1 /*
2 * Copyright 2023 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "priv.h"
23
24 #include <core/pci.h>
25 #include <subdev/timer.h>
26 #include <subdev/vfn.h>
27 #include <engine/fifo/chan.h>
28 #include <engine/sec2.h>
29 #include <nvif/log.h>
30
31 #include <nvfw/fw.h>
32
33 #include <nvrm/nvtypes.h>
34 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0000.h>
35 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0005.h>
36 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0080.h>
37 #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080.h>
38 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080event.h>
39 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h>
40 #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h>
41 #include <nvrm/535.113.01/common/sdk/nvidia/inc/nvos.h>
42 #include <nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h>
43 #include <nvrm/535.113.01/common/uproc/os/common/include/libos_init_args.h>
44 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_sr_meta.h>
45 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_wpr_meta.h>
46 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmRiscvUcode.h>
47 #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmgspseq.h>
48 #include <nvrm/535.113.01/nvidia/generated/g_allclasses.h>
49 #include <nvrm/535.113.01/nvidia/generated/g_os_nvoc.h>
50 #include <nvrm/535.113.01/nvidia/generated/g_rpc-structures.h>
51 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_fw_heap.h>
52 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_init_args.h>
53 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_static_config.h>
54 #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/intr/engine_idx.h>
55 #include <nvrm/535.113.01/nvidia/kernel/inc/vgpu/rpc_global_enums.h>
56
57 #include <linux/acpi.h>
58 #include <linux/ctype.h>
59 #include <linux/parser.h>
60
61 extern struct dentry *nouveau_debugfs_root;
62
63 #define GSP_MSG_MIN_SIZE GSP_PAGE_SIZE
64 #define GSP_MSG_MAX_SIZE (GSP_MSG_MIN_SIZE * 16)
65
66 /**
67 * DOC: GSP message queue element
68 *
69 * https://github.com/NVIDIA/open-gpu-kernel-modules/blob/535/src/nvidia/inc/kernel/gpu/gsp/message_queue_priv.h
70 *
71 * The GSP command queue and status queue are message queues for the
72 * communication between software and GSP. The software submits the GSP
73 * RPC via the GSP command queue, GSP writes the status of the submitted
74 * RPC in the status queue.
75 *
76 * A GSP message queue element consists of three parts:
77 *
78 * - message element header (struct r535_gsp_msg), which mostly maintains
79 * the metadata for queuing the element.
80 *
81 * - RPC message header (struct nvfw_gsp_rpc), which maintains the info
82 * of the RPC. E.g., the RPC function number.
83 *
84 * - The payload, where the RPC message stays. E.g. the params of a
85 * specific RPC function. Some RPC functions also have their headers
86 * in the payload. E.g. rm_alloc, rm_control.
87 *
88 * The memory layout of a GSP message element can be illustrated below::
89 *
90 * +------------------------+
91 * | Message Element Header |
92 * | (r535_gsp_msg) |
93 * | |
94 * | (r535_gsp_msg.data) |
95 * | | |
96 * |----------V-------------|
97 * | GSP RPC Header |
98 * | (nvfw_gsp_rpc) |
99 * | |
100 * | (nvfw_gsp_rpc.data) |
101 * | | |
102 * |----------V-------------|
103 * | Payload |
104 * | |
105 * | header(optional) |
106 * | params |
107 * +------------------------+
108 *
109 * The max size of a message queue element is 16 pages (including the
110 * headers). When a GSP message to be sent is larger than 16 pages, the
111 * message should be split into multiple elements and sent accordingly.
112 *
113 * In the bunch of the split elements, the first element has the expected
114 * function number, while the rest of the elements are sent with the
115 * function number NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD.
116 *
117 * GSP consumes the elements from the cmdq and always writes the result
118 * back to the msgq. The result is also formed as split elements.
119 *
120 * Terminology:
121 *
122 * - gsp_msg(msg): GSP message element (element header + GSP RPC header +
123 * payload)
124 * - gsp_rpc(rpc): GSP RPC (RPC header + payload)
125 * - gsp_rpc_buf: buffer for (GSP RPC header + payload)
126 * - gsp_rpc_len: size of (GSP RPC header + payload)
127 * - params_size: size of params in the payload
128 * - payload_size: size of (header if exists + params) in the payload
129 */
130
131 struct r535_gsp_msg {
132 u8 auth_tag_buffer[16];
133 u8 aad_buffer[16];
134 u32 checksum;
135 u32 sequence;
136 u32 elem_count;
137 u32 pad;
138 u8 data[];
139 };
140
141 struct nvfw_gsp_rpc {
142 u32 header_version;
143 u32 signature;
144 u32 length;
145 u32 function;
146 u32 rpc_result;
147 u32 rpc_result_private;
148 u32 sequence;
149 union {
150 u32 spare;
151 u32 cpuRmGfid;
152 };
153 u8 data[];
154 };
155
156 #define GSP_MSG_HDR_SIZE offsetof(struct r535_gsp_msg, data)
157
158 #define to_gsp_hdr(p, header) \
159 container_of((void *)p, typeof(*header), data)
160
161 #define to_payload_hdr(p, header) \
162 container_of((void *)p, typeof(*header), params)
163
164 static int
r535_rpc_status_to_errno(uint32_t rpc_status)165 r535_rpc_status_to_errno(uint32_t rpc_status)
166 {
167 switch (rpc_status) {
168 case 0x55: /* NV_ERR_NOT_READY */
169 case 0x66: /* NV_ERR_TIMEOUT_RETRY */
170 return -EBUSY;
171 case 0x51: /* NV_ERR_NO_MEMORY */
172 return -ENOMEM;
173 default:
174 return -EINVAL;
175 }
176 }
177
178 static int
r535_gsp_msgq_wait(struct nvkm_gsp * gsp,u32 gsp_rpc_len,int * ptime)179 r535_gsp_msgq_wait(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *ptime)
180 {
181 u32 size, rptr = *gsp->msgq.rptr;
182 int used;
183
184 size = DIV_ROUND_UP(GSP_MSG_HDR_SIZE + gsp_rpc_len,
185 GSP_PAGE_SIZE);
186 if (WARN_ON(!size || size >= gsp->msgq.cnt))
187 return -EINVAL;
188
189 do {
190 u32 wptr = *gsp->msgq.wptr;
191
192 used = wptr + gsp->msgq.cnt - rptr;
193 if (used >= gsp->msgq.cnt)
194 used -= gsp->msgq.cnt;
195 if (used >= size)
196 break;
197
198 usleep_range(1, 2);
199 } while (--(*ptime));
200
201 if (WARN_ON(!*ptime))
202 return -ETIMEDOUT;
203
204 return used;
205 }
206
207 static struct r535_gsp_msg *
r535_gsp_msgq_get_entry(struct nvkm_gsp * gsp)208 r535_gsp_msgq_get_entry(struct nvkm_gsp *gsp)
209 {
210 u32 rptr = *gsp->msgq.rptr;
211
212 /* Skip the first page, which is the message queue info */
213 return (void *)((u8 *)gsp->shm.msgq.ptr + GSP_PAGE_SIZE +
214 rptr * GSP_PAGE_SIZE);
215 }
216
217 /**
218 * DOC: Receive a GSP message queue element
219 *
220 * Receiving a GSP message queue element from the message queue consists of
221 * the following steps:
222 *
223 * - Peek the element from the queue: r535_gsp_msgq_peek().
224 * Peek the first page of the element to determine the total size of the
225 * message before allocating the proper memory.
226 *
227 * - Allocate memory for the message.
228 * Once the total size of the message is determined from the GSP message
229 * queue element, the caller of r535_gsp_msgq_recv() allocates the
230 * required memory.
231 *
232 * - Receive the message: r535_gsp_msgq_recv().
233 * Copy the message into the allocated memory. Advance the read pointer.
234 * If the message is a large GSP message, r535_gsp_msgq_recv() calls
235 * r535_gsp_msgq_recv_one_elem() repeatedly to receive continuation parts
236 * until the complete message is received.
237 * r535_gsp_msgq_recv() assembles the payloads of cotinuation parts into
238 * the return of the large GSP message.
239 *
240 * - Free the allocated memory: r535_gsp_msg_done().
241 * The user is responsible for freeing the memory allocated for the GSP
242 * message pages after they have been processed.
243 */
244 static void *
r535_gsp_msgq_peek(struct nvkm_gsp * gsp,u32 gsp_rpc_len,int * retries)245 r535_gsp_msgq_peek(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *retries)
246 {
247 struct r535_gsp_msg *mqe;
248 int ret;
249
250 ret = r535_gsp_msgq_wait(gsp, gsp_rpc_len, retries);
251 if (ret < 0)
252 return ERR_PTR(ret);
253
254 mqe = r535_gsp_msgq_get_entry(gsp);
255
256 return mqe->data;
257 }
258
259 struct r535_gsp_msg_info {
260 int *retries;
261 u32 gsp_rpc_len;
262 void *gsp_rpc_buf;
263 bool continuation;
264 };
265
266 static void
267 r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl);
268
269 static void *
r535_gsp_msgq_recv_one_elem(struct nvkm_gsp * gsp,struct r535_gsp_msg_info * info)270 r535_gsp_msgq_recv_one_elem(struct nvkm_gsp *gsp,
271 struct r535_gsp_msg_info *info)
272 {
273 u8 *buf = info->gsp_rpc_buf;
274 u32 rptr = *gsp->msgq.rptr;
275 struct r535_gsp_msg *mqe;
276 u32 size, expected, len;
277 int ret;
278
279 expected = info->gsp_rpc_len;
280
281 ret = r535_gsp_msgq_wait(gsp, expected, info->retries);
282 if (ret < 0)
283 return ERR_PTR(ret);
284
285 mqe = r535_gsp_msgq_get_entry(gsp);
286
287 if (info->continuation) {
288 struct nvfw_gsp_rpc *rpc = (struct nvfw_gsp_rpc *)mqe->data;
289
290 if (rpc->function != NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD) {
291 nvkm_error(&gsp->subdev,
292 "Not a continuation of a large RPC\n");
293 r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
294 return ERR_PTR(-EIO);
295 }
296 }
297
298 size = ALIGN(expected + GSP_MSG_HDR_SIZE, GSP_PAGE_SIZE);
299
300 len = ((gsp->msgq.cnt - rptr) * GSP_PAGE_SIZE) - sizeof(*mqe);
301 len = min_t(u32, expected, len);
302
303 if (info->continuation)
304 memcpy(buf, mqe->data + sizeof(struct nvfw_gsp_rpc),
305 len - sizeof(struct nvfw_gsp_rpc));
306 else
307 memcpy(buf, mqe->data, len);
308
309 expected -= len;
310
311 if (expected) {
312 mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + 0 * 0x1000);
313 memcpy(buf + len, mqe, expected);
314 }
315
316 rptr = (rptr + DIV_ROUND_UP(size, GSP_PAGE_SIZE)) % gsp->msgq.cnt;
317
318 mb();
319 (*gsp->msgq.rptr) = rptr;
320 return buf;
321 }
322
323 static void *
r535_gsp_msgq_recv(struct nvkm_gsp * gsp,u32 gsp_rpc_len,int * retries)324 r535_gsp_msgq_recv(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *retries)
325 {
326 struct r535_gsp_msg *mqe;
327 const u32 max_rpc_size = GSP_MSG_MAX_SIZE - sizeof(*mqe);
328 struct nvfw_gsp_rpc *rpc;
329 struct r535_gsp_msg_info info = {0};
330 u32 expected = gsp_rpc_len;
331 void *buf;
332
333 mqe = r535_gsp_msgq_get_entry(gsp);
334 rpc = (struct nvfw_gsp_rpc *)mqe->data;
335
336 if (WARN_ON(rpc->length > max_rpc_size))
337 return NULL;
338
339 buf = kvmalloc(max_t(u32, rpc->length, expected), GFP_KERNEL);
340 if (!buf)
341 return ERR_PTR(-ENOMEM);
342
343 info.gsp_rpc_buf = buf;
344 info.retries = retries;
345 info.gsp_rpc_len = rpc->length;
346
347 buf = r535_gsp_msgq_recv_one_elem(gsp, &info);
348 if (IS_ERR(buf)) {
349 kvfree(info.gsp_rpc_buf);
350 info.gsp_rpc_buf = NULL;
351 return buf;
352 }
353
354 if (expected <= max_rpc_size)
355 return buf;
356
357 info.gsp_rpc_buf += info.gsp_rpc_len;
358 expected -= info.gsp_rpc_len;
359
360 while (expected) {
361 u32 size;
362
363 rpc = r535_gsp_msgq_peek(gsp, sizeof(*rpc), info.retries);
364 if (IS_ERR_OR_NULL(rpc)) {
365 kfree(buf);
366 return rpc;
367 }
368
369 info.gsp_rpc_len = rpc->length;
370 info.continuation = true;
371
372 rpc = r535_gsp_msgq_recv_one_elem(gsp, &info);
373 if (IS_ERR_OR_NULL(rpc)) {
374 kfree(buf);
375 return rpc;
376 }
377
378 size = info.gsp_rpc_len - sizeof(*rpc);
379 expected -= size;
380 info.gsp_rpc_buf += size;
381 }
382
383 rpc = buf;
384 rpc->length = gsp_rpc_len;
385 return buf;
386 }
387
388 static int
r535_gsp_cmdq_push(struct nvkm_gsp * gsp,void * rpc)389 r535_gsp_cmdq_push(struct nvkm_gsp *gsp, void *rpc)
390 {
391 struct r535_gsp_msg *msg = to_gsp_hdr(rpc, msg);
392 struct r535_gsp_msg *cqe;
393 u32 gsp_rpc_len = msg->checksum;
394 u64 *ptr = (void *)msg;
395 u64 *end;
396 u64 csum = 0;
397 int free, time = 1000000;
398 u32 wptr, size, step, len;
399 u32 off = 0;
400
401 len = ALIGN(GSP_MSG_HDR_SIZE + gsp_rpc_len, GSP_PAGE_SIZE);
402
403 end = (u64 *)((char *)ptr + len);
404 msg->pad = 0;
405 msg->checksum = 0;
406 msg->sequence = gsp->cmdq.seq++;
407 msg->elem_count = DIV_ROUND_UP(len, 0x1000);
408
409 while (ptr < end)
410 csum ^= *ptr++;
411
412 msg->checksum = upper_32_bits(csum) ^ lower_32_bits(csum);
413
414 wptr = *gsp->cmdq.wptr;
415 do {
416 do {
417 free = *gsp->cmdq.rptr + gsp->cmdq.cnt - wptr - 1;
418 if (free >= gsp->cmdq.cnt)
419 free -= gsp->cmdq.cnt;
420 if (free >= 1)
421 break;
422
423 usleep_range(1, 2);
424 } while(--time);
425
426 if (WARN_ON(!time)) {
427 kvfree(msg);
428 return -ETIMEDOUT;
429 }
430
431 cqe = (void *)((u8 *)gsp->shm.cmdq.ptr + 0x1000 + wptr * 0x1000);
432 step = min_t(u32, free, (gsp->cmdq.cnt - wptr));
433 size = min_t(u32, len, step * GSP_PAGE_SIZE);
434
435 memcpy(cqe, (u8 *)msg + off, size);
436
437 wptr += DIV_ROUND_UP(size, 0x1000);
438 if (wptr == gsp->cmdq.cnt)
439 wptr = 0;
440
441 off += size;
442 len -= size;
443 } while (len);
444
445 nvkm_trace(&gsp->subdev, "cmdq: wptr %d\n", wptr);
446 wmb();
447 (*gsp->cmdq.wptr) = wptr;
448 mb();
449
450 nvkm_falcon_wr32(&gsp->falcon, 0xc00, 0x00000000);
451
452 kvfree(msg);
453 return 0;
454 }
455
456 static void *
r535_gsp_cmdq_get(struct nvkm_gsp * gsp,u32 gsp_rpc_len)457 r535_gsp_cmdq_get(struct nvkm_gsp *gsp, u32 gsp_rpc_len)
458 {
459 struct r535_gsp_msg *msg;
460 u32 size = GSP_MSG_HDR_SIZE + gsp_rpc_len;
461
462 size = ALIGN(size, GSP_MSG_MIN_SIZE);
463 msg = kvzalloc(size, GFP_KERNEL);
464 if (!msg)
465 return ERR_PTR(-ENOMEM);
466
467 msg->checksum = gsp_rpc_len;
468 return msg->data;
469 }
470
471 static void
r535_gsp_msg_done(struct nvkm_gsp * gsp,struct nvfw_gsp_rpc * msg)472 r535_gsp_msg_done(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg)
473 {
474 kvfree(msg);
475 }
476
477 static void
r535_gsp_msg_dump(struct nvkm_gsp * gsp,struct nvfw_gsp_rpc * msg,int lvl)478 r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl)
479 {
480 if (gsp->subdev.debug >= lvl) {
481 nvkm_printk__(&gsp->subdev, lvl, info,
482 "msg fn:%d len:0x%x/0x%zx res:0x%x resp:0x%x\n",
483 msg->function, msg->length, msg->length - sizeof(*msg),
484 msg->rpc_result, msg->rpc_result_private);
485 print_hex_dump(KERN_INFO, "msg: ", DUMP_PREFIX_OFFSET, 16, 1,
486 msg->data, msg->length - sizeof(*msg), true);
487 }
488 }
489
490 static struct nvfw_gsp_rpc *
r535_gsp_msg_recv(struct nvkm_gsp * gsp,int fn,u32 gsp_rpc_len)491 r535_gsp_msg_recv(struct nvkm_gsp *gsp, int fn, u32 gsp_rpc_len)
492 {
493 struct nvkm_subdev *subdev = &gsp->subdev;
494 struct nvfw_gsp_rpc *rpc;
495 int retries = 4000000, i;
496
497 retry:
498 rpc = r535_gsp_msgq_peek(gsp, sizeof(*rpc), &retries);
499 if (IS_ERR_OR_NULL(rpc))
500 return rpc;
501
502 rpc = r535_gsp_msgq_recv(gsp, gsp_rpc_len, &retries);
503 if (IS_ERR_OR_NULL(rpc))
504 return rpc;
505
506 if (rpc->rpc_result) {
507 r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
508 r535_gsp_msg_done(gsp, rpc);
509 return ERR_PTR(-EINVAL);
510 }
511
512 r535_gsp_msg_dump(gsp, rpc, NV_DBG_TRACE);
513
514 if (fn && rpc->function == fn) {
515 if (gsp_rpc_len) {
516 if (rpc->length < gsp_rpc_len) {
517 nvkm_error(subdev, "rpc len %d < %d\n",
518 rpc->length, gsp_rpc_len);
519 r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
520 r535_gsp_msg_done(gsp, rpc);
521 return ERR_PTR(-EIO);
522 }
523
524 return rpc;
525 }
526
527 r535_gsp_msg_done(gsp, rpc);
528 return NULL;
529 }
530
531 for (i = 0; i < gsp->msgq.ntfy_nr; i++) {
532 struct nvkm_gsp_msgq_ntfy *ntfy = &gsp->msgq.ntfy[i];
533
534 if (ntfy->fn == rpc->function) {
535 if (ntfy->func)
536 ntfy->func(ntfy->priv, ntfy->fn, rpc->data,
537 rpc->length - sizeof(*rpc));
538 break;
539 }
540 }
541
542 if (i == gsp->msgq.ntfy_nr)
543 r535_gsp_msg_dump(gsp, rpc, NV_DBG_WARN);
544
545 r535_gsp_msg_done(gsp, rpc);
546 if (fn)
547 goto retry;
548
549 if (*gsp->msgq.rptr != *gsp->msgq.wptr)
550 goto retry;
551
552 return NULL;
553 }
554
555 static int
r535_gsp_msg_ntfy_add(struct nvkm_gsp * gsp,u32 fn,nvkm_gsp_msg_ntfy_func func,void * priv)556 r535_gsp_msg_ntfy_add(struct nvkm_gsp *gsp, u32 fn, nvkm_gsp_msg_ntfy_func func, void *priv)
557 {
558 int ret = 0;
559
560 mutex_lock(&gsp->msgq.mutex);
561 if (WARN_ON(gsp->msgq.ntfy_nr >= ARRAY_SIZE(gsp->msgq.ntfy))) {
562 ret = -ENOSPC;
563 } else {
564 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].fn = fn;
565 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].func = func;
566 gsp->msgq.ntfy[gsp->msgq.ntfy_nr].priv = priv;
567 gsp->msgq.ntfy_nr++;
568 }
569 mutex_unlock(&gsp->msgq.mutex);
570 return ret;
571 }
572
573 static int
r535_gsp_rpc_poll(struct nvkm_gsp * gsp,u32 fn)574 r535_gsp_rpc_poll(struct nvkm_gsp *gsp, u32 fn)
575 {
576 void *repv;
577
578 mutex_lock(&gsp->cmdq.mutex);
579 repv = r535_gsp_msg_recv(gsp, fn, 0);
580 mutex_unlock(&gsp->cmdq.mutex);
581 if (IS_ERR(repv))
582 return PTR_ERR(repv);
583
584 return 0;
585 }
586
587 static void *
r535_gsp_rpc_send(struct nvkm_gsp * gsp,void * payload,bool wait,u32 gsp_rpc_len)588 r535_gsp_rpc_send(struct nvkm_gsp *gsp, void *payload, bool wait,
589 u32 gsp_rpc_len)
590 {
591 struct nvfw_gsp_rpc *rpc = to_gsp_hdr(payload, rpc);
592 struct nvfw_gsp_rpc *msg;
593 u32 fn = rpc->function;
594 void *repv = NULL;
595 int ret;
596
597 if (gsp->subdev.debug >= NV_DBG_TRACE) {
598 nvkm_trace(&gsp->subdev, "rpc fn:%d len:0x%x/0x%zx\n", rpc->function,
599 rpc->length, rpc->length - sizeof(*rpc));
600 print_hex_dump(KERN_INFO, "rpc: ", DUMP_PREFIX_OFFSET, 16, 1,
601 rpc->data, rpc->length - sizeof(*rpc), true);
602 }
603
604 ret = r535_gsp_cmdq_push(gsp, rpc);
605 if (ret)
606 return ERR_PTR(ret);
607
608 if (wait) {
609 msg = r535_gsp_msg_recv(gsp, fn, gsp_rpc_len);
610 if (!IS_ERR_OR_NULL(msg))
611 repv = msg->data;
612 else
613 repv = msg;
614 }
615
616 return repv;
617 }
618
619 static void
r535_gsp_event_dtor(struct nvkm_gsp_event * event)620 r535_gsp_event_dtor(struct nvkm_gsp_event *event)
621 {
622 struct nvkm_gsp_device *device = event->device;
623 struct nvkm_gsp_client *client = device->object.client;
624 struct nvkm_gsp *gsp = client->gsp;
625
626 mutex_lock(&gsp->client_id.mutex);
627 if (event->func) {
628 list_del(&event->head);
629 event->func = NULL;
630 }
631 mutex_unlock(&gsp->client_id.mutex);
632
633 nvkm_gsp_rm_free(&event->object);
634 event->device = NULL;
635 }
636
637 static int
r535_gsp_device_event_get(struct nvkm_gsp_event * event)638 r535_gsp_device_event_get(struct nvkm_gsp_event *event)
639 {
640 struct nvkm_gsp_device *device = event->device;
641 NV2080_CTRL_EVENT_SET_NOTIFICATION_PARAMS *ctrl;
642
643 ctrl = nvkm_gsp_rm_ctrl_get(&device->subdevice,
644 NV2080_CTRL_CMD_EVENT_SET_NOTIFICATION, sizeof(*ctrl));
645 if (IS_ERR(ctrl))
646 return PTR_ERR(ctrl);
647
648 ctrl->event = event->id;
649 ctrl->action = NV2080_CTRL_EVENT_SET_NOTIFICATION_ACTION_REPEAT;
650 return nvkm_gsp_rm_ctrl_wr(&device->subdevice, ctrl);
651 }
652
653 static int
r535_gsp_device_event_ctor(struct nvkm_gsp_device * device,u32 handle,u32 id,nvkm_gsp_event_func func,struct nvkm_gsp_event * event)654 r535_gsp_device_event_ctor(struct nvkm_gsp_device *device, u32 handle, u32 id,
655 nvkm_gsp_event_func func, struct nvkm_gsp_event *event)
656 {
657 struct nvkm_gsp_client *client = device->object.client;
658 struct nvkm_gsp *gsp = client->gsp;
659 NV0005_ALLOC_PARAMETERS *args;
660 int ret;
661
662 args = nvkm_gsp_rm_alloc_get(&device->subdevice, handle,
663 NV01_EVENT_KERNEL_CALLBACK_EX, sizeof(*args),
664 &event->object);
665 if (IS_ERR(args))
666 return PTR_ERR(args);
667
668 args->hParentClient = client->object.handle;
669 args->hSrcResource = 0;
670 args->hClass = NV01_EVENT_KERNEL_CALLBACK_EX;
671 args->notifyIndex = NV01_EVENT_CLIENT_RM | id;
672 args->data = NULL;
673
674 ret = nvkm_gsp_rm_alloc_wr(&event->object, args);
675 if (ret)
676 return ret;
677
678 event->device = device;
679 event->id = id;
680
681 ret = r535_gsp_device_event_get(event);
682 if (ret) {
683 nvkm_gsp_event_dtor(event);
684 return ret;
685 }
686
687 mutex_lock(&gsp->client_id.mutex);
688 event->func = func;
689 list_add(&event->head, &client->events);
690 mutex_unlock(&gsp->client_id.mutex);
691 return 0;
692 }
693
694 static void
r535_gsp_device_dtor(struct nvkm_gsp_device * device)695 r535_gsp_device_dtor(struct nvkm_gsp_device *device)
696 {
697 nvkm_gsp_rm_free(&device->subdevice);
698 nvkm_gsp_rm_free(&device->object);
699 }
700
701 static int
r535_gsp_subdevice_ctor(struct nvkm_gsp_device * device)702 r535_gsp_subdevice_ctor(struct nvkm_gsp_device *device)
703 {
704 NV2080_ALLOC_PARAMETERS *args;
705
706 return nvkm_gsp_rm_alloc(&device->object, 0x5d1d0000, NV20_SUBDEVICE_0, sizeof(*args),
707 &device->subdevice);
708 }
709
710 static int
r535_gsp_device_ctor(struct nvkm_gsp_client * client,struct nvkm_gsp_device * device)711 r535_gsp_device_ctor(struct nvkm_gsp_client *client, struct nvkm_gsp_device *device)
712 {
713 NV0080_ALLOC_PARAMETERS *args;
714 int ret;
715
716 args = nvkm_gsp_rm_alloc_get(&client->object, 0xde1d0000, NV01_DEVICE_0, sizeof(*args),
717 &device->object);
718 if (IS_ERR(args))
719 return PTR_ERR(args);
720
721 args->hClientShare = client->object.handle;
722
723 ret = nvkm_gsp_rm_alloc_wr(&device->object, args);
724 if (ret)
725 return ret;
726
727 ret = r535_gsp_subdevice_ctor(device);
728 if (ret)
729 nvkm_gsp_rm_free(&device->object);
730
731 return ret;
732 }
733
734 static void
r535_gsp_client_dtor(struct nvkm_gsp_client * client)735 r535_gsp_client_dtor(struct nvkm_gsp_client *client)
736 {
737 struct nvkm_gsp *gsp = client->gsp;
738
739 nvkm_gsp_rm_free(&client->object);
740
741 mutex_lock(&gsp->client_id.mutex);
742 idr_remove(&gsp->client_id.idr, client->object.handle & 0xffff);
743 mutex_unlock(&gsp->client_id.mutex);
744
745 client->gsp = NULL;
746 }
747
748 static int
r535_gsp_client_ctor(struct nvkm_gsp * gsp,struct nvkm_gsp_client * client)749 r535_gsp_client_ctor(struct nvkm_gsp *gsp, struct nvkm_gsp_client *client)
750 {
751 NV0000_ALLOC_PARAMETERS *args;
752 int ret;
753
754 mutex_lock(&gsp->client_id.mutex);
755 ret = idr_alloc(&gsp->client_id.idr, client, 0, 0xffff + 1, GFP_KERNEL);
756 mutex_unlock(&gsp->client_id.mutex);
757 if (ret < 0)
758 return ret;
759
760 client->gsp = gsp;
761 client->object.client = client;
762 INIT_LIST_HEAD(&client->events);
763
764 args = nvkm_gsp_rm_alloc_get(&client->object, 0xc1d00000 | ret, NV01_ROOT, sizeof(*args),
765 &client->object);
766 if (IS_ERR(args)) {
767 r535_gsp_client_dtor(client);
768 return ret;
769 }
770
771 args->hClient = client->object.handle;
772 args->processID = ~0;
773
774 ret = nvkm_gsp_rm_alloc_wr(&client->object, args);
775 if (ret) {
776 r535_gsp_client_dtor(client);
777 return ret;
778 }
779
780 return 0;
781 }
782
783 static int
r535_gsp_rpc_rm_free(struct nvkm_gsp_object * object)784 r535_gsp_rpc_rm_free(struct nvkm_gsp_object *object)
785 {
786 struct nvkm_gsp_client *client = object->client;
787 struct nvkm_gsp *gsp = client->gsp;
788 rpc_free_v03_00 *rpc;
789
790 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x free\n",
791 client->object.handle, object->handle);
792
793 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_FREE, sizeof(*rpc));
794 if (WARN_ON(IS_ERR_OR_NULL(rpc)))
795 return -EIO;
796
797 rpc->params.hRoot = client->object.handle;
798 rpc->params.hObjectParent = 0;
799 rpc->params.hObjectOld = object->handle;
800 return nvkm_gsp_rpc_wr(gsp, rpc, true);
801 }
802
803 static void
r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object * object,void * params)804 r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object *object, void *params)
805 {
806 rpc_gsp_rm_alloc_v03_00 *rpc = to_payload_hdr(params, rpc);
807
808 nvkm_gsp_rpc_done(object->client->gsp, rpc);
809 }
810
811 static void *
r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object * object,void * params)812 r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object *object, void *params)
813 {
814 rpc_gsp_rm_alloc_v03_00 *rpc = to_payload_hdr(params, rpc);
815 struct nvkm_gsp *gsp = object->client->gsp;
816 void *ret = NULL;
817
818 rpc = nvkm_gsp_rpc_push(gsp, rpc, true, sizeof(*rpc));
819 if (IS_ERR_OR_NULL(rpc))
820 return rpc;
821
822 if (rpc->status) {
823 ret = ERR_PTR(r535_rpc_status_to_errno(rpc->status));
824 if (PTR_ERR(ret) != -EAGAIN && PTR_ERR(ret) != -EBUSY)
825 nvkm_error(&gsp->subdev, "RM_ALLOC: 0x%x\n", rpc->status);
826 }
827
828 nvkm_gsp_rpc_done(gsp, rpc);
829
830 return ret;
831 }
832
833 static void *
r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object * object,u32 oclass,u32 params_size)834 r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object *object, u32 oclass,
835 u32 params_size)
836 {
837 struct nvkm_gsp_client *client = object->client;
838 struct nvkm_gsp *gsp = client->gsp;
839 rpc_gsp_rm_alloc_v03_00 *rpc;
840
841 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x new obj:0x%08x\n",
842 client->object.handle, object->parent->handle,
843 object->handle);
844
845 nvkm_debug(&gsp->subdev, "cls:0x%08x params_size:%d\n", oclass,
846 params_size);
847
848 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_ALLOC,
849 sizeof(*rpc) + params_size);
850 if (IS_ERR(rpc))
851 return rpc;
852
853 rpc->hClient = client->object.handle;
854 rpc->hParent = object->parent->handle;
855 rpc->hObject = object->handle;
856 rpc->hClass = oclass;
857 rpc->status = 0;
858 rpc->paramsSize = params_size;
859 return rpc->params;
860 }
861
862 static void
r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object * object,void * params)863 r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object *object, void *params)
864 {
865 rpc_gsp_rm_control_v03_00 *rpc = to_payload_hdr(params, rpc);
866
867 if (!params)
868 return;
869 nvkm_gsp_rpc_done(object->client->gsp, rpc);
870 }
871
872 static int
r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object * object,void ** params,u32 repc)873 r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object *object, void **params, u32 repc)
874 {
875 rpc_gsp_rm_control_v03_00 *rpc = to_payload_hdr((*params), rpc);
876 struct nvkm_gsp *gsp = object->client->gsp;
877 int ret = 0;
878
879 rpc = nvkm_gsp_rpc_push(gsp, rpc, true, repc);
880 if (IS_ERR_OR_NULL(rpc)) {
881 *params = NULL;
882 return PTR_ERR(rpc);
883 }
884
885 if (rpc->status) {
886 ret = r535_rpc_status_to_errno(rpc->status);
887 if (ret != -EAGAIN && ret != -EBUSY)
888 nvkm_error(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x failed: 0x%08x\n",
889 object->client->object.handle, object->handle, rpc->cmd, rpc->status);
890 }
891
892 if (repc)
893 *params = rpc->params;
894 else
895 nvkm_gsp_rpc_done(gsp, rpc);
896
897 return ret;
898 }
899
900 static void *
r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object * object,u32 cmd,u32 params_size)901 r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object *object, u32 cmd, u32 params_size)
902 {
903 struct nvkm_gsp_client *client = object->client;
904 struct nvkm_gsp *gsp = client->gsp;
905 rpc_gsp_rm_control_v03_00 *rpc;
906
907 nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x params_size:%d\n",
908 client->object.handle, object->handle, cmd, params_size);
909
910 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_CONTROL,
911 sizeof(*rpc) + params_size);
912 if (IS_ERR(rpc))
913 return rpc;
914
915 rpc->hClient = client->object.handle;
916 rpc->hObject = object->handle;
917 rpc->cmd = cmd;
918 rpc->status = 0;
919 rpc->paramsSize = params_size;
920 return rpc->params;
921 }
922
923 static void
r535_gsp_rpc_done(struct nvkm_gsp * gsp,void * repv)924 r535_gsp_rpc_done(struct nvkm_gsp *gsp, void *repv)
925 {
926 struct nvfw_gsp_rpc *rpc = container_of(repv, typeof(*rpc), data);
927
928 r535_gsp_msg_done(gsp, rpc);
929 }
930
931 static void *
r535_gsp_rpc_get(struct nvkm_gsp * gsp,u32 fn,u32 payload_size)932 r535_gsp_rpc_get(struct nvkm_gsp *gsp, u32 fn, u32 payload_size)
933 {
934 struct nvfw_gsp_rpc *rpc;
935
936 rpc = r535_gsp_cmdq_get(gsp, ALIGN(sizeof(*rpc) + payload_size,
937 sizeof(u64)));
938 if (IS_ERR(rpc))
939 return ERR_CAST(rpc);
940
941 rpc->header_version = 0x03000000;
942 rpc->signature = ('C' << 24) | ('P' << 16) | ('R' << 8) | 'V';
943 rpc->function = fn;
944 rpc->rpc_result = 0xffffffff;
945 rpc->rpc_result_private = 0xffffffff;
946 rpc->length = sizeof(*rpc) + payload_size;
947 return rpc->data;
948 }
949
950 static void *
r535_gsp_rpc_push(struct nvkm_gsp * gsp,void * payload,bool wait,u32 gsp_rpc_len)951 r535_gsp_rpc_push(struct nvkm_gsp *gsp, void *payload, bool wait,
952 u32 gsp_rpc_len)
953 {
954 struct nvfw_gsp_rpc *rpc = to_gsp_hdr(payload, rpc);
955 struct r535_gsp_msg *msg = to_gsp_hdr(rpc, msg);
956 const u32 max_rpc_size = GSP_MSG_MAX_SIZE - sizeof(*msg);
957 const u32 max_payload_size = max_rpc_size - sizeof(*rpc);
958 u32 payload_size = rpc->length - sizeof(*rpc);
959 void *repv;
960
961 mutex_lock(&gsp->cmdq.mutex);
962 if (payload_size > max_payload_size) {
963 const u32 fn = rpc->function;
964 u32 remain_payload_size = payload_size;
965
966 /* Adjust length, and send initial RPC. */
967 rpc->length = sizeof(*rpc) + max_payload_size;
968 msg->checksum = rpc->length;
969
970 repv = r535_gsp_rpc_send(gsp, payload, false, 0);
971 if (IS_ERR(repv))
972 goto done;
973
974 payload += max_payload_size;
975 remain_payload_size -= max_payload_size;
976
977 /* Remaining chunks sent as CONTINUATION_RECORD RPCs. */
978 while (remain_payload_size) {
979 u32 size = min(remain_payload_size,
980 max_payload_size);
981 void *next;
982
983 next = r535_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD, size);
984 if (IS_ERR(next)) {
985 repv = next;
986 goto done;
987 }
988
989 memcpy(next, payload, size);
990
991 repv = r535_gsp_rpc_send(gsp, next, false, 0);
992 if (IS_ERR(repv))
993 goto done;
994
995 payload += size;
996 remain_payload_size -= size;
997 }
998
999 /* Wait for reply. */
1000 rpc = r535_gsp_msg_recv(gsp, fn, payload_size +
1001 sizeof(*rpc));
1002 if (!IS_ERR_OR_NULL(rpc)) {
1003 if (wait) {
1004 repv = rpc->data;
1005 } else {
1006 nvkm_gsp_rpc_done(gsp, rpc);
1007 repv = NULL;
1008 }
1009 } else {
1010 repv = wait ? rpc : NULL;
1011 }
1012 } else {
1013 repv = r535_gsp_rpc_send(gsp, payload, wait, gsp_rpc_len);
1014 }
1015
1016 done:
1017 mutex_unlock(&gsp->cmdq.mutex);
1018 return repv;
1019 }
1020
1021 const struct nvkm_gsp_rm
1022 r535_gsp_rm = {
1023 .rpc_get = r535_gsp_rpc_get,
1024 .rpc_push = r535_gsp_rpc_push,
1025 .rpc_done = r535_gsp_rpc_done,
1026
1027 .rm_ctrl_get = r535_gsp_rpc_rm_ctrl_get,
1028 .rm_ctrl_push = r535_gsp_rpc_rm_ctrl_push,
1029 .rm_ctrl_done = r535_gsp_rpc_rm_ctrl_done,
1030
1031 .rm_alloc_get = r535_gsp_rpc_rm_alloc_get,
1032 .rm_alloc_push = r535_gsp_rpc_rm_alloc_push,
1033 .rm_alloc_done = r535_gsp_rpc_rm_alloc_done,
1034
1035 .rm_free = r535_gsp_rpc_rm_free,
1036
1037 .client_ctor = r535_gsp_client_ctor,
1038 .client_dtor = r535_gsp_client_dtor,
1039
1040 .device_ctor = r535_gsp_device_ctor,
1041 .device_dtor = r535_gsp_device_dtor,
1042
1043 .event_ctor = r535_gsp_device_event_ctor,
1044 .event_dtor = r535_gsp_event_dtor,
1045 };
1046
1047 static void
r535_gsp_msgq_work(struct work_struct * work)1048 r535_gsp_msgq_work(struct work_struct *work)
1049 {
1050 struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work);
1051
1052 mutex_lock(&gsp->cmdq.mutex);
1053 if (*gsp->msgq.rptr != *gsp->msgq.wptr)
1054 r535_gsp_msg_recv(gsp, 0, 0);
1055 mutex_unlock(&gsp->cmdq.mutex);
1056 }
1057
1058 static irqreturn_t
r535_gsp_intr(struct nvkm_inth * inth)1059 r535_gsp_intr(struct nvkm_inth *inth)
1060 {
1061 struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth);
1062 struct nvkm_subdev *subdev = &gsp->subdev;
1063 u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008);
1064 u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 +
1065 gsp->falcon.func->riscv_irqmask);
1066 u32 stat = intr & inte;
1067
1068 if (!stat) {
1069 nvkm_debug(subdev, "inte %08x %08x\n", intr, inte);
1070 return IRQ_NONE;
1071 }
1072
1073 if (stat & 0x00000040) {
1074 nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040);
1075 schedule_work(&gsp->msgq.work);
1076 stat &= ~0x00000040;
1077 }
1078
1079 if (stat) {
1080 nvkm_error(subdev, "intr %08x\n", stat);
1081 nvkm_falcon_wr32(&gsp->falcon, 0x014, stat);
1082 nvkm_falcon_wr32(&gsp->falcon, 0x004, stat);
1083 }
1084
1085 nvkm_falcon_intr_retrigger(&gsp->falcon);
1086 return IRQ_HANDLED;
1087 }
1088
1089 static int
r535_gsp_intr_get_table(struct nvkm_gsp * gsp)1090 r535_gsp_intr_get_table(struct nvkm_gsp *gsp)
1091 {
1092 NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl;
1093 int ret = 0;
1094
1095 ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice,
1096 NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl));
1097 if (IS_ERR(ctrl))
1098 return PTR_ERR(ctrl);
1099
1100 ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl));
1101 if (WARN_ON(ret)) {
1102 nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
1103 return ret;
1104 }
1105
1106 for (unsigned i = 0; i < ctrl->tableLen; i++) {
1107 enum nvkm_subdev_type type;
1108 int inst;
1109
1110 nvkm_debug(&gsp->subdev,
1111 "%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i,
1112 ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask,
1113 ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall);
1114
1115 switch (ctrl->table[i].engineIdx) {
1116 case MC_ENGINE_IDX_GSP:
1117 type = NVKM_SUBDEV_GSP;
1118 inst = 0;
1119 break;
1120 case MC_ENGINE_IDX_DISP:
1121 type = NVKM_ENGINE_DISP;
1122 inst = 0;
1123 break;
1124 case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9:
1125 type = NVKM_ENGINE_CE;
1126 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_CE0;
1127 break;
1128 case MC_ENGINE_IDX_GR0:
1129 type = NVKM_ENGINE_GR;
1130 inst = 0;
1131 break;
1132 case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7:
1133 type = NVKM_ENGINE_NVDEC;
1134 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVDEC0;
1135 break;
1136 case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2:
1137 type = NVKM_ENGINE_NVENC;
1138 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_MSENC;
1139 break;
1140 case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7:
1141 type = NVKM_ENGINE_NVJPG;
1142 inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVJPEG0;
1143 break;
1144 case MC_ENGINE_IDX_OFA0:
1145 type = NVKM_ENGINE_OFA;
1146 inst = 0;
1147 break;
1148 default:
1149 continue;
1150 }
1151
1152 if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) {
1153 ret = -ENOSPC;
1154 break;
1155 }
1156
1157 gsp->intr[gsp->intr_nr].type = type;
1158 gsp->intr[gsp->intr_nr].inst = inst;
1159 gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall;
1160 gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall;
1161 gsp->intr_nr++;
1162 }
1163
1164 nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
1165 return ret;
1166 }
1167
1168 static int
r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp * gsp)1169 r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp *gsp)
1170 {
1171 GspStaticConfigInfo *rpc;
1172 int last_usable = -1;
1173
1174 rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc));
1175 if (IS_ERR(rpc))
1176 return PTR_ERR(rpc);
1177
1178 gsp->internal.client.object.client = &gsp->internal.client;
1179 gsp->internal.client.object.parent = NULL;
1180 gsp->internal.client.object.handle = rpc->hInternalClient;
1181 gsp->internal.client.gsp = gsp;
1182
1183 gsp->internal.device.object.client = &gsp->internal.client;
1184 gsp->internal.device.object.parent = &gsp->internal.client.object;
1185 gsp->internal.device.object.handle = rpc->hInternalDevice;
1186
1187 gsp->internal.device.subdevice.client = &gsp->internal.client;
1188 gsp->internal.device.subdevice.parent = &gsp->internal.device.object;
1189 gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice;
1190
1191 gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase;
1192 gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase;
1193
1194 for (int i = 0; i < rpc->fbRegionInfoParams.numFBRegions; i++) {
1195 NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg =
1196 &rpc->fbRegionInfoParams.fbRegion[i];
1197
1198 nvkm_debug(&gsp->subdev, "fb region %d: "
1199 "%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i,
1200 reg->base, reg->limit, reg->reserved, reg->performance,
1201 reg->supportCompressed, reg->supportISO, reg->bProtected);
1202
1203 if (!reg->reserved && !reg->bProtected) {
1204 if (reg->supportCompressed && reg->supportISO &&
1205 !WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) {
1206 const u64 size = (reg->limit + 1) - reg->base;
1207
1208 gsp->fb.region[gsp->fb.region_nr].addr = reg->base;
1209 gsp->fb.region[gsp->fb.region_nr].size = size;
1210 gsp->fb.region_nr++;
1211 }
1212
1213 last_usable = i;
1214 }
1215 }
1216
1217 if (last_usable >= 0) {
1218 u32 rsvd_base = rpc->fbRegionInfoParams.fbRegion[last_usable].limit + 1;
1219
1220 gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base;
1221 }
1222
1223 for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) {
1224 if (rpc->gpcInfo.gpcMask & BIT(gpc)) {
1225 gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask);
1226 gsp->gr.gpcs++;
1227 }
1228 }
1229
1230 nvkm_gsp_rpc_done(gsp, rpc);
1231 return 0;
1232 }
1233
1234 static void
nvkm_gsp_mem_dtor(struct nvkm_gsp_mem * mem)1235 nvkm_gsp_mem_dtor(struct nvkm_gsp_mem *mem)
1236 {
1237 if (mem->data) {
1238 /*
1239 * Poison the buffer to catch any unexpected access from
1240 * GSP-RM if the buffer was prematurely freed.
1241 */
1242 memset(mem->data, 0xFF, mem->size);
1243
1244 dma_free_coherent(mem->dev, mem->size, mem->data, mem->addr);
1245 put_device(mem->dev);
1246
1247 memset(mem, 0, sizeof(*mem));
1248 }
1249 }
1250
1251 /**
1252 * nvkm_gsp_mem_ctor - constructor for nvkm_gsp_mem objects
1253 * @gsp: gsp pointer
1254 * @size: number of bytes to allocate
1255 * @mem: nvkm_gsp_mem object to initialize
1256 *
1257 * Allocates a block of memory for use with GSP.
1258 *
1259 * This memory block can potentially out-live the driver's remove() callback,
1260 * so we take a device reference to ensure its lifetime. The reference is
1261 * dropped in the destructor.
1262 */
1263 static int
nvkm_gsp_mem_ctor(struct nvkm_gsp * gsp,size_t size,struct nvkm_gsp_mem * mem)1264 nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem)
1265 {
1266 mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL);
1267 if (WARN_ON(!mem->data))
1268 return -ENOMEM;
1269
1270 mem->size = size;
1271 mem->dev = get_device(gsp->subdev.device->dev);
1272
1273 return 0;
1274 }
1275
1276 static int
r535_gsp_postinit(struct nvkm_gsp * gsp)1277 r535_gsp_postinit(struct nvkm_gsp *gsp)
1278 {
1279 struct nvkm_device *device = gsp->subdev.device;
1280 int ret;
1281
1282 ret = r535_gsp_rpc_get_gsp_static_info(gsp);
1283 if (WARN_ON(ret))
1284 return ret;
1285
1286 INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work);
1287
1288 ret = r535_gsp_intr_get_table(gsp);
1289 if (WARN_ON(ret))
1290 return ret;
1291
1292 ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst);
1293 if (WARN_ON(ret < 0))
1294 return ret;
1295
1296 ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev,
1297 r535_gsp_intr, &gsp->subdev.inth);
1298 if (WARN_ON(ret))
1299 return ret;
1300
1301 nvkm_inth_allow(&gsp->subdev.inth);
1302 nvkm_wr32(device, 0x110004, 0x00000040);
1303
1304 /* Release the DMA buffers that were needed only for boot and init */
1305 nvkm_gsp_mem_dtor(&gsp->boot.fw);
1306 nvkm_gsp_mem_dtor(&gsp->libos);
1307
1308 return ret;
1309 }
1310
1311 static int
r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp * gsp,bool suspend)1312 r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend)
1313 {
1314 rpc_unloading_guest_driver_v1F_07 *rpc;
1315
1316 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc));
1317 if (IS_ERR(rpc))
1318 return PTR_ERR(rpc);
1319
1320 if (suspend) {
1321 rpc->bInPMTransition = 1;
1322 rpc->bGc6Entering = 0;
1323 rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
1324 } else {
1325 rpc->bInPMTransition = 0;
1326 rpc->bGc6Entering = 0;
1327 rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0;
1328 }
1329
1330 return nvkm_gsp_rpc_wr(gsp, rpc, true);
1331 }
1332
1333 enum registry_type {
1334 REGISTRY_TABLE_ENTRY_TYPE_DWORD = 1, /* 32-bit unsigned integer */
1335 REGISTRY_TABLE_ENTRY_TYPE_BINARY = 2, /* Binary blob */
1336 REGISTRY_TABLE_ENTRY_TYPE_STRING = 3, /* Null-terminated string */
1337 };
1338
1339 /* An arbitrary limit to the length of a registry key */
1340 #define REGISTRY_MAX_KEY_LENGTH 64
1341
1342 /**
1343 * struct registry_list_entry - linked list member for a registry key/value
1344 * @head: list_head struct
1345 * @type: dword, binary, or string
1346 * @klen: the length of name of the key
1347 * @vlen: the length of the value
1348 * @key: the key name
1349 * @dword: the data, if REGISTRY_TABLE_ENTRY_TYPE_DWORD
1350 * @binary: the data, if TYPE_BINARY or TYPE_STRING
1351 *
1352 * Every registry key/value is represented internally by this struct.
1353 *
1354 * Type DWORD is a simple 32-bit unsigned integer, and its value is stored in
1355 * @dword.
1356 *
1357 * Types BINARY and STRING are variable-length binary blobs. The only real
1358 * difference between BINARY and STRING is that STRING is null-terminated and
1359 * is expected to contain only printable characters.
1360 *
1361 * Note: it is technically possible to have multiple keys with the same name
1362 * but different types, but this is not useful since GSP-RM expects keys to
1363 * have only one specific type.
1364 */
1365 struct registry_list_entry {
1366 struct list_head head;
1367 enum registry_type type;
1368 size_t klen;
1369 char key[REGISTRY_MAX_KEY_LENGTH];
1370 size_t vlen;
1371 u32 dword; /* TYPE_DWORD */
1372 u8 binary[] __counted_by(vlen); /* TYPE_BINARY or TYPE_STRING */
1373 };
1374
1375 /**
1376 * add_registry -- adds a registry entry
1377 * @gsp: gsp pointer
1378 * @key: name of the registry key
1379 * @type: type of data
1380 * @data: pointer to value
1381 * @length: size of data, in bytes
1382 *
1383 * Adds a registry key/value pair to the registry database.
1384 *
1385 * This function collects the registry information in a linked list. After
1386 * all registry keys have been added, build_registry() is used to create the
1387 * RPC data structure.
1388 *
1389 * registry_rpc_size is a running total of the size of all registry keys.
1390 * It's used to avoid an O(n) calculation of the size when the RPC is built.
1391 *
1392 * Returns 0 on success, or negative error code on error.
1393 */
add_registry(struct nvkm_gsp * gsp,const char * key,enum registry_type type,const void * data,size_t length)1394 static int add_registry(struct nvkm_gsp *gsp, const char *key,
1395 enum registry_type type, const void *data, size_t length)
1396 {
1397 struct registry_list_entry *reg;
1398 const size_t nlen = strnlen(key, REGISTRY_MAX_KEY_LENGTH) + 1;
1399 size_t alloc_size; /* extra bytes to alloc for binary or string value */
1400
1401 if (nlen > REGISTRY_MAX_KEY_LENGTH)
1402 return -EINVAL;
1403
1404 alloc_size = (type == REGISTRY_TABLE_ENTRY_TYPE_DWORD) ? 0 : length;
1405
1406 reg = kmalloc(sizeof(*reg) + alloc_size, GFP_KERNEL);
1407 if (!reg)
1408 return -ENOMEM;
1409
1410 switch (type) {
1411 case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
1412 reg->dword = *(const u32 *)(data);
1413 break;
1414 case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
1415 case REGISTRY_TABLE_ENTRY_TYPE_STRING:
1416 memcpy(reg->binary, data, alloc_size);
1417 break;
1418 default:
1419 nvkm_error(&gsp->subdev, "unrecognized registry type %u for '%s'\n",
1420 type, key);
1421 kfree(reg);
1422 return -EINVAL;
1423 }
1424
1425 memcpy(reg->key, key, nlen);
1426 reg->klen = nlen;
1427 reg->vlen = length;
1428 reg->type = type;
1429
1430 list_add_tail(®->head, &gsp->registry_list);
1431 gsp->registry_rpc_size += sizeof(PACKED_REGISTRY_ENTRY) + nlen + alloc_size;
1432
1433 return 0;
1434 }
1435
add_registry_num(struct nvkm_gsp * gsp,const char * key,u32 value)1436 static int add_registry_num(struct nvkm_gsp *gsp, const char *key, u32 value)
1437 {
1438 return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_DWORD,
1439 &value, sizeof(u32));
1440 }
1441
add_registry_string(struct nvkm_gsp * gsp,const char * key,const char * value)1442 static int add_registry_string(struct nvkm_gsp *gsp, const char *key, const char *value)
1443 {
1444 return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_STRING,
1445 value, strlen(value) + 1);
1446 }
1447
1448 /**
1449 * build_registry -- create the registry RPC data
1450 * @gsp: gsp pointer
1451 * @registry: pointer to the RPC payload to fill
1452 *
1453 * After all registry key/value pairs have been added, call this function to
1454 * build the RPC.
1455 *
1456 * The registry RPC looks like this:
1457 *
1458 * +-----------------+
1459 * |NvU32 size; |
1460 * |NvU32 numEntries;|
1461 * +-----------------+
1462 * +----------------------------------------+
1463 * |PACKED_REGISTRY_ENTRY |
1464 * +----------------------------------------+
1465 * |Null-terminated key (string) for entry 0|
1466 * +----------------------------------------+
1467 * |Binary/string data value for entry 0 | (only if necessary)
1468 * +----------------------------------------+
1469 *
1470 * +----------------------------------------+
1471 * |PACKED_REGISTRY_ENTRY |
1472 * +----------------------------------------+
1473 * |Null-terminated key (string) for entry 1|
1474 * +----------------------------------------+
1475 * |Binary/string data value for entry 1 | (only if necessary)
1476 * +----------------------------------------+
1477 * ... (and so on, one copy for each entry)
1478 *
1479 *
1480 * The 'data' field of an entry is either a 32-bit integer (for type DWORD)
1481 * or an offset into the PACKED_REGISTRY_TABLE (for types BINARY and STRING).
1482 *
1483 * All memory allocated by add_registry() is released.
1484 */
build_registry(struct nvkm_gsp * gsp,PACKED_REGISTRY_TABLE * registry)1485 static void build_registry(struct nvkm_gsp *gsp, PACKED_REGISTRY_TABLE *registry)
1486 {
1487 struct registry_list_entry *reg, *n;
1488 size_t str_offset;
1489 unsigned int i = 0;
1490
1491 registry->numEntries = list_count_nodes(&gsp->registry_list);
1492 str_offset = struct_size(registry, entries, registry->numEntries);
1493
1494 list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
1495 registry->entries[i].type = reg->type;
1496 registry->entries[i].length = reg->vlen;
1497
1498 /* Append the key name to the table */
1499 registry->entries[i].nameOffset = str_offset;
1500 memcpy((void *)registry + str_offset, reg->key, reg->klen);
1501 str_offset += reg->klen;
1502
1503 switch (reg->type) {
1504 case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
1505 registry->entries[i].data = reg->dword;
1506 break;
1507 case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
1508 case REGISTRY_TABLE_ENTRY_TYPE_STRING:
1509 /* If the type is binary or string, also append the value */
1510 memcpy((void *)registry + str_offset, reg->binary, reg->vlen);
1511 registry->entries[i].data = str_offset;
1512 str_offset += reg->vlen;
1513 break;
1514 default:
1515 break;
1516 }
1517
1518 i++;
1519 list_del(®->head);
1520 kfree(reg);
1521 }
1522
1523 /* Double-check that we calculated the sizes correctly */
1524 WARN_ON(gsp->registry_rpc_size != str_offset);
1525
1526 registry->size = gsp->registry_rpc_size;
1527 }
1528
1529 /**
1530 * clean_registry -- clean up registry memory in case of error
1531 * @gsp: gsp pointer
1532 *
1533 * Call this function to clean up all memory allocated by add_registry()
1534 * in case of error and build_registry() is not called.
1535 */
clean_registry(struct nvkm_gsp * gsp)1536 static void clean_registry(struct nvkm_gsp *gsp)
1537 {
1538 struct registry_list_entry *reg, *n;
1539
1540 list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
1541 list_del(®->head);
1542 kfree(reg);
1543 }
1544
1545 gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
1546 }
1547
1548 MODULE_PARM_DESC(NVreg_RegistryDwords,
1549 "A semicolon-separated list of key=integer pairs of GSP-RM registry keys");
1550 static char *NVreg_RegistryDwords;
1551 module_param(NVreg_RegistryDwords, charp, 0400);
1552
1553 /* dword only */
1554 struct nv_gsp_registry_entries {
1555 const char *name;
1556 u32 value;
1557 };
1558
1559 /*
1560 * r535_registry_entries - required registry entries for GSP-RM
1561 *
1562 * This array lists registry entries that are required for GSP-RM to
1563 * function correctly.
1564 *
1565 * RMSecBusResetEnable - enables PCI secondary bus reset
1566 * RMForcePcieConfigSave - forces GSP-RM to preserve PCI configuration
1567 * registers on any PCI reset.
1568 */
1569 static const struct nv_gsp_registry_entries r535_registry_entries[] = {
1570 { "RMSecBusResetEnable", 1 },
1571 { "RMForcePcieConfigSave", 1 },
1572 };
1573 #define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries)
1574
1575 /**
1576 * strip - strips all characters in 'reject' from 's'
1577 * @s: string to strip
1578 * @reject: string of characters to remove
1579 *
1580 * 's' is modified.
1581 *
1582 * Returns the length of the new string.
1583 */
strip(char * s,const char * reject)1584 static size_t strip(char *s, const char *reject)
1585 {
1586 char *p = s, *p2 = s;
1587 size_t length = 0;
1588 char c;
1589
1590 do {
1591 while ((c = *p2) && strchr(reject, c))
1592 p2++;
1593
1594 *p++ = c = *p2++;
1595 length++;
1596 } while (c);
1597
1598 return length;
1599 }
1600
1601 /**
1602 * r535_gsp_rpc_set_registry - build registry RPC and call GSP-RM
1603 * @gsp: gsp pointer
1604 *
1605 * The GSP-RM registry is a set of key/value pairs that configure some aspects
1606 * of GSP-RM. The keys are strings, and the values are 32-bit integers.
1607 *
1608 * The registry is built from a combination of a static hard-coded list (see
1609 * above) and entries passed on the driver's command line.
1610 */
1611 static int
r535_gsp_rpc_set_registry(struct nvkm_gsp * gsp)1612 r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp)
1613 {
1614 PACKED_REGISTRY_TABLE *rpc;
1615 unsigned int i;
1616 int ret;
1617
1618 INIT_LIST_HEAD(&gsp->registry_list);
1619 gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
1620
1621 for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) {
1622 ret = add_registry_num(gsp, r535_registry_entries[i].name,
1623 r535_registry_entries[i].value);
1624 if (ret)
1625 goto fail;
1626 }
1627
1628 /*
1629 * The NVreg_RegistryDwords parameter is a string of key=value
1630 * pairs separated by semicolons. We need to extract and trim each
1631 * substring, and then parse the substring to extract the key and
1632 * value.
1633 */
1634 if (NVreg_RegistryDwords) {
1635 char *p = kstrdup(NVreg_RegistryDwords, GFP_KERNEL);
1636 char *start, *next = p, *equal;
1637
1638 if (!p) {
1639 ret = -ENOMEM;
1640 goto fail;
1641 }
1642
1643 /* Remove any whitespace from the parameter string */
1644 strip(p, " \t\n");
1645
1646 while ((start = strsep(&next, ";"))) {
1647 long value;
1648
1649 equal = strchr(start, '=');
1650 if (!equal || equal == start || equal[1] == 0) {
1651 nvkm_error(&gsp->subdev,
1652 "ignoring invalid registry string '%s'\n",
1653 start);
1654 continue;
1655 }
1656
1657 /* Truncate the key=value string to just key */
1658 *equal = 0;
1659
1660 ret = kstrtol(equal + 1, 0, &value);
1661 if (!ret) {
1662 ret = add_registry_num(gsp, start, value);
1663 } else {
1664 /* Not a number, so treat it as a string */
1665 ret = add_registry_string(gsp, start, equal + 1);
1666 }
1667
1668 if (ret) {
1669 nvkm_error(&gsp->subdev,
1670 "ignoring invalid registry key/value '%s=%s'\n",
1671 start, equal + 1);
1672 continue;
1673 }
1674 }
1675
1676 kfree(p);
1677 }
1678
1679 rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, gsp->registry_rpc_size);
1680 if (IS_ERR(rpc)) {
1681 ret = PTR_ERR(rpc);
1682 goto fail;
1683 }
1684
1685 build_registry(gsp, rpc);
1686
1687 return nvkm_gsp_rpc_wr(gsp, rpc, false);
1688
1689 fail:
1690 clean_registry(gsp);
1691 return ret;
1692 }
1693
1694 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1695 static void
r535_gsp_acpi_caps(acpi_handle handle,CAPS_METHOD_DATA * caps)1696 r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps)
1697 {
1698 const guid_t NVOP_DSM_GUID =
1699 GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
1700 0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
1701 u64 NVOP_DSM_REV = 0x00000100;
1702 union acpi_object argv4 = {
1703 .buffer.type = ACPI_TYPE_BUFFER,
1704 .buffer.length = 4,
1705 .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1706 }, *obj;
1707
1708 caps->status = 0xffff;
1709
1710 if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a)))
1711 return;
1712
1713 obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4);
1714 if (!obj)
1715 return;
1716
1717 if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1718 WARN_ON(obj->buffer.length != 4))
1719 return;
1720
1721 caps->status = 0;
1722 caps->optimusCaps = *(u32 *)obj->buffer.pointer;
1723
1724 ACPI_FREE(obj);
1725
1726 kfree(argv4.buffer.pointer);
1727 }
1728
1729 static void
r535_gsp_acpi_jt(acpi_handle handle,JT_METHOD_DATA * jt)1730 r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt)
1731 {
1732 const guid_t JT_DSM_GUID =
1733 GUID_INIT(0xCBECA351L, 0x067B, 0x4924,
1734 0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34);
1735 u64 JT_DSM_REV = 0x00000103;
1736 u32 caps;
1737 union acpi_object argv4 = {
1738 .buffer.type = ACPI_TYPE_BUFFER,
1739 .buffer.length = sizeof(caps),
1740 .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
1741 }, *obj;
1742
1743 jt->status = 0xffff;
1744
1745 obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4);
1746 if (!obj)
1747 return;
1748
1749 if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
1750 WARN_ON(obj->buffer.length != 4))
1751 return;
1752
1753 jt->status = 0;
1754 jt->jtCaps = *(u32 *)obj->buffer.pointer;
1755 jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20;
1756 jt->bSBIOSCaps = 0;
1757
1758 ACPI_FREE(obj);
1759
1760 kfree(argv4.buffer.pointer);
1761 }
1762
1763 static void
r535_gsp_acpi_mux_id(acpi_handle handle,u32 id,MUX_METHOD_DATA_ELEMENT * mode,MUX_METHOD_DATA_ELEMENT * part)1764 r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode,
1765 MUX_METHOD_DATA_ELEMENT *part)
1766 {
1767 union acpi_object mux_arg = { ACPI_TYPE_INTEGER };
1768 struct acpi_object_list input = { 1, &mux_arg };
1769 acpi_handle iter = NULL, handle_mux = NULL;
1770 acpi_status status;
1771 unsigned long long value;
1772
1773 mode->status = 0xffff;
1774 part->status = 0xffff;
1775
1776 do {
1777 status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter);
1778 if (ACPI_FAILURE(status) || !iter)
1779 return;
1780
1781 status = acpi_evaluate_integer(iter, "_ADR", NULL, &value);
1782 if (ACPI_FAILURE(status) || value != id)
1783 continue;
1784
1785 handle_mux = iter;
1786 } while (!handle_mux);
1787
1788 if (!handle_mux)
1789 return;
1790
1791 /* I -think- 0 means "acquire" according to nvidia's driver source */
1792 input.pointer->integer.type = ACPI_TYPE_INTEGER;
1793 input.pointer->integer.value = 0;
1794
1795 status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value);
1796 if (ACPI_SUCCESS(status)) {
1797 mode->acpiId = id;
1798 mode->mode = value;
1799 mode->status = 0;
1800 }
1801
1802 status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value);
1803 if (ACPI_SUCCESS(status)) {
1804 part->acpiId = id;
1805 part->mode = value;
1806 part->status = 0;
1807 }
1808 }
1809
1810 static void
r535_gsp_acpi_mux(acpi_handle handle,DOD_METHOD_DATA * dod,MUX_METHOD_DATA * mux)1811 r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux)
1812 {
1813 mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]);
1814
1815 for (int i = 0; i < mux->tableLen; i++) {
1816 r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i],
1817 &mux->acpiIdMuxPartTable[i]);
1818 }
1819 }
1820
1821 static void
r535_gsp_acpi_dod(acpi_handle handle,DOD_METHOD_DATA * dod)1822 r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod)
1823 {
1824 acpi_status status;
1825 struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
1826 union acpi_object *_DOD;
1827
1828 dod->status = 0xffff;
1829
1830 status = acpi_evaluate_object(handle, "_DOD", NULL, &output);
1831 if (ACPI_FAILURE(status))
1832 return;
1833
1834 _DOD = output.pointer;
1835
1836 if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) ||
1837 WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList)))
1838 return;
1839
1840 for (int i = 0; i < _DOD->package.count; i++) {
1841 if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER))
1842 return;
1843
1844 dod->acpiIdList[i] = _DOD->package.elements[i].integer.value;
1845 dod->acpiIdListLen += sizeof(dod->acpiIdList[0]);
1846 }
1847
1848 dod->status = 0;
1849 kfree(output.pointer);
1850 }
1851 #endif
1852
1853 static void
r535_gsp_acpi_info(struct nvkm_gsp * gsp,ACPI_METHOD_DATA * acpi)1854 r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi)
1855 {
1856 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
1857 acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev);
1858
1859 if (!handle)
1860 return;
1861
1862 acpi->bValid = 1;
1863
1864 r535_gsp_acpi_dod(handle, &acpi->dodMethodData);
1865 if (acpi->dodMethodData.status == 0)
1866 r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData);
1867
1868 r535_gsp_acpi_jt(handle, &acpi->jtMethodData);
1869 r535_gsp_acpi_caps(handle, &acpi->capsMethodData);
1870 #endif
1871 }
1872
1873 static int
r535_gsp_rpc_set_system_info(struct nvkm_gsp * gsp)1874 r535_gsp_rpc_set_system_info(struct nvkm_gsp *gsp)
1875 {
1876 struct nvkm_device *device = gsp->subdev.device;
1877 struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device);
1878 GspSystemInfo *info;
1879
1880 if (WARN_ON(device->type == NVKM_DEVICE_TEGRA))
1881 return -ENOSYS;
1882
1883 info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info));
1884 if (IS_ERR(info))
1885 return PTR_ERR(info);
1886
1887 info->gpuPhysAddr = device->func->resource_addr(device, 0);
1888 info->gpuPhysFbAddr = device->func->resource_addr(device, 1);
1889 info->gpuPhysInstAddr = device->func->resource_addr(device, 3);
1890 info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev);
1891 info->maxUserVa = TASK_SIZE;
1892 info->pciConfigMirrorBase = 0x088000;
1893 info->pciConfigMirrorSize = 0x001000;
1894 r535_gsp_acpi_info(gsp, &info->acpiMethodData);
1895
1896 return nvkm_gsp_rpc_wr(gsp, info, false);
1897 }
1898
1899 static int
r535_gsp_msg_os_error_log(void * priv,u32 fn,void * repv,u32 repc)1900 r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc)
1901 {
1902 struct nvkm_gsp *gsp = priv;
1903 struct nvkm_subdev *subdev = &gsp->subdev;
1904 rpc_os_error_log_v17_00 *msg = repv;
1905
1906 if (WARN_ON(repc < sizeof(*msg)))
1907 return -EINVAL;
1908
1909 nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString);
1910 return 0;
1911 }
1912
1913 static int
r535_gsp_msg_rc_triggered(void * priv,u32 fn,void * repv,u32 repc)1914 r535_gsp_msg_rc_triggered(void *priv, u32 fn, void *repv, u32 repc)
1915 {
1916 rpc_rc_triggered_v17_02 *msg = repv;
1917 struct nvkm_gsp *gsp = priv;
1918 struct nvkm_subdev *subdev = &gsp->subdev;
1919 struct nvkm_chan *chan;
1920 unsigned long flags;
1921
1922 if (WARN_ON(repc < sizeof(*msg)))
1923 return -EINVAL;
1924
1925 nvkm_error(subdev, "rc engn:%08x chid:%d type:%d scope:%d part:%d\n",
1926 msg->nv2080EngineType, msg->chid, msg->exceptType, msg->scope,
1927 msg->partitionAttributionId);
1928
1929 chan = nvkm_chan_get_chid(&subdev->device->fifo->engine, msg->chid / 8, &flags);
1930 if (!chan) {
1931 nvkm_error(subdev, "rc chid:%d not found!\n", msg->chid);
1932 return 0;
1933 }
1934
1935 nvkm_chan_error(chan, false);
1936 nvkm_chan_put(&chan, flags);
1937 return 0;
1938 }
1939
1940 static int
r535_gsp_msg_mmu_fault_queued(void * priv,u32 fn,void * repv,u32 repc)1941 r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc)
1942 {
1943 struct nvkm_gsp *gsp = priv;
1944 struct nvkm_subdev *subdev = &gsp->subdev;
1945
1946 WARN_ON(repc != 0);
1947
1948 nvkm_error(subdev, "mmu fault queued\n");
1949 return 0;
1950 }
1951
1952 static int
r535_gsp_msg_post_event(void * priv,u32 fn,void * repv,u32 repc)1953 r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
1954 {
1955 struct nvkm_gsp *gsp = priv;
1956 struct nvkm_gsp_client *client;
1957 struct nvkm_subdev *subdev = &gsp->subdev;
1958 rpc_post_event_v17_00 *msg = repv;
1959
1960 if (WARN_ON(repc < sizeof(*msg)))
1961 return -EINVAL;
1962 if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize))
1963 return -EINVAL;
1964
1965 nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n",
1966 msg->hClient, msg->hEvent, msg->notifyIndex, msg->data,
1967 msg->status, msg->eventDataSize, msg->bNotifyList);
1968
1969 mutex_lock(&gsp->client_id.mutex);
1970 client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff);
1971 if (client) {
1972 struct nvkm_gsp_event *event;
1973 bool handled = false;
1974
1975 list_for_each_entry(event, &client->events, head) {
1976 if (event->object.handle == msg->hEvent) {
1977 event->func(event, msg->eventData, msg->eventDataSize);
1978 handled = true;
1979 }
1980 }
1981
1982 if (!handled) {
1983 nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n",
1984 msg->hClient, msg->hEvent);
1985 }
1986 } else {
1987 nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient);
1988 }
1989 mutex_unlock(&gsp->client_id.mutex);
1990 return 0;
1991 }
1992
1993 /**
1994 * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
1995 * @priv: gsp pointer
1996 * @fn: function number (ignored)
1997 * @repv: pointer to libos print RPC
1998 * @repc: message size
1999 *
2000 * The GSP sequencer is a list of I/O commands that the GSP can send to
2001 * the driver to perform for various purposes. The most common usage is to
2002 * perform a special mid-initialization reset.
2003 */
2004 static int
r535_gsp_msg_run_cpu_sequencer(void * priv,u32 fn,void * repv,u32 repc)2005 r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
2006 {
2007 struct nvkm_gsp *gsp = priv;
2008 struct nvkm_subdev *subdev = &gsp->subdev;
2009 struct nvkm_device *device = subdev->device;
2010 rpc_run_cpu_sequencer_v17_00 *seq = repv;
2011 int ptr = 0, ret;
2012
2013 nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex);
2014
2015 while (ptr < seq->cmdIndex) {
2016 GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr];
2017
2018 ptr += 1;
2019 ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode);
2020
2021 switch (cmd->opCode) {
2022 case GSP_SEQ_BUF_OPCODE_REG_WRITE: {
2023 u32 addr = cmd->payload.regWrite.addr;
2024 u32 data = cmd->payload.regWrite.val;
2025
2026 nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data);
2027 nvkm_wr32(device, addr, data);
2028 }
2029 break;
2030 case GSP_SEQ_BUF_OPCODE_REG_MODIFY: {
2031 u32 addr = cmd->payload.regModify.addr;
2032 u32 mask = cmd->payload.regModify.mask;
2033 u32 data = cmd->payload.regModify.val;
2034
2035 nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data);
2036 nvkm_mask(device, addr, mask, data);
2037 }
2038 break;
2039 case GSP_SEQ_BUF_OPCODE_REG_POLL: {
2040 u32 addr = cmd->payload.regPoll.addr;
2041 u32 mask = cmd->payload.regPoll.mask;
2042 u32 data = cmd->payload.regPoll.val;
2043 u32 usec = cmd->payload.regPoll.timeout ?: 4000000;
2044 //u32 error = cmd->payload.regPoll.error;
2045
2046 nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec);
2047 nvkm_rd32(device, addr);
2048 nvkm_usec(device, usec,
2049 if ((nvkm_rd32(device, addr) & mask) == data)
2050 break;
2051 );
2052 }
2053 break;
2054 case GSP_SEQ_BUF_OPCODE_DELAY_US: {
2055 u32 usec = cmd->payload.delayUs.val;
2056
2057 nvkm_trace(subdev, "seq usec %d\n", usec);
2058 udelay(usec);
2059 }
2060 break;
2061 case GSP_SEQ_BUF_OPCODE_REG_STORE: {
2062 u32 addr = cmd->payload.regStore.addr;
2063 u32 slot = cmd->payload.regStore.index;
2064
2065 seq->regSaveArea[slot] = nvkm_rd32(device, addr);
2066 nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot,
2067 seq->regSaveArea[slot]);
2068 }
2069 break;
2070 case GSP_SEQ_BUF_OPCODE_CORE_RESET:
2071 nvkm_trace(subdev, "seq core reset\n");
2072 nvkm_falcon_reset(&gsp->falcon);
2073 nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080);
2074 nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000);
2075 break;
2076 case GSP_SEQ_BUF_OPCODE_CORE_START:
2077 nvkm_trace(subdev, "seq core start\n");
2078 if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040)
2079 nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002);
2080 else
2081 nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002);
2082 break;
2083 case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT:
2084 nvkm_trace(subdev, "seq core wait halt\n");
2085 nvkm_msec(device, 2000,
2086 if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010)
2087 break;
2088 );
2089 break;
2090 case GSP_SEQ_BUF_OPCODE_CORE_RESUME: {
2091 struct nvkm_sec2 *sec2 = device->sec2;
2092 u32 mbox0;
2093
2094 nvkm_trace(subdev, "seq core resume\n");
2095
2096 ret = gsp->func->reset(gsp);
2097 if (WARN_ON(ret))
2098 return ret;
2099
2100 nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
2101 nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
2102
2103 nvkm_falcon_start(&sec2->falcon);
2104
2105 if (nvkm_msec(device, 2000,
2106 if (nvkm_rd32(device, 0x1180f8) & 0x04000000)
2107 break;
2108 ) < 0)
2109 return -ETIMEDOUT;
2110
2111 mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040);
2112 if (WARN_ON(mbox0)) {
2113 nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0);
2114 return -EIO;
2115 }
2116
2117 nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
2118
2119 if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
2120 return -EIO;
2121 }
2122 break;
2123 default:
2124 nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode);
2125 return -EINVAL;
2126 }
2127 }
2128
2129 return 0;
2130 }
2131
2132 static int
r535_gsp_booter_unload(struct nvkm_gsp * gsp,u32 mbox0,u32 mbox1)2133 r535_gsp_booter_unload(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
2134 {
2135 struct nvkm_subdev *subdev = &gsp->subdev;
2136 struct nvkm_device *device = subdev->device;
2137 u32 wpr2_hi;
2138 int ret;
2139
2140 wpr2_hi = nvkm_rd32(device, 0x1fa828);
2141 if (!wpr2_hi) {
2142 nvkm_debug(subdev, "WPR2 not set - skipping booter unload\n");
2143 return 0;
2144 }
2145
2146 ret = nvkm_falcon_fw_boot(&gsp->booter.unload, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
2147 if (WARN_ON(ret))
2148 return ret;
2149
2150 wpr2_hi = nvkm_rd32(device, 0x1fa828);
2151 if (WARN_ON(wpr2_hi))
2152 return -EIO;
2153
2154 return 0;
2155 }
2156
2157 static int
r535_gsp_booter_load(struct nvkm_gsp * gsp,u32 mbox0,u32 mbox1)2158 r535_gsp_booter_load(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
2159 {
2160 int ret;
2161
2162 ret = nvkm_falcon_fw_boot(&gsp->booter.load, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
2163 if (ret)
2164 return ret;
2165
2166 nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
2167
2168 if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
2169 return -EIO;
2170
2171 return 0;
2172 }
2173
2174 static int
r535_gsp_wpr_meta_init(struct nvkm_gsp * gsp)2175 r535_gsp_wpr_meta_init(struct nvkm_gsp *gsp)
2176 {
2177 GspFwWprMeta *meta;
2178 int ret;
2179
2180 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->wpr_meta);
2181 if (ret)
2182 return ret;
2183
2184 meta = gsp->wpr_meta.data;
2185
2186 meta->magic = GSP_FW_WPR_META_MAGIC;
2187 meta->revision = GSP_FW_WPR_META_REVISION;
2188
2189 meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr;
2190 meta->sizeOfRadix3Elf = gsp->fb.wpr2.elf.size;
2191
2192 meta->sysmemAddrOfBootloader = gsp->boot.fw.addr;
2193 meta->sizeOfBootloader = gsp->boot.fw.size;
2194 meta->bootloaderCodeOffset = gsp->boot.code_offset;
2195 meta->bootloaderDataOffset = gsp->boot.data_offset;
2196 meta->bootloaderManifestOffset = gsp->boot.manifest_offset;
2197
2198 meta->sysmemAddrOfSignature = gsp->sig.addr;
2199 meta->sizeOfSignature = gsp->sig.size;
2200
2201 meta->gspFwRsvdStart = gsp->fb.heap.addr;
2202 meta->nonWprHeapOffset = gsp->fb.heap.addr;
2203 meta->nonWprHeapSize = gsp->fb.heap.size;
2204 meta->gspFwWprStart = gsp->fb.wpr2.addr;
2205 meta->gspFwHeapOffset = gsp->fb.wpr2.heap.addr;
2206 meta->gspFwHeapSize = gsp->fb.wpr2.heap.size;
2207 meta->gspFwOffset = gsp->fb.wpr2.elf.addr;
2208 meta->bootBinOffset = gsp->fb.wpr2.boot.addr;
2209 meta->frtsOffset = gsp->fb.wpr2.frts.addr;
2210 meta->frtsSize = gsp->fb.wpr2.frts.size;
2211 meta->gspFwWprEnd = ALIGN_DOWN(gsp->fb.bios.vga_workspace.addr, 0x20000);
2212 meta->fbSize = gsp->fb.size;
2213 meta->vgaWorkspaceOffset = gsp->fb.bios.vga_workspace.addr;
2214 meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size;
2215 meta->bootCount = 0;
2216 meta->partitionRpcAddr = 0;
2217 meta->partitionRpcRequestOffset = 0;
2218 meta->partitionRpcReplyOffset = 0;
2219 meta->verified = 0;
2220 return 0;
2221 }
2222
2223 static int
r535_gsp_shared_init(struct nvkm_gsp * gsp)2224 r535_gsp_shared_init(struct nvkm_gsp *gsp)
2225 {
2226 struct {
2227 msgqTxHeader tx;
2228 msgqRxHeader rx;
2229 } *cmdq, *msgq;
2230 int ret, i;
2231
2232 gsp->shm.cmdq.size = 0x40000;
2233 gsp->shm.msgq.size = 0x40000;
2234
2235 gsp->shm.ptes.nr = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT;
2236 gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
2237 gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
2238
2239 ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size +
2240 gsp->shm.cmdq.size +
2241 gsp->shm.msgq.size,
2242 &gsp->shm.mem);
2243 if (ret)
2244 return ret;
2245
2246 gsp->shm.ptes.ptr = gsp->shm.mem.data;
2247 gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size;
2248 gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size;
2249
2250 for (i = 0; i < gsp->shm.ptes.nr; i++)
2251 gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT);
2252
2253 cmdq = gsp->shm.cmdq.ptr;
2254 cmdq->tx.version = 0;
2255 cmdq->tx.size = gsp->shm.cmdq.size;
2256 cmdq->tx.entryOff = GSP_PAGE_SIZE;
2257 cmdq->tx.msgSize = GSP_PAGE_SIZE;
2258 cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize;
2259 cmdq->tx.writePtr = 0;
2260 cmdq->tx.flags = 1;
2261 cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr);
2262
2263 msgq = gsp->shm.msgq.ptr;
2264
2265 gsp->cmdq.cnt = cmdq->tx.msgCount;
2266 gsp->cmdq.wptr = &cmdq->tx.writePtr;
2267 gsp->cmdq.rptr = &msgq->rx.readPtr;
2268 gsp->msgq.cnt = cmdq->tx.msgCount;
2269 gsp->msgq.wptr = &msgq->tx.writePtr;
2270 gsp->msgq.rptr = &cmdq->rx.readPtr;
2271 return 0;
2272 }
2273
2274 static int
r535_gsp_rmargs_init(struct nvkm_gsp * gsp,bool resume)2275 r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume)
2276 {
2277 GSP_ARGUMENTS_CACHED *args;
2278 int ret;
2279
2280 if (!resume) {
2281 ret = r535_gsp_shared_init(gsp);
2282 if (ret)
2283 return ret;
2284
2285 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs);
2286 if (ret)
2287 return ret;
2288 }
2289
2290 args = gsp->rmargs.data;
2291 args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr;
2292 args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr;
2293 args->messageQueueInitArguments.cmdQueueOffset =
2294 (u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data;
2295 args->messageQueueInitArguments.statQueueOffset =
2296 (u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data;
2297
2298 if (!resume) {
2299 args->srInitArguments.oldLevel = 0;
2300 args->srInitArguments.flags = 0;
2301 args->srInitArguments.bInPMTransition = 0;
2302 } else {
2303 args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
2304 args->srInitArguments.flags = 0;
2305 args->srInitArguments.bInPMTransition = 1;
2306 }
2307
2308 return 0;
2309 }
2310
2311 #ifdef CONFIG_DEBUG_FS
2312
2313 /*
2314 * If GSP-RM load fails, then the GSP nvkm object will be deleted, the logging
2315 * debugfs entries will be deleted, and it will not be possible to debug the
2316 * load failure. The keep_gsp_logging parameter tells Nouveau to copy the
2317 * logging buffers to new debugfs entries, and these entries are retained
2318 * until the driver unloads.
2319 */
2320 static bool keep_gsp_logging;
2321 module_param(keep_gsp_logging, bool, 0444);
2322 MODULE_PARM_DESC(keep_gsp_logging,
2323 "Migrate the GSP-RM logging debugfs entries upon exit");
2324
2325 /*
2326 * GSP-RM uses a pseudo-class mechanism to define of a variety of per-"engine"
2327 * data structures, and each engine has a "class ID" genererated by a
2328 * pre-processor. This is the class ID for the PMU.
2329 */
2330 #define NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU 0xf3d722
2331
2332 /**
2333 * struct rpc_ucode_libos_print_v1e_08 - RPC payload for libos print buffers
2334 * @ucode_eng_desc: the engine descriptor
2335 * @libos_print_buf_size: the size of the libos_print_buf[]
2336 * @libos_print_buf: the actual buffer
2337 *
2338 * The engine descriptor is divided into 31:8 "class ID" and 7:0 "instance
2339 * ID". We only care about messages from PMU.
2340 */
2341 struct rpc_ucode_libos_print_v1e_08 {
2342 u32 ucode_eng_desc;
2343 u32 libos_print_buf_size;
2344 u8 libos_print_buf[];
2345 };
2346
2347 /**
2348 * r535_gsp_msg_libos_print - capture log message from the PMU
2349 * @priv: gsp pointer
2350 * @fn: function number (ignored)
2351 * @repv: pointer to libos print RPC
2352 * @repc: message size
2353 *
2354 * Called when we receive a UCODE_LIBOS_PRINT event RPC from GSP-RM. This RPC
2355 * contains the contents of the libos print buffer from PMU. It is typically
2356 * only written to when PMU encounters an error.
2357 *
2358 * Technically this RPC can be used to pass print buffers from any number of
2359 * GSP-RM engines, but we only expect to receive them for the PMU.
2360 *
2361 * For the PMU, the buffer is 4K in size and the RPC always contains the full
2362 * contents.
2363 */
2364 static int
r535_gsp_msg_libos_print(void * priv,u32 fn,void * repv,u32 repc)2365 r535_gsp_msg_libos_print(void *priv, u32 fn, void *repv, u32 repc)
2366 {
2367 struct nvkm_gsp *gsp = priv;
2368 struct nvkm_subdev *subdev = &gsp->subdev;
2369 struct rpc_ucode_libos_print_v1e_08 *rpc = repv;
2370 unsigned int class = rpc->ucode_eng_desc >> 8;
2371
2372 nvkm_debug(subdev, "received libos print from class 0x%x for %u bytes\n",
2373 class, rpc->libos_print_buf_size);
2374
2375 if (class != NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU) {
2376 nvkm_warn(subdev,
2377 "received libos print from unknown class 0x%x\n",
2378 class);
2379 return -ENOMSG;
2380 }
2381
2382 if (rpc->libos_print_buf_size > GSP_PAGE_SIZE) {
2383 nvkm_error(subdev, "libos print is too large (%u bytes)\n",
2384 rpc->libos_print_buf_size);
2385 return -E2BIG;
2386 }
2387
2388 memcpy(gsp->blob_pmu.data, rpc->libos_print_buf, rpc->libos_print_buf_size);
2389
2390 return 0;
2391 }
2392
2393 /**
2394 * create_debugfs - create a blob debugfs entry
2395 * @gsp: gsp pointer
2396 * @name: name of this dentry
2397 * @blob: blob wrapper
2398 *
2399 * Creates a debugfs entry for a logging buffer with the name 'name'.
2400 */
create_debugfs(struct nvkm_gsp * gsp,const char * name,struct debugfs_blob_wrapper * blob)2401 static struct dentry *create_debugfs(struct nvkm_gsp *gsp, const char *name,
2402 struct debugfs_blob_wrapper *blob)
2403 {
2404 struct dentry *dent;
2405
2406 dent = debugfs_create_blob(name, 0444, gsp->debugfs.parent, blob);
2407 if (IS_ERR(dent)) {
2408 nvkm_error(&gsp->subdev,
2409 "failed to create %s debugfs entry\n", name);
2410 return NULL;
2411 }
2412
2413 /*
2414 * For some reason, debugfs_create_blob doesn't set the size of the
2415 * dentry, so do that here. See [1]
2416 *
2417 * [1] https://lore.kernel.org/r/linux-fsdevel/20240207200619.3354549-1-ttabi@nvidia.com/
2418 */
2419 i_size_write(d_inode(dent), blob->size);
2420
2421 return dent;
2422 }
2423
2424 /**
2425 * r535_gsp_libos_debugfs_init - create logging debugfs entries
2426 * @gsp: gsp pointer
2427 *
2428 * Create the debugfs entries. This exposes the log buffers to userspace so
2429 * that an external tool can parse it.
2430 *
2431 * The 'logpmu' contains exception dumps from the PMU. It is written via an
2432 * RPC sent from GSP-RM and must be only 4KB. We create it here because it's
2433 * only useful if there is a debugfs entry to expose it. If we get the PMU
2434 * logging RPC and there is no debugfs entry, the RPC is just ignored.
2435 *
2436 * The blob_init, blob_rm, and blob_pmu objects can't be transient
2437 * because debugfs_create_blob doesn't copy them.
2438 *
2439 * NOTE: OpenRM loads the logging elf image and prints the log messages
2440 * in real-time. We may add that capability in the future, but that
2441 * requires loading ELF images that are not distributed with the driver and
2442 * adding the parsing code to Nouveau.
2443 *
2444 * Ideally, this should be part of nouveau_debugfs_init(), but that function
2445 * is called too late. We really want to create these debugfs entries before
2446 * r535_gsp_booter_load() is called, so that if GSP-RM fails to initialize,
2447 * there could still be a log to capture.
2448 */
2449 static void
r535_gsp_libos_debugfs_init(struct nvkm_gsp * gsp)2450 r535_gsp_libos_debugfs_init(struct nvkm_gsp *gsp)
2451 {
2452 struct device *dev = gsp->subdev.device->dev;
2453
2454 /* Create a new debugfs directory with a name unique to this GPU. */
2455 gsp->debugfs.parent = debugfs_create_dir(dev_name(dev), nouveau_debugfs_root);
2456 if (IS_ERR(gsp->debugfs.parent)) {
2457 nvkm_error(&gsp->subdev,
2458 "failed to create %s debugfs root\n", dev_name(dev));
2459 return;
2460 }
2461
2462 gsp->blob_init.data = gsp->loginit.data;
2463 gsp->blob_init.size = gsp->loginit.size;
2464 gsp->blob_intr.data = gsp->logintr.data;
2465 gsp->blob_intr.size = gsp->logintr.size;
2466 gsp->blob_rm.data = gsp->logrm.data;
2467 gsp->blob_rm.size = gsp->logrm.size;
2468
2469 gsp->debugfs.init = create_debugfs(gsp, "loginit", &gsp->blob_init);
2470 if (!gsp->debugfs.init)
2471 goto error;
2472
2473 gsp->debugfs.intr = create_debugfs(gsp, "logintr", &gsp->blob_intr);
2474 if (!gsp->debugfs.intr)
2475 goto error;
2476
2477 gsp->debugfs.rm = create_debugfs(gsp, "logrm", &gsp->blob_rm);
2478 if (!gsp->debugfs.rm)
2479 goto error;
2480
2481 /*
2482 * Since the PMU buffer is copied from an RPC, it doesn't need to be
2483 * a DMA buffer.
2484 */
2485 gsp->blob_pmu.size = GSP_PAGE_SIZE;
2486 gsp->blob_pmu.data = kzalloc(gsp->blob_pmu.size, GFP_KERNEL);
2487 if (!gsp->blob_pmu.data)
2488 goto error;
2489
2490 gsp->debugfs.pmu = create_debugfs(gsp, "logpmu", &gsp->blob_pmu);
2491 if (!gsp->debugfs.pmu) {
2492 kfree(gsp->blob_pmu.data);
2493 goto error;
2494 }
2495
2496 i_size_write(d_inode(gsp->debugfs.init), gsp->blob_init.size);
2497 i_size_write(d_inode(gsp->debugfs.intr), gsp->blob_intr.size);
2498 i_size_write(d_inode(gsp->debugfs.rm), gsp->blob_rm.size);
2499 i_size_write(d_inode(gsp->debugfs.pmu), gsp->blob_pmu.size);
2500
2501 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT,
2502 r535_gsp_msg_libos_print, gsp);
2503
2504 nvkm_debug(&gsp->subdev, "created debugfs GSP-RM logging entries\n");
2505
2506 if (keep_gsp_logging) {
2507 nvkm_info(&gsp->subdev,
2508 "logging buffers will be retained on failure\n");
2509 }
2510
2511 return;
2512
2513 error:
2514 debugfs_remove(gsp->debugfs.parent);
2515 gsp->debugfs.parent = NULL;
2516 }
2517
2518 #endif
2519
2520 static inline u64
r535_gsp_libos_id8(const char * name)2521 r535_gsp_libos_id8(const char *name)
2522 {
2523 u64 id = 0;
2524
2525 for (int i = 0; i < sizeof(id) && *name; i++, name++)
2526 id = (id << 8) | *name;
2527
2528 return id;
2529 }
2530
2531 /**
2532 * create_pte_array() - creates a PTE array of a physically contiguous buffer
2533 * @ptes: pointer to the array
2534 * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
2535 * @size: size of the buffer
2536 *
2537 * GSP-RM sometimes expects physically-contiguous buffers to have an array of
2538 * "PTEs" for each page in that buffer. Although in theory that allows for
2539 * the buffer to be physically discontiguous, GSP-RM does not currently
2540 * support that.
2541 *
2542 * In this case, the PTEs are DMA addresses of each page of the buffer. Since
2543 * the buffer is physically contiguous, calculating all the PTEs is simple
2544 * math.
2545 *
2546 * See memdescGetPhysAddrsForGpu()
2547 */
create_pte_array(u64 * ptes,dma_addr_t addr,size_t size)2548 static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
2549 {
2550 unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
2551 unsigned int i;
2552
2553 for (i = 0; i < num_pages; i++)
2554 ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
2555 }
2556
2557 /**
2558 * r535_gsp_libos_init() -- create the libos arguments structure
2559 * @gsp: gsp pointer
2560 *
2561 * The logging buffers are byte queues that contain encoded printf-like
2562 * messages from GSP-RM. They need to be decoded by a special application
2563 * that can parse the buffers.
2564 *
2565 * The 'loginit' buffer contains logs from early GSP-RM init and
2566 * exception dumps. The 'logrm' buffer contains the subsequent logs. Both are
2567 * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
2568 *
2569 * The physical address map for the log buffer is stored in the buffer
2570 * itself, starting with offset 1. Offset 0 contains the "put" pointer (pp).
2571 * Initially, pp is equal to 0. If the buffer has valid logging data in it,
2572 * then pp points to index into the buffer where the next logging entry will
2573 * be written. Therefore, the logging data is valid if:
2574 * 1 <= pp < sizeof(buffer)/sizeof(u64)
2575 *
2576 * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
2577 * configured for a larger page size (e.g. 64K pages), we need to give
2578 * the GSP an array of 4K pages. Fortunately, since the buffer is
2579 * physically contiguous, it's simple math to calculate the addresses.
2580 *
2581 * The buffers must be a multiple of GSP_PAGE_SIZE. GSP-RM also currently
2582 * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
2583 * buffers to be physically contiguous anyway.
2584 *
2585 * The memory allocated for the arguments must remain until the GSP sends the
2586 * init_done RPC.
2587 *
2588 * See _kgspInitLibosLoggingStructures (allocates memory for buffers)
2589 * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
2590 */
2591 static int
r535_gsp_libos_init(struct nvkm_gsp * gsp)2592 r535_gsp_libos_init(struct nvkm_gsp *gsp)
2593 {
2594 LibosMemoryRegionInitArgument *args;
2595 int ret;
2596
2597 ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos);
2598 if (ret)
2599 return ret;
2600
2601 args = gsp->libos.data;
2602
2603 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit);
2604 if (ret)
2605 return ret;
2606
2607 args[0].id8 = r535_gsp_libos_id8("LOGINIT");
2608 args[0].pa = gsp->loginit.addr;
2609 args[0].size = gsp->loginit.size;
2610 args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2611 args[0].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2612 create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size);
2613
2614 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr);
2615 if (ret)
2616 return ret;
2617
2618 args[1].id8 = r535_gsp_libos_id8("LOGINTR");
2619 args[1].pa = gsp->logintr.addr;
2620 args[1].size = gsp->logintr.size;
2621 args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2622 args[1].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2623 create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size);
2624
2625 ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm);
2626 if (ret)
2627 return ret;
2628
2629 args[2].id8 = r535_gsp_libos_id8("LOGRM");
2630 args[2].pa = gsp->logrm.addr;
2631 args[2].size = gsp->logrm.size;
2632 args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2633 args[2].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2634 create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size);
2635
2636 ret = r535_gsp_rmargs_init(gsp, false);
2637 if (ret)
2638 return ret;
2639
2640 args[3].id8 = r535_gsp_libos_id8("RMARGS");
2641 args[3].pa = gsp->rmargs.addr;
2642 args[3].size = gsp->rmargs.size;
2643 args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
2644 args[3].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
2645
2646 #ifdef CONFIG_DEBUG_FS
2647 r535_gsp_libos_debugfs_init(gsp);
2648 #endif
2649
2650 return 0;
2651 }
2652
2653 void
nvkm_gsp_sg_free(struct nvkm_device * device,struct sg_table * sgt)2654 nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt)
2655 {
2656 struct scatterlist *sgl;
2657 int i;
2658
2659 dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
2660
2661 for_each_sgtable_sg(sgt, sgl, i) {
2662 struct page *page = sg_page(sgl);
2663
2664 __free_page(page);
2665 }
2666
2667 sg_free_table(sgt);
2668 }
2669
2670 int
nvkm_gsp_sg(struct nvkm_device * device,u64 size,struct sg_table * sgt)2671 nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt)
2672 {
2673 const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE);
2674 struct scatterlist *sgl;
2675 int ret, i;
2676
2677 ret = sg_alloc_table(sgt, pages, GFP_KERNEL);
2678 if (ret)
2679 return ret;
2680
2681 for_each_sgtable_sg(sgt, sgl, i) {
2682 struct page *page = alloc_page(GFP_KERNEL);
2683
2684 if (!page) {
2685 nvkm_gsp_sg_free(device, sgt);
2686 return -ENOMEM;
2687 }
2688
2689 sg_set_page(sgl, page, PAGE_SIZE, 0);
2690 }
2691
2692 ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
2693 if (ret)
2694 nvkm_gsp_sg_free(device, sgt);
2695
2696 return ret;
2697 }
2698
2699 static void
nvkm_gsp_radix3_dtor(struct nvkm_gsp * gsp,struct nvkm_gsp_radix3 * rx3)2700 nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
2701 {
2702 nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2);
2703 nvkm_gsp_mem_dtor(&rx3->lvl1);
2704 nvkm_gsp_mem_dtor(&rx3->lvl0);
2705 }
2706
2707 /**
2708 * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
2709 * @gsp: gsp pointer
2710 * @sgt: S/G list to traverse
2711 * @size: size of the image, in bytes
2712 * @rx3: radix3 array to update
2713 *
2714 * The GSP uses a three-level page table, called radix3, to map the firmware.
2715 * Each 64-bit "pointer" in the table is either the bus address of an entry in
2716 * the next table (for levels 0 and 1) or the bus address of the next page in
2717 * the GSP firmware image itself.
2718 *
2719 * Level 0 contains a single entry in one page that points to the first page
2720 * of level 1.
2721 *
2722 * Level 1, since it's also only one page in size, contains up to 512 entries,
2723 * one for each page in Level 2.
2724 *
2725 * Level 2 can be up to 512 pages in size, and each of those entries points to
2726 * the next page of the firmware image. Since there can be up to 512*512
2727 * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
2728 *
2729 * Internally, the GSP has its window into system memory, but the base
2730 * physical address of the aperture is not 0. In fact, it varies depending on
2731 * the GPU architecture. Since the GPU is a PCI device, this window is
2732 * accessed via DMA and is therefore bound by IOMMU translation. The end
2733 * result is that GSP-RM must translate the bus addresses in the table to GSP
2734 * physical addresses. All this should happen transparently.
2735 *
2736 * Returns 0 on success, or negative error code
2737 *
2738 * See kgspCreateRadix3_IMPL
2739 */
2740 static int
nvkm_gsp_radix3_sg(struct nvkm_gsp * gsp,struct sg_table * sgt,u64 size,struct nvkm_gsp_radix3 * rx3)2741 nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size,
2742 struct nvkm_gsp_radix3 *rx3)
2743 {
2744 struct sg_dma_page_iter sg_dma_iter;
2745 struct scatterlist *sg;
2746 size_t bufsize;
2747 u64 *pte;
2748 int ret, i, page_idx = 0;
2749
2750 ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0);
2751 if (ret)
2752 return ret;
2753
2754 ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1);
2755 if (ret)
2756 goto lvl1_fail;
2757
2758 // Allocate level 2
2759 bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE);
2760 ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2);
2761 if (ret)
2762 goto lvl2_fail;
2763
2764 // Write the bus address of level 1 to level 0
2765 pte = rx3->lvl0.data;
2766 *pte = rx3->lvl1.addr;
2767
2768 // Write the bus address of each page in level 2 to level 1
2769 pte = rx3->lvl1.data;
2770 for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0)
2771 *pte++ = sg_page_iter_dma_address(&sg_dma_iter);
2772
2773 // Finally, write the bus address of each page in sgt to level 2
2774 for_each_sgtable_sg(&rx3->lvl2, sg, i) {
2775 void *sgl_end;
2776
2777 pte = sg_virt(sg);
2778 sgl_end = (void *)pte + sg->length;
2779
2780 for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) {
2781 *pte++ = sg_page_iter_dma_address(&sg_dma_iter);
2782 page_idx++;
2783
2784 // Go to the next scatterlist for level 2 if we've reached the end
2785 if ((void *)pte >= sgl_end)
2786 break;
2787 }
2788 }
2789
2790 if (ret) {
2791 lvl2_fail:
2792 nvkm_gsp_mem_dtor(&rx3->lvl1);
2793 lvl1_fail:
2794 nvkm_gsp_mem_dtor(&rx3->lvl0);
2795 }
2796
2797 return ret;
2798 }
2799
2800 int
r535_gsp_fini(struct nvkm_gsp * gsp,bool suspend)2801 r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
2802 {
2803 u32 mbox0 = 0xff, mbox1 = 0xff;
2804 int ret;
2805
2806 if (!gsp->running)
2807 return 0;
2808
2809 if (suspend) {
2810 GspFwWprMeta *meta = gsp->wpr_meta.data;
2811 u64 len = meta->gspFwWprEnd - meta->gspFwWprStart;
2812 GspFwSRMeta *sr;
2813
2814 ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt);
2815 if (ret)
2816 return ret;
2817
2818 ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3);
2819 if (ret)
2820 return ret;
2821
2822 ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta);
2823 if (ret)
2824 return ret;
2825
2826 sr = gsp->sr.meta.data;
2827 sr->magic = GSP_FW_SR_META_MAGIC;
2828 sr->revision = GSP_FW_SR_META_REVISION;
2829 sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr;
2830 sr->sizeOfSuspendResumeData = len;
2831
2832 mbox0 = lower_32_bits(gsp->sr.meta.addr);
2833 mbox1 = upper_32_bits(gsp->sr.meta.addr);
2834 }
2835
2836 ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend);
2837 if (WARN_ON(ret))
2838 return ret;
2839
2840 nvkm_msec(gsp->subdev.device, 2000,
2841 if (nvkm_falcon_rd32(&gsp->falcon, 0x040) & 0x80000000)
2842 break;
2843 );
2844
2845 nvkm_falcon_reset(&gsp->falcon);
2846
2847 ret = nvkm_gsp_fwsec_sb(gsp);
2848 WARN_ON(ret);
2849
2850 ret = r535_gsp_booter_unload(gsp, mbox0, mbox1);
2851 WARN_ON(ret);
2852
2853 gsp->running = false;
2854 return 0;
2855 }
2856
2857 int
r535_gsp_init(struct nvkm_gsp * gsp)2858 r535_gsp_init(struct nvkm_gsp *gsp)
2859 {
2860 u32 mbox0, mbox1;
2861 int ret;
2862
2863 if (!gsp->sr.meta.data) {
2864 mbox0 = lower_32_bits(gsp->wpr_meta.addr);
2865 mbox1 = upper_32_bits(gsp->wpr_meta.addr);
2866 } else {
2867 r535_gsp_rmargs_init(gsp, true);
2868
2869 mbox0 = lower_32_bits(gsp->sr.meta.addr);
2870 mbox1 = upper_32_bits(gsp->sr.meta.addr);
2871 }
2872
2873 /* Execute booter to handle (eventually...) booting GSP-RM. */
2874 ret = r535_gsp_booter_load(gsp, mbox0, mbox1);
2875 if (WARN_ON(ret))
2876 goto done;
2877
2878 ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE);
2879 if (ret)
2880 goto done;
2881
2882 gsp->running = true;
2883
2884 done:
2885 if (gsp->sr.meta.data) {
2886 nvkm_gsp_mem_dtor(&gsp->sr.meta);
2887 nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
2888 nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
2889 return ret;
2890 }
2891
2892 if (ret == 0)
2893 ret = r535_gsp_postinit(gsp);
2894
2895 return ret;
2896 }
2897
2898 static int
r535_gsp_rm_boot_ctor(struct nvkm_gsp * gsp)2899 r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp)
2900 {
2901 const struct firmware *fw = gsp->fws.bl;
2902 const struct nvfw_bin_hdr *hdr;
2903 RM_RISCV_UCODE_DESC *desc;
2904 int ret;
2905
2906 hdr = nvfw_bin_hdr(&gsp->subdev, fw->data);
2907 desc = (void *)fw->data + hdr->header_offset;
2908
2909 ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw);
2910 if (ret)
2911 return ret;
2912
2913 memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size);
2914
2915 gsp->boot.code_offset = desc->monitorCodeOffset;
2916 gsp->boot.data_offset = desc->monitorDataOffset;
2917 gsp->boot.manifest_offset = desc->manifestOffset;
2918 gsp->boot.app_version = desc->appVersion;
2919 return 0;
2920 }
2921
2922 static const struct nvkm_firmware_func
2923 r535_gsp_fw = {
2924 .type = NVKM_FIRMWARE_IMG_SGT,
2925 };
2926
2927 static int
r535_gsp_elf_section(struct nvkm_gsp * gsp,const char * name,const u8 ** pdata,u64 * psize)2928 r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize)
2929 {
2930 const u8 *img = gsp->fws.rm->data;
2931 const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img;
2932 const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff];
2933 const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset];
2934
2935 for (int i = 0; i < ehdr->e_shnum; i++, shdr++) {
2936 if (!strcmp(&names[shdr->sh_name], name)) {
2937 *pdata = &img[shdr->sh_offset];
2938 *psize = shdr->sh_size;
2939 return 0;
2940 }
2941 }
2942
2943 nvkm_error(&gsp->subdev, "section '%s' not found\n", name);
2944 return -ENOENT;
2945 }
2946
2947 static void
r535_gsp_dtor_fws(struct nvkm_gsp * gsp)2948 r535_gsp_dtor_fws(struct nvkm_gsp *gsp)
2949 {
2950 nvkm_firmware_put(gsp->fws.bl);
2951 gsp->fws.bl = NULL;
2952 nvkm_firmware_put(gsp->fws.booter.unload);
2953 gsp->fws.booter.unload = NULL;
2954 nvkm_firmware_put(gsp->fws.booter.load);
2955 gsp->fws.booter.load = NULL;
2956 nvkm_firmware_put(gsp->fws.rm);
2957 gsp->fws.rm = NULL;
2958 }
2959
2960 #ifdef CONFIG_DEBUG_FS
2961
2962 struct r535_gsp_log {
2963 struct nvif_log log;
2964
2965 /*
2966 * Logging buffers in debugfs. The wrapper objects need to remain
2967 * in memory until the dentry is deleted.
2968 */
2969 struct dentry *debugfs_logging_dir;
2970 struct debugfs_blob_wrapper blob_init;
2971 struct debugfs_blob_wrapper blob_intr;
2972 struct debugfs_blob_wrapper blob_rm;
2973 struct debugfs_blob_wrapper blob_pmu;
2974 };
2975
2976 /**
2977 * r535_debugfs_shutdown - delete GSP-RM logging buffers for one GPU
2978 * @_log: nvif_log struct for this GPU
2979 *
2980 * Called when the driver is shutting down, to clean up the retained GSP-RM
2981 * logging buffers.
2982 */
r535_debugfs_shutdown(struct nvif_log * _log)2983 static void r535_debugfs_shutdown(struct nvif_log *_log)
2984 {
2985 struct r535_gsp_log *log = container_of(_log, struct r535_gsp_log, log);
2986
2987 debugfs_remove(log->debugfs_logging_dir);
2988
2989 kfree(log->blob_init.data);
2990 kfree(log->blob_intr.data);
2991 kfree(log->blob_rm.data);
2992 kfree(log->blob_pmu.data);
2993
2994 /* We also need to delete the list object */
2995 kfree(log);
2996 }
2997
2998 /**
2999 * is_empty - return true if the logging buffer was never written to
3000 * @b: blob wrapper with ->data field pointing to logging buffer
3001 *
3002 * The first 64-bit field of loginit, and logintr, and logrm is the 'put'
3003 * pointer, and it is initialized to 0. It's a dword-based index into the
3004 * circular buffer, indicating where the next printf write will be made.
3005 *
3006 * If the pointer is still 0 when GSP-RM is shut down, that means that the
3007 * buffer was never written to, so it can be ignored.
3008 *
3009 * This test also works for logpmu, even though it doesn't have a put pointer.
3010 */
is_empty(const struct debugfs_blob_wrapper * b)3011 static bool is_empty(const struct debugfs_blob_wrapper *b)
3012 {
3013 u64 *put = b->data;
3014
3015 return put ? (*put == 0) : true;
3016 }
3017
3018 /**
3019 * r535_gsp_copy_log - preserve the logging buffers in a blob
3020 * @parent: the top-level dentry for this GPU
3021 * @name: name of debugfs entry to create
3022 * @s: original wrapper object to copy from
3023 * @t: new wrapper object to copy to
3024 *
3025 * When GSP shuts down, the nvkm_gsp object and all its memory is deleted.
3026 * To preserve the logging buffers, the buffers need to be copied, but only
3027 * if they actually have data.
3028 */
r535_gsp_copy_log(struct dentry * parent,const char * name,const struct debugfs_blob_wrapper * s,struct debugfs_blob_wrapper * t)3029 static int r535_gsp_copy_log(struct dentry *parent,
3030 const char *name,
3031 const struct debugfs_blob_wrapper *s,
3032 struct debugfs_blob_wrapper *t)
3033 {
3034 struct dentry *dent;
3035 void *p;
3036
3037 if (is_empty(s))
3038 return 0;
3039
3040 /* The original buffers will be deleted */
3041 p = kmemdup(s->data, s->size, GFP_KERNEL);
3042 if (!p)
3043 return -ENOMEM;
3044
3045 t->data = p;
3046 t->size = s->size;
3047
3048 dent = debugfs_create_blob(name, 0444, parent, t);
3049 if (IS_ERR(dent)) {
3050 kfree(p);
3051 memset(t, 0, sizeof(*t));
3052 return PTR_ERR(dent);
3053 }
3054
3055 i_size_write(d_inode(dent), t->size);
3056
3057 return 0;
3058 }
3059
3060 /**
3061 * r535_gsp_retain_logging - copy logging buffers to new debugfs root
3062 * @gsp: gsp pointer
3063 *
3064 * If keep_gsp_logging is enabled, then we want to preserve the GSP-RM logging
3065 * buffers and their debugfs entries, but all those objects would normally
3066 * deleted if GSP-RM fails to load.
3067 *
3068 * To preserve the logging buffers, we need to:
3069 *
3070 * 1) Allocate new buffers and copy the logs into them, so that the original
3071 * DMA buffers can be released.
3072 *
3073 * 2) Preserve the directories. We don't need to save single dentries because
3074 * we're going to delete the parent when the
3075 *
3076 * If anything fails in this process, then all the dentries need to be
3077 * deleted. We don't need to deallocate the original logging buffers because
3078 * the caller will do that regardless.
3079 */
r535_gsp_retain_logging(struct nvkm_gsp * gsp)3080 static void r535_gsp_retain_logging(struct nvkm_gsp *gsp)
3081 {
3082 struct device *dev = gsp->subdev.device->dev;
3083 struct r535_gsp_log *log = NULL;
3084 int ret;
3085
3086 if (!keep_gsp_logging || !gsp->debugfs.parent) {
3087 /* Nothing to do */
3088 goto exit;
3089 }
3090
3091 /* Check to make sure at least one buffer has data. */
3092 if (is_empty(&gsp->blob_init) && is_empty(&gsp->blob_intr) &&
3093 is_empty(&gsp->blob_rm) && is_empty(&gsp->blob_rm)) {
3094 nvkm_warn(&gsp->subdev, "all logging buffers are empty\n");
3095 goto exit;
3096 }
3097
3098 log = kzalloc(sizeof(*log), GFP_KERNEL);
3099 if (!log)
3100 goto error;
3101
3102 /*
3103 * Since the nvkm_gsp object is going away, the debugfs_blob_wrapper
3104 * objects are also being deleted, which means the dentries will no
3105 * longer be valid. Delete the existing entries so that we can create
3106 * new ones with the same name.
3107 */
3108 debugfs_remove(gsp->debugfs.init);
3109 debugfs_remove(gsp->debugfs.intr);
3110 debugfs_remove(gsp->debugfs.rm);
3111 debugfs_remove(gsp->debugfs.pmu);
3112
3113 ret = r535_gsp_copy_log(gsp->debugfs.parent, "loginit", &gsp->blob_init, &log->blob_init);
3114 if (ret)
3115 goto error;
3116
3117 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logintr", &gsp->blob_intr, &log->blob_intr);
3118 if (ret)
3119 goto error;
3120
3121 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logrm", &gsp->blob_rm, &log->blob_rm);
3122 if (ret)
3123 goto error;
3124
3125 ret = r535_gsp_copy_log(gsp->debugfs.parent, "logpmu", &gsp->blob_pmu, &log->blob_pmu);
3126 if (ret)
3127 goto error;
3128
3129 /* The nvkm_gsp object is going away, so save the dentry */
3130 log->debugfs_logging_dir = gsp->debugfs.parent;
3131
3132 log->log.shutdown = r535_debugfs_shutdown;
3133 list_add(&log->log.entry, &gsp_logs.head);
3134
3135 nvkm_warn(&gsp->subdev,
3136 "logging buffers migrated to /sys/kernel/debug/nouveau/%s\n",
3137 dev_name(dev));
3138
3139 return;
3140
3141 error:
3142 nvkm_warn(&gsp->subdev, "failed to migrate logging buffers\n");
3143
3144 exit:
3145 debugfs_remove(gsp->debugfs.parent);
3146
3147 if (log) {
3148 kfree(log->blob_init.data);
3149 kfree(log->blob_intr.data);
3150 kfree(log->blob_rm.data);
3151 kfree(log->blob_pmu.data);
3152 kfree(log);
3153 }
3154 }
3155
3156 #endif
3157
3158 /**
3159 * r535_gsp_libos_debugfs_fini - cleanup/retain log buffers on shutdown
3160 * @gsp: gsp pointer
3161 *
3162 * If the log buffers are exposed via debugfs, the data for those entries
3163 * needs to be cleaned up when the GSP device shuts down.
3164 */
3165 static void
r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused * gsp)3166 r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused *gsp)
3167 {
3168 #ifdef CONFIG_DEBUG_FS
3169 r535_gsp_retain_logging(gsp);
3170
3171 /*
3172 * Unlike the other buffers, the PMU blob is a kmalloc'd buffer that
3173 * exists only if the debugfs entries were created.
3174 */
3175 kfree(gsp->blob_pmu.data);
3176 gsp->blob_pmu.data = NULL;
3177 #endif
3178 }
3179
3180 void
r535_gsp_dtor(struct nvkm_gsp * gsp)3181 r535_gsp_dtor(struct nvkm_gsp *gsp)
3182 {
3183 idr_destroy(&gsp->client_id.idr);
3184 mutex_destroy(&gsp->client_id.mutex);
3185
3186 nvkm_gsp_radix3_dtor(gsp, &gsp->radix3);
3187 nvkm_gsp_mem_dtor(&gsp->sig);
3188 nvkm_firmware_dtor(&gsp->fw);
3189
3190 nvkm_falcon_fw_dtor(&gsp->booter.unload);
3191 nvkm_falcon_fw_dtor(&gsp->booter.load);
3192
3193 mutex_destroy(&gsp->msgq.mutex);
3194 mutex_destroy(&gsp->cmdq.mutex);
3195
3196 r535_gsp_dtor_fws(gsp);
3197
3198 nvkm_gsp_mem_dtor(&gsp->rmargs);
3199 nvkm_gsp_mem_dtor(&gsp->wpr_meta);
3200 nvkm_gsp_mem_dtor(&gsp->shm.mem);
3201
3202 r535_gsp_libos_debugfs_fini(gsp);
3203
3204 nvkm_gsp_mem_dtor(&gsp->loginit);
3205 nvkm_gsp_mem_dtor(&gsp->logintr);
3206 nvkm_gsp_mem_dtor(&gsp->logrm);
3207 }
3208
3209 int
r535_gsp_oneinit(struct nvkm_gsp * gsp)3210 r535_gsp_oneinit(struct nvkm_gsp *gsp)
3211 {
3212 struct nvkm_device *device = gsp->subdev.device;
3213 const u8 *data;
3214 u64 size;
3215 int ret;
3216
3217 mutex_init(&gsp->cmdq.mutex);
3218 mutex_init(&gsp->msgq.mutex);
3219
3220 ret = gsp->func->booter.ctor(gsp, "booter-load", gsp->fws.booter.load,
3221 &device->sec2->falcon, &gsp->booter.load);
3222 if (ret)
3223 return ret;
3224
3225 ret = gsp->func->booter.ctor(gsp, "booter-unload", gsp->fws.booter.unload,
3226 &device->sec2->falcon, &gsp->booter.unload);
3227 if (ret)
3228 return ret;
3229
3230 /* Load GSP firmware from ELF image into DMA-accessible memory. */
3231 ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size);
3232 if (ret)
3233 return ret;
3234
3235 ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw);
3236 if (ret)
3237 return ret;
3238
3239 /* Load relevant signature from ELF image. */
3240 ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size);
3241 if (ret)
3242 return ret;
3243
3244 ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig);
3245 if (ret)
3246 return ret;
3247
3248 memcpy(gsp->sig.data, data, size);
3249
3250 /* Build radix3 page table for ELF image. */
3251 ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3);
3252 if (ret)
3253 return ret;
3254
3255 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER,
3256 r535_gsp_msg_run_cpu_sequencer, gsp);
3257 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp);
3258 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED,
3259 r535_gsp_msg_rc_triggered, gsp);
3260 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED,
3261 r535_gsp_msg_mmu_fault_queued, gsp);
3262 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp);
3263 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL);
3264 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL);
3265 r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL);
3266 ret = r535_gsp_rm_boot_ctor(gsp);
3267 if (ret)
3268 return ret;
3269
3270 /* Release FW images - we've copied them to DMA buffers now. */
3271 r535_gsp_dtor_fws(gsp);
3272
3273 /* Calculate FB layout. */
3274 gsp->fb.wpr2.frts.size = 0x100000;
3275 gsp->fb.wpr2.frts.addr = ALIGN_DOWN(gsp->fb.bios.addr, 0x20000) - gsp->fb.wpr2.frts.size;
3276
3277 gsp->fb.wpr2.boot.size = gsp->boot.fw.size;
3278 gsp->fb.wpr2.boot.addr = ALIGN_DOWN(gsp->fb.wpr2.frts.addr - gsp->fb.wpr2.boot.size, 0x1000);
3279
3280 gsp->fb.wpr2.elf.size = gsp->fw.len;
3281 gsp->fb.wpr2.elf.addr = ALIGN_DOWN(gsp->fb.wpr2.boot.addr - gsp->fb.wpr2.elf.size, 0x10000);
3282
3283 {
3284 u32 fb_size_gb = DIV_ROUND_UP_ULL(gsp->fb.size, 1 << 30);
3285
3286 gsp->fb.wpr2.heap.size =
3287 gsp->func->wpr_heap.os_carveout_size +
3288 gsp->func->wpr_heap.base_size +
3289 ALIGN(GSP_FW_HEAP_PARAM_SIZE_PER_GB_FB * fb_size_gb, 1 << 20) +
3290 ALIGN(GSP_FW_HEAP_PARAM_CLIENT_ALLOC_SIZE, 1 << 20);
3291
3292 gsp->fb.wpr2.heap.size = max(gsp->fb.wpr2.heap.size, gsp->func->wpr_heap.min_size);
3293 }
3294
3295 gsp->fb.wpr2.heap.addr = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.size, 0x100000);
3296 gsp->fb.wpr2.heap.size = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.addr, 0x100000);
3297
3298 gsp->fb.wpr2.addr = ALIGN_DOWN(gsp->fb.wpr2.heap.addr - sizeof(GspFwWprMeta), 0x100000);
3299 gsp->fb.wpr2.size = gsp->fb.wpr2.frts.addr + gsp->fb.wpr2.frts.size - gsp->fb.wpr2.addr;
3300
3301 gsp->fb.heap.size = 0x100000;
3302 gsp->fb.heap.addr = gsp->fb.wpr2.addr - gsp->fb.heap.size;
3303
3304 ret = nvkm_gsp_fwsec_frts(gsp);
3305 if (WARN_ON(ret))
3306 return ret;
3307
3308 ret = r535_gsp_libos_init(gsp);
3309 if (WARN_ON(ret))
3310 return ret;
3311
3312 ret = r535_gsp_wpr_meta_init(gsp);
3313 if (WARN_ON(ret))
3314 return ret;
3315
3316 ret = r535_gsp_rpc_set_system_info(gsp);
3317 if (WARN_ON(ret))
3318 return ret;
3319
3320 ret = r535_gsp_rpc_set_registry(gsp);
3321 if (WARN_ON(ret))
3322 return ret;
3323
3324 /* Reset GSP into RISC-V mode. */
3325 ret = gsp->func->reset(gsp);
3326 if (WARN_ON(ret))
3327 return ret;
3328
3329 nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
3330 nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
3331
3332 mutex_init(&gsp->client_id.mutex);
3333 idr_init(&gsp->client_id.idr);
3334 return 0;
3335 }
3336
3337 static int
r535_gsp_load_fw(struct nvkm_gsp * gsp,const char * name,const char * ver,const struct firmware ** pfw)3338 r535_gsp_load_fw(struct nvkm_gsp *gsp, const char *name, const char *ver,
3339 const struct firmware **pfw)
3340 {
3341 char fwname[64];
3342
3343 snprintf(fwname, sizeof(fwname), "gsp/%s-%s", name, ver);
3344 return nvkm_firmware_get(&gsp->subdev, fwname, 0, pfw);
3345 }
3346
3347 int
r535_gsp_load(struct nvkm_gsp * gsp,int ver,const struct nvkm_gsp_fwif * fwif)3348 r535_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif)
3349 {
3350 struct nvkm_subdev *subdev = &gsp->subdev;
3351 int ret;
3352 bool enable_gsp = fwif->enable;
3353
3354 #if IS_ENABLED(CONFIG_DRM_NOUVEAU_GSP_DEFAULT)
3355 enable_gsp = true;
3356 #endif
3357 if (!nvkm_boolopt(subdev->device->cfgopt, "NvGspRm", enable_gsp))
3358 return -EINVAL;
3359
3360 if ((ret = r535_gsp_load_fw(gsp, "gsp", fwif->ver, &gsp->fws.rm)) ||
3361 (ret = r535_gsp_load_fw(gsp, "booter_load", fwif->ver, &gsp->fws.booter.load)) ||
3362 (ret = r535_gsp_load_fw(gsp, "booter_unload", fwif->ver, &gsp->fws.booter.unload)) ||
3363 (ret = r535_gsp_load_fw(gsp, "bootloader", fwif->ver, &gsp->fws.bl))) {
3364 r535_gsp_dtor_fws(gsp);
3365 return ret;
3366 }
3367
3368 return 0;
3369 }
3370
3371 #define NVKM_GSP_FIRMWARE(chip) \
3372 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_load-535.113.01.bin"); \
3373 MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_unload-535.113.01.bin"); \
3374 MODULE_FIRMWARE("nvidia/"#chip"/gsp/bootloader-535.113.01.bin"); \
3375 MODULE_FIRMWARE("nvidia/"#chip"/gsp/gsp-535.113.01.bin")
3376
3377 NVKM_GSP_FIRMWARE(tu102);
3378 NVKM_GSP_FIRMWARE(tu104);
3379 NVKM_GSP_FIRMWARE(tu106);
3380
3381 NVKM_GSP_FIRMWARE(tu116);
3382 NVKM_GSP_FIRMWARE(tu117);
3383
3384 NVKM_GSP_FIRMWARE(ga100);
3385
3386 NVKM_GSP_FIRMWARE(ga102);
3387 NVKM_GSP_FIRMWARE(ga103);
3388 NVKM_GSP_FIRMWARE(ga104);
3389 NVKM_GSP_FIRMWARE(ga106);
3390 NVKM_GSP_FIRMWARE(ga107);
3391
3392 NVKM_GSP_FIRMWARE(ad102);
3393 NVKM_GSP_FIRMWARE(ad103);
3394 NVKM_GSP_FIRMWARE(ad104);
3395 NVKM_GSP_FIRMWARE(ad106);
3396 NVKM_GSP_FIRMWARE(ad107);
3397