1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/intel/intel_lpe_audio.h>
43
44 #include <media/cec-notifier.h>
45
46 #include "g4x_hdmi.h"
47 #include "i915_drv.h"
48 #include "i915_reg.h"
49 #include "intel_atomic.h"
50 #include "intel_audio.h"
51 #include "intel_connector.h"
52 #include "intel_cx0_phy.h"
53 #include "intel_ddi.h"
54 #include "intel_de.h"
55 #include "intel_display_driver.h"
56 #include "intel_display_types.h"
57 #include "intel_dp.h"
58 #include "intel_gmbus.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdcp_regs.h"
61 #include "intel_hdcp_shim.h"
62 #include "intel_hdmi.h"
63 #include "intel_lspcon.h"
64 #include "intel_panel.h"
65 #include "intel_pfit.h"
66 #include "intel_snps_phy.h"
67
68 static void
assert_hdmi_port_disabled(struct intel_hdmi * intel_hdmi)69 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
70 {
71 struct intel_display *display = to_intel_display(intel_hdmi);
72 u32 enabled_bits;
73
74 enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
75
76 drm_WARN(display->drm,
77 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
78 "HDMI port enabled, expecting disabled\n");
79 }
80
81 static void
assert_hdmi_transcoder_func_disabled(struct intel_display * display,enum transcoder cpu_transcoder)82 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
83 enum transcoder cpu_transcoder)
84 {
85 drm_WARN(display->drm,
86 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
87 TRANS_DDI_FUNC_ENABLE,
88 "HDMI transcoder function enabled, expecting disabled\n");
89 }
90
g4x_infoframe_index(unsigned int type)91 static u32 g4x_infoframe_index(unsigned int type)
92 {
93 switch (type) {
94 case HDMI_PACKET_TYPE_GAMUT_METADATA:
95 return VIDEO_DIP_SELECT_GAMUT;
96 case HDMI_INFOFRAME_TYPE_AVI:
97 return VIDEO_DIP_SELECT_AVI;
98 case HDMI_INFOFRAME_TYPE_SPD:
99 return VIDEO_DIP_SELECT_SPD;
100 case HDMI_INFOFRAME_TYPE_VENDOR:
101 return VIDEO_DIP_SELECT_VENDOR;
102 default:
103 MISSING_CASE(type);
104 return 0;
105 }
106 }
107
g4x_infoframe_enable(unsigned int type)108 static u32 g4x_infoframe_enable(unsigned int type)
109 {
110 switch (type) {
111 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
112 return VIDEO_DIP_ENABLE_GCP;
113 case HDMI_PACKET_TYPE_GAMUT_METADATA:
114 return VIDEO_DIP_ENABLE_GAMUT;
115 case DP_SDP_VSC:
116 return 0;
117 case DP_SDP_ADAPTIVE_SYNC:
118 return 0;
119 case HDMI_INFOFRAME_TYPE_AVI:
120 return VIDEO_DIP_ENABLE_AVI;
121 case HDMI_INFOFRAME_TYPE_SPD:
122 return VIDEO_DIP_ENABLE_SPD;
123 case HDMI_INFOFRAME_TYPE_VENDOR:
124 return VIDEO_DIP_ENABLE_VENDOR;
125 case HDMI_INFOFRAME_TYPE_DRM:
126 return 0;
127 default:
128 MISSING_CASE(type);
129 return 0;
130 }
131 }
132
hsw_infoframe_enable(unsigned int type)133 static u32 hsw_infoframe_enable(unsigned int type)
134 {
135 switch (type) {
136 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
137 return VIDEO_DIP_ENABLE_GCP_HSW;
138 case HDMI_PACKET_TYPE_GAMUT_METADATA:
139 return VIDEO_DIP_ENABLE_GMP_HSW;
140 case DP_SDP_VSC:
141 return VIDEO_DIP_ENABLE_VSC_HSW;
142 case DP_SDP_ADAPTIVE_SYNC:
143 return VIDEO_DIP_ENABLE_AS_ADL;
144 case DP_SDP_PPS:
145 return VDIP_ENABLE_PPS;
146 case HDMI_INFOFRAME_TYPE_AVI:
147 return VIDEO_DIP_ENABLE_AVI_HSW;
148 case HDMI_INFOFRAME_TYPE_SPD:
149 return VIDEO_DIP_ENABLE_SPD_HSW;
150 case HDMI_INFOFRAME_TYPE_VENDOR:
151 return VIDEO_DIP_ENABLE_VS_HSW;
152 case HDMI_INFOFRAME_TYPE_DRM:
153 return VIDEO_DIP_ENABLE_DRM_GLK;
154 default:
155 MISSING_CASE(type);
156 return 0;
157 }
158 }
159
160 static i915_reg_t
hsw_dip_data_reg(struct intel_display * display,enum transcoder cpu_transcoder,unsigned int type,int i)161 hsw_dip_data_reg(struct intel_display *display,
162 enum transcoder cpu_transcoder,
163 unsigned int type,
164 int i)
165 {
166 switch (type) {
167 case HDMI_PACKET_TYPE_GAMUT_METADATA:
168 return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
169 case DP_SDP_VSC:
170 return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
171 case DP_SDP_ADAPTIVE_SYNC:
172 return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
173 case DP_SDP_PPS:
174 return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
175 case HDMI_INFOFRAME_TYPE_AVI:
176 return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
177 case HDMI_INFOFRAME_TYPE_SPD:
178 return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
179 case HDMI_INFOFRAME_TYPE_VENDOR:
180 return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
181 case HDMI_INFOFRAME_TYPE_DRM:
182 return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
183 default:
184 MISSING_CASE(type);
185 return INVALID_MMIO_REG;
186 }
187 }
188
hsw_dip_data_size(struct intel_display * display,unsigned int type)189 static int hsw_dip_data_size(struct intel_display *display,
190 unsigned int type)
191 {
192 switch (type) {
193 case DP_SDP_VSC:
194 return VIDEO_DIP_VSC_DATA_SIZE;
195 case DP_SDP_ADAPTIVE_SYNC:
196 return VIDEO_DIP_ASYNC_DATA_SIZE;
197 case DP_SDP_PPS:
198 return VIDEO_DIP_PPS_DATA_SIZE;
199 case HDMI_PACKET_TYPE_GAMUT_METADATA:
200 if (DISPLAY_VER(display) >= 11)
201 return VIDEO_DIP_GMP_DATA_SIZE;
202 else
203 return VIDEO_DIP_DATA_SIZE;
204 default:
205 return VIDEO_DIP_DATA_SIZE;
206 }
207 }
208
g4x_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)209 static void g4x_write_infoframe(struct intel_encoder *encoder,
210 const struct intel_crtc_state *crtc_state,
211 unsigned int type,
212 const void *frame, ssize_t len)
213 {
214 struct intel_display *display = to_intel_display(encoder);
215 const u32 *data = frame;
216 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
217 int i;
218
219 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
220 "Writing DIP with CTL reg disabled\n");
221
222 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
223 val |= g4x_infoframe_index(type);
224
225 val &= ~g4x_infoframe_enable(type);
226
227 intel_de_write(display, VIDEO_DIP_CTL, val);
228
229 for (i = 0; i < len; i += 4) {
230 intel_de_write(display, VIDEO_DIP_DATA, *data);
231 data++;
232 }
233 /* Write every possible data byte to force correct ECC calculation. */
234 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
235 intel_de_write(display, VIDEO_DIP_DATA, 0);
236
237 val |= g4x_infoframe_enable(type);
238 val &= ~VIDEO_DIP_FREQ_MASK;
239 val |= VIDEO_DIP_FREQ_VSYNC;
240
241 intel_de_write(display, VIDEO_DIP_CTL, val);
242 intel_de_posting_read(display, VIDEO_DIP_CTL);
243 }
244
g4x_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)245 static void g4x_read_infoframe(struct intel_encoder *encoder,
246 const struct intel_crtc_state *crtc_state,
247 unsigned int type,
248 void *frame, ssize_t len)
249 {
250 struct intel_display *display = to_intel_display(encoder);
251 u32 *data = frame;
252 int i;
253
254 intel_de_rmw(display, VIDEO_DIP_CTL,
255 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
256
257 for (i = 0; i < len; i += 4)
258 *data++ = intel_de_read(display, VIDEO_DIP_DATA);
259 }
260
g4x_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)261 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
262 const struct intel_crtc_state *pipe_config)
263 {
264 struct intel_display *display = to_intel_display(encoder);
265 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
266
267 if ((val & VIDEO_DIP_ENABLE) == 0)
268 return 0;
269
270 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
271 return 0;
272
273 return val & (VIDEO_DIP_ENABLE_AVI |
274 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
275 }
276
ibx_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)277 static void ibx_write_infoframe(struct intel_encoder *encoder,
278 const struct intel_crtc_state *crtc_state,
279 unsigned int type,
280 const void *frame, ssize_t len)
281 {
282 struct intel_display *display = to_intel_display(encoder);
283 const u32 *data = frame;
284 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
285 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
286 u32 val = intel_de_read(display, reg);
287 int i;
288
289 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
290 "Writing DIP with CTL reg disabled\n");
291
292 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
293 val |= g4x_infoframe_index(type);
294
295 val &= ~g4x_infoframe_enable(type);
296
297 intel_de_write(display, reg, val);
298
299 for (i = 0; i < len; i += 4) {
300 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
301 *data);
302 data++;
303 }
304 /* Write every possible data byte to force correct ECC calculation. */
305 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
306 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
307
308 val |= g4x_infoframe_enable(type);
309 val &= ~VIDEO_DIP_FREQ_MASK;
310 val |= VIDEO_DIP_FREQ_VSYNC;
311
312 intel_de_write(display, reg, val);
313 intel_de_posting_read(display, reg);
314 }
315
ibx_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)316 static void ibx_read_infoframe(struct intel_encoder *encoder,
317 const struct intel_crtc_state *crtc_state,
318 unsigned int type,
319 void *frame, ssize_t len)
320 {
321 struct intel_display *display = to_intel_display(encoder);
322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
323 u32 *data = frame;
324 int i;
325
326 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
327 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
328
329 for (i = 0; i < len; i += 4)
330 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
331 }
332
ibx_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334 const struct intel_crtc_state *pipe_config)
335 {
336 struct intel_display *display = to_intel_display(encoder);
337 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
338 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339 u32 val = intel_de_read(display, reg);
340
341 if ((val & VIDEO_DIP_ENABLE) == 0)
342 return 0;
343
344 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345 return 0;
346
347 return val & (VIDEO_DIP_ENABLE_AVI |
348 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351
cpt_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353 const struct intel_crtc_state *crtc_state,
354 unsigned int type,
355 const void *frame, ssize_t len)
356 {
357 struct intel_display *display = to_intel_display(encoder);
358 const u32 *data = frame;
359 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
360 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
361 u32 val = intel_de_read(display, reg);
362 int i;
363
364 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
365 "Writing DIP with CTL reg disabled\n");
366
367 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
368 val |= g4x_infoframe_index(type);
369
370 /* The DIP control register spec says that we need to update the AVI
371 * infoframe without clearing its enable bit */
372 if (type != HDMI_INFOFRAME_TYPE_AVI)
373 val &= ~g4x_infoframe_enable(type);
374
375 intel_de_write(display, reg, val);
376
377 for (i = 0; i < len; i += 4) {
378 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
379 *data);
380 data++;
381 }
382 /* Write every possible data byte to force correct ECC calculation. */
383 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
384 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
385
386 val |= g4x_infoframe_enable(type);
387 val &= ~VIDEO_DIP_FREQ_MASK;
388 val |= VIDEO_DIP_FREQ_VSYNC;
389
390 intel_de_write(display, reg, val);
391 intel_de_posting_read(display, reg);
392 }
393
cpt_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)394 static void cpt_read_infoframe(struct intel_encoder *encoder,
395 const struct intel_crtc_state *crtc_state,
396 unsigned int type,
397 void *frame, ssize_t len)
398 {
399 struct intel_display *display = to_intel_display(encoder);
400 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401 u32 *data = frame;
402 int i;
403
404 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
405 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
406
407 for (i = 0; i < len; i += 4)
408 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
409 }
410
cpt_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)411 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
412 const struct intel_crtc_state *pipe_config)
413 {
414 struct intel_display *display = to_intel_display(encoder);
415 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
416 u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
417
418 if ((val & VIDEO_DIP_ENABLE) == 0)
419 return 0;
420
421 return val & (VIDEO_DIP_ENABLE_AVI |
422 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
423 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
424 }
425
vlv_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)426 static void vlv_write_infoframe(struct intel_encoder *encoder,
427 const struct intel_crtc_state *crtc_state,
428 unsigned int type,
429 const void *frame, ssize_t len)
430 {
431 struct intel_display *display = to_intel_display(encoder);
432 const u32 *data = frame;
433 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
434 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
435 u32 val = intel_de_read(display, reg);
436 int i;
437
438 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
439 "Writing DIP with CTL reg disabled\n");
440
441 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
442 val |= g4x_infoframe_index(type);
443
444 val &= ~g4x_infoframe_enable(type);
445
446 intel_de_write(display, reg, val);
447
448 for (i = 0; i < len; i += 4) {
449 intel_de_write(display,
450 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
451 data++;
452 }
453 /* Write every possible data byte to force correct ECC calculation. */
454 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455 intel_de_write(display,
456 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
457
458 val |= g4x_infoframe_enable(type);
459 val &= ~VIDEO_DIP_FREQ_MASK;
460 val |= VIDEO_DIP_FREQ_VSYNC;
461
462 intel_de_write(display, reg, val);
463 intel_de_posting_read(display, reg);
464 }
465
vlv_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)466 static void vlv_read_infoframe(struct intel_encoder *encoder,
467 const struct intel_crtc_state *crtc_state,
468 unsigned int type,
469 void *frame, ssize_t len)
470 {
471 struct intel_display *display = to_intel_display(encoder);
472 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473 u32 *data = frame;
474 int i;
475
476 intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
477 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
478
479 for (i = 0; i < len; i += 4)
480 *data++ = intel_de_read(display,
481 VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483
vlv_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485 const struct intel_crtc_state *pipe_config)
486 {
487 struct intel_display *display = to_intel_display(encoder);
488 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489 u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
490
491 if ((val & VIDEO_DIP_ENABLE) == 0)
492 return 0;
493
494 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495 return 0;
496
497 return val & (VIDEO_DIP_ENABLE_AVI |
498 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501
hsw_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)502 void hsw_write_infoframe(struct intel_encoder *encoder,
503 const struct intel_crtc_state *crtc_state,
504 unsigned int type,
505 const void *frame, ssize_t len)
506 {
507 struct intel_display *display = to_intel_display(encoder);
508 const u32 *data = frame;
509 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
511 int data_size;
512 int i;
513 u32 val = intel_de_read(display, ctl_reg);
514
515 data_size = hsw_dip_data_size(display, type);
516
517 drm_WARN_ON(display->drm, len > data_size);
518
519 val &= ~hsw_infoframe_enable(type);
520 intel_de_write(display, ctl_reg, val);
521
522 for (i = 0; i < len; i += 4) {
523 intel_de_write(display,
524 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
525 *data);
526 data++;
527 }
528 /* Write every possible data byte to force correct ECC calculation. */
529 for (; i < data_size; i += 4)
530 intel_de_write(display,
531 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
532 0);
533
534 /* Wa_14013475917 */
535 if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
536 !crtc_state->has_panel_replay && type == DP_SDP_VSC))
537 val |= hsw_infoframe_enable(type);
538
539 if (type == DP_SDP_VSC)
540 val |= VSC_DIP_HW_DATA_SW_HEA;
541
542 intel_de_write(display, ctl_reg, val);
543 intel_de_posting_read(display, ctl_reg);
544 }
545
hsw_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)546 void hsw_read_infoframe(struct intel_encoder *encoder,
547 const struct intel_crtc_state *crtc_state,
548 unsigned int type, void *frame, ssize_t len)
549 {
550 struct intel_display *display = to_intel_display(encoder);
551 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
552 u32 *data = frame;
553 int i;
554
555 for (i = 0; i < len; i += 4)
556 *data++ = intel_de_read(display,
557 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
558 }
559
hsw_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)560 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
561 const struct intel_crtc_state *pipe_config)
562 {
563 struct intel_display *display = to_intel_display(encoder);
564 u32 val = intel_de_read(display,
565 HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
566 u32 mask;
567
568 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
569 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
570 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
571
572 if (DISPLAY_VER(display) >= 10)
573 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
574
575 if (HAS_AS_SDP(display))
576 mask |= VIDEO_DIP_ENABLE_AS_ADL;
577
578 return val & mask;
579 }
580
581 static const u8 infoframe_type_to_idx[] = {
582 HDMI_PACKET_TYPE_GENERAL_CONTROL,
583 HDMI_PACKET_TYPE_GAMUT_METADATA,
584 DP_SDP_VSC,
585 DP_SDP_ADAPTIVE_SYNC,
586 HDMI_INFOFRAME_TYPE_AVI,
587 HDMI_INFOFRAME_TYPE_SPD,
588 HDMI_INFOFRAME_TYPE_VENDOR,
589 HDMI_INFOFRAME_TYPE_DRM,
590 };
591
intel_hdmi_infoframe_enable(unsigned int type)592 u32 intel_hdmi_infoframe_enable(unsigned int type)
593 {
594 int i;
595
596 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
597 if (infoframe_type_to_idx[i] == type)
598 return BIT(i);
599 }
600
601 return 0;
602 }
603
intel_hdmi_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)604 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
605 const struct intel_crtc_state *crtc_state)
606 {
607 struct intel_display *display = to_intel_display(encoder);
608 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
609 u32 val, ret = 0;
610 int i;
611
612 val = dig_port->infoframes_enabled(encoder, crtc_state);
613
614 /* map from hardware bits to dip idx */
615 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
616 unsigned int type = infoframe_type_to_idx[i];
617
618 if (HAS_DDI(display)) {
619 if (val & hsw_infoframe_enable(type))
620 ret |= BIT(i);
621 } else {
622 if (val & g4x_infoframe_enable(type))
623 ret |= BIT(i);
624 }
625 }
626
627 return ret;
628 }
629
630 /*
631 * The data we write to the DIP data buffer registers is 1 byte bigger than the
632 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
633 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
634 * used for both technologies.
635 *
636 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
637 * DW1: DB3 | DB2 | DB1 | DB0
638 * DW2: DB7 | DB6 | DB5 | DB4
639 * DW3: ...
640 *
641 * (HB is Header Byte, DB is Data Byte)
642 *
643 * The hdmi pack() functions don't know about that hardware specific hole so we
644 * trick them by giving an offset into the buffer and moving back the header
645 * bytes by one.
646 */
intel_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,const union hdmi_infoframe * frame)647 static void intel_write_infoframe(struct intel_encoder *encoder,
648 const struct intel_crtc_state *crtc_state,
649 enum hdmi_infoframe_type type,
650 const union hdmi_infoframe *frame)
651 {
652 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
653 u8 buffer[VIDEO_DIP_DATA_SIZE];
654 ssize_t len;
655
656 if ((crtc_state->infoframes.enable &
657 intel_hdmi_infoframe_enable(type)) == 0)
658 return;
659
660 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
661 return;
662
663 /* see comment above for the reason for this offset */
664 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
665 if (drm_WARN_ON(encoder->base.dev, len < 0))
666 return;
667
668 /* Insert the 'hole' (see big comment above) at position 3 */
669 memmove(&buffer[0], &buffer[1], 3);
670 buffer[3] = 0;
671 len++;
672
673 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
674 }
675
intel_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,union hdmi_infoframe * frame)676 void intel_read_infoframe(struct intel_encoder *encoder,
677 const struct intel_crtc_state *crtc_state,
678 enum hdmi_infoframe_type type,
679 union hdmi_infoframe *frame)
680 {
681 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
682 u8 buffer[VIDEO_DIP_DATA_SIZE];
683 int ret;
684
685 if ((crtc_state->infoframes.enable &
686 intel_hdmi_infoframe_enable(type)) == 0)
687 return;
688
689 dig_port->read_infoframe(encoder, crtc_state,
690 type, buffer, sizeof(buffer));
691
692 /* Fill the 'hole' (see big comment above) at position 3 */
693 memmove(&buffer[1], &buffer[0], 3);
694
695 /* see comment above for the reason for this offset */
696 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
697 if (ret) {
698 drm_dbg_kms(encoder->base.dev,
699 "Failed to unpack infoframe type 0x%02x\n", type);
700 return;
701 }
702
703 if (frame->any.type != type)
704 drm_dbg_kms(encoder->base.dev,
705 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
706 frame->any.type, type);
707 }
708
709 static bool
intel_hdmi_compute_avi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)710 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
711 struct intel_crtc_state *crtc_state,
712 struct drm_connector_state *conn_state)
713 {
714 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
715 const struct drm_display_mode *adjusted_mode =
716 &crtc_state->hw.adjusted_mode;
717 struct drm_connector *connector = conn_state->connector;
718 int ret;
719
720 if (!crtc_state->has_infoframe)
721 return true;
722
723 crtc_state->infoframes.enable |=
724 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
725
726 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
727 adjusted_mode);
728 if (ret)
729 return false;
730
731 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
732 frame->colorspace = HDMI_COLORSPACE_YUV420;
733 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
734 frame->colorspace = HDMI_COLORSPACE_YUV444;
735 else
736 frame->colorspace = HDMI_COLORSPACE_RGB;
737
738 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
739
740 /* nonsense combination */
741 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
742 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
743
744 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
745 drm_hdmi_avi_infoframe_quant_range(frame, connector,
746 adjusted_mode,
747 crtc_state->limited_color_range ?
748 HDMI_QUANTIZATION_RANGE_LIMITED :
749 HDMI_QUANTIZATION_RANGE_FULL);
750 } else {
751 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
752 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
753 }
754
755 drm_hdmi_avi_infoframe_content_type(frame, conn_state);
756
757 /* TODO: handle pixel repetition for YCBCR420 outputs */
758
759 ret = hdmi_avi_infoframe_check(frame);
760 if (drm_WARN_ON(encoder->base.dev, ret))
761 return false;
762
763 return true;
764 }
765
766 static bool
intel_hdmi_compute_spd_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)767 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
768 struct intel_crtc_state *crtc_state,
769 struct drm_connector_state *conn_state)
770 {
771 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
772 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
773 int ret;
774
775 if (!crtc_state->has_infoframe)
776 return true;
777
778 crtc_state->infoframes.enable |=
779 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
780
781 if (IS_DGFX(i915))
782 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
783 else
784 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
785
786 if (drm_WARN_ON(encoder->base.dev, ret))
787 return false;
788
789 frame->sdi = HDMI_SPD_SDI_PC;
790
791 ret = hdmi_spd_infoframe_check(frame);
792 if (drm_WARN_ON(encoder->base.dev, ret))
793 return false;
794
795 return true;
796 }
797
798 static bool
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)799 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
800 struct intel_crtc_state *crtc_state,
801 struct drm_connector_state *conn_state)
802 {
803 struct hdmi_vendor_infoframe *frame =
804 &crtc_state->infoframes.hdmi.vendor.hdmi;
805 const struct drm_display_info *info =
806 &conn_state->connector->display_info;
807 int ret;
808
809 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
810 return true;
811
812 crtc_state->infoframes.enable |=
813 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
814
815 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
816 conn_state->connector,
817 &crtc_state->hw.adjusted_mode);
818 if (drm_WARN_ON(encoder->base.dev, ret))
819 return false;
820
821 ret = hdmi_vendor_infoframe_check(frame);
822 if (drm_WARN_ON(encoder->base.dev, ret))
823 return false;
824
825 return true;
826 }
827
828 static bool
intel_hdmi_compute_drm_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)829 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
830 struct intel_crtc_state *crtc_state,
831 struct drm_connector_state *conn_state)
832 {
833 struct intel_display *display = to_intel_display(encoder);
834 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
835 int ret;
836
837 if (DISPLAY_VER(display) < 10)
838 return true;
839
840 if (!crtc_state->has_infoframe)
841 return true;
842
843 if (!conn_state->hdr_output_metadata)
844 return true;
845
846 crtc_state->infoframes.enable |=
847 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
848
849 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
850 if (ret < 0) {
851 drm_dbg_kms(display->drm,
852 "couldn't set HDR metadata in infoframe\n");
853 return false;
854 }
855
856 ret = hdmi_drm_infoframe_check(frame);
857 if (drm_WARN_ON(display->drm, ret))
858 return false;
859
860 return true;
861 }
862
g4x_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)863 static void g4x_set_infoframes(struct intel_encoder *encoder,
864 bool enable,
865 const struct intel_crtc_state *crtc_state,
866 const struct drm_connector_state *conn_state)
867 {
868 struct intel_display *display = to_intel_display(encoder);
869 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
870 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
871 i915_reg_t reg = VIDEO_DIP_CTL;
872 u32 val = intel_de_read(display, reg);
873 u32 port = VIDEO_DIP_PORT(encoder->port);
874
875 assert_hdmi_port_disabled(intel_hdmi);
876
877 /* If the registers were not initialized yet, they might be zeroes,
878 * which means we're selecting the AVI DIP and we're setting its
879 * frequency to once. This seems to really confuse the HW and make
880 * things stop working (the register spec says the AVI always needs to
881 * be sent every VSync). So here we avoid writing to the register more
882 * than we need and also explicitly select the AVI DIP and explicitly
883 * set its frequency to every VSync. Avoiding to write it twice seems to
884 * be enough to solve the problem, but being defensive shouldn't hurt us
885 * either. */
886 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
887
888 if (!enable) {
889 if (!(val & VIDEO_DIP_ENABLE))
890 return;
891 if (port != (val & VIDEO_DIP_PORT_MASK)) {
892 drm_dbg_kms(display->drm,
893 "video DIP still enabled on port %c\n",
894 (val & VIDEO_DIP_PORT_MASK) >> 29);
895 return;
896 }
897 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
898 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
899 intel_de_write(display, reg, val);
900 intel_de_posting_read(display, reg);
901 return;
902 }
903
904 if (port != (val & VIDEO_DIP_PORT_MASK)) {
905 if (val & VIDEO_DIP_ENABLE) {
906 drm_dbg_kms(display->drm,
907 "video DIP already enabled on port %c\n",
908 (val & VIDEO_DIP_PORT_MASK) >> 29);
909 return;
910 }
911 val &= ~VIDEO_DIP_PORT_MASK;
912 val |= port;
913 }
914
915 val |= VIDEO_DIP_ENABLE;
916 val &= ~(VIDEO_DIP_ENABLE_AVI |
917 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
918
919 intel_de_write(display, reg, val);
920 intel_de_posting_read(display, reg);
921
922 intel_write_infoframe(encoder, crtc_state,
923 HDMI_INFOFRAME_TYPE_AVI,
924 &crtc_state->infoframes.avi);
925 intel_write_infoframe(encoder, crtc_state,
926 HDMI_INFOFRAME_TYPE_SPD,
927 &crtc_state->infoframes.spd);
928 intel_write_infoframe(encoder, crtc_state,
929 HDMI_INFOFRAME_TYPE_VENDOR,
930 &crtc_state->infoframes.hdmi);
931 }
932
933 /*
934 * Determine if default_phase=1 can be indicated in the GCP infoframe.
935 *
936 * From HDMI specification 1.4a:
937 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
938 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
939 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
940 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
941 * phase of 0
942 */
gcp_default_phase_possible(int pipe_bpp,const struct drm_display_mode * mode)943 static bool gcp_default_phase_possible(int pipe_bpp,
944 const struct drm_display_mode *mode)
945 {
946 unsigned int pixels_per_group;
947
948 switch (pipe_bpp) {
949 case 30:
950 /* 4 pixels in 5 clocks */
951 pixels_per_group = 4;
952 break;
953 case 36:
954 /* 2 pixels in 3 clocks */
955 pixels_per_group = 2;
956 break;
957 case 48:
958 /* 1 pixel in 2 clocks */
959 pixels_per_group = 1;
960 break;
961 default:
962 /* phase information not relevant for 8bpc */
963 return false;
964 }
965
966 return mode->crtc_hdisplay % pixels_per_group == 0 &&
967 mode->crtc_htotal % pixels_per_group == 0 &&
968 mode->crtc_hblank_start % pixels_per_group == 0 &&
969 mode->crtc_hblank_end % pixels_per_group == 0 &&
970 mode->crtc_hsync_start % pixels_per_group == 0 &&
971 mode->crtc_hsync_end % pixels_per_group == 0 &&
972 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
973 mode->crtc_htotal/2 % pixels_per_group == 0);
974 }
975
intel_hdmi_set_gcp_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)976 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
977 const struct intel_crtc_state *crtc_state,
978 const struct drm_connector_state *conn_state)
979 {
980 struct intel_display *display = to_intel_display(encoder);
981 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 i915_reg_t reg;
984
985 if ((crtc_state->infoframes.enable &
986 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
987 return false;
988
989 if (HAS_DDI(display))
990 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
991 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
992 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
993 else if (HAS_PCH_SPLIT(dev_priv))
994 reg = TVIDEO_DIP_GCP(crtc->pipe);
995 else
996 return false;
997
998 intel_de_write(display, reg, crtc_state->infoframes.gcp);
999
1000 return true;
1001 }
1002
intel_hdmi_read_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)1003 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1004 struct intel_crtc_state *crtc_state)
1005 {
1006 struct intel_display *display = to_intel_display(encoder);
1007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1009 i915_reg_t reg;
1010
1011 if ((crtc_state->infoframes.enable &
1012 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1013 return;
1014
1015 if (HAS_DDI(display))
1016 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1017 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1018 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1019 else if (HAS_PCH_SPLIT(dev_priv))
1020 reg = TVIDEO_DIP_GCP(crtc->pipe);
1021 else
1022 return;
1023
1024 crtc_state->infoframes.gcp = intel_de_read(display, reg);
1025 }
1026
intel_hdmi_compute_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)1027 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1028 struct intel_crtc_state *crtc_state,
1029 struct drm_connector_state *conn_state)
1030 {
1031 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1032
1033 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1034 return;
1035
1036 crtc_state->infoframes.enable |=
1037 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1038
1039 /* Indicate color indication for deep color mode */
1040 if (crtc_state->pipe_bpp > 24)
1041 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1042
1043 /* Enable default_phase whenever the display mode is suitably aligned */
1044 if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1045 &crtc_state->hw.adjusted_mode))
1046 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1047 }
1048
ibx_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1049 static void ibx_set_infoframes(struct intel_encoder *encoder,
1050 bool enable,
1051 const struct intel_crtc_state *crtc_state,
1052 const struct drm_connector_state *conn_state)
1053 {
1054 struct intel_display *display = to_intel_display(encoder);
1055 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1057 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1058 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1059 u32 val = intel_de_read(display, reg);
1060 u32 port = VIDEO_DIP_PORT(encoder->port);
1061
1062 assert_hdmi_port_disabled(intel_hdmi);
1063
1064 /* See the big comment in g4x_set_infoframes() */
1065 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1066
1067 if (!enable) {
1068 if (!(val & VIDEO_DIP_ENABLE))
1069 return;
1070 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1071 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1072 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1073 intel_de_write(display, reg, val);
1074 intel_de_posting_read(display, reg);
1075 return;
1076 }
1077
1078 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1079 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1080 "DIP already enabled on port %c\n",
1081 (val & VIDEO_DIP_PORT_MASK) >> 29);
1082 val &= ~VIDEO_DIP_PORT_MASK;
1083 val |= port;
1084 }
1085
1086 val |= VIDEO_DIP_ENABLE;
1087 val &= ~(VIDEO_DIP_ENABLE_AVI |
1088 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1089 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1090
1091 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1092 val |= VIDEO_DIP_ENABLE_GCP;
1093
1094 intel_de_write(display, reg, val);
1095 intel_de_posting_read(display, reg);
1096
1097 intel_write_infoframe(encoder, crtc_state,
1098 HDMI_INFOFRAME_TYPE_AVI,
1099 &crtc_state->infoframes.avi);
1100 intel_write_infoframe(encoder, crtc_state,
1101 HDMI_INFOFRAME_TYPE_SPD,
1102 &crtc_state->infoframes.spd);
1103 intel_write_infoframe(encoder, crtc_state,
1104 HDMI_INFOFRAME_TYPE_VENDOR,
1105 &crtc_state->infoframes.hdmi);
1106 }
1107
cpt_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1108 static void cpt_set_infoframes(struct intel_encoder *encoder,
1109 bool enable,
1110 const struct intel_crtc_state *crtc_state,
1111 const struct drm_connector_state *conn_state)
1112 {
1113 struct intel_display *display = to_intel_display(encoder);
1114 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1115 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1117 u32 val = intel_de_read(display, reg);
1118
1119 assert_hdmi_port_disabled(intel_hdmi);
1120
1121 /* See the big comment in g4x_set_infoframes() */
1122 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1123
1124 if (!enable) {
1125 if (!(val & VIDEO_DIP_ENABLE))
1126 return;
1127 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1128 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1129 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1130 intel_de_write(display, reg, val);
1131 intel_de_posting_read(display, reg);
1132 return;
1133 }
1134
1135 /* Set both together, unset both together: see the spec. */
1136 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1137 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1138 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1139
1140 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1141 val |= VIDEO_DIP_ENABLE_GCP;
1142
1143 intel_de_write(display, reg, val);
1144 intel_de_posting_read(display, reg);
1145
1146 intel_write_infoframe(encoder, crtc_state,
1147 HDMI_INFOFRAME_TYPE_AVI,
1148 &crtc_state->infoframes.avi);
1149 intel_write_infoframe(encoder, crtc_state,
1150 HDMI_INFOFRAME_TYPE_SPD,
1151 &crtc_state->infoframes.spd);
1152 intel_write_infoframe(encoder, crtc_state,
1153 HDMI_INFOFRAME_TYPE_VENDOR,
1154 &crtc_state->infoframes.hdmi);
1155 }
1156
vlv_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1157 static void vlv_set_infoframes(struct intel_encoder *encoder,
1158 bool enable,
1159 const struct intel_crtc_state *crtc_state,
1160 const struct drm_connector_state *conn_state)
1161 {
1162 struct intel_display *display = to_intel_display(encoder);
1163 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1164 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1165 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1166 u32 val = intel_de_read(display, reg);
1167 u32 port = VIDEO_DIP_PORT(encoder->port);
1168
1169 assert_hdmi_port_disabled(intel_hdmi);
1170
1171 /* See the big comment in g4x_set_infoframes() */
1172 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1173
1174 if (!enable) {
1175 if (!(val & VIDEO_DIP_ENABLE))
1176 return;
1177 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1178 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1179 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1180 intel_de_write(display, reg, val);
1181 intel_de_posting_read(display, reg);
1182 return;
1183 }
1184
1185 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1186 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1187 "DIP already enabled on port %c\n",
1188 (val & VIDEO_DIP_PORT_MASK) >> 29);
1189 val &= ~VIDEO_DIP_PORT_MASK;
1190 val |= port;
1191 }
1192
1193 val |= VIDEO_DIP_ENABLE;
1194 val &= ~(VIDEO_DIP_ENABLE_AVI |
1195 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1196 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1197
1198 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1199 val |= VIDEO_DIP_ENABLE_GCP;
1200
1201 intel_de_write(display, reg, val);
1202 intel_de_posting_read(display, reg);
1203
1204 intel_write_infoframe(encoder, crtc_state,
1205 HDMI_INFOFRAME_TYPE_AVI,
1206 &crtc_state->infoframes.avi);
1207 intel_write_infoframe(encoder, crtc_state,
1208 HDMI_INFOFRAME_TYPE_SPD,
1209 &crtc_state->infoframes.spd);
1210 intel_write_infoframe(encoder, crtc_state,
1211 HDMI_INFOFRAME_TYPE_VENDOR,
1212 &crtc_state->infoframes.hdmi);
1213 }
1214
intel_hdmi_fastset_infoframes(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1215 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1216 const struct intel_crtc_state *crtc_state,
1217 const struct drm_connector_state *conn_state)
1218 {
1219 struct intel_display *display = to_intel_display(encoder);
1220 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1221 crtc_state->cpu_transcoder);
1222 u32 val = intel_de_read(display, reg);
1223
1224 if ((crtc_state->infoframes.enable &
1225 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1226 (val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1227 return;
1228
1229 val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1230
1231 intel_de_write(display, reg, val);
1232 intel_de_posting_read(display, reg);
1233
1234 intel_write_infoframe(encoder, crtc_state,
1235 HDMI_INFOFRAME_TYPE_DRM,
1236 &crtc_state->infoframes.drm);
1237 }
1238
hsw_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1239 static void hsw_set_infoframes(struct intel_encoder *encoder,
1240 bool enable,
1241 const struct intel_crtc_state *crtc_state,
1242 const struct drm_connector_state *conn_state)
1243 {
1244 struct intel_display *display = to_intel_display(encoder);
1245 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1246 crtc_state->cpu_transcoder);
1247 u32 val = intel_de_read(display, reg);
1248
1249 assert_hdmi_transcoder_func_disabled(display,
1250 crtc_state->cpu_transcoder);
1251
1252 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1253 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1254 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1255 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1256
1257 if (!enable) {
1258 intel_de_write(display, reg, val);
1259 intel_de_posting_read(display, reg);
1260 return;
1261 }
1262
1263 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1264 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1265
1266 intel_de_write(display, reg, val);
1267 intel_de_posting_read(display, reg);
1268
1269 intel_write_infoframe(encoder, crtc_state,
1270 HDMI_INFOFRAME_TYPE_AVI,
1271 &crtc_state->infoframes.avi);
1272 intel_write_infoframe(encoder, crtc_state,
1273 HDMI_INFOFRAME_TYPE_SPD,
1274 &crtc_state->infoframes.spd);
1275 intel_write_infoframe(encoder, crtc_state,
1276 HDMI_INFOFRAME_TYPE_VENDOR,
1277 &crtc_state->infoframes.hdmi);
1278 intel_write_infoframe(encoder, crtc_state,
1279 HDMI_INFOFRAME_TYPE_DRM,
1280 &crtc_state->infoframes.drm);
1281 }
1282
intel_dp_dual_mode_set_tmds_output(struct intel_hdmi * hdmi,bool enable)1283 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1284 {
1285 struct intel_display *display = to_intel_display(hdmi);
1286 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1287
1288 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1289 return;
1290
1291 drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1292 enable ? "Enabling" : "Disabling");
1293
1294 drm_dp_dual_mode_set_tmds_output(display->drm,
1295 hdmi->dp_dual_mode.type, ddc, enable);
1296 }
1297
intel_hdmi_hdcp_read(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1298 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1299 unsigned int offset, void *buffer, size_t size)
1300 {
1301 struct intel_hdmi *hdmi = &dig_port->hdmi;
1302 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1303 int ret;
1304 u8 start = offset & 0xff;
1305 struct i2c_msg msgs[] = {
1306 {
1307 .addr = DRM_HDCP_DDC_ADDR,
1308 .flags = 0,
1309 .len = 1,
1310 .buf = &start,
1311 },
1312 {
1313 .addr = DRM_HDCP_DDC_ADDR,
1314 .flags = I2C_M_RD,
1315 .len = size,
1316 .buf = buffer
1317 }
1318 };
1319 ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1320 if (ret == ARRAY_SIZE(msgs))
1321 return 0;
1322 return ret >= 0 ? -EIO : ret;
1323 }
1324
intel_hdmi_hdcp_write(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1325 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1326 unsigned int offset, void *buffer, size_t size)
1327 {
1328 struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1330 int ret;
1331 u8 *write_buf;
1332 struct i2c_msg msg;
1333
1334 write_buf = kzalloc(size + 1, GFP_KERNEL);
1335 if (!write_buf)
1336 return -ENOMEM;
1337
1338 write_buf[0] = offset & 0xff;
1339 memcpy(&write_buf[1], buffer, size);
1340
1341 msg.addr = DRM_HDCP_DDC_ADDR;
1342 msg.flags = 0;
1343 msg.len = size + 1;
1344 msg.buf = write_buf;
1345
1346 ret = i2c_transfer(ddc, &msg, 1);
1347 if (ret == 1)
1348 ret = 0;
1349 else if (ret >= 0)
1350 ret = -EIO;
1351
1352 kfree(write_buf);
1353 return ret;
1354 }
1355
1356 static
intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port * dig_port,u8 * an)1357 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1358 u8 *an)
1359 {
1360 struct intel_display *display = to_intel_display(dig_port);
1361 struct intel_hdmi *hdmi = &dig_port->hdmi;
1362 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1363 int ret;
1364
1365 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1366 DRM_HDCP_AN_LEN);
1367 if (ret) {
1368 drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1369 ret);
1370 return ret;
1371 }
1372
1373 ret = intel_gmbus_output_aksv(ddc);
1374 if (ret < 0) {
1375 drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1376 return ret;
1377 }
1378 return 0;
1379 }
1380
intel_hdmi_hdcp_read_bksv(struct intel_digital_port * dig_port,u8 * bksv)1381 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1382 u8 *bksv)
1383 {
1384 struct intel_display *display = to_intel_display(dig_port);
1385
1386 int ret;
1387 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1388 DRM_HDCP_KSV_LEN);
1389 if (ret)
1390 drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1391 ret);
1392 return ret;
1393 }
1394
1395 static
intel_hdmi_hdcp_read_bstatus(struct intel_digital_port * dig_port,u8 * bstatus)1396 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1397 u8 *bstatus)
1398 {
1399 struct intel_display *display = to_intel_display(dig_port);
1400
1401 int ret;
1402 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1403 bstatus, DRM_HDCP_BSTATUS_LEN);
1404 if (ret)
1405 drm_dbg_kms(display->drm,
1406 "Read bstatus over DDC failed (%d)\n",
1407 ret);
1408 return ret;
1409 }
1410
1411 static
intel_hdmi_hdcp_repeater_present(struct intel_digital_port * dig_port,bool * repeater_present)1412 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1413 bool *repeater_present)
1414 {
1415 struct intel_display *display = to_intel_display(dig_port);
1416 int ret;
1417 u8 val;
1418
1419 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 if (ret) {
1421 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1422 ret);
1423 return ret;
1424 }
1425 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1426 return 0;
1427 }
1428
1429 static
intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port * dig_port,u8 * ri_prime)1430 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1431 u8 *ri_prime)
1432 {
1433 struct intel_display *display = to_intel_display(dig_port);
1434
1435 int ret;
1436 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1437 ri_prime, DRM_HDCP_RI_LEN);
1438 if (ret)
1439 drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1440 ret);
1441 return ret;
1442 }
1443
1444 static
intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port * dig_port,bool * ksv_ready)1445 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1446 bool *ksv_ready)
1447 {
1448 struct intel_display *display = to_intel_display(dig_port);
1449 int ret;
1450 u8 val;
1451
1452 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1453 if (ret) {
1454 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1455 ret);
1456 return ret;
1457 }
1458 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1459 return 0;
1460 }
1461
1462 static
intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port * dig_port,int num_downstream,u8 * ksv_fifo)1463 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1464 int num_downstream, u8 *ksv_fifo)
1465 {
1466 struct intel_display *display = to_intel_display(dig_port);
1467 int ret;
1468 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1469 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1470 if (ret) {
1471 drm_dbg_kms(display->drm,
1472 "Read ksv fifo over DDC failed (%d)\n", ret);
1473 return ret;
1474 }
1475 return 0;
1476 }
1477
1478 static
intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port * dig_port,int i,u32 * part)1479 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1480 int i, u32 *part)
1481 {
1482 struct intel_display *display = to_intel_display(dig_port);
1483 int ret;
1484
1485 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1486 return -EINVAL;
1487
1488 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1489 part, DRM_HDCP_V_PRIME_PART_LEN);
1490 if (ret)
1491 drm_dbg_kms(display->drm,
1492 "Read V'[%d] over DDC failed (%d)\n",
1493 i, ret);
1494 return ret;
1495 }
1496
kbl_repositioning_enc_en_signal(struct intel_connector * connector,enum transcoder cpu_transcoder)1497 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1498 enum transcoder cpu_transcoder)
1499 {
1500 struct intel_display *display = to_intel_display(connector);
1501 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1502 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1503 u32 scanline;
1504 int ret;
1505
1506 for (;;) {
1507 scanline = intel_de_read(display,
1508 PIPEDSL(display, crtc->pipe));
1509 if (scanline > 100 && scanline < 200)
1510 break;
1511 usleep_range(25, 50);
1512 }
1513
1514 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1515 false, TRANS_DDI_HDCP_SIGNALLING);
1516 if (ret) {
1517 drm_err(display->drm,
1518 "Disable HDCP signalling failed (%d)\n", ret);
1519 return ret;
1520 }
1521
1522 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1523 true, TRANS_DDI_HDCP_SIGNALLING);
1524 if (ret) {
1525 drm_err(display->drm,
1526 "Enable HDCP signalling failed (%d)\n", ret);
1527 return ret;
1528 }
1529
1530 return 0;
1531 }
1532
1533 static
intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port * dig_port,enum transcoder cpu_transcoder,bool enable)1534 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1535 enum transcoder cpu_transcoder,
1536 bool enable)
1537 {
1538 struct intel_display *display = to_intel_display(dig_port);
1539 struct intel_hdmi *hdmi = &dig_port->hdmi;
1540 struct intel_connector *connector = hdmi->attached_connector;
1541 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1542 int ret;
1543
1544 if (!enable)
1545 usleep_range(6, 60); /* Bspec says >= 6us */
1546
1547 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1548 cpu_transcoder, enable,
1549 TRANS_DDI_HDCP_SIGNALLING);
1550 if (ret) {
1551 drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1552 enable ? "Enable" : "Disable", ret);
1553 return ret;
1554 }
1555
1556 /*
1557 * WA: To fix incorrect positioning of the window of
1558 * opportunity and enc_en signalling in KABYLAKE.
1559 */
1560 if (IS_KABYLAKE(dev_priv) && enable)
1561 return kbl_repositioning_enc_en_signal(connector,
1562 cpu_transcoder);
1563
1564 return 0;
1565 }
1566
1567 static
intel_hdmi_hdcp_check_link_once(struct intel_digital_port * dig_port,struct intel_connector * connector)1568 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1569 struct intel_connector *connector)
1570 {
1571 struct intel_display *display = to_intel_display(dig_port);
1572 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1573 enum port port = dig_port->base.port;
1574 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1575 int ret;
1576 union {
1577 u32 reg;
1578 u8 shim[DRM_HDCP_RI_LEN];
1579 } ri;
1580
1581 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1582 if (ret)
1583 return false;
1584
1585 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1586
1587 /* Wait for Ri prime match */
1588 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1589 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1590 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1591 drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1592 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1593 port)));
1594 return false;
1595 }
1596 return true;
1597 }
1598
1599 static
intel_hdmi_hdcp_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1600 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1601 struct intel_connector *connector)
1602 {
1603 int retry;
1604
1605 for (retry = 0; retry < 3; retry++)
1606 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1607 return true;
1608
1609 return false;
1610 }
1611
1612 struct hdcp2_hdmi_msg_timeout {
1613 u8 msg_id;
1614 u16 timeout;
1615 };
1616
1617 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1618 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1619 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1620 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1621 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1622 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1623 };
1624
1625 static
intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port * dig_port,u8 * rx_status)1626 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1627 u8 *rx_status)
1628 {
1629 return intel_hdmi_hdcp_read(dig_port,
1630 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1631 rx_status,
1632 HDCP_2_2_HDMI_RXSTATUS_LEN);
1633 }
1634
get_hdcp2_msg_timeout(u8 msg_id,bool is_paired)1635 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1636 {
1637 int i;
1638
1639 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1640 if (is_paired)
1641 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1642 else
1643 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1644 }
1645
1646 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1647 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1648 return hdcp2_msg_timeout[i].timeout;
1649 }
1650
1651 return -EINVAL;
1652 }
1653
1654 static int
hdcp2_detect_msg_availability(struct intel_digital_port * dig_port,u8 msg_id,bool * msg_ready,ssize_t * msg_sz)1655 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1656 u8 msg_id, bool *msg_ready,
1657 ssize_t *msg_sz)
1658 {
1659 struct intel_display *display = to_intel_display(dig_port);
1660 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1661 int ret;
1662
1663 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1664 if (ret < 0) {
1665 drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1666 ret);
1667 return ret;
1668 }
1669
1670 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1671 rx_status[0]);
1672
1673 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1674 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1675 *msg_sz);
1676 else
1677 *msg_ready = *msg_sz;
1678
1679 return 0;
1680 }
1681
1682 static ssize_t
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port * dig_port,u8 msg_id,bool paired)1683 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1684 u8 msg_id, bool paired)
1685 {
1686 struct intel_display *display = to_intel_display(dig_port);
1687 bool msg_ready = false;
1688 int timeout, ret;
1689 ssize_t msg_sz = 0;
1690
1691 timeout = get_hdcp2_msg_timeout(msg_id, paired);
1692 if (timeout < 0)
1693 return timeout;
1694
1695 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1696 msg_id, &msg_ready,
1697 &msg_sz),
1698 !ret && msg_ready && msg_sz, timeout * 1000,
1699 1000, 5 * 1000);
1700 if (ret)
1701 drm_dbg_kms(display->drm,
1702 "msg_id: %d, ret: %d, timeout: %d\n",
1703 msg_id, ret, timeout);
1704
1705 return ret ? ret : msg_sz;
1706 }
1707
1708 static
intel_hdmi_hdcp2_write_msg(struct intel_connector * connector,void * buf,size_t size)1709 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1710 void *buf, size_t size)
1711 {
1712 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1713 unsigned int offset;
1714
1715 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1716 return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1717 }
1718
1719 static
intel_hdmi_hdcp2_read_msg(struct intel_connector * connector,u8 msg_id,void * buf,size_t size)1720 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1721 u8 msg_id, void *buf, size_t size)
1722 {
1723 struct intel_display *display = to_intel_display(connector);
1724 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725 struct intel_hdmi *hdmi = &dig_port->hdmi;
1726 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1727 unsigned int offset;
1728 ssize_t ret;
1729
1730 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1731 hdcp->is_paired);
1732 if (ret < 0)
1733 return ret;
1734
1735 /*
1736 * Available msg size should be equal to or lesser than the
1737 * available buffer.
1738 */
1739 if (ret > size) {
1740 drm_dbg_kms(display->drm,
1741 "msg_sz(%zd) is more than exp size(%zu)\n",
1742 ret, size);
1743 return -EINVAL;
1744 }
1745
1746 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1747 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1748 if (ret)
1749 drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1750 msg_id, ret);
1751
1752 return ret;
1753 }
1754
1755 static
intel_hdmi_hdcp2_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1756 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1757 struct intel_connector *connector)
1758 {
1759 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1760 int ret;
1761
1762 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1763 if (ret)
1764 return ret;
1765
1766 /*
1767 * Re-auth request and Link Integrity Failures are represented by
1768 * same bit. i.e reauth_req.
1769 */
1770 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1771 ret = HDCP_REAUTH_REQUEST;
1772 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1773 ret = HDCP_TOPOLOGY_CHANGE;
1774
1775 return ret;
1776 }
1777
1778 static
intel_hdmi_hdcp2_get_capability(struct intel_connector * connector,bool * capable)1779 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1780 bool *capable)
1781 {
1782 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1783 u8 hdcp2_version;
1784 int ret;
1785
1786 *capable = false;
1787 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1788 &hdcp2_version, sizeof(hdcp2_version));
1789 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1790 *capable = true;
1791
1792 return ret;
1793 }
1794
1795 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1796 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1797 .read_bksv = intel_hdmi_hdcp_read_bksv,
1798 .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1799 .repeater_present = intel_hdmi_hdcp_repeater_present,
1800 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1801 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1802 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1803 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1804 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1805 .check_link = intel_hdmi_hdcp_check_link,
1806 .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1807 .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1808 .check_2_2_link = intel_hdmi_hdcp2_check_link,
1809 .hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1810 .protocol = HDCP_PROTOCOL_HDMI,
1811 };
1812
intel_hdmi_source_max_tmds_clock(struct intel_encoder * encoder)1813 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1814 {
1815 struct intel_display *display = to_intel_display(encoder);
1816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1817 int max_tmds_clock, vbt_max_tmds_clock;
1818
1819 if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1820 max_tmds_clock = 600000;
1821 else if (DISPLAY_VER(display) >= 10)
1822 max_tmds_clock = 594000;
1823 else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1824 max_tmds_clock = 300000;
1825 else if (DISPLAY_VER(display) >= 5)
1826 max_tmds_clock = 225000;
1827 else
1828 max_tmds_clock = 165000;
1829
1830 vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1831 if (vbt_max_tmds_clock)
1832 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1833
1834 return max_tmds_clock;
1835 }
1836
intel_has_hdmi_sink(struct intel_hdmi * hdmi,const struct drm_connector_state * conn_state)1837 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1838 const struct drm_connector_state *conn_state)
1839 {
1840 struct intel_connector *connector = hdmi->attached_connector;
1841
1842 return connector->base.display_info.is_hdmi &&
1843 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1844 }
1845
intel_hdmi_is_ycbcr420(const struct intel_crtc_state * crtc_state)1846 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1847 {
1848 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1849 }
1850
hdmi_port_clock_limit(struct intel_hdmi * hdmi,bool respect_downstream_limits,bool has_hdmi_sink)1851 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1852 bool respect_downstream_limits,
1853 bool has_hdmi_sink)
1854 {
1855 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1856 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1857
1858 if (respect_downstream_limits) {
1859 struct intel_connector *connector = hdmi->attached_connector;
1860 const struct drm_display_info *info = &connector->base.display_info;
1861
1862 if (hdmi->dp_dual_mode.max_tmds_clock)
1863 max_tmds_clock = min(max_tmds_clock,
1864 hdmi->dp_dual_mode.max_tmds_clock);
1865
1866 if (info->max_tmds_clock)
1867 max_tmds_clock = min(max_tmds_clock,
1868 info->max_tmds_clock);
1869 else if (!has_hdmi_sink)
1870 max_tmds_clock = min(max_tmds_clock, 165000);
1871 }
1872
1873 return max_tmds_clock;
1874 }
1875
1876 static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi * hdmi,int clock,bool respect_downstream_limits,bool has_hdmi_sink)1877 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1878 int clock, bool respect_downstream_limits,
1879 bool has_hdmi_sink)
1880 {
1881 struct intel_display *display = to_intel_display(hdmi);
1882 struct drm_i915_private *dev_priv = to_i915(display->drm);
1883 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1884
1885 if (clock < 25000)
1886 return MODE_CLOCK_LOW;
1887 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1888 has_hdmi_sink))
1889 return MODE_CLOCK_HIGH;
1890
1891 /* GLK DPLL can't generate 446-480 MHz */
1892 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1893 return MODE_CLOCK_RANGE;
1894
1895 /* BXT/GLK DPLL can't generate 223-240 MHz */
1896 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1897 clock > 223333 && clock < 240000)
1898 return MODE_CLOCK_RANGE;
1899
1900 /* CHV DPLL can't generate 216-240 MHz */
1901 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1902 return MODE_CLOCK_RANGE;
1903
1904 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1905 if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1906 return MODE_CLOCK_RANGE;
1907
1908 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1909 if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1910 return MODE_CLOCK_RANGE;
1911
1912 return MODE_OK;
1913 }
1914
intel_hdmi_tmds_clock(int clock,int bpc,enum intel_output_format sink_format)1915 int intel_hdmi_tmds_clock(int clock, int bpc,
1916 enum intel_output_format sink_format)
1917 {
1918 /* YCBCR420 TMDS rate requirement is half the pixel clock */
1919 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1920 clock /= 2;
1921
1922 /*
1923 * Need to adjust the port link by:
1924 * 1.5x for 12bpc
1925 * 1.25x for 10bpc
1926 */
1927 return DIV_ROUND_CLOSEST(clock * bpc, 8);
1928 }
1929
intel_hdmi_source_bpc_possible(struct intel_display * display,int bpc)1930 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1931 {
1932 switch (bpc) {
1933 case 12:
1934 return !HAS_GMCH(display);
1935 case 10:
1936 return DISPLAY_VER(display) >= 11;
1937 case 8:
1938 return true;
1939 default:
1940 MISSING_CASE(bpc);
1941 return false;
1942 }
1943 }
1944
intel_hdmi_sink_bpc_possible(struct drm_connector * connector,int bpc,bool has_hdmi_sink,enum intel_output_format sink_format)1945 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1946 int bpc, bool has_hdmi_sink,
1947 enum intel_output_format sink_format)
1948 {
1949 const struct drm_display_info *info = &connector->display_info;
1950 const struct drm_hdmi_info *hdmi = &info->hdmi;
1951
1952 switch (bpc) {
1953 case 12:
1954 if (!has_hdmi_sink)
1955 return false;
1956
1957 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1958 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1959 else
1960 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1961 case 10:
1962 if (!has_hdmi_sink)
1963 return false;
1964
1965 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1966 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1967 else
1968 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1969 case 8:
1970 return true;
1971 default:
1972 MISSING_CASE(bpc);
1973 return false;
1974 }
1975 }
1976
1977 static enum drm_mode_status
intel_hdmi_mode_clock_valid(struct drm_connector * connector,int clock,bool has_hdmi_sink,enum intel_output_format sink_format)1978 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1979 bool has_hdmi_sink,
1980 enum intel_output_format sink_format)
1981 {
1982 struct intel_display *display = to_intel_display(connector->dev);
1983 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1984 enum drm_mode_status status = MODE_OK;
1985 int bpc;
1986
1987 /*
1988 * Try all color depths since valid port clock range
1989 * can have holes. Any mode that can be used with at
1990 * least one color depth is accepted.
1991 */
1992 for (bpc = 12; bpc >= 8; bpc -= 2) {
1993 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1994
1995 if (!intel_hdmi_source_bpc_possible(display, bpc))
1996 continue;
1997
1998 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1999 continue;
2000
2001 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2002 if (status == MODE_OK)
2003 return MODE_OK;
2004 }
2005
2006 /* can never happen */
2007 drm_WARN_ON(display->drm, status == MODE_OK);
2008
2009 return status;
2010 }
2011
2012 static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector * connector,const struct drm_display_mode * mode)2013 intel_hdmi_mode_valid(struct drm_connector *connector,
2014 const struct drm_display_mode *mode)
2015 {
2016 struct intel_display *display = to_intel_display(connector->dev);
2017 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2018 enum drm_mode_status status;
2019 int clock = mode->clock;
2020 int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2021 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2022 bool ycbcr_420_only;
2023 enum intel_output_format sink_format;
2024
2025 status = intel_cpu_transcoder_mode_valid(display, mode);
2026 if (status != MODE_OK)
2027 return status;
2028
2029 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2030 clock *= 2;
2031
2032 if (clock > max_dotclk)
2033 return MODE_CLOCK_HIGH;
2034
2035 if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2036 if (!has_hdmi_sink)
2037 return MODE_CLOCK_LOW;
2038 clock *= 2;
2039 }
2040
2041 /*
2042 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2043 * enumerated only if FRL is supported. Current platforms do not support
2044 * FRL so prune the higher resolution modes that require doctclock more
2045 * than 600MHz.
2046 */
2047 if (clock > 600000)
2048 return MODE_CLOCK_HIGH;
2049
2050 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2051
2052 if (ycbcr_420_only)
2053 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2054 else
2055 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2056
2057 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2058 if (status != MODE_OK) {
2059 if (ycbcr_420_only ||
2060 !connector->ycbcr_420_allowed ||
2061 !drm_mode_is_420_also(&connector->display_info, mode))
2062 return status;
2063
2064 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2065 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2066 if (status != MODE_OK)
2067 return status;
2068 }
2069
2070 return intel_mode_valid_max_plane_size(display, mode, 1);
2071 }
2072
intel_hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc,bool has_hdmi_sink)2073 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2074 int bpc, bool has_hdmi_sink)
2075 {
2076 struct drm_atomic_state *state = crtc_state->uapi.state;
2077 struct drm_connector_state *connector_state;
2078 struct drm_connector *connector;
2079 int i;
2080
2081 for_each_new_connector_in_state(state, connector, connector_state, i) {
2082 if (connector_state->crtc != crtc_state->uapi.crtc)
2083 continue;
2084
2085 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2086 crtc_state->sink_format))
2087 return false;
2088 }
2089
2090 return true;
2091 }
2092
hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc)2093 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2094 {
2095 struct intel_display *display = to_intel_display(crtc_state);
2096 const struct drm_display_mode *adjusted_mode =
2097 &crtc_state->hw.adjusted_mode;
2098
2099 if (!intel_hdmi_source_bpc_possible(display, bpc))
2100 return false;
2101
2102 /* Display Wa_1405510057:icl,ehl */
2103 if (intel_hdmi_is_ycbcr420(crtc_state) &&
2104 bpc == 10 && DISPLAY_VER(display) == 11 &&
2105 (adjusted_mode->crtc_hblank_end -
2106 adjusted_mode->crtc_hblank_start) % 8 == 2)
2107 return false;
2108
2109 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2110 }
2111
intel_hdmi_compute_bpc(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int clock,bool respect_downstream_limits)2112 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2113 struct intel_crtc_state *crtc_state,
2114 int clock, bool respect_downstream_limits)
2115 {
2116 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2117 int bpc;
2118
2119 /*
2120 * pipe_bpp could already be below 8bpc due to FDI
2121 * bandwidth constraints. HDMI minimum is 8bpc however.
2122 */
2123 bpc = max(crtc_state->pipe_bpp / 3, 8);
2124
2125 /*
2126 * We will never exceed downstream TMDS clock limits while
2127 * attempting deep color. If the user insists on forcing an
2128 * out of spec mode they will have to be satisfied with 8bpc.
2129 */
2130 if (!respect_downstream_limits)
2131 bpc = 8;
2132
2133 for (; bpc >= 8; bpc -= 2) {
2134 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2135 crtc_state->sink_format);
2136
2137 if (hdmi_bpc_possible(crtc_state, bpc) &&
2138 hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2139 respect_downstream_limits,
2140 crtc_state->has_hdmi_sink) == MODE_OK)
2141 return bpc;
2142 }
2143
2144 return -EINVAL;
2145 }
2146
intel_hdmi_compute_clock(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,bool respect_downstream_limits)2147 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2148 struct intel_crtc_state *crtc_state,
2149 bool respect_downstream_limits)
2150 {
2151 struct intel_display *display = to_intel_display(encoder);
2152 const struct drm_display_mode *adjusted_mode =
2153 &crtc_state->hw.adjusted_mode;
2154 int bpc, clock = adjusted_mode->crtc_clock;
2155
2156 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2157 clock *= 2;
2158
2159 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2160 respect_downstream_limits);
2161 if (bpc < 0)
2162 return bpc;
2163
2164 crtc_state->port_clock =
2165 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2166
2167 /*
2168 * pipe_bpp could already be below 8bpc due to
2169 * FDI bandwidth constraints. We shouldn't bump it
2170 * back up to the HDMI minimum 8bpc in that case.
2171 */
2172 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2173
2174 drm_dbg_kms(display->drm,
2175 "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2176 bpc, crtc_state->pipe_bpp);
2177
2178 return 0;
2179 }
2180
intel_hdmi_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2181 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2182 const struct drm_connector_state *conn_state)
2183 {
2184 const struct intel_digital_connector_state *intel_conn_state =
2185 to_intel_digital_connector_state(conn_state);
2186 const struct drm_display_mode *adjusted_mode =
2187 &crtc_state->hw.adjusted_mode;
2188
2189 /*
2190 * Our YCbCr output is always limited range.
2191 * crtc_state->limited_color_range only applies to RGB,
2192 * and it must never be set for YCbCr or we risk setting
2193 * some conflicting bits in TRANSCONF which will mess up
2194 * the colors on the monitor.
2195 */
2196 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2197 return false;
2198
2199 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2200 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2201 return crtc_state->has_hdmi_sink &&
2202 drm_default_rgb_quant_range(adjusted_mode) ==
2203 HDMI_QUANTIZATION_RANGE_LIMITED;
2204 } else {
2205 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2206 }
2207 }
2208
intel_hdmi_has_audio(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2209 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2210 const struct intel_crtc_state *crtc_state,
2211 const struct drm_connector_state *conn_state)
2212 {
2213 struct drm_connector *connector = conn_state->connector;
2214 const struct intel_digital_connector_state *intel_conn_state =
2215 to_intel_digital_connector_state(conn_state);
2216
2217 if (!crtc_state->has_hdmi_sink)
2218 return false;
2219
2220 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2221 return connector->display_info.has_audio;
2222 else
2223 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2224 }
2225
2226 static enum intel_output_format
intel_hdmi_sink_format(const struct intel_crtc_state * crtc_state,struct intel_connector * connector,bool ycbcr_420_output)2227 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2228 struct intel_connector *connector,
2229 bool ycbcr_420_output)
2230 {
2231 if (!crtc_state->has_hdmi_sink)
2232 return INTEL_OUTPUT_FORMAT_RGB;
2233
2234 if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2235 return INTEL_OUTPUT_FORMAT_YCBCR420;
2236 else
2237 return INTEL_OUTPUT_FORMAT_RGB;
2238 }
2239
2240 static enum intel_output_format
intel_hdmi_output_format(const struct intel_crtc_state * crtc_state)2241 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2242 {
2243 return crtc_state->sink_format;
2244 }
2245
intel_hdmi_compute_output_format(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,bool respect_downstream_limits)2246 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2247 struct intel_crtc_state *crtc_state,
2248 const struct drm_connector_state *conn_state,
2249 bool respect_downstream_limits)
2250 {
2251 struct intel_display *display = to_intel_display(encoder);
2252 struct intel_connector *connector = to_intel_connector(conn_state->connector);
2253 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2254 const struct drm_display_info *info = &connector->base.display_info;
2255 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2256 int ret;
2257
2258 crtc_state->sink_format =
2259 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2260
2261 if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2262 drm_dbg_kms(display->drm,
2263 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2264 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2265 }
2266
2267 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2268 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2269 if (ret) {
2270 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2271 !crtc_state->has_hdmi_sink ||
2272 !connector->base.ycbcr_420_allowed ||
2273 !drm_mode_is_420_also(info, adjusted_mode))
2274 return ret;
2275
2276 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2277 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2278 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2279 }
2280
2281 return ret;
2282 }
2283
intel_hdmi_is_cloned(const struct intel_crtc_state * crtc_state)2284 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2285 {
2286 return crtc_state->uapi.encoder_mask &&
2287 !is_power_of_2(crtc_state->uapi.encoder_mask);
2288 }
2289
source_supports_scrambling(struct intel_encoder * encoder)2290 static bool source_supports_scrambling(struct intel_encoder *encoder)
2291 {
2292 /*
2293 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2294 * scrambling is supported.
2295 * But there seem to be cases where certain platforms that support
2296 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2297 * capped by VBT to less than 340MHz.
2298 *
2299 * In such cases when an HDMI2.0 sink is connected, it creates a
2300 * problem : the platform and the sink both support scrambling but the
2301 * HDMI 1.4 retimer chip doesn't.
2302 *
2303 * So go for scrambling, based on the max tmds clock taking into account,
2304 * restrictions coming from VBT.
2305 */
2306 return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2307 }
2308
intel_hdmi_compute_has_hdmi_sink(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2309 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2310 const struct intel_crtc_state *crtc_state,
2311 const struct drm_connector_state *conn_state)
2312 {
2313 struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2314
2315 return intel_has_hdmi_sink(hdmi, conn_state) &&
2316 !intel_hdmi_is_cloned(crtc_state);
2317 }
2318
intel_hdmi_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2319 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2320 struct intel_crtc_state *pipe_config,
2321 struct drm_connector_state *conn_state)
2322 {
2323 struct intel_display *display = to_intel_display(encoder);
2324 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2325 struct drm_connector *connector = conn_state->connector;
2326 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2327 int ret;
2328
2329 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2330 return -EINVAL;
2331
2332 if (!connector->interlace_allowed &&
2333 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2334 return -EINVAL;
2335
2336 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2337
2338 if (pipe_config->has_hdmi_sink)
2339 pipe_config->has_infoframe = true;
2340
2341 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2342 pipe_config->pixel_multiplier = 2;
2343
2344 pipe_config->has_audio =
2345 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2346 intel_audio_compute_config(encoder, pipe_config, conn_state);
2347
2348 /*
2349 * Try to respect downstream TMDS clock limits first, if
2350 * that fails assume the user might know something we don't.
2351 */
2352 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2353 if (ret)
2354 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2355 if (ret) {
2356 drm_dbg_kms(display->drm,
2357 "unsupported HDMI clock (%d kHz), rejecting mode\n",
2358 pipe_config->hw.adjusted_mode.crtc_clock);
2359 return ret;
2360 }
2361
2362 if (intel_hdmi_is_ycbcr420(pipe_config)) {
2363 ret = intel_pfit_compute_config(pipe_config, conn_state);
2364 if (ret)
2365 return ret;
2366 }
2367
2368 pipe_config->limited_color_range =
2369 intel_hdmi_limited_color_range(pipe_config, conn_state);
2370
2371 if (conn_state->picture_aspect_ratio)
2372 adjusted_mode->picture_aspect_ratio =
2373 conn_state->picture_aspect_ratio;
2374
2375 pipe_config->lane_count = 4;
2376
2377 if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2378 if (scdc->scrambling.low_rates)
2379 pipe_config->hdmi_scrambling = true;
2380
2381 if (pipe_config->port_clock > 340000) {
2382 pipe_config->hdmi_scrambling = true;
2383 pipe_config->hdmi_high_tmds_clock_ratio = true;
2384 }
2385 }
2386
2387 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2388 conn_state);
2389
2390 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2391 drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2392 return -EINVAL;
2393 }
2394
2395 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2396 drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2397 return -EINVAL;
2398 }
2399
2400 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2401 drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2402 return -EINVAL;
2403 }
2404
2405 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2406 drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2407 return -EINVAL;
2408 }
2409
2410 return 0;
2411 }
2412
intel_hdmi_encoder_shutdown(struct intel_encoder * encoder)2413 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2414 {
2415 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2416
2417 /*
2418 * Give a hand to buggy BIOSen which forget to turn
2419 * the TMDS output buffers back on after a reboot.
2420 */
2421 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2422 }
2423
2424 static void
intel_hdmi_unset_edid(struct drm_connector * connector)2425 intel_hdmi_unset_edid(struct drm_connector *connector)
2426 {
2427 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2428
2429 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2430 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2431
2432 drm_edid_free(to_intel_connector(connector)->detect_edid);
2433 to_intel_connector(connector)->detect_edid = NULL;
2434 }
2435
2436 static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector * connector)2437 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2438 {
2439 struct intel_display *display = to_intel_display(connector->dev);
2440 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2441 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2442 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2443 struct i2c_adapter *ddc = connector->ddc;
2444 enum drm_dp_dual_mode_type type;
2445
2446 type = drm_dp_dual_mode_detect(display->drm, ddc);
2447
2448 /*
2449 * Type 1 DVI adaptors are not required to implement any
2450 * registers, so we can't always detect their presence.
2451 * Ideally we should be able to check the state of the
2452 * CONFIG1 pin, but no such luck on our hardware.
2453 *
2454 * The only method left to us is to check the VBT to see
2455 * if the port is a dual mode capable DP port.
2456 */
2457 if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2458 if (!connector->force &&
2459 intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2460 drm_dbg_kms(display->drm,
2461 "Assuming DP dual mode adaptor presence based on VBT\n");
2462 type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2463 } else {
2464 type = DRM_DP_DUAL_MODE_NONE;
2465 }
2466 }
2467
2468 if (type == DRM_DP_DUAL_MODE_NONE)
2469 return;
2470
2471 hdmi->dp_dual_mode.type = type;
2472 hdmi->dp_dual_mode.max_tmds_clock =
2473 drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2474
2475 drm_dbg_kms(display->drm,
2476 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2477 drm_dp_get_dual_mode_type_name(type),
2478 hdmi->dp_dual_mode.max_tmds_clock);
2479
2480 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2481 if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2482 !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2483 drm_dbg_kms(display->drm,
2484 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2485 hdmi->dp_dual_mode.max_tmds_clock = 0;
2486 }
2487 }
2488
2489 static bool
intel_hdmi_set_edid(struct drm_connector * connector)2490 intel_hdmi_set_edid(struct drm_connector *connector)
2491 {
2492 struct intel_display *display = to_intel_display(connector->dev);
2493 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2494 struct i2c_adapter *ddc = connector->ddc;
2495 intel_wakeref_t wakeref;
2496 const struct drm_edid *drm_edid;
2497 bool connected = false;
2498
2499 wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2500
2501 drm_edid = drm_edid_read_ddc(connector, ddc);
2502
2503 if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2504 drm_dbg_kms(display->drm,
2505 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2506 intel_gmbus_force_bit(ddc, true);
2507 drm_edid = drm_edid_read_ddc(connector, ddc);
2508 intel_gmbus_force_bit(ddc, false);
2509 }
2510
2511 /* Below we depend on display info having been updated */
2512 drm_edid_connector_update(connector, drm_edid);
2513
2514 to_intel_connector(connector)->detect_edid = drm_edid;
2515
2516 if (drm_edid_is_digital(drm_edid)) {
2517 intel_hdmi_dp_dual_mode_detect(connector);
2518
2519 connected = true;
2520 }
2521
2522 intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2523
2524 cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2525 connector->display_info.source_physical_address);
2526
2527 return connected;
2528 }
2529
2530 static enum drm_connector_status
intel_hdmi_detect(struct drm_connector * connector,bool force)2531 intel_hdmi_detect(struct drm_connector *connector, bool force)
2532 {
2533 struct intel_display *display = to_intel_display(connector->dev);
2534 enum drm_connector_status status = connector_status_disconnected;
2535 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2536 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2537 intel_wakeref_t wakeref;
2538
2539 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2540 connector->base.id, connector->name);
2541
2542 if (!intel_display_device_enabled(display))
2543 return connector_status_disconnected;
2544
2545 if (!intel_display_driver_check_access(display))
2546 return connector->status;
2547
2548 wakeref = intel_display_power_get(display, POWER_DOMAIN_GMBUS);
2549
2550 if (DISPLAY_VER(display) >= 11 &&
2551 !intel_digital_port_connected(encoder))
2552 goto out;
2553
2554 intel_hdmi_unset_edid(connector);
2555
2556 if (intel_hdmi_set_edid(connector))
2557 status = connector_status_connected;
2558
2559 out:
2560 intel_display_power_put(display, POWER_DOMAIN_GMBUS, wakeref);
2561
2562 if (status != connector_status_connected)
2563 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2564
2565 return status;
2566 }
2567
2568 static void
intel_hdmi_force(struct drm_connector * connector)2569 intel_hdmi_force(struct drm_connector *connector)
2570 {
2571 struct intel_display *display = to_intel_display(connector->dev);
2572
2573 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2574 connector->base.id, connector->name);
2575
2576 if (!intel_display_driver_check_access(display))
2577 return;
2578
2579 intel_hdmi_unset_edid(connector);
2580
2581 if (connector->status != connector_status_connected)
2582 return;
2583
2584 intel_hdmi_set_edid(connector);
2585 }
2586
intel_hdmi_get_modes(struct drm_connector * connector)2587 static int intel_hdmi_get_modes(struct drm_connector *connector)
2588 {
2589 /* drm_edid_connector_update() done in ->detect() or ->force() */
2590 return drm_edid_connector_add_modes(connector);
2591 }
2592
2593 static int
intel_hdmi_connector_register(struct drm_connector * connector)2594 intel_hdmi_connector_register(struct drm_connector *connector)
2595 {
2596 int ret;
2597
2598 ret = intel_connector_register(connector);
2599 if (ret)
2600 return ret;
2601
2602 return ret;
2603 }
2604
intel_hdmi_connector_unregister(struct drm_connector * connector)2605 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2606 {
2607 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2608
2609 cec_notifier_conn_unregister(n);
2610
2611 intel_connector_unregister(connector);
2612 }
2613
2614 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2615 .detect = intel_hdmi_detect,
2616 .force = intel_hdmi_force,
2617 .fill_modes = drm_helper_probe_single_connector_modes,
2618 .atomic_get_property = intel_digital_connector_atomic_get_property,
2619 .atomic_set_property = intel_digital_connector_atomic_set_property,
2620 .late_register = intel_hdmi_connector_register,
2621 .early_unregister = intel_hdmi_connector_unregister,
2622 .destroy = intel_connector_destroy,
2623 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2624 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2625 };
2626
intel_hdmi_connector_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)2627 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2628 struct drm_atomic_state *state)
2629 {
2630 struct intel_display *display = to_intel_display(connector->dev);
2631
2632 if (HAS_DDI(display))
2633 return intel_digital_connector_atomic_check(connector, state);
2634 else
2635 return g4x_hdmi_connector_atomic_check(connector, state);
2636 }
2637
2638 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2639 .get_modes = intel_hdmi_get_modes,
2640 .mode_valid = intel_hdmi_mode_valid,
2641 .atomic_check = intel_hdmi_connector_atomic_check,
2642 };
2643
2644 static void
intel_hdmi_add_properties(struct intel_hdmi * intel_hdmi,struct drm_connector * connector)2645 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2646 {
2647 struct intel_display *display = to_intel_display(intel_hdmi);
2648
2649 intel_attach_force_audio_property(connector);
2650 intel_attach_broadcast_rgb_property(connector);
2651 intel_attach_aspect_ratio_property(connector);
2652
2653 intel_attach_hdmi_colorspace_property(connector);
2654 drm_connector_attach_content_type_property(connector);
2655
2656 if (DISPLAY_VER(display) >= 10)
2657 drm_connector_attach_hdr_output_metadata_property(connector);
2658
2659 if (!HAS_GMCH(display))
2660 drm_connector_attach_max_bpc_property(connector, 8, 12);
2661 }
2662
2663 /*
2664 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2665 * @encoder: intel_encoder
2666 * @connector: drm_connector
2667 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2668 * or reset the high tmds clock ratio for scrambling
2669 * @scrambling: bool to Indicate if the function needs to set or reset
2670 * sink scrambling
2671 *
2672 * This function handles scrambling on HDMI 2.0 capable sinks.
2673 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2674 * it enables scrambling. This should be called before enabling the HDMI
2675 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2676 * detect a scrambled clock within 100 ms.
2677 *
2678 * Returns:
2679 * True on success, false on failure.
2680 */
intel_hdmi_handle_sink_scrambling(struct intel_encoder * encoder,struct drm_connector * connector,bool high_tmds_clock_ratio,bool scrambling)2681 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2682 struct drm_connector *connector,
2683 bool high_tmds_clock_ratio,
2684 bool scrambling)
2685 {
2686 struct intel_display *display = to_intel_display(encoder);
2687 struct drm_scrambling *sink_scrambling =
2688 &connector->display_info.hdmi.scdc.scrambling;
2689
2690 if (!sink_scrambling->supported)
2691 return true;
2692
2693 drm_dbg_kms(display->drm,
2694 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2695 connector->base.id, connector->name,
2696 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2697
2698 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2699 return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2700 drm_scdc_set_scrambling(connector, scrambling);
2701 }
2702
chv_encoder_to_ddc_pin(struct intel_encoder * encoder)2703 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2704 {
2705 enum port port = encoder->port;
2706 u8 ddc_pin;
2707
2708 switch (port) {
2709 case PORT_B:
2710 ddc_pin = GMBUS_PIN_DPB;
2711 break;
2712 case PORT_C:
2713 ddc_pin = GMBUS_PIN_DPC;
2714 break;
2715 case PORT_D:
2716 ddc_pin = GMBUS_PIN_DPD_CHV;
2717 break;
2718 default:
2719 MISSING_CASE(port);
2720 ddc_pin = GMBUS_PIN_DPB;
2721 break;
2722 }
2723 return ddc_pin;
2724 }
2725
bxt_encoder_to_ddc_pin(struct intel_encoder * encoder)2726 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2727 {
2728 enum port port = encoder->port;
2729 u8 ddc_pin;
2730
2731 switch (port) {
2732 case PORT_B:
2733 ddc_pin = GMBUS_PIN_1_BXT;
2734 break;
2735 case PORT_C:
2736 ddc_pin = GMBUS_PIN_2_BXT;
2737 break;
2738 default:
2739 MISSING_CASE(port);
2740 ddc_pin = GMBUS_PIN_1_BXT;
2741 break;
2742 }
2743 return ddc_pin;
2744 }
2745
cnp_encoder_to_ddc_pin(struct intel_encoder * encoder)2746 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2747 {
2748 enum port port = encoder->port;
2749 u8 ddc_pin;
2750
2751 switch (port) {
2752 case PORT_B:
2753 ddc_pin = GMBUS_PIN_1_BXT;
2754 break;
2755 case PORT_C:
2756 ddc_pin = GMBUS_PIN_2_BXT;
2757 break;
2758 case PORT_D:
2759 ddc_pin = GMBUS_PIN_4_CNP;
2760 break;
2761 case PORT_F:
2762 ddc_pin = GMBUS_PIN_3_BXT;
2763 break;
2764 default:
2765 MISSING_CASE(port);
2766 ddc_pin = GMBUS_PIN_1_BXT;
2767 break;
2768 }
2769 return ddc_pin;
2770 }
2771
icl_encoder_to_ddc_pin(struct intel_encoder * encoder)2772 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2773 {
2774 struct intel_display *display = to_intel_display(encoder);
2775 enum port port = encoder->port;
2776
2777 if (intel_encoder_is_combo(encoder))
2778 return GMBUS_PIN_1_BXT + port;
2779 else if (intel_encoder_is_tc(encoder))
2780 return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2781
2782 drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2783 return GMBUS_PIN_2_BXT;
2784 }
2785
mcc_encoder_to_ddc_pin(struct intel_encoder * encoder)2786 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2787 {
2788 enum phy phy = intel_encoder_to_phy(encoder);
2789 u8 ddc_pin;
2790
2791 switch (phy) {
2792 case PHY_A:
2793 ddc_pin = GMBUS_PIN_1_BXT;
2794 break;
2795 case PHY_B:
2796 ddc_pin = GMBUS_PIN_2_BXT;
2797 break;
2798 case PHY_C:
2799 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2800 break;
2801 default:
2802 MISSING_CASE(phy);
2803 ddc_pin = GMBUS_PIN_1_BXT;
2804 break;
2805 }
2806 return ddc_pin;
2807 }
2808
rkl_encoder_to_ddc_pin(struct intel_encoder * encoder)2809 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2810 {
2811 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2812 enum phy phy = intel_encoder_to_phy(encoder);
2813
2814 WARN_ON(encoder->port == PORT_C);
2815
2816 /*
2817 * Pin mapping for RKL depends on which PCH is present. With TGP, the
2818 * final two outputs use type-c pins, even though they're actually
2819 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2820 * all outputs.
2821 */
2822 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2823 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2824
2825 return GMBUS_PIN_1_BXT + phy;
2826 }
2827
gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder * encoder)2828 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2829 {
2830 struct intel_display *display = to_intel_display(encoder);
2831 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2832 enum phy phy = intel_encoder_to_phy(encoder);
2833
2834 drm_WARN_ON(display->drm, encoder->port == PORT_A);
2835
2836 /*
2837 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP,
2838 * final two outputs use type-c pins, even though they're actually
2839 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2840 * all outputs.
2841 */
2842 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2843 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2844
2845 return GMBUS_PIN_1_BXT + phy;
2846 }
2847
dg1_encoder_to_ddc_pin(struct intel_encoder * encoder)2848 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2849 {
2850 return intel_encoder_to_phy(encoder) + 1;
2851 }
2852
adls_encoder_to_ddc_pin(struct intel_encoder * encoder)2853 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2854 {
2855 enum phy phy = intel_encoder_to_phy(encoder);
2856
2857 WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2858
2859 /*
2860 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2861 * except first combo output.
2862 */
2863 if (phy == PHY_A)
2864 return GMBUS_PIN_1_BXT;
2865
2866 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2867 }
2868
g4x_encoder_to_ddc_pin(struct intel_encoder * encoder)2869 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2870 {
2871 enum port port = encoder->port;
2872 u8 ddc_pin;
2873
2874 switch (port) {
2875 case PORT_B:
2876 ddc_pin = GMBUS_PIN_DPB;
2877 break;
2878 case PORT_C:
2879 ddc_pin = GMBUS_PIN_DPC;
2880 break;
2881 case PORT_D:
2882 ddc_pin = GMBUS_PIN_DPD;
2883 break;
2884 default:
2885 MISSING_CASE(port);
2886 ddc_pin = GMBUS_PIN_DPB;
2887 break;
2888 }
2889 return ddc_pin;
2890 }
2891
intel_hdmi_default_ddc_pin(struct intel_encoder * encoder)2892 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2893 {
2894 struct intel_display *display = to_intel_display(encoder);
2895 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2896 u8 ddc_pin;
2897
2898 if (IS_ALDERLAKE_S(dev_priv))
2899 ddc_pin = adls_encoder_to_ddc_pin(encoder);
2900 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2901 ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2902 else if (IS_ROCKETLAKE(dev_priv))
2903 ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2904 else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2905 ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2906 else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2907 HAS_PCH_TGP(dev_priv))
2908 ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2909 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2910 ddc_pin = icl_encoder_to_ddc_pin(encoder);
2911 else if (HAS_PCH_CNP(dev_priv))
2912 ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2913 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2914 ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2915 else if (IS_CHERRYVIEW(dev_priv))
2916 ddc_pin = chv_encoder_to_ddc_pin(encoder);
2917 else
2918 ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2919
2920 return ddc_pin;
2921 }
2922
2923 static struct intel_encoder *
get_encoder_by_ddc_pin(struct intel_encoder * encoder,u8 ddc_pin)2924 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2925 {
2926 struct intel_display *display = to_intel_display(encoder);
2927 struct intel_encoder *other;
2928
2929 for_each_intel_encoder(display->drm, other) {
2930 struct intel_connector *connector;
2931
2932 if (other == encoder)
2933 continue;
2934
2935 if (!intel_encoder_is_dig_port(other))
2936 continue;
2937
2938 connector = enc_to_dig_port(other)->hdmi.attached_connector;
2939
2940 if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2941 return other;
2942 }
2943
2944 return NULL;
2945 }
2946
intel_hdmi_ddc_pin(struct intel_encoder * encoder)2947 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2948 {
2949 struct intel_display *display = to_intel_display(encoder);
2950 struct intel_encoder *other;
2951 const char *source;
2952 u8 ddc_pin;
2953
2954 ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2955 source = "VBT";
2956
2957 if (!ddc_pin) {
2958 ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2959 source = "platform default";
2960 }
2961
2962 if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2963 drm_dbg_kms(display->drm,
2964 "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2965 encoder->base.base.id, encoder->base.name, ddc_pin);
2966 return 0;
2967 }
2968
2969 other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2970 if (other) {
2971 drm_dbg_kms(display->drm,
2972 "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2973 encoder->base.base.id, encoder->base.name, ddc_pin,
2974 other->base.base.id, other->base.name);
2975 return 0;
2976 }
2977
2978 drm_dbg_kms(display->drm,
2979 "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2980 encoder->base.base.id, encoder->base.name,
2981 ddc_pin, source);
2982
2983 return ddc_pin;
2984 }
2985
intel_infoframe_init(struct intel_digital_port * dig_port)2986 void intel_infoframe_init(struct intel_digital_port *dig_port)
2987 {
2988 struct intel_display *display = to_intel_display(dig_port);
2989 struct drm_i915_private *dev_priv =
2990 to_i915(dig_port->base.base.dev);
2991
2992 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2993 dig_port->write_infoframe = vlv_write_infoframe;
2994 dig_port->read_infoframe = vlv_read_infoframe;
2995 dig_port->set_infoframes = vlv_set_infoframes;
2996 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2997 } else if (IS_G4X(dev_priv)) {
2998 dig_port->write_infoframe = g4x_write_infoframe;
2999 dig_port->read_infoframe = g4x_read_infoframe;
3000 dig_port->set_infoframes = g4x_set_infoframes;
3001 dig_port->infoframes_enabled = g4x_infoframes_enabled;
3002 } else if (HAS_DDI(display)) {
3003 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3004 dig_port->write_infoframe = lspcon_write_infoframe;
3005 dig_port->read_infoframe = lspcon_read_infoframe;
3006 dig_port->set_infoframes = lspcon_set_infoframes;
3007 dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3008 } else {
3009 dig_port->write_infoframe = hsw_write_infoframe;
3010 dig_port->read_infoframe = hsw_read_infoframe;
3011 dig_port->set_infoframes = hsw_set_infoframes;
3012 dig_port->infoframes_enabled = hsw_infoframes_enabled;
3013 }
3014 } else if (HAS_PCH_IBX(dev_priv)) {
3015 dig_port->write_infoframe = ibx_write_infoframe;
3016 dig_port->read_infoframe = ibx_read_infoframe;
3017 dig_port->set_infoframes = ibx_set_infoframes;
3018 dig_port->infoframes_enabled = ibx_infoframes_enabled;
3019 } else {
3020 dig_port->write_infoframe = cpt_write_infoframe;
3021 dig_port->read_infoframe = cpt_read_infoframe;
3022 dig_port->set_infoframes = cpt_set_infoframes;
3023 dig_port->infoframes_enabled = cpt_infoframes_enabled;
3024 }
3025 }
3026
intel_hdmi_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)3027 bool intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3028 struct intel_connector *intel_connector)
3029 {
3030 struct intel_display *display = to_intel_display(dig_port);
3031 struct drm_connector *connector = &intel_connector->base;
3032 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3033 struct intel_encoder *intel_encoder = &dig_port->base;
3034 struct drm_device *dev = intel_encoder->base.dev;
3035 enum port port = intel_encoder->port;
3036 struct cec_connector_info conn_info;
3037 u8 ddc_pin;
3038
3039 drm_dbg_kms(display->drm,
3040 "Adding HDMI connector on [ENCODER:%d:%s]\n",
3041 intel_encoder->base.base.id, intel_encoder->base.name);
3042
3043 if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3044 return false;
3045
3046 if (drm_WARN(dev, dig_port->max_lanes < 4,
3047 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3048 dig_port->max_lanes, intel_encoder->base.base.id,
3049 intel_encoder->base.name))
3050 return false;
3051
3052 ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3053 if (!ddc_pin)
3054 return false;
3055
3056 drm_connector_init_with_ddc(dev, connector,
3057 &intel_hdmi_connector_funcs,
3058 DRM_MODE_CONNECTOR_HDMIA,
3059 intel_gmbus_get_adapter(display, ddc_pin));
3060
3061 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3062
3063 if (DISPLAY_VER(display) < 12)
3064 connector->interlace_allowed = true;
3065
3066 connector->stereo_allowed = true;
3067
3068 if (DISPLAY_VER(display) >= 10)
3069 connector->ycbcr_420_allowed = true;
3070
3071 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3072 intel_connector->base.polled = intel_connector->polled;
3073
3074 if (HAS_DDI(display))
3075 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3076 else
3077 intel_connector->get_hw_state = intel_connector_get_hw_state;
3078
3079 intel_hdmi_add_properties(intel_hdmi, connector);
3080
3081 intel_connector_attach_encoder(intel_connector, intel_encoder);
3082 intel_hdmi->attached_connector = intel_connector;
3083
3084 if (is_hdcp_supported(display, port)) {
3085 int ret = intel_hdcp_init(intel_connector, dig_port,
3086 &intel_hdmi_hdcp_shim);
3087 if (ret)
3088 drm_dbg_kms(display->drm,
3089 "HDCP init failed, skipping.\n");
3090 }
3091
3092 cec_fill_conn_info_from_drm(&conn_info, connector);
3093
3094 intel_hdmi->cec_notifier =
3095 cec_notifier_conn_register(dev->dev, port_identifier(port),
3096 &conn_info);
3097 if (!intel_hdmi->cec_notifier)
3098 drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3099
3100 return true;
3101 }
3102
3103 /*
3104 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3105 * @vactive: Vactive of a display mode
3106 *
3107 * @return: appropriate dsc slice height for a given mode.
3108 */
intel_hdmi_dsc_get_slice_height(int vactive)3109 int intel_hdmi_dsc_get_slice_height(int vactive)
3110 {
3111 int slice_height;
3112
3113 /*
3114 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3115 * Select smallest slice height >=96, that results in a valid PPS and
3116 * requires minimum padding lines required for final slice.
3117 *
3118 * Assumption : Vactive is even.
3119 */
3120 for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3121 if (vactive % slice_height == 0)
3122 return slice_height;
3123
3124 return 0;
3125 }
3126
3127 /*
3128 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3129 * and dsc decoder capabilities
3130 *
3131 * @crtc_state: intel crtc_state
3132 * @src_max_slices: maximum slices supported by the DSC encoder
3133 * @src_max_slice_width: maximum slice width supported by DSC encoder
3134 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3135 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3136 *
3137 * @return: num of dsc slices that can be supported by the dsc encoder
3138 * and decoder.
3139 */
3140 int
intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state * crtc_state,int src_max_slices,int src_max_slice_width,int hdmi_max_slices,int hdmi_throughput)3141 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3142 int src_max_slices, int src_max_slice_width,
3143 int hdmi_max_slices, int hdmi_throughput)
3144 {
3145 /* Pixel rates in KPixels/sec */
3146 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000
3147 /*
3148 * Rates at which the source and sink are required to process pixels in each
3149 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3150 */
3151 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000
3152 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000
3153
3154 /* Spec limits the slice width to 2720 pixels */
3155 #define MAX_HDMI_SLICE_WIDTH 2720
3156 int kslice_adjust;
3157 int adjusted_clk_khz;
3158 int min_slices;
3159 int target_slices;
3160 int max_throughput; /* max clock freq. in khz per slice */
3161 int max_slice_width;
3162 int slice_width;
3163 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3164
3165 if (!hdmi_throughput)
3166 return 0;
3167
3168 /*
3169 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3170 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3171 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3172 * dividing adjusted clock value by 10.
3173 */
3174 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3175 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3176 kslice_adjust = 10;
3177 else
3178 kslice_adjust = 5;
3179
3180 /*
3181 * As per spec, the rate at which the source and the sink process
3182 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3183 * This depends upon the pixel clock rate and output formats
3184 * (kslice adjust).
3185 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3186 * at max 340MHz, otherwise they can be processed at max 400MHz.
3187 */
3188
3189 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3190
3191 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3192 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3193 else
3194 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3195
3196 /*
3197 * Taking into account the sink's capability for maximum
3198 * clock per slice (in MHz) as read from HF-VSDB.
3199 */
3200 max_throughput = min(max_throughput, hdmi_throughput * 1000);
3201
3202 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3203 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3204
3205 /*
3206 * Keep on increasing the num of slices/line, starting from min_slices
3207 * per line till we get such a number, for which the slice_width is
3208 * just less than max_slice_width. The slices/line selected should be
3209 * less than or equal to the max horizontal slices that the combination
3210 * of PCON encoder and HDMI decoder can support.
3211 */
3212 slice_width = max_slice_width;
3213
3214 do {
3215 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3216 target_slices = 1;
3217 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3218 target_slices = 2;
3219 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3220 target_slices = 4;
3221 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3222 target_slices = 8;
3223 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3224 target_slices = 12;
3225 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3226 target_slices = 16;
3227 else
3228 return 0;
3229
3230 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3231 if (slice_width >= max_slice_width)
3232 min_slices = target_slices + 1;
3233 } while (slice_width >= max_slice_width);
3234
3235 return target_slices;
3236 }
3237
3238 /*
3239 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3240 * source and sink capabilities.
3241 *
3242 * @src_fraction_bpp: fractional bpp supported by the source
3243 * @slice_width: dsc slice width supported by the source and sink
3244 * @num_slices: num of slices supported by the source and sink
3245 * @output_format: video output format
3246 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3247 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3248 *
3249 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3250 */
3251 int
intel_hdmi_dsc_get_bpp(int src_fractional_bpp,int slice_width,int num_slices,int output_format,bool hdmi_all_bpp,int hdmi_max_chunk_bytes)3252 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3253 int output_format, bool hdmi_all_bpp,
3254 int hdmi_max_chunk_bytes)
3255 {
3256 int max_dsc_bpp, min_dsc_bpp;
3257 int target_bytes;
3258 bool bpp_found = false;
3259 int bpp_decrement_x16;
3260 int bpp_target;
3261 int bpp_target_x16;
3262
3263 /*
3264 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3265 * Start with the max bpp and keep on decrementing with
3266 * fractional bpp, if supported by PCON DSC encoder
3267 *
3268 * for each bpp we check if no of bytes can be supported by HDMI sink
3269 */
3270
3271 /* Assuming: bpc as 8*/
3272 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3273 min_dsc_bpp = 6;
3274 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3275 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3276 output_format == INTEL_OUTPUT_FORMAT_RGB) {
3277 min_dsc_bpp = 8;
3278 max_dsc_bpp = 3 * 8; /* 3*bpc */
3279 } else {
3280 /* Assuming 4:2:2 encoding */
3281 min_dsc_bpp = 7;
3282 max_dsc_bpp = 2 * 8; /* 2*bpc */
3283 }
3284
3285 /*
3286 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3287 * Section 7.7.34 : Source shall not enable compressed Video
3288 * Transport with bpp_target settings above 12 bpp unless
3289 * DSC_all_bpp is set to 1.
3290 */
3291 if (!hdmi_all_bpp)
3292 max_dsc_bpp = min(max_dsc_bpp, 12);
3293
3294 /*
3295 * The Sink has a limit of compressed data in bytes for a scanline,
3296 * as described in max_chunk_bytes field in HFVSDB block of edid.
3297 * The no. of bytes depend on the target bits per pixel that the
3298 * source configures. So we start with the max_bpp and calculate
3299 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3300 * till we get the target_chunk_bytes just less than what the sink's
3301 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3302 *
3303 * The decrement is according to the fractional support from PCON DSC
3304 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3305 *
3306 * bpp_target_x16 = bpp_target * 16
3307 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3308 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3309 */
3310
3311 bpp_target = max_dsc_bpp;
3312
3313 /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3314 if (!src_fractional_bpp)
3315 src_fractional_bpp = 1;
3316 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3317 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3318
3319 while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3320 int bpp;
3321
3322 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3323 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3324 if (target_bytes <= hdmi_max_chunk_bytes) {
3325 bpp_found = true;
3326 break;
3327 }
3328 bpp_target_x16 -= bpp_decrement_x16;
3329 }
3330 if (bpp_found)
3331 return bpp_target_x16;
3332
3333 return 0;
3334 }
3335