1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <dt-bindings/clock/qcom,dsi-phy-28nm.h>
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 
11 #include "dsi_phy.h"
12 #include "dsi.xml.h"
13 #include "dsi_phy_14nm.xml.h"
14 
15 #define PHY_14NM_CKLN_IDX	4
16 
17 /*
18  * DSI PLL 14nm - clock diagram (eg: DSI0):
19  *
20  *         dsi0n1_postdiv_clk
21  *                         |
22  *                         |
23  *                 +----+  |  +----+
24  *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
25  *                 +----+  |  +----+
26  *                         |           dsi0n1_postdivby2_clk
27  *                         |   +----+  |
28  *                         o---| /2 |--o--|\
29  *                         |   +----+     | \   +----+
30  *                         |              |  |--| n2 |-- dsi0pll
31  *                         o--------------| /   +----+
32  *                                        |/
33  */
34 
35 #define POLL_MAX_READS			15
36 #define POLL_TIMEOUT_US			1000
37 
38 #define VCO_REF_CLK_RATE		19200000
39 #define VCO_MIN_RATE			1300000000UL
40 #define VCO_MAX_RATE			2600000000UL
41 
42 struct dsi_pll_config {
43 	u64 vco_current_rate;
44 
45 	u32 ssc_en;	/* SSC enable/disable */
46 
47 	/* fixed params */
48 	u32 plllock_cnt;
49 	u32 ssc_center;
50 	u32 ssc_adj_period;
51 	u32 ssc_spread;
52 	u32 ssc_freq;
53 
54 	/* calculated */
55 	u32 dec_start;
56 	u32 div_frac_start;
57 	u32 ssc_period;
58 	u32 ssc_step_size;
59 	u32 plllock_cmp;
60 	u32 pll_vco_div_ref;
61 	u32 pll_vco_count;
62 	u32 pll_kvco_div_ref;
63 	u32 pll_kvco_count;
64 };
65 
66 struct pll_14nm_cached_state {
67 	unsigned long vco_rate;
68 	u8 n2postdiv;
69 	u8 n1postdiv;
70 };
71 
72 struct dsi_pll_14nm {
73 	struct clk_hw clk_hw;
74 
75 	struct msm_dsi_phy *phy;
76 
77 	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
78 	spinlock_t postdiv_lock;
79 
80 	struct pll_14nm_cached_state cached_state;
81 
82 	struct dsi_pll_14nm *slave;
83 };
84 
85 #define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
86 
87 /*
88  * Private struct for N1/N2 post-divider clocks. These clocks are similar to
89  * the generic clk_divider class of clocks. The only difference is that it
90  * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
91  */
92 struct dsi_pll_14nm_postdiv {
93 	struct clk_hw hw;
94 
95 	/* divider params */
96 	u8 shift;
97 	u8 width;
98 	u8 flags; /* same flags as used by clk_divider struct */
99 
100 	struct dsi_pll_14nm *pll;
101 };
102 
103 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
104 
105 /*
106  * Global list of private DSI PLL struct pointers. We need this for bonded DSI
107  * mode, where the master PLL's clk_ops needs access the slave's private data
108  */
109 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
110 
pll_14nm_poll_for_ready(struct dsi_pll_14nm * pll_14nm,u32 nb_tries,u32 timeout_us)111 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
112 				    u32 nb_tries, u32 timeout_us)
113 {
114 	bool pll_locked = false, pll_ready = false;
115 	void __iomem *base = pll_14nm->phy->pll_base;
116 	u32 tries, val;
117 
118 	tries = nb_tries;
119 	while (tries--) {
120 		val = readl(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
121 		pll_locked = !!(val & BIT(5));
122 
123 		if (pll_locked)
124 			break;
125 
126 		udelay(timeout_us);
127 	}
128 
129 	if (!pll_locked)
130 		goto out;
131 
132 	tries = nb_tries;
133 	while (tries--) {
134 		val = readl(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
135 		pll_ready = !!(val & BIT(0));
136 
137 		if (pll_ready)
138 			break;
139 
140 		udelay(timeout_us);
141 	}
142 
143 out:
144 	DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
145 
146 	return pll_locked && pll_ready;
147 }
148 
dsi_pll_14nm_config_init(struct dsi_pll_config * pconf)149 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
150 {
151 	/* fixed input */
152 	pconf->plllock_cnt = 1;
153 
154 	/*
155 	 * SSC is enabled by default. We might need DT props for configuring
156 	 * some SSC params like PPM and center/down spread etc.
157 	 */
158 	pconf->ssc_en = 1;
159 	pconf->ssc_center = 0;		/* down spread by default */
160 	pconf->ssc_spread = 5;		/* PPM / 1000 */
161 	pconf->ssc_freq = 31500;	/* default recommended */
162 	pconf->ssc_adj_period = 37;
163 }
164 
165 #define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
166 
pll_14nm_ssc_calc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)167 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
168 {
169 	u32 period, ssc_period;
170 	u32 ref, rem;
171 	u64 step_size;
172 
173 	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
174 
175 	ssc_period = pconf->ssc_freq / 500;
176 	period = (u32)VCO_REF_CLK_RATE / 1000;
177 	ssc_period  = CEIL(period, ssc_period);
178 	ssc_period -= 1;
179 	pconf->ssc_period = ssc_period;
180 
181 	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
182 	    pconf->ssc_spread, pconf->ssc_period);
183 
184 	step_size = (u32)pconf->vco_current_rate;
185 	ref = VCO_REF_CLK_RATE;
186 	ref /= 1000;
187 	step_size = div_u64(step_size, ref);
188 	step_size <<= 20;
189 	step_size = div_u64(step_size, 1000);
190 	step_size *= pconf->ssc_spread;
191 	step_size = div_u64(step_size, 1000);
192 	step_size *= (pconf->ssc_adj_period + 1);
193 
194 	rem = 0;
195 	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
196 	if (rem)
197 		step_size++;
198 
199 	DBG("step_size=%lld", step_size);
200 
201 	step_size &= 0x0ffff;	/* take lower 16 bits */
202 
203 	pconf->ssc_step_size = step_size;
204 }
205 
pll_14nm_dec_frac_calc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)206 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
207 {
208 	u64 multiplier = BIT(20);
209 	u64 dec_start_multiple, dec_start, pll_comp_val;
210 	u32 duration, div_frac_start;
211 	u64 vco_clk_rate = pconf->vco_current_rate;
212 	u64 fref = VCO_REF_CLK_RATE;
213 
214 	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
215 
216 	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
217 	dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
218 
219 	pconf->dec_start = (u32)dec_start;
220 	pconf->div_frac_start = div_frac_start;
221 
222 	if (pconf->plllock_cnt == 0)
223 		duration = 1024;
224 	else if (pconf->plllock_cnt == 1)
225 		duration = 256;
226 	else if (pconf->plllock_cnt == 2)
227 		duration = 128;
228 	else
229 		duration = 32;
230 
231 	pll_comp_val = duration * dec_start_multiple;
232 	pll_comp_val = div_u64(pll_comp_val, multiplier);
233 	do_div(pll_comp_val, 10);
234 
235 	pconf->plllock_cmp = (u32)pll_comp_val;
236 }
237 
pll_14nm_kvco_slop(u32 vrate)238 static u32 pll_14nm_kvco_slop(u32 vrate)
239 {
240 	u32 slop = 0;
241 
242 	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
243 		slop =  600;
244 	else if (vrate > 1800000000UL && vrate < 2300000000UL)
245 		slop = 400;
246 	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
247 		slop = 280;
248 
249 	return slop;
250 }
251 
pll_14nm_calc_vco_count(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)252 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
253 {
254 	u64 vco_clk_rate = pconf->vco_current_rate;
255 	u64 fref = VCO_REF_CLK_RATE;
256 	u32 vco_measure_time = 5;
257 	u32 kvco_measure_time = 5;
258 	u64 data;
259 	u32 cnt;
260 
261 	data = fref * vco_measure_time;
262 	do_div(data, 1000000);
263 	data &= 0x03ff;	/* 10 bits */
264 	data -= 2;
265 	pconf->pll_vco_div_ref = data;
266 
267 	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
268 	data *= vco_measure_time;
269 	do_div(data, 10);
270 	pconf->pll_vco_count = data;
271 
272 	data = fref * kvco_measure_time;
273 	do_div(data, 1000000);
274 	data &= 0x03ff;	/* 10 bits */
275 	data -= 1;
276 	pconf->pll_kvco_div_ref = data;
277 
278 	cnt = pll_14nm_kvco_slop(vco_clk_rate);
279 	cnt *= 2;
280 	cnt /= 100;
281 	cnt *= kvco_measure_time;
282 	pconf->pll_kvco_count = cnt;
283 }
284 
pll_db_commit_ssc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)285 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
286 {
287 	void __iomem *base = pll->phy->pll_base;
288 	u8 data;
289 
290 	data = pconf->ssc_adj_period;
291 	data &= 0x0ff;
292 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1);
293 	data = (pconf->ssc_adj_period >> 8);
294 	data &= 0x03;
295 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2);
296 
297 	data = pconf->ssc_period;
298 	data &= 0x0ff;
299 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_PER1);
300 	data = (pconf->ssc_period >> 8);
301 	data &= 0x0ff;
302 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_PER2);
303 
304 	data = pconf->ssc_step_size;
305 	data &= 0x0ff;
306 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1);
307 	data = (pconf->ssc_step_size >> 8);
308 	data &= 0x0ff;
309 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2);
310 
311 	data = (pconf->ssc_center & 0x01);
312 	data <<= 1;
313 	data |= 0x01; /* enable */
314 	writel(data, base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER);
315 
316 	wmb();	/* make sure register committed */
317 }
318 
pll_db_commit_common(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)319 static void pll_db_commit_common(struct dsi_pll_14nm *pll,
320 				 struct dsi_pll_config *pconf)
321 {
322 	void __iomem *base = pll->phy->pll_base;
323 	u8 data;
324 
325 	/* confgiure the non frequency dependent pll registers */
326 	data = 0;
327 	writel(data, base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET);
328 
329 	writel(1, base + REG_DSI_14nm_PHY_PLL_TXCLK_EN);
330 
331 	writel(48, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL);
332 	/* bandgap_timer */
333 	writel(4 << 3, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2);
334 	/* pll_wakeup_timer */
335 	writel(5, base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5);
336 
337 	data = pconf->pll_vco_div_ref & 0xff;
338 	writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1);
339 	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
340 	writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2);
341 
342 	data = pconf->pll_kvco_div_ref & 0xff;
343 	writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1);
344 	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
345 	writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2);
346 
347 	writel(16, base + REG_DSI_14nm_PHY_PLL_PLL_MISC1);
348 
349 	writel(4, base + REG_DSI_14nm_PHY_PLL_IE_TRIM);
350 
351 	writel(4, base + REG_DSI_14nm_PHY_PLL_IP_TRIM);
352 
353 	writel(1 << 3 | 1, base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR);
354 
355 	writel(0 << 3 | 0, base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET);
356 
357 	writel(0 << 3 | 0, base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET);
358 
359 	writel(4 << 3 | 4, base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET);
360 
361 	writel(1 << 4 | 11, base + REG_DSI_14nm_PHY_PLL_PLL_LPF1);
362 
363 	writel(7, base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM);
364 
365 	writel(1 << 4 | 2, base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL);
366 }
367 
pll_14nm_software_reset(struct dsi_pll_14nm * pll_14nm)368 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
369 {
370 	void __iomem *cmn_base = pll_14nm->phy->base;
371 
372 	/* de assert pll start and apply pll sw reset */
373 
374 	/* stop pll */
375 	writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
376 
377 	/* pll sw reset */
378 	writel(0x20, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1);
379 	udelay(10);
380 	wmb();	/* make sure register committed */
381 
382 	writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1);
383 	wmb();	/* make sure register committed */
384 }
385 
pll_db_commit_14nm(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)386 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
387 			       struct dsi_pll_config *pconf)
388 {
389 	void __iomem *base = pll->phy->pll_base;
390 	void __iomem *cmn_base = pll->phy->base;
391 	u8 data;
392 
393 	DBG("DSI%d PLL", pll->phy->id);
394 
395 	writel(0x3c, cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL);
396 
397 	pll_db_commit_common(pll, pconf);
398 
399 	pll_14nm_software_reset(pll);
400 
401 	/* Use the /2 path in Mux */
402 	writel(1, cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1);
403 
404 	data = 0xff; /* data, clk, pll normal operation */
405 	writel(data, cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0);
406 
407 	/* configure the frequency dependent pll registers */
408 	data = pconf->dec_start;
409 	writel(data, base + REG_DSI_14nm_PHY_PLL_DEC_START);
410 
411 	data = pconf->div_frac_start & 0xff;
412 	writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1);
413 	data = (pconf->div_frac_start >> 8) & 0xff;
414 	writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2);
415 	data = (pconf->div_frac_start >> 16) & 0xf;
416 	writel(data, base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3);
417 
418 	data = pconf->plllock_cmp & 0xff;
419 	writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1);
420 
421 	data = (pconf->plllock_cmp >> 8) & 0xff;
422 	writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2);
423 
424 	data = (pconf->plllock_cmp >> 16) & 0x3;
425 	writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3);
426 
427 	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
428 	writel(data, base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN);
429 
430 	data = pconf->pll_vco_count & 0xff;
431 	writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1);
432 	data = (pconf->pll_vco_count >> 8) & 0xff;
433 	writel(data, base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2);
434 
435 	data = pconf->pll_kvco_count & 0xff;
436 	writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1);
437 	data = (pconf->pll_kvco_count >> 8) & 0x3;
438 	writel(data, base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2);
439 
440 	/*
441 	 * High nibble configures the post divider internal to the VCO. It's
442 	 * fixed to divide by 1 for now.
443 	 *
444 	 * 0: divided by 1
445 	 * 1: divided by 2
446 	 * 2: divided by 4
447 	 * 3: divided by 8
448 	 */
449 	writel(0 << 4 | 3, base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV);
450 
451 	if (pconf->ssc_en)
452 		pll_db_commit_ssc(pll, pconf);
453 
454 	wmb();	/* make sure register committed */
455 }
456 
457 /*
458  * VCO clock Callbacks
459  */
dsi_pll_14nm_vco_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)460 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
461 				     unsigned long parent_rate)
462 {
463 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
464 	struct dsi_pll_config conf;
465 
466 	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
467 	    parent_rate);
468 
469 	dsi_pll_14nm_config_init(&conf);
470 	conf.vco_current_rate = rate;
471 
472 	pll_14nm_dec_frac_calc(pll_14nm, &conf);
473 
474 	if (conf.ssc_en)
475 		pll_14nm_ssc_calc(pll_14nm, &conf);
476 
477 	pll_14nm_calc_vco_count(pll_14nm, &conf);
478 
479 	/* commit the slave DSI PLL registers if we're master. Note that we
480 	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
481 	 * of the master and slave are identical
482 	 */
483 	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
484 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
485 
486 		pll_db_commit_14nm(pll_14nm_slave, &conf);
487 	}
488 
489 	pll_db_commit_14nm(pll_14nm, &conf);
490 
491 	return 0;
492 }
493 
dsi_pll_14nm_vco_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)494 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
495 						  unsigned long parent_rate)
496 {
497 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
498 	void __iomem *base = pll_14nm->phy->pll_base;
499 	u64 vco_rate, multiplier = BIT(20);
500 	u32 div_frac_start;
501 	u32 dec_start;
502 	u64 ref_clk = parent_rate;
503 
504 	dec_start = readl(base + REG_DSI_14nm_PHY_PLL_DEC_START);
505 	dec_start &= 0x0ff;
506 
507 	DBG("dec_start = %x", dec_start);
508 
509 	div_frac_start = (readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
510 				& 0xf) << 16;
511 	div_frac_start |= (readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
512 				& 0xff) << 8;
513 	div_frac_start |= readl(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
514 				& 0xff;
515 
516 	DBG("div_frac_start = %x", div_frac_start);
517 
518 	vco_rate = ref_clk * dec_start;
519 
520 	vco_rate += ((ref_clk * div_frac_start) / multiplier);
521 
522 	/*
523 	 * Recalculating the rate from dec_start and frac_start doesn't end up
524 	 * the rate we originally set. Convert the freq to KHz, round it up and
525 	 * convert it back to MHz.
526 	 */
527 	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
528 
529 	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
530 
531 	return (unsigned long)vco_rate;
532 }
533 
dsi_pll_14nm_vco_prepare(struct clk_hw * hw)534 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
535 {
536 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
537 	void __iomem *base = pll_14nm->phy->pll_base;
538 	void __iomem *cmn_base = pll_14nm->phy->base;
539 	bool locked;
540 
541 	DBG("");
542 
543 	if (unlikely(pll_14nm->phy->pll_on))
544 		return 0;
545 
546 	if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
547 		dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
548 
549 	writel(0x10, base + REG_DSI_14nm_PHY_PLL_VREF_CFG1);
550 	writel(1, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
551 
552 	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
553 					 POLL_TIMEOUT_US);
554 
555 	if (unlikely(!locked)) {
556 		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
557 		return -EINVAL;
558 	}
559 
560 	DBG("DSI PLL lock success");
561 	pll_14nm->phy->pll_on = true;
562 
563 	return 0;
564 }
565 
dsi_pll_14nm_vco_unprepare(struct clk_hw * hw)566 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
567 {
568 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
569 	void __iomem *cmn_base = pll_14nm->phy->base;
570 
571 	DBG("");
572 
573 	if (unlikely(!pll_14nm->phy->pll_on))
574 		return;
575 
576 	writel(0, cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
577 
578 	pll_14nm->phy->pll_on = false;
579 }
580 
dsi_pll_14nm_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)581 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
582 		unsigned long rate, unsigned long *parent_rate)
583 {
584 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
585 
586 	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
587 		return  pll_14nm->phy->cfg->min_pll_rate;
588 	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
589 		return  pll_14nm->phy->cfg->max_pll_rate;
590 	else
591 		return rate;
592 }
593 
594 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
595 	.round_rate = dsi_pll_14nm_clk_round_rate,
596 	.set_rate = dsi_pll_14nm_vco_set_rate,
597 	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
598 	.prepare = dsi_pll_14nm_vco_prepare,
599 	.unprepare = dsi_pll_14nm_vco_unprepare,
600 };
601 
602 /*
603  * N1 and N2 post-divider clock callbacks
604  */
605 #define div_mask(width)	((1 << (width)) - 1)
dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)606 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
607 						      unsigned long parent_rate)
608 {
609 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
610 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
611 	void __iomem *base = pll_14nm->phy->base;
612 	u8 shift = postdiv->shift;
613 	u8 width = postdiv->width;
614 	u32 val;
615 
616 	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
617 
618 	val = readl(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
619 	val &= div_mask(width);
620 
621 	return divider_recalc_rate(hw, parent_rate, val, NULL,
622 				   postdiv->flags, width);
623 }
624 
dsi_pll_14nm_postdiv_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)625 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
626 					    unsigned long rate,
627 					    unsigned long *prate)
628 {
629 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
630 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
631 
632 	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
633 
634 	return divider_round_rate(hw, rate, prate, NULL,
635 				  postdiv->width,
636 				  postdiv->flags);
637 }
638 
dsi_pll_14nm_postdiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)639 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
640 					 unsigned long parent_rate)
641 {
642 	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
643 	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
644 	void __iomem *base = pll_14nm->phy->base;
645 	spinlock_t *lock = &pll_14nm->postdiv_lock;
646 	u8 shift = postdiv->shift;
647 	u8 width = postdiv->width;
648 	unsigned int value;
649 	unsigned long flags = 0;
650 	u32 val;
651 
652 	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
653 	    parent_rate);
654 
655 	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
656 				postdiv->flags);
657 
658 	spin_lock_irqsave(lock, flags);
659 
660 	val = readl(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
661 	val &= ~(div_mask(width) << shift);
662 
663 	val |= value << shift;
664 	writel(val, base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
665 
666 	/* If we're master in bonded DSI mode, then the slave PLL's post-dividers
667 	 * follow the master's post dividers
668 	 */
669 	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
670 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
671 		void __iomem *slave_base = pll_14nm_slave->phy->base;
672 
673 		writel(val, slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
674 	}
675 
676 	spin_unlock_irqrestore(lock, flags);
677 
678 	return 0;
679 }
680 
681 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
682 	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
683 	.round_rate = dsi_pll_14nm_postdiv_round_rate,
684 	.set_rate = dsi_pll_14nm_postdiv_set_rate,
685 };
686 
687 /*
688  * PLL Callbacks
689  */
690 
dsi_14nm_pll_save_state(struct msm_dsi_phy * phy)691 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
692 {
693 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
694 	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
695 	void __iomem *cmn_base = pll_14nm->phy->base;
696 	u32 data;
697 
698 	data = readl(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
699 
700 	cached_state->n1postdiv = data & 0xf;
701 	cached_state->n2postdiv = (data >> 4) & 0xf;
702 
703 	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
704 	    cached_state->n1postdiv, cached_state->n2postdiv);
705 
706 	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
707 }
708 
dsi_14nm_pll_restore_state(struct msm_dsi_phy * phy)709 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
710 {
711 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
712 	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
713 	void __iomem *cmn_base = pll_14nm->phy->base;
714 	u32 data;
715 	int ret;
716 
717 	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
718 					cached_state->vco_rate, 0);
719 	if (ret) {
720 		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
721 			      "restore vco rate failed. ret=%d\n", ret);
722 		return ret;
723 	}
724 
725 	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
726 
727 	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
728 	    cached_state->n1postdiv, cached_state->n2postdiv);
729 
730 	writel(data, cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
731 
732 	/* also restore post-dividers for slave DSI PLL */
733 	if (phy->usecase == MSM_DSI_PHY_MASTER) {
734 		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
735 		void __iomem *slave_base = pll_14nm_slave->phy->base;
736 
737 		writel(data, slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
738 	}
739 
740 	return 0;
741 }
742 
dsi_14nm_set_usecase(struct msm_dsi_phy * phy)743 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
744 {
745 	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
746 	void __iomem *base = phy->pll_base;
747 	u32 clkbuflr_en, bandgap = 0;
748 
749 	switch (phy->usecase) {
750 	case MSM_DSI_PHY_STANDALONE:
751 		clkbuflr_en = 0x1;
752 		break;
753 	case MSM_DSI_PHY_MASTER:
754 		clkbuflr_en = 0x3;
755 		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
756 		break;
757 	case MSM_DSI_PHY_SLAVE:
758 		clkbuflr_en = 0x0;
759 		bandgap = 0x3;
760 		break;
761 	default:
762 		return -EINVAL;
763 	}
764 
765 	writel(clkbuflr_en, base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN);
766 	if (bandgap)
767 		writel(bandgap, base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP);
768 
769 	return 0;
770 }
771 
pll_14nm_postdiv_register(struct dsi_pll_14nm * pll_14nm,const char * name,const struct clk_hw * parent_hw,unsigned long flags,u8 shift)772 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
773 						const char *name,
774 						const struct clk_hw *parent_hw,
775 						unsigned long flags,
776 						u8 shift)
777 {
778 	struct dsi_pll_14nm_postdiv *pll_postdiv;
779 	struct device *dev = &pll_14nm->phy->pdev->dev;
780 	struct clk_init_data postdiv_init = {
781 		.parent_hws = (const struct clk_hw *[]) { parent_hw },
782 		.num_parents = 1,
783 		.name = name,
784 		.flags = flags,
785 		.ops = &clk_ops_dsi_pll_14nm_postdiv,
786 	};
787 	int ret;
788 
789 	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
790 	if (!pll_postdiv)
791 		return ERR_PTR(-ENOMEM);
792 
793 	pll_postdiv->pll = pll_14nm;
794 	pll_postdiv->shift = shift;
795 	/* both N1 and N2 postdividers are 4 bits wide */
796 	pll_postdiv->width = 4;
797 	/* range of each divider is from 1 to 15 */
798 	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
799 	pll_postdiv->hw.init = &postdiv_init;
800 
801 	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
802 	if (ret)
803 		return ERR_PTR(ret);
804 
805 	return &pll_postdiv->hw;
806 }
807 
pll_14nm_register(struct dsi_pll_14nm * pll_14nm,struct clk_hw ** provided_clocks)808 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
809 {
810 	char clk_name[32];
811 	struct clk_init_data vco_init = {
812 		.parent_data = &(const struct clk_parent_data) {
813 			.fw_name = "ref",
814 		},
815 		.num_parents = 1,
816 		.name = clk_name,
817 		.flags = CLK_IGNORE_UNUSED,
818 		.ops = &clk_ops_dsi_pll_14nm_vco,
819 	};
820 	struct device *dev = &pll_14nm->phy->pdev->dev;
821 	struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
822 	int ret;
823 
824 	DBG("DSI%d", pll_14nm->phy->id);
825 
826 	snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
827 	pll_14nm->clk_hw.init = &vco_init;
828 
829 	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
830 	if (ret)
831 		return ret;
832 
833 	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
834 
835 	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
836 	n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
837 			&pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
838 	if (IS_ERR(n1_postdiv))
839 		return PTR_ERR(n1_postdiv);
840 
841 	snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
842 
843 	/* DSI Byte clock = VCO_CLK / N1 / 8 */
844 	hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
845 			n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
846 	if (IS_ERR(hw))
847 		return PTR_ERR(hw);
848 
849 	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
850 
851 	snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
852 
853 	/*
854 	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
855 	 * on the way. Don't let it set parent.
856 	 */
857 	n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
858 			clk_name, n1_postdiv, 0, 1, 2);
859 	if (IS_ERR(n1_postdivby2))
860 		return PTR_ERR(n1_postdivby2);
861 
862 	snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
863 
864 	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
865 	 * This is the output of N2 post-divider, bits 4-7 in
866 	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
867 	 */
868 	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
869 			0, 4);
870 	if (IS_ERR(hw))
871 		return PTR_ERR(hw);
872 
873 	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
874 
875 	return 0;
876 }
877 
dsi_pll_14nm_init(struct msm_dsi_phy * phy)878 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
879 {
880 	struct platform_device *pdev = phy->pdev;
881 	struct dsi_pll_14nm *pll_14nm;
882 	int ret;
883 
884 	if (!pdev)
885 		return -ENODEV;
886 
887 	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
888 	if (!pll_14nm)
889 		return -ENOMEM;
890 
891 	DBG("PLL%d", phy->id);
892 
893 	pll_14nm_list[phy->id] = pll_14nm;
894 
895 	spin_lock_init(&pll_14nm->postdiv_lock);
896 
897 	pll_14nm->phy = phy;
898 
899 	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
900 	if (ret) {
901 		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
902 		return ret;
903 	}
904 
905 	phy->vco_hw = &pll_14nm->clk_hw;
906 
907 	return 0;
908 }
909 
dsi_14nm_dphy_set_timing(struct msm_dsi_phy * phy,struct msm_dsi_dphy_timing * timing,int lane_idx)910 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
911 				     struct msm_dsi_dphy_timing *timing,
912 				     int lane_idx)
913 {
914 	void __iomem *base = phy->lane_base;
915 	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
916 	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
917 	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
918 	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
919 	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
920 	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
921 	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
922 				   timing->hs_halfbyte_en;
923 
924 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit),
925 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx));
926 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero),
927 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx));
928 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare),
929 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx));
930 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail),
931 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx));
932 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst),
933 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx));
934 	writel(DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly),
935 	       base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx));
936 	writel(halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0,
937 	       base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx));
938 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
939 	       DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure),
940 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx));
941 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get),
942 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx));
943 	writel(DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0),
944 	       base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx));
945 }
946 
dsi_14nm_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req)947 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
948 			       struct msm_dsi_phy_clk_request *clk_req)
949 {
950 	struct msm_dsi_dphy_timing *timing = &phy->timing;
951 	u32 data;
952 	int i;
953 	int ret;
954 	void __iomem *base = phy->base;
955 	void __iomem *lane_base = phy->lane_base;
956 	u32 glbl_test_ctrl;
957 
958 	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
959 		DRM_DEV_ERROR(&phy->pdev->dev,
960 			      "%s: D-PHY timing calculation failed\n",
961 			      __func__);
962 		return -EINVAL;
963 	}
964 
965 	data = 0x1c;
966 	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
967 		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
968 	writel(data, base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL);
969 
970 	writel(0x1, base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
971 
972 	/* 4 data lanes + 1 clk lane configuration */
973 	for (i = 0; i < 5; i++) {
974 		writel(0x1d, lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i));
975 
976 		writel(0xff, lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i));
977 		writel(i == PHY_14NM_CKLN_IDX ? 0x00 : 0x06,
978 		       lane_base + REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i));
979 
980 		writel(i == PHY_14NM_CKLN_IDX ? 0x8f : 0x0f,
981 		       lane_base + REG_DSI_14nm_PHY_LN_CFG3(i));
982 		writel(0x10, lane_base + REG_DSI_14nm_PHY_LN_CFG2(i));
983 		writel(0, lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i));
984 		writel(0x88, lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i));
985 
986 		dsi_14nm_dphy_set_timing(phy, timing, i);
987 	}
988 
989 	/* Make sure PLL is not start */
990 	writel(0x00, base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL);
991 
992 	wmb(); /* make sure everything is written before reset and enable */
993 
994 	/* reset digital block */
995 	writel(0x80, base + REG_DSI_14nm_PHY_CMN_CTRL_1);
996 	wmb(); /* ensure reset is asserted */
997 	udelay(100);
998 	writel(0x00, base + REG_DSI_14nm_PHY_CMN_CTRL_1);
999 
1000 	glbl_test_ctrl = readl(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1001 	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1002 		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1003 	else
1004 		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1005 	writel(glbl_test_ctrl, base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1006 	ret = dsi_14nm_set_usecase(phy);
1007 	if (ret) {
1008 		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1009 			      __func__, ret);
1010 		return ret;
1011 	}
1012 
1013 	/* Remove power down from PLL and all lanes */
1014 	writel(0xff, base + REG_DSI_14nm_PHY_CMN_CTRL_0);
1015 
1016 	return 0;
1017 }
1018 
dsi_14nm_phy_disable(struct msm_dsi_phy * phy)1019 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1020 {
1021 	writel(0, phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1022 	writel(0, phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0);
1023 
1024 	/* ensure that the phy is completely disabled */
1025 	wmb();
1026 }
1027 
1028 static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1029 	{ .supply = "vcca", .init_load_uA = 17000 },
1030 };
1031 
1032 static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1033 	{ .supply = "vcca", .init_load_uA = 73400 },
1034 };
1035 
1036 static const struct regulator_bulk_data dsi_phy_14nm_36mA_regulators[] = {
1037 	{ .supply = "vdda", .init_load_uA = 36000 },
1038 };
1039 
1040 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1041 	.has_phy_lane = true,
1042 	.regulator_data = dsi_phy_14nm_17mA_regulators,
1043 	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1044 	.ops = {
1045 		.enable = dsi_14nm_phy_enable,
1046 		.disable = dsi_14nm_phy_disable,
1047 		.pll_init = dsi_pll_14nm_init,
1048 		.save_pll_state = dsi_14nm_pll_save_state,
1049 		.restore_pll_state = dsi_14nm_pll_restore_state,
1050 	},
1051 	.min_pll_rate = VCO_MIN_RATE,
1052 	.max_pll_rate = VCO_MAX_RATE,
1053 	.io_start = { 0x994400, 0x996400 },
1054 	.num_dsi_phy = 2,
1055 };
1056 
1057 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1058 	.has_phy_lane = true,
1059 	.regulator_data = dsi_phy_14nm_73p4mA_regulators,
1060 	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1061 	.ops = {
1062 		.enable = dsi_14nm_phy_enable,
1063 		.disable = dsi_14nm_phy_disable,
1064 		.pll_init = dsi_pll_14nm_init,
1065 		.save_pll_state = dsi_14nm_pll_save_state,
1066 		.restore_pll_state = dsi_14nm_pll_restore_state,
1067 	},
1068 	.min_pll_rate = VCO_MIN_RATE,
1069 	.max_pll_rate = VCO_MAX_RATE,
1070 	.io_start = { 0xc994400, 0xc996400 },
1071 	.num_dsi_phy = 2,
1072 };
1073 
1074 const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1075 	.has_phy_lane = true,
1076 	.regulator_data = dsi_phy_14nm_17mA_regulators,
1077 	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1078 	.ops = {
1079 		.enable = dsi_14nm_phy_enable,
1080 		.disable = dsi_14nm_phy_disable,
1081 		.pll_init = dsi_pll_14nm_init,
1082 		.save_pll_state = dsi_14nm_pll_save_state,
1083 		.restore_pll_state = dsi_14nm_pll_restore_state,
1084 	},
1085 	.min_pll_rate = VCO_MIN_RATE,
1086 	.max_pll_rate = VCO_MAX_RATE,
1087 	.io_start = { 0x1a94400, 0x1a96400 },
1088 	.num_dsi_phy = 2,
1089 };
1090 
1091 const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1092 	.has_phy_lane = true,
1093 	.ops = {
1094 		.enable = dsi_14nm_phy_enable,
1095 		.disable = dsi_14nm_phy_disable,
1096 		.pll_init = dsi_pll_14nm_init,
1097 		.save_pll_state = dsi_14nm_pll_save_state,
1098 		.restore_pll_state = dsi_14nm_pll_restore_state,
1099 	},
1100 	.min_pll_rate = VCO_MIN_RATE,
1101 	.max_pll_rate = VCO_MAX_RATE,
1102 	.io_start = { 0x5e94400 },
1103 	.num_dsi_phy = 1,
1104 };
1105 
1106 const struct msm_dsi_phy_cfg dsi_phy_14nm_6150_cfgs = {
1107 	.has_phy_lane = true,
1108 	.regulator_data = dsi_phy_14nm_36mA_regulators,
1109 	.num_regulators = ARRAY_SIZE(dsi_phy_14nm_36mA_regulators),
1110 	.ops = {
1111 		.enable = dsi_14nm_phy_enable,
1112 		.disable = dsi_14nm_phy_disable,
1113 		.pll_init = dsi_pll_14nm_init,
1114 		.save_pll_state = dsi_14nm_pll_save_state,
1115 		.restore_pll_state = dsi_14nm_pll_restore_state,
1116 	},
1117 	.min_pll_rate = VCO_MIN_RATE,
1118 	.max_pll_rate = VCO_MAX_RATE,
1119 	.io_start = { 0xae94400 },
1120 	.num_dsi_phy = 1,
1121 };
1122