1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include "i915_drv.h"
9 #include "i915_perf_types.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gt_regs.h"
12 #include "intel_sseu.h"
13
intel_sseu_set_info(struct sseu_dev_info * sseu,u8 max_slices,u8 max_subslices,u8 max_eus_per_subslice)14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15 u8 max_subslices, u8 max_eus_per_subslice)
16 {
17 sseu->max_slices = max_slices;
18 sseu->max_subslices = max_subslices;
19 sseu->max_eus_per_subslice = max_eus_per_subslice;
20 }
21
22 unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info * sseu)23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
24 {
25 unsigned int i, total = 0;
26
27 if (sseu->has_xehp_dss)
28 return bitmap_weight(sseu->subslice_mask.xehp,
29 XEHP_BITMAP_BITS(sseu->subslice_mask));
30
31 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32 total += hweight8(sseu->subslice_mask.hsw[i]);
33
34 return total;
35 }
36
37 unsigned int
intel_sseu_get_hsw_subslices(const struct sseu_dev_info * sseu,u8 slice)38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
39 {
40 WARN_ON(sseu->has_xehp_dss);
41 if (WARN_ON(slice >= sseu->max_slices))
42 return 0;
43
44 return sseu->subslice_mask.hsw[slice];
45 }
46
sseu_get_eus(const struct sseu_dev_info * sseu,int slice,int subslice)47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
48 int subslice)
49 {
50 if (sseu->has_xehp_dss) {
51 WARN_ON(slice > 0);
52 return sseu->eu_mask.xehp[subslice];
53 } else {
54 return sseu->eu_mask.hsw[slice][subslice];
55 }
56 }
57
sseu_set_eus(struct sseu_dev_info * sseu,int slice,int subslice,u16 eu_mask)58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
59 u16 eu_mask)
60 {
61 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62 if (sseu->has_xehp_dss) {
63 GEM_WARN_ON(slice > 0);
64 sseu->eu_mask.xehp[subslice] = eu_mask;
65 } else {
66 sseu->eu_mask.hsw[slice][subslice] = eu_mask;
67 }
68 }
69
compute_eu_total(const struct sseu_dev_info * sseu)70 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
71 {
72 int s, ss, total = 0;
73
74 for (s = 0; s < sseu->max_slices; s++)
75 for (ss = 0; ss < sseu->max_subslices; ss++)
76 if (sseu->has_xehp_dss)
77 total += hweight16(sseu->eu_mask.xehp[ss]);
78 else
79 total += hweight16(sseu->eu_mask.hsw[s][ss]);
80
81 return total;
82 }
83
84 /**
85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86 * @to: Pointer to userspace buffer to copy to
87 * @sseu: SSEU structure containing EU mask to copy
88 *
89 * Copies the EU mask to a userspace buffer in the format expected by
90 * the query ioctl's topology queries.
91 *
92 * Returns the result of the copy_to_user() operation.
93 */
intel_sseu_copy_eumask_to_user(void __user * to,const struct sseu_dev_info * sseu)94 int intel_sseu_copy_eumask_to_user(void __user *to,
95 const struct sseu_dev_info *sseu)
96 {
97 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99 int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100 int s, ss, i;
101
102 for (s = 0; s < sseu->max_slices; s++) {
103 for (ss = 0; ss < sseu->max_subslices; ss++) {
104 int uapi_offset =
105 s * sseu->max_subslices * eu_stride +
106 ss * eu_stride;
107 u16 mask = sseu_get_eus(sseu, s, ss);
108
109 for (i = 0; i < eu_stride; i++)
110 eu_mask[uapi_offset + i] =
111 (mask >> (BITS_PER_BYTE * i)) & 0xff;
112 }
113 }
114
115 return copy_to_user(to, eu_mask, len);
116 }
117
118 /**
119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120 * @to: Pointer to userspace buffer to copy to
121 * @sseu: SSEU structure containing subslice mask to copy
122 *
123 * Copies the subslice mask to a userspace buffer in the format expected by
124 * the query ioctl's topology queries.
125 *
126 * Returns the result of the copy_to_user() operation.
127 */
intel_sseu_copy_ssmask_to_user(void __user * to,const struct sseu_dev_info * sseu)128 int intel_sseu_copy_ssmask_to_user(void __user *to,
129 const struct sseu_dev_info *sseu)
130 {
131 u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133 int len = sseu->max_slices * ss_stride;
134 int s, ss, i;
135
136 for (s = 0; s < sseu->max_slices; s++) {
137 for (ss = 0; ss < sseu->max_subslices; ss++) {
138 i = s * ss_stride * BITS_PER_BYTE + ss;
139
140 if (!intel_sseu_has_subslice(sseu, s, ss))
141 continue;
142
143 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144 }
145 }
146
147 return copy_to_user(to, ss_mask, len);
148 }
149
gen11_compute_sseu_info(struct sseu_dev_info * sseu,u32 ss_en,u16 eu_en)150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151 u32 ss_en, u16 eu_en)
152 {
153 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154 int ss;
155
156 sseu->slice_mask |= BIT(0);
157 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158
159 for (ss = 0; ss < sseu->max_subslices; ss++)
160 if (intel_sseu_has_subslice(sseu, 0, ss))
161 sseu_set_eus(sseu, 0, ss, eu_en);
162
163 sseu->eu_per_subslice = hweight16(eu_en);
164 sseu->eu_total = compute_eu_total(sseu);
165 }
166
xehp_compute_sseu_info(struct sseu_dev_info * sseu,u16 eu_en)167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168 u16 eu_en)
169 {
170 int ss;
171
172 sseu->slice_mask |= BIT(0);
173
174 bitmap_or(sseu->subslice_mask.xehp,
175 sseu->compute_subslice_mask.xehp,
176 sseu->geometry_subslice_mask.xehp,
177 XEHP_BITMAP_BITS(sseu->subslice_mask));
178
179 for (ss = 0; ss < sseu->max_subslices; ss++)
180 if (intel_sseu_has_subslice(sseu, 0, ss))
181 sseu_set_eus(sseu, 0, ss, eu_en);
182
183 sseu->eu_per_subslice = hweight16(eu_en);
184 sseu->eu_total = compute_eu_total(sseu);
185 }
186
187 static void
xehp_load_dss_mask(struct intel_uncore * uncore,intel_sseu_ss_mask_t * ssmask,int numregs,...)188 xehp_load_dss_mask(struct intel_uncore *uncore,
189 intel_sseu_ss_mask_t *ssmask,
190 int numregs,
191 ...)
192 {
193 va_list argp;
194 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
195 int i;
196
197 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198 numregs = I915_MAX_SS_FUSE_REGS;
199
200 va_start(argp, numregs);
201 for (i = 0; i < numregs; i++)
202 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
203 va_end(argp);
204
205 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
206 }
207
xehp_sseu_info_init(struct intel_gt * gt)208 static void xehp_sseu_info_init(struct intel_gt *gt)
209 {
210 struct sseu_dev_info *sseu = >->info.sseu;
211 struct intel_uncore *uncore = gt->uncore;
212 u16 eu_en = 0;
213 u8 eu_en_fuse;
214 int num_compute_regs, num_geometry_regs;
215 int eu;
216
217 num_geometry_regs = 1;
218 num_compute_regs = 1;
219
220 /*
221 * The concept of slice has been removed in Xe_HP. To be compatible
222 * with prior generations, assume a single slice across the entire
223 * device. Then calculate out the DSS for each workload type within
224 * that software slice.
225 */
226 intel_sseu_set_info(sseu, 1,
227 32 * max(num_geometry_regs, num_compute_regs),
228 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
229 sseu->has_xehp_dss = 1;
230
231 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
232 num_geometry_regs,
233 GEN12_GT_GEOMETRY_DSS_ENABLE);
234 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
235 num_compute_regs,
236 GEN12_GT_COMPUTE_DSS_ENABLE,
237 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
238
239 eu_en_fuse = REG_FIELD_GET(XEHP_EU_ENA_MASK,
240 intel_uncore_read(uncore, XEHP_EU_ENABLE));
241
242 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
243 eu_en = eu_en_fuse;
244 else
245 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
246 if (eu_en_fuse & BIT(eu))
247 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
248
249 xehp_compute_sseu_info(sseu, eu_en);
250 }
251
gen12_sseu_info_init(struct intel_gt * gt)252 static void gen12_sseu_info_init(struct intel_gt *gt)
253 {
254 struct sseu_dev_info *sseu = >->info.sseu;
255 struct intel_uncore *uncore = gt->uncore;
256 u32 g_dss_en;
257 u16 eu_en = 0;
258 u8 eu_en_fuse;
259 u8 s_en;
260 int eu;
261
262 /*
263 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
264 * Instead of splitting these, provide userspace with an array
265 * of DSS to more closely represent the hardware resource.
266 */
267 intel_sseu_set_info(sseu, 1, 6, 16);
268
269 /*
270 * Although gen12 architecture supported multiple slices, TGL, RKL,
271 * DG1, and ADL only had a single slice.
272 */
273 s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK,
274 intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE));
275 drm_WARN_ON(>->i915->drm, s_en != 0x1);
276
277 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
278
279 /* one bit per pair of EUs */
280 eu_en_fuse = ~REG_FIELD_GET(GEN11_EU_DIS_MASK,
281 intel_uncore_read(uncore, GEN11_EU_DISABLE));
282
283 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
284 if (eu_en_fuse & BIT(eu))
285 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
286
287 gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
288
289 /* TGL only supports slice-level power gating */
290 sseu->has_slice_pg = 1;
291 }
292
gen11_sseu_info_init(struct intel_gt * gt)293 static void gen11_sseu_info_init(struct intel_gt *gt)
294 {
295 struct sseu_dev_info *sseu = >->info.sseu;
296 struct intel_uncore *uncore = gt->uncore;
297 u32 ss_en;
298 u8 eu_en;
299 u8 s_en;
300
301 if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
302 intel_sseu_set_info(sseu, 1, 4, 8);
303 else
304 intel_sseu_set_info(sseu, 1, 8, 8);
305
306 /*
307 * Although gen11 architecture supported multiple slices, ICL and
308 * EHL/JSL only had a single slice in practice.
309 */
310 s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK,
311 intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE));
312 drm_WARN_ON(>->i915->drm, s_en != 0x1);
313
314 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
315
316 eu_en = ~REG_FIELD_GET(GEN11_EU_DIS_MASK,
317 intel_uncore_read(uncore, GEN11_EU_DISABLE));
318
319 gen11_compute_sseu_info(sseu, ss_en, eu_en);
320
321 /* ICL has no power gating restrictions. */
322 sseu->has_slice_pg = 1;
323 sseu->has_subslice_pg = 1;
324 sseu->has_eu_pg = 1;
325 }
326
cherryview_sseu_info_init(struct intel_gt * gt)327 static void cherryview_sseu_info_init(struct intel_gt *gt)
328 {
329 struct sseu_dev_info *sseu = >->info.sseu;
330 u32 fuse;
331
332 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
333
334 sseu->slice_mask = BIT(0);
335 intel_sseu_set_info(sseu, 1, 2, 8);
336
337 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
338 u8 disabled_mask =
339 REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R0_MASK, fuse) |
340 REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS0_R0_MASK);
341
342 sseu->subslice_mask.hsw[0] |= BIT(0);
343 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
344 }
345
346 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
347 u8 disabled_mask =
348 REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R0_MASK, fuse) |
349 REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS1_R0_MASK);
350
351 sseu->subslice_mask.hsw[0] |= BIT(1);
352 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
353 }
354
355 sseu->eu_total = compute_eu_total(sseu);
356
357 /*
358 * CHV expected to always have a uniform distribution of EU
359 * across subslices.
360 */
361 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
362 sseu->eu_total /
363 intel_sseu_subslice_total(sseu) :
364 0;
365 /*
366 * CHV supports subslice power gating on devices with more than
367 * one subslice, and supports EU power gating on devices with
368 * more than one EU pair per subslice.
369 */
370 sseu->has_slice_pg = 0;
371 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
372 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
373 }
374
gen9_sseu_info_init(struct intel_gt * gt)375 static void gen9_sseu_info_init(struct intel_gt *gt)
376 {
377 struct drm_i915_private *i915 = gt->i915;
378 struct sseu_dev_info *sseu = >->info.sseu;
379 struct intel_uncore *uncore = gt->uncore;
380 u32 fuse2, eu_disable, subslice_mask;
381 const u8 eu_mask = 0xff;
382 int s, ss;
383
384 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
385 sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2);
386
387 /* BXT has a single slice and at most 3 subslices. */
388 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
389 IS_GEN9_LP(i915) ? 3 : 4, 8);
390
391 /*
392 * The subslice disable field is global, i.e. it applies
393 * to each of the enabled slices.
394 */
395 subslice_mask = (1 << sseu->max_subslices) - 1;
396 subslice_mask &= ~REG_FIELD_GET(GEN9_F2_SS_DIS_MASK, fuse2);
397
398 /*
399 * Iterate through enabled slices and subslices to
400 * count the total enabled EU.
401 */
402 for (s = 0; s < sseu->max_slices; s++) {
403 if (!(sseu->slice_mask & BIT(s)))
404 /* skip disabled slice */
405 continue;
406
407 sseu->subslice_mask.hsw[s] = subslice_mask;
408
409 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
410 for (ss = 0; ss < sseu->max_subslices; ss++) {
411 int eu_per_ss;
412 u8 eu_disabled_mask;
413
414 if (!intel_sseu_has_subslice(sseu, s, ss))
415 /* skip disabled subslice */
416 continue;
417
418 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
419
420 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
421
422 eu_per_ss = sseu->max_eus_per_subslice -
423 hweight8(eu_disabled_mask);
424
425 /*
426 * Record which subslice(s) has(have) 7 EUs. we
427 * can tune the hash used to spread work among
428 * subslices if they are unbalanced.
429 */
430 if (eu_per_ss == 7)
431 sseu->subslice_7eu[s] |= BIT(ss);
432 }
433 }
434
435 sseu->eu_total = compute_eu_total(sseu);
436
437 /*
438 * SKL is expected to always have a uniform distribution
439 * of EU across subslices with the exception that any one
440 * EU in any one subslice may be fused off for die
441 * recovery. BXT is expected to be perfectly uniform in EU
442 * distribution.
443 */
444 sseu->eu_per_subslice =
445 intel_sseu_subslice_total(sseu) ?
446 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
447 0;
448
449 /*
450 * SKL+ supports slice power gating on devices with more than
451 * one slice, and supports EU power gating on devices with
452 * more than one EU pair per subslice. BXT+ supports subslice
453 * power gating on devices with more than one subslice, and
454 * supports EU power gating on devices with more than one EU
455 * pair per subslice.
456 */
457 sseu->has_slice_pg =
458 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
459 sseu->has_subslice_pg =
460 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
461 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
462
463 if (IS_GEN9_LP(i915)) {
464 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss)))
465 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
466
467 sseu->min_eu_in_pool = 0;
468 if (HAS_POOLED_EU(i915)) {
469 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
470 sseu->min_eu_in_pool = 3;
471 else if (IS_SS_DISABLED(1))
472 sseu->min_eu_in_pool = 6;
473 else
474 sseu->min_eu_in_pool = 9;
475 }
476 #undef IS_SS_DISABLED
477 }
478 }
479
bdw_sseu_info_init(struct intel_gt * gt)480 static void bdw_sseu_info_init(struct intel_gt *gt)
481 {
482 struct sseu_dev_info *sseu = >->info.sseu;
483 struct intel_uncore *uncore = gt->uncore;
484 int s, ss;
485 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
486 u32 eu_disable0, eu_disable1, eu_disable2;
487
488 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
489 sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2);
490 intel_sseu_set_info(sseu, 3, 3, 8);
491
492 /*
493 * The subslice disable field is global, i.e. it applies
494 * to each of the enabled slices.
495 */
496 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
497 subslice_mask &= ~REG_FIELD_GET(GEN8_F2_SS_DIS_MASK, fuse2);
498 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
499 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
500 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
501 eu_disable[0] =
502 REG_FIELD_GET(GEN8_EU_DIS0_S0_MASK, eu_disable0);
503 eu_disable[1] =
504 REG_FIELD_GET(GEN8_EU_DIS0_S1_MASK, eu_disable0) |
505 REG_FIELD_GET(GEN8_EU_DIS1_S1_MASK, eu_disable1) << hweight32(GEN8_EU_DIS0_S1_MASK);
506 eu_disable[2] =
507 REG_FIELD_GET(GEN8_EU_DIS1_S2_MASK, eu_disable1) |
508 REG_FIELD_GET(GEN8_EU_DIS2_S2_MASK, eu_disable2) << hweight32(GEN8_EU_DIS1_S2_MASK);
509
510 /*
511 * Iterate through enabled slices and subslices to
512 * count the total enabled EU.
513 */
514 for (s = 0; s < sseu->max_slices; s++) {
515 if (!(sseu->slice_mask & BIT(s)))
516 /* skip disabled slice */
517 continue;
518
519 sseu->subslice_mask.hsw[s] = subslice_mask;
520
521 for (ss = 0; ss < sseu->max_subslices; ss++) {
522 u8 eu_disabled_mask;
523 u32 n_disabled;
524
525 if (!intel_sseu_has_subslice(sseu, s, ss))
526 /* skip disabled subslice */
527 continue;
528
529 eu_disabled_mask =
530 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
531
532 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
533
534 n_disabled = hweight8(eu_disabled_mask);
535
536 /*
537 * Record which subslices have 7 EUs.
538 */
539 if (sseu->max_eus_per_subslice - n_disabled == 7)
540 sseu->subslice_7eu[s] |= 1 << ss;
541 }
542 }
543
544 sseu->eu_total = compute_eu_total(sseu);
545
546 /*
547 * BDW is expected to always have a uniform distribution of EU across
548 * subslices with the exception that any one EU in any one subslice may
549 * be fused off for die recovery.
550 */
551 sseu->eu_per_subslice =
552 intel_sseu_subslice_total(sseu) ?
553 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
554 0;
555
556 /*
557 * BDW supports slice power gating on devices with more than
558 * one slice.
559 */
560 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
561 sseu->has_subslice_pg = 0;
562 sseu->has_eu_pg = 0;
563 }
564
hsw_sseu_info_init(struct intel_gt * gt)565 static void hsw_sseu_info_init(struct intel_gt *gt)
566 {
567 struct drm_i915_private *i915 = gt->i915;
568 struct sseu_dev_info *sseu = >->info.sseu;
569 u32 fuse1;
570 u8 subslice_mask = 0;
571 int s, ss;
572
573 /*
574 * There isn't a register to tell us how many slices/subslices. We
575 * work off the PCI-ids here.
576 */
577 switch (INTEL_INFO(i915)->gt) {
578 default:
579 MISSING_CASE(INTEL_INFO(i915)->gt);
580 fallthrough;
581 case 1:
582 sseu->slice_mask = BIT(0);
583 subslice_mask = BIT(0);
584 break;
585 case 2:
586 sseu->slice_mask = BIT(0);
587 subslice_mask = BIT(0) | BIT(1);
588 break;
589 case 3:
590 sseu->slice_mask = BIT(0) | BIT(1);
591 subslice_mask = BIT(0) | BIT(1);
592 break;
593 }
594
595 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
596 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
597 default:
598 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
599 fallthrough;
600 case HSW_F1_EU_DIS_10EUS:
601 sseu->eu_per_subslice = 10;
602 break;
603 case HSW_F1_EU_DIS_8EUS:
604 sseu->eu_per_subslice = 8;
605 break;
606 case HSW_F1_EU_DIS_6EUS:
607 sseu->eu_per_subslice = 6;
608 break;
609 }
610
611 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
612 hweight8(subslice_mask),
613 sseu->eu_per_subslice);
614
615 for (s = 0; s < sseu->max_slices; s++) {
616 sseu->subslice_mask.hsw[s] = subslice_mask;
617
618 for (ss = 0; ss < sseu->max_subslices; ss++) {
619 sseu_set_eus(sseu, s, ss,
620 (1UL << sseu->eu_per_subslice) - 1);
621 }
622 }
623
624 sseu->eu_total = compute_eu_total(sseu);
625
626 /* No powergating for you. */
627 sseu->has_slice_pg = 0;
628 sseu->has_subslice_pg = 0;
629 sseu->has_eu_pg = 0;
630 }
631
intel_sseu_info_init(struct intel_gt * gt)632 void intel_sseu_info_init(struct intel_gt *gt)
633 {
634 struct drm_i915_private *i915 = gt->i915;
635
636 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
637 xehp_sseu_info_init(gt);
638 else if (GRAPHICS_VER(i915) >= 12)
639 gen12_sseu_info_init(gt);
640 else if (GRAPHICS_VER(i915) >= 11)
641 gen11_sseu_info_init(gt);
642 else if (GRAPHICS_VER(i915) >= 9)
643 gen9_sseu_info_init(gt);
644 else if (IS_BROADWELL(i915))
645 bdw_sseu_info_init(gt);
646 else if (IS_CHERRYVIEW(i915))
647 cherryview_sseu_info_init(gt);
648 else if (IS_HASWELL(i915))
649 hsw_sseu_info_init(gt);
650 }
651
intel_sseu_make_rpcs(struct intel_gt * gt,const struct intel_sseu * req_sseu)652 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
653 const struct intel_sseu *req_sseu)
654 {
655 struct drm_i915_private *i915 = gt->i915;
656 const struct sseu_dev_info *sseu = >->info.sseu;
657 bool subslice_pg = sseu->has_subslice_pg;
658 u8 slices, subslices;
659 u32 rpcs = 0;
660
661 /*
662 * No explicit RPCS request is needed to ensure full
663 * slice/subslice/EU enablement prior to Gen9.
664 */
665 if (GRAPHICS_VER(i915) < 9)
666 return 0;
667
668 /*
669 * If i915/perf is active, we want a stable powergating configuration
670 * on the system. Use the configuration pinned by i915/perf.
671 */
672 if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
673 req_sseu = >->perf.sseu;
674
675 slices = hweight8(req_sseu->slice_mask);
676 subslices = hweight8(req_sseu->subslice_mask);
677
678 /*
679 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
680 * wide and Icelake has up to eight subslices, specfial programming is
681 * needed in order to correctly enable all subslices.
682 *
683 * According to documentation software must consider the configuration
684 * as 2x4x8 and hardware will translate this to 1x8x8.
685 *
686 * Furthermore, even though SScount is three bits, maximum documented
687 * value for it is four. From this some rules/restrictions follow:
688 *
689 * 1.
690 * If enabled subslice count is greater than four, two whole slices must
691 * be enabled instead.
692 *
693 * 2.
694 * When more than one slice is enabled, hardware ignores the subslice
695 * count altogether.
696 *
697 * From these restrictions it follows that it is not possible to enable
698 * a count of subslices between the SScount maximum of four restriction,
699 * and the maximum available number on a particular SKU. Either all
700 * subslices are enabled, or a count between one and four on the first
701 * slice.
702 */
703 if (GRAPHICS_VER(i915) == 11 &&
704 slices == 1 &&
705 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
706 GEM_BUG_ON(subslices & 1);
707
708 subslice_pg = false;
709 slices *= 2;
710 }
711
712 /*
713 * Starting in Gen9, render power gating can leave
714 * slice/subslice/EU in a partially enabled state. We
715 * must make an explicit request through RPCS for full
716 * enablement.
717 */
718 if (sseu->has_slice_pg) {
719 u32 mask, val = slices;
720
721 if (GRAPHICS_VER(i915) >= 11) {
722 mask = GEN11_RPCS_S_CNT_MASK;
723 val <<= GEN11_RPCS_S_CNT_SHIFT;
724 } else {
725 mask = GEN8_RPCS_S_CNT_MASK;
726 val <<= GEN8_RPCS_S_CNT_SHIFT;
727 }
728
729 GEM_BUG_ON(val & ~mask);
730 val &= mask;
731
732 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
733 }
734
735 if (subslice_pg) {
736 u32 val = subslices;
737
738 val <<= GEN8_RPCS_SS_CNT_SHIFT;
739
740 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
741 val &= GEN8_RPCS_SS_CNT_MASK;
742
743 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
744 }
745
746 if (sseu->has_eu_pg) {
747 u32 val;
748
749 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
750 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
751 val &= GEN8_RPCS_EU_MIN_MASK;
752
753 rpcs |= val;
754
755 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
756 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
757 val &= GEN8_RPCS_EU_MAX_MASK;
758
759 rpcs |= val;
760
761 rpcs |= GEN8_RPCS_ENABLE;
762 }
763
764 return rpcs;
765 }
766
intel_sseu_dump(const struct sseu_dev_info * sseu,struct drm_printer * p)767 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
768 {
769 int s;
770
771 if (sseu->has_xehp_dss) {
772 drm_printf(p, "subslice total: %u\n",
773 intel_sseu_subslice_total(sseu));
774 drm_printf(p, "geometry dss mask=%*pb\n",
775 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
776 sseu->geometry_subslice_mask.xehp);
777 drm_printf(p, "compute dss mask=%*pb\n",
778 XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
779 sseu->compute_subslice_mask.xehp);
780 } else {
781 drm_printf(p, "slice total: %u, mask=%04x\n",
782 hweight8(sseu->slice_mask), sseu->slice_mask);
783 drm_printf(p, "subslice total: %u\n",
784 intel_sseu_subslice_total(sseu));
785
786 for (s = 0; s < sseu->max_slices; s++) {
787 u8 ss_mask = sseu->subslice_mask.hsw[s];
788
789 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
790 s, hweight8(ss_mask), ss_mask);
791 }
792 }
793
794 drm_printf(p, "EU total: %u\n", sseu->eu_total);
795 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
796 drm_printf(p, "has slice power gating: %s\n",
797 str_yes_no(sseu->has_slice_pg));
798 drm_printf(p, "has subslice power gating: %s\n",
799 str_yes_no(sseu->has_subslice_pg));
800 drm_printf(p, "has EU power gating: %s\n",
801 str_yes_no(sseu->has_eu_pg));
802 }
803
sseu_print_hsw_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)804 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
805 struct drm_printer *p)
806 {
807 int s, ss;
808
809 for (s = 0; s < sseu->max_slices; s++) {
810 u8 ss_mask = sseu->subslice_mask.hsw[s];
811
812 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
813 s, hweight8(ss_mask), ss_mask);
814
815 for (ss = 0; ss < sseu->max_subslices; ss++) {
816 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
817
818 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
819 ss, hweight16(enabled_eus), enabled_eus);
820 }
821 }
822 }
823
sseu_print_xehp_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)824 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
825 struct drm_printer *p)
826 {
827 int dss;
828
829 for (dss = 0; dss < sseu->max_subslices; dss++) {
830 u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
831
832 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
833 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
834 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
835 hweight16(enabled_eus), enabled_eus);
836 }
837 }
838
intel_sseu_print_topology(struct drm_i915_private * i915,const struct sseu_dev_info * sseu,struct drm_printer * p)839 void intel_sseu_print_topology(struct drm_i915_private *i915,
840 const struct sseu_dev_info *sseu,
841 struct drm_printer *p)
842 {
843 if (sseu->max_slices == 0)
844 drm_printf(p, "Unavailable\n");
845 else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
846 sseu_print_xehp_topology(sseu, p);
847 else
848 sseu_print_hsw_topology(sseu, p);
849 }
850
intel_sseu_print_ss_info(const char * type,const struct sseu_dev_info * sseu,struct seq_file * m)851 void intel_sseu_print_ss_info(const char *type,
852 const struct sseu_dev_info *sseu,
853 struct seq_file *m)
854 {
855 int s;
856
857 if (sseu->has_xehp_dss) {
858 seq_printf(m, " %s Geometry DSS: %u\n", type,
859 bitmap_weight(sseu->geometry_subslice_mask.xehp,
860 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
861 seq_printf(m, " %s Compute DSS: %u\n", type,
862 bitmap_weight(sseu->compute_subslice_mask.xehp,
863 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
864 } else {
865 for (s = 0; s < fls(sseu->slice_mask); s++)
866 seq_printf(m, " %s Slice%i subslices: %u\n", type,
867 s, hweight8(sseu->subslice_mask.hsw[s]));
868 }
869 }
870
intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,int dss_per_slice)871 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
872 int dss_per_slice)
873 {
874 intel_sseu_ss_mask_t per_slice_mask = {};
875 unsigned long slice_mask = 0;
876 int i;
877
878 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
879 8 * sizeof(slice_mask));
880
881 bitmap_fill(per_slice_mask.xehp, dss_per_slice);
882 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
883 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
884 slice_mask |= BIT(i);
885
886 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
887 XEHP_BITMAP_BITS(dss_mask));
888 }
889
890 return slice_mask;
891 }
892