1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/devfreq.h>
13 #include <linux/interconnect.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16
17 #include "msm_drv.h"
18 #include "msm_fence.h"
19 #include "msm_ringbuffer.h"
20 #include "msm_gem.h"
21
22 struct msm_gem_submit;
23 struct msm_gpu_perfcntr;
24 struct msm_gpu_state;
25 struct msm_file_private;
26
27 struct msm_gpu_config {
28 const char *ioname;
29 unsigned int nr_rings;
30 };
31
32 /* So far, with hardware that I've seen to date, we can have:
33 * + zero, one, or two z180 2d cores
34 * + a3xx or a2xx 3d core, which share a common CP (the firmware
35 * for the CP seems to implement some different PM4 packet types
36 * but the basics of cmdstream submission are the same)
37 *
38 * Which means that the eventual complete "class" hierarchy, once
39 * support for all past and present hw is in place, becomes:
40 * + msm_gpu
41 * + adreno_gpu
42 * + a3xx_gpu
43 * + a2xx_gpu
44 * + z180_gpu
45 */
46 struct msm_gpu_funcs {
47 int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
48 uint32_t param, uint64_t *value, uint32_t *len);
49 int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
50 uint32_t param, uint64_t value, uint32_t len);
51 int (*hw_init)(struct msm_gpu *gpu);
52
53 /**
54 * @ucode_load: Optional hook to upload fw to GEM objs
55 */
56 int (*ucode_load)(struct msm_gpu *gpu);
57
58 int (*pm_suspend)(struct msm_gpu *gpu);
59 int (*pm_resume)(struct msm_gpu *gpu);
60 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 irqreturn_t (*irq)(struct msm_gpu *irq);
63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 void (*recover)(struct msm_gpu *gpu);
65 void (*destroy)(struct msm_gpu *gpu);
66 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
67 /* show GPU status in debugfs: */
68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 struct drm_printer *p);
70 /* for generation specific debugfs: */
71 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 /* note: gpu_busy() can assume that we have been pm_resumed */
74 u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
75 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
76 int (*gpu_state_put)(struct msm_gpu_state *state);
77 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
78 /* note: gpu_set_freq() can assume that we have been pm_resumed */
79 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp,
80 bool suspended);
81 struct msm_gem_address_space *(*create_address_space)
82 (struct msm_gpu *gpu, struct platform_device *pdev);
83 struct msm_gem_address_space *(*create_private_address_space)
84 (struct msm_gpu *gpu);
85 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
86
87 /**
88 * progress: Has the GPU made progress?
89 *
90 * Return true if GPU position in cmdstream has advanced (or changed)
91 * since the last call. To avoid false negatives, this should account
92 * for cmdstream that is buffered in this FIFO upstream of the CP fw.
93 */
94 bool (*progress)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
95 };
96
97 /* Additional state for iommu faults: */
98 struct msm_gpu_fault_info {
99 u64 ttbr0;
100 unsigned long iova;
101 int flags;
102 const char *type;
103 const char *block;
104
105 /* Information about what we think/expect is the current SMMU state,
106 * for example expected_ttbr0 should match smmu_info.ttbr0 which
107 * was read back from SMMU registers.
108 */
109 phys_addr_t pgtbl_ttbr0;
110 u64 ptes[4];
111 int asid;
112 };
113
114 /**
115 * struct msm_gpu_devfreq - devfreq related state
116 */
117 struct msm_gpu_devfreq {
118 /** devfreq: devfreq instance */
119 struct devfreq *devfreq;
120
121 /** lock: lock for "suspended", "busy_cycles", and "time" */
122 struct mutex lock;
123
124 /**
125 * idle_freq:
126 *
127 * Shadow frequency used while the GPU is idle. From the PoV of
128 * the devfreq governor, we are continuing to sample busyness and
129 * adjust frequency while the GPU is idle, but we use this shadow
130 * value as the GPU is actually clamped to minimum frequency while
131 * it is inactive.
132 */
133 unsigned long idle_freq;
134
135 /**
136 * boost_constraint:
137 *
138 * A PM QoS constraint to boost min freq for a period of time
139 * until the boost expires.
140 */
141 struct dev_pm_qos_request boost_freq;
142
143 /**
144 * busy_cycles: Last busy counter value, for calculating elapsed busy
145 * cycles since last sampling period.
146 */
147 u64 busy_cycles;
148
149 /** time: Time of last sampling period. */
150 ktime_t time;
151
152 /** idle_time: Time of last transition to idle: */
153 ktime_t idle_time;
154
155 /**
156 * idle_work:
157 *
158 * Used to delay clamping to idle freq on active->idle transition.
159 */
160 struct msm_hrtimer_work idle_work;
161
162 /**
163 * boost_work:
164 *
165 * Used to reset the boost_constraint after the boost period has
166 * elapsed
167 */
168 struct msm_hrtimer_work boost_work;
169
170 /** suspended: tracks if we're suspended */
171 bool suspended;
172 };
173
174 struct msm_gpu {
175 const char *name;
176 struct drm_device *dev;
177 struct platform_device *pdev;
178 const struct msm_gpu_funcs *funcs;
179
180 struct adreno_smmu_priv adreno_smmu;
181
182 /* performance counters (hw & sw): */
183 spinlock_t perf_lock;
184 bool perfcntr_active;
185 struct {
186 bool active;
187 ktime_t time;
188 } last_sample;
189 uint32_t totaltime, activetime; /* sw counters */
190 uint32_t last_cntrs[5]; /* hw counters */
191 const struct msm_gpu_perfcntr *perfcntrs;
192 uint32_t num_perfcntrs;
193
194 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
195 int nr_rings;
196
197 /**
198 * sysprof_active:
199 *
200 * The count of contexts that have enabled system profiling.
201 */
202 refcount_t sysprof_active;
203
204 /**
205 * lock:
206 *
207 * General lock for serializing all the gpu things.
208 *
209 * TODO move to per-ring locking where feasible (ie. submit/retire
210 * path, etc)
211 */
212 struct mutex lock;
213
214 /**
215 * active_submits:
216 *
217 * The number of submitted but not yet retired submits, used to
218 * determine transitions between active and idle.
219 *
220 * Protected by active_lock
221 */
222 int active_submits;
223
224 /** lock: protects active_submits and idle/active transitions */
225 struct mutex active_lock;
226
227 /* does gpu need hw_init? */
228 bool needs_hw_init;
229
230 /**
231 * global_faults: number of GPU hangs not attributed to a particular
232 * address space
233 */
234 int global_faults;
235
236 void __iomem *mmio;
237 int irq;
238
239 struct msm_gem_address_space *aspace;
240
241 /* Power Control: */
242 struct regulator *gpu_reg, *gpu_cx;
243 struct clk_bulk_data *grp_clks;
244 int nr_clocks;
245 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
246 uint32_t fast_rate;
247
248 /* Hang and Inactivity Detection:
249 */
250 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
251
252 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
253 #define DRM_MSM_HANGCHECK_PROGRESS_RETRIES 3
254 struct timer_list hangcheck_timer;
255
256 /* Fault info for most recent iova fault: */
257 struct msm_gpu_fault_info fault_info;
258
259 /* work for handling GPU ioval faults: */
260 struct kthread_work fault_work;
261
262 /* work for handling GPU recovery: */
263 struct kthread_work recover_work;
264
265 /** retire_event: notified when submits are retired: */
266 wait_queue_head_t retire_event;
267
268 /* work for handling active-list retiring: */
269 struct kthread_work retire_work;
270
271 /* worker for retire/recover: */
272 struct kthread_worker *worker;
273
274 struct drm_gem_object *memptrs_bo;
275
276 struct msm_gpu_devfreq devfreq;
277
278 uint32_t suspend_count;
279
280 struct msm_gpu_state *crashstate;
281
282 /* True if the hardware supports expanded apriv (a650 and newer) */
283 bool hw_apriv;
284
285 /**
286 * @allow_relocs: allow relocs in SUBMIT ioctl
287 *
288 * Mesa won't use relocs for driver version 1.4.0 and later. This
289 * switch-over happened early enough in mesa a6xx bringup that we
290 * can disallow relocs for a6xx and newer.
291 */
292 bool allow_relocs;
293
294 struct thermal_cooling_device *cooling;
295 };
296
dev_to_gpu(struct device * dev)297 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
298 {
299 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
300
301 if (!adreno_smmu)
302 return NULL;
303
304 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
305 }
306
307 /* It turns out that all targets use the same ringbuffer size */
308 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
309 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
310
311 #define MSM_GPU_RB_CNTL_DEFAULT \
312 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
313 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
314
msm_gpu_active(struct msm_gpu * gpu)315 static inline bool msm_gpu_active(struct msm_gpu *gpu)
316 {
317 int i;
318
319 for (i = 0; i < gpu->nr_rings; i++) {
320 struct msm_ringbuffer *ring = gpu->rb[i];
321
322 if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
323 return true;
324 }
325
326 return false;
327 }
328
329 /* Perf-Counters:
330 * The select_reg and select_val are just there for the benefit of the child
331 * class that actually enables the perf counter.. but msm_gpu base class
332 * will handle sampling/displaying the counters.
333 */
334
335 struct msm_gpu_perfcntr {
336 uint32_t select_reg;
337 uint32_t sample_reg;
338 uint32_t select_val;
339 const char *name;
340 };
341
342 /*
343 * The number of priority levels provided by drm gpu scheduler. The
344 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
345 * cases, so we don't use it (no need for kernel generated jobs).
346 */
347 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_LOW - DRM_SCHED_PRIORITY_HIGH)
348
349 /**
350 * struct msm_file_private - per-drm_file context
351 *
352 * @queuelock: synchronizes access to submitqueues list
353 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
354 * @queueid: counter incremented each time a submitqueue is created,
355 * used to assign &msm_gpu_submitqueue.id
356 * @aspace: the per-process GPU address-space
357 * @ref: reference count
358 * @seqno: unique per process seqno
359 */
360 struct msm_file_private {
361 rwlock_t queuelock;
362 struct list_head submitqueues;
363 int queueid;
364 struct msm_gem_address_space *aspace;
365 struct kref ref;
366 int seqno;
367
368 /**
369 * sysprof:
370 *
371 * The value of MSM_PARAM_SYSPROF set by userspace. This is
372 * intended to be used by system profiling tools like Mesa's
373 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
374 *
375 * Setting a value of 1 will preserve performance counters across
376 * context switches. Setting a value of 2 will in addition
377 * suppress suspend. (Performance counters lose state across
378 * power collapse, which is undesirable for profiling in some
379 * cases.)
380 *
381 * The value automatically reverts to zero when the drm device
382 * file is closed.
383 */
384 int sysprof;
385
386 /**
387 * comm: Overridden task comm, see MSM_PARAM_COMM
388 *
389 * Accessed under msm_gpu::lock
390 */
391 char *comm;
392
393 /**
394 * cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE
395 *
396 * Accessed under msm_gpu::lock
397 */
398 char *cmdline;
399
400 /**
401 * elapsed:
402 *
403 * The total (cumulative) elapsed time GPU was busy with rendering
404 * from this context in ns.
405 */
406 uint64_t elapsed_ns;
407
408 /**
409 * cycles:
410 *
411 * The total (cumulative) GPU cycles elapsed attributed to this
412 * context.
413 */
414 uint64_t cycles;
415
416 /**
417 * entities:
418 *
419 * Table of per-priority-level sched entities used by submitqueues
420 * associated with this &drm_file. Because some userspace apps
421 * make assumptions about rendering from multiple gl contexts
422 * (of the same priority) within the process happening in FIFO
423 * order without requiring any fencing beyond MakeCurrent(), we
424 * create at most one &drm_sched_entity per-process per-priority-
425 * level.
426 */
427 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
428
429 /**
430 * ctx_mem:
431 *
432 * Total amount of memory of GEM buffers with handles attached for
433 * this context.
434 */
435 atomic64_t ctx_mem;
436 };
437
438 /**
439 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
440 *
441 * @gpu: the gpu instance
442 * @prio: the userspace priority level
443 * @ring_nr: [out] the ringbuffer the userspace priority maps to
444 * @sched_prio: [out] the gpu scheduler priority level which the userspace
445 * priority maps to
446 *
447 * With drm/scheduler providing it's own level of prioritization, our total
448 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
449 * Each ring is associated with it's own scheduler instance. However, our
450 * UABI is that lower numerical values are higher priority. So mapping the
451 * single userspace priority level into ring_nr and sched_prio takes some
452 * care. The userspace provided priority (when a submitqueue is created)
453 * is mapped to ring nr and scheduler priority as such:
454 *
455 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
456 * sched_prio = NR_SCHED_PRIORITIES -
457 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
458 *
459 * This allows generations without preemption (nr_rings==1) to have some
460 * amount of prioritization, and provides more priority levels for gens
461 * that do have preemption.
462 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)463 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
464 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
465 {
466 unsigned rn, sp;
467
468 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
469
470 /* invert sched priority to map to higher-numeric-is-higher-
471 * priority convention
472 */
473 sp = NR_SCHED_PRIORITIES - sp - 1;
474
475 if (rn >= gpu->nr_rings)
476 return -EINVAL;
477
478 *ring_nr = rn;
479 *sched_prio = sp;
480
481 return 0;
482 }
483
484 /**
485 * struct msm_gpu_submitqueues - Userspace created context.
486 *
487 * A submitqueue is associated with a gl context or vk queue (or equiv)
488 * in userspace.
489 *
490 * @id: userspace id for the submitqueue, unique within the drm_file
491 * @flags: userspace flags for the submitqueue, specified at creation
492 * (currently unusued)
493 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
494 * by the submitqueue's priority
495 * @faults: the number of GPU hangs associated with this submitqueue
496 * @last_fence: the sequence number of the last allocated fence (for error
497 * checking)
498 * @ctx: the per-drm_file context associated with the submitqueue (ie.
499 * which set of pgtables do submits jobs associated with the
500 * submitqueue use)
501 * @node: node in the context's list of submitqueues
502 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
503 * seqno, protected by submitqueue lock
504 * @idr_lock: for serializing access to fence_idr
505 * @lock: submitqueue lock for serializing submits on a queue
506 * @ref: reference count
507 * @entity: the submit job-queue
508 */
509 struct msm_gpu_submitqueue {
510 int id;
511 u32 flags;
512 u32 ring_nr;
513 int faults;
514 uint32_t last_fence;
515 struct msm_file_private *ctx;
516 struct list_head node;
517 struct idr fence_idr;
518 struct spinlock idr_lock;
519 struct mutex lock;
520 struct kref ref;
521 struct drm_sched_entity *entity;
522 };
523
524 struct msm_gpu_state_bo {
525 u64 iova;
526 size_t size;
527 u32 flags;
528 void *data;
529 bool encoded;
530 char name[32];
531 };
532
533 struct msm_gpu_state {
534 struct kref ref;
535 struct timespec64 time;
536
537 struct {
538 u64 iova;
539 u32 fence;
540 u32 seqno;
541 u32 rptr;
542 u32 wptr;
543 void *data;
544 int data_size;
545 bool encoded;
546 } ring[MSM_GPU_MAX_RINGS];
547
548 int nr_registers;
549 u32 *registers;
550
551 u32 rbbm_status;
552
553 char *comm;
554 char *cmd;
555
556 struct msm_gpu_fault_info fault_info;
557
558 int nr_bos;
559 struct msm_gpu_state_bo *bos;
560 };
561
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)562 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
563 {
564 writel(data, gpu->mmio + (reg << 2));
565 }
566
gpu_read(struct msm_gpu * gpu,u32 reg)567 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
568 {
569 return readl(gpu->mmio + (reg << 2));
570 }
571
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)572 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
573 {
574 msm_rmw(gpu->mmio + (reg << 2), mask, or);
575 }
576
gpu_read64(struct msm_gpu * gpu,u32 reg)577 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 reg)
578 {
579 u64 val;
580
581 /*
582 * Why not a readq here? Two reasons: 1) many of the LO registers are
583 * not quad word aligned and 2) the GPU hardware designers have a bit
584 * of a history of putting registers where they fit, especially in
585 * spins. The longer a GPU family goes the higher the chance that
586 * we'll get burned. We could do a series of validity checks if we
587 * wanted to, but really is a readq() that much better? Nah.
588 */
589
590 /*
591 * For some lo/hi registers (like perfcounters), the hi value is latched
592 * when the lo is read, so make sure to read the lo first to trigger
593 * that
594 */
595 val = (u64) readl(gpu->mmio + (reg << 2));
596 val |= ((u64) readl(gpu->mmio + ((reg + 1) << 2)) << 32);
597
598 return val;
599 }
600
gpu_write64(struct msm_gpu * gpu,u32 reg,u64 val)601 static inline void gpu_write64(struct msm_gpu *gpu, u32 reg, u64 val)
602 {
603 /* Why not a writeq here? Read the screed above */
604 writel(lower_32_bits(val), gpu->mmio + (reg << 2));
605 writel(upper_32_bits(val), gpu->mmio + ((reg + 1) << 2));
606 }
607
608 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
609 int msm_gpu_pm_resume(struct msm_gpu *gpu);
610
611 void msm_gpu_show_fdinfo(struct msm_gpu *gpu, struct msm_file_private *ctx,
612 struct drm_printer *p);
613
614 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
615 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
616 u32 id);
617 int msm_submitqueue_create(struct drm_device *drm,
618 struct msm_file_private *ctx,
619 u32 prio, u32 flags, u32 *id);
620 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
621 struct drm_msm_submitqueue_query *args);
622 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
623 void msm_submitqueue_close(struct msm_file_private *ctx);
624
625 void msm_submitqueue_destroy(struct kref *kref);
626
627 int msm_file_private_set_sysprof(struct msm_file_private *ctx,
628 struct msm_gpu *gpu, int sysprof);
629 void __msm_file_private_destroy(struct kref *kref);
630
msm_file_private_put(struct msm_file_private * ctx)631 static inline void msm_file_private_put(struct msm_file_private *ctx)
632 {
633 kref_put(&ctx->ref, __msm_file_private_destroy);
634 }
635
msm_file_private_get(struct msm_file_private * ctx)636 static inline struct msm_file_private *msm_file_private_get(
637 struct msm_file_private *ctx)
638 {
639 kref_get(&ctx->ref);
640 return ctx;
641 }
642
643 void msm_devfreq_init(struct msm_gpu *gpu);
644 void msm_devfreq_cleanup(struct msm_gpu *gpu);
645 void msm_devfreq_resume(struct msm_gpu *gpu);
646 void msm_devfreq_suspend(struct msm_gpu *gpu);
647 void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
648 void msm_devfreq_active(struct msm_gpu *gpu);
649 void msm_devfreq_idle(struct msm_gpu *gpu);
650
651 int msm_gpu_hw_init(struct msm_gpu *gpu);
652
653 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
654 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
655 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
656 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
657
658 void msm_gpu_retire(struct msm_gpu *gpu);
659 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
660
661 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
662 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
663 const char *name, struct msm_gpu_config *config);
664
665 struct msm_gem_address_space *
666 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
667
668 void msm_gpu_cleanup(struct msm_gpu *gpu);
669
670 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
671 void __init adreno_register(void);
672 void __exit adreno_unregister(void);
673
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)674 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
675 {
676 if (queue)
677 kref_put(&queue->ref, msm_submitqueue_destroy);
678 }
679
msm_gpu_crashstate_get(struct msm_gpu * gpu)680 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
681 {
682 struct msm_gpu_state *state = NULL;
683
684 mutex_lock(&gpu->lock);
685
686 if (gpu->crashstate) {
687 kref_get(&gpu->crashstate->ref);
688 state = gpu->crashstate;
689 }
690
691 mutex_unlock(&gpu->lock);
692
693 return state;
694 }
695
msm_gpu_crashstate_put(struct msm_gpu * gpu)696 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
697 {
698 mutex_lock(&gpu->lock);
699
700 if (gpu->crashstate) {
701 if (gpu->funcs->gpu_state_put(gpu->crashstate))
702 gpu->crashstate = NULL;
703 }
704
705 mutex_unlock(&gpu->lock);
706 }
707
708 /*
709 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
710 * support expanded privileges
711 */
712 #define check_apriv(gpu, flags) \
713 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
714
715
716 #endif /* __MSM_GPU_H__ */
717