ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
793 		break;
794 	default:
795 		ret = -EOPNOTSUPP;
796 		break;
797 	}
798 
799 	xe_pm_runtime_put(hwmon->xe);
800 
801 	return ret;
802 }
803 
xe_hwmon_read_label(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)804 static int xe_hwmon_read_label(struct device *dev,
805 			       enum hwmon_sensor_types type,
806 			       u32 attr, int channel, const char **str)
807 {
808 	switch (type) {
809 	case hwmon_temp:
810 		if (channel == CHANNEL_PKG)
811 			*str = "pkg";
812 		else if (channel == CHANNEL_VRAM)
813 			*str = "vram";
814 		return 0;
815 	case hwmon_power:
816 	case hwmon_energy:
817 	case hwmon_curr:
818 	case hwmon_in:
819 		if (channel == CHANNEL_CARD)
820 			*str = "card";
821 		else if (channel == CHANNEL_PKG)
822 			*str = "pkg";
823 		return 0;
824 	default:
825 		return -EOPNOTSUPP;
826 	}
827 }
828 
829 static const struct hwmon_ops hwmon_ops = {
830 	.is_visible = xe_hwmon_is_visible,
831 	.read = xe_hwmon_read,
832 	.write = xe_hwmon_write,
833 	.read_string = xe_hwmon_read_label,
834 };
835 
836 static const struct hwmon_chip_info hwmon_chip_info = {
837 	.ops = &hwmon_ops,
838 	.info = hwmon_info,
839 };
840 
841 static void
xe_hwmon_get_preregistration_info(struct xe_hwmon * hwmon)842 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
843 {
844 	struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
845 	long energy;
846 	u64 val_sku_unit = 0;
847 	int channel;
848 	struct xe_reg pkg_power_sku_unit;
849 
850 	/*
851 	 * The contents of register PKG_POWER_SKU_UNIT do not change,
852 	 * so read it once and store the shift values.
853 	 */
854 	pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
855 	if (xe_reg_is_valid(pkg_power_sku_unit)) {
856 		val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
857 		hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
858 		hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
859 		hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
860 	}
861 
862 	/*
863 	 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
864 	 * first value of the energy register read
865 	 */
866 	for (channel = 0; channel < CHANNEL_MAX; channel++)
867 		if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
868 			xe_hwmon_energy_get(hwmon, channel, &energy);
869 }
870 
xe_hwmon_mutex_destroy(void * arg)871 static void xe_hwmon_mutex_destroy(void *arg)
872 {
873 	struct xe_hwmon *hwmon = arg;
874 
875 	mutex_destroy(&hwmon->hwmon_lock);
876 }
877 
xe_hwmon_register(struct xe_device * xe)878 int xe_hwmon_register(struct xe_device *xe)
879 {
880 	struct device *dev = xe->drm.dev;
881 	struct xe_hwmon *hwmon;
882 	int ret;
883 
884 	/* hwmon is available only for dGfx */
885 	if (!IS_DGFX(xe))
886 		return 0;
887 
888 	/* hwmon is not available on VFs */
889 	if (IS_SRIOV_VF(xe))
890 		return 0;
891 
892 	hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
893 	if (!hwmon)
894 		return -ENOMEM;
895 
896 	mutex_init(&hwmon->hwmon_lock);
897 	ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
898 	if (ret)
899 		return ret;
900 
901 	/* There's only one instance of hwmon per device */
902 	hwmon->xe = xe;
903 	xe->hwmon = hwmon;
904 
905 	xe_hwmon_get_preregistration_info(hwmon);
906 
907 	drm_dbg(&xe->drm, "Register xe hwmon interface\n");
908 
909 	/*  hwmon_dev points to device hwmon<i> */
910 	hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
911 								&hwmon_chip_info,
912 								hwmon_groups);
913 	if (IS_ERR(hwmon->hwmon_dev)) {
914 		drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
915 		xe->hwmon = NULL;
916 		return PTR_ERR(hwmon->hwmon_dev);
917 	}
918 
919 	return 0;
920 }
921 
922