1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6 
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/i2c.h>
11 #include <linux/module.h>
12 #include <linux/platform_data/tda9950.h>
13 #include <linux/irq.h>
14 #include <sound/asoundef.h>
15 #include <sound/hdmi-codec.h>
16 
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_edid.h>
20 #include <drm/drm_of.h>
21 #include <drm/drm_print.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_simple_kms_helper.h>
24 
25 #include <media/cec-notifier.h>
26 
27 #include <dt-bindings/display/tda998x.h>
28 
29 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
30 
31 enum {
32 	AUDIO_ROUTE_I2S,
33 	AUDIO_ROUTE_SPDIF,
34 	AUDIO_ROUTE_NUM
35 };
36 
37 struct tda998x_audio_route {
38 	u8 ena_aclk;
39 	u8 mux_ap;
40 	u8 aip_clksel;
41 };
42 
43 struct tda998x_audio_settings {
44 	const struct tda998x_audio_route *route;
45 	struct hdmi_audio_infoframe cea;
46 	unsigned int sample_rate;
47 	u8 status[5];
48 	u8 ena_ap;
49 	u8 i2s_format;
50 	u8 cts_n;
51 };
52 
53 struct tda998x_priv {
54 	struct i2c_client *cec;
55 	struct i2c_client *hdmi;
56 	struct mutex mutex;
57 	u16 rev;
58 	u8 cec_addr;
59 	u8 current_page;
60 	bool is_on;
61 	bool supports_infoframes;
62 	bool sink_has_audio;
63 	enum hdmi_quantization_range rgb_quant_range;
64 	u8 vip_cntrl_0;
65 	u8 vip_cntrl_1;
66 	u8 vip_cntrl_2;
67 	unsigned long tmds_clock;
68 	struct tda998x_audio_settings audio;
69 
70 	struct platform_device *audio_pdev;
71 	struct mutex audio_mutex;
72 
73 	struct mutex edid_mutex;
74 	wait_queue_head_t wq_edid;
75 	volatile int wq_edid_wait;
76 
77 	struct work_struct detect_work;
78 	struct timer_list edid_delay_timer;
79 	wait_queue_head_t edid_delay_waitq;
80 	bool edid_delay_active;
81 
82 	struct drm_encoder encoder;
83 	struct drm_bridge bridge;
84 	struct drm_connector connector;
85 
86 	u8 audio_port_enable[AUDIO_ROUTE_NUM];
87 	struct tda9950_glue cec_glue;
88 	struct gpio_desc *calib;
89 	struct cec_notifier *cec_notify;
90 };
91 
92 #define conn_to_tda998x_priv(x) \
93 	container_of(x, struct tda998x_priv, connector)
94 #define enc_to_tda998x_priv(x) \
95 	container_of(x, struct tda998x_priv, encoder)
96 #define bridge_to_tda998x_priv(x) \
97 	container_of(x, struct tda998x_priv, bridge)
98 
99 /* The TDA9988 series of devices use a paged register scheme.. to simplify
100  * things we encode the page # in upper bits of the register #.  To read/
101  * write a given register, we need to make sure CURPAGE register is set
102  * appropriately.  Which implies reads/writes are not atomic.  Fun!
103  */
104 
105 #define REG(page, addr) (((page) << 8) | (addr))
106 #define REG2ADDR(reg)   ((reg) & 0xff)
107 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
108 
109 #define REG_CURPAGE               0xff                /* write */
110 
111 
112 /* Page 00h: General Control */
113 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
114 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
115 # define MAIN_CNTRL0_SR           (1 << 0)
116 # define MAIN_CNTRL0_DECS         (1 << 1)
117 # define MAIN_CNTRL0_DEHS         (1 << 2)
118 # define MAIN_CNTRL0_CECS         (1 << 3)
119 # define MAIN_CNTRL0_CEHS         (1 << 4)
120 # define MAIN_CNTRL0_SCALER       (1 << 7)
121 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
122 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
123 # define SOFTRESET_AUDIO          (1 << 0)
124 # define SOFTRESET_I2C_MASTER     (1 << 1)
125 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
126 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
127 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
128 # define I2C_MASTER_DIS_MM        (1 << 0)
129 # define I2C_MASTER_DIS_FILT      (1 << 1)
130 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
131 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
132 # define FEAT_POWERDOWN_PREFILT   BIT(0)
133 # define FEAT_POWERDOWN_CSC       BIT(1)
134 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
135 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
136 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
137 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
138 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
139 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
140 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
141 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
142 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
143 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
144 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
145 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
146 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
147 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
148 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
149 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
150 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
151 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
152 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
153 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
154 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
155 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
156 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
157 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
158 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
159 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
160 # define VIP_CNTRL_3_X_TGL        (1 << 0)
161 # define VIP_CNTRL_3_H_TGL        (1 << 1)
162 # define VIP_CNTRL_3_V_TGL        (1 << 2)
163 # define VIP_CNTRL_3_EMB          (1 << 3)
164 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
165 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
166 # define VIP_CNTRL_3_DE_INT       (1 << 6)
167 # define VIP_CNTRL_3_EDGE         (1 << 7)
168 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
169 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
170 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
171 # define VIP_CNTRL_4_CCIR656      (1 << 4)
172 # define VIP_CNTRL_4_656_ALT      (1 << 5)
173 # define VIP_CNTRL_4_TST_656      (1 << 6)
174 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
175 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
176 # define VIP_CNTRL_5_CKCASE       (1 << 0)
177 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
178 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
179 # define MUX_AP_SELECT_I2S	  0x64
180 # define MUX_AP_SELECT_SPDIF	  0x40
181 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
182 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
183 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
184 # define MAT_CONTRL_MAT_BP        (1 << 2)
185 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
186 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
187 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
188 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
189 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
190 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
191 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
192 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
193 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
194 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
195 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
196 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
197 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
198 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
199 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
200 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
201 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
202 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
203 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
204 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
205 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
206 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
207 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
208 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
209 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
210 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
211 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
212 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
213 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
214 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
215 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
216 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
217 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
218 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
219 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
220 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
221 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
222 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
223 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
224 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
225 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
226 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
227 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
228 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
229 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
230 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
231 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
232 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
233 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
234 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
235 # define TBG_CNTRL_1_H_TGL        (1 << 0)
236 # define TBG_CNTRL_1_V_TGL        (1 << 1)
237 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
238 # define TBG_CNTRL_1_X_EXT        (1 << 3)
239 # define TBG_CNTRL_1_H_EXT        (1 << 4)
240 # define TBG_CNTRL_1_V_EXT        (1 << 5)
241 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
242 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
243 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
244 # define HVF_CNTRL_0_SM           (1 << 7)
245 # define HVF_CNTRL_0_RWB          (1 << 6)
246 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
247 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
248 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
249 # define HVF_CNTRL_1_FOR          (1 << 0)
250 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
251 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
252 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
253 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
254 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
255 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
256 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
257 # define I2S_FORMAT_PHILIPS       (0 << 0)
258 # define I2S_FORMAT_LEFT_J        (2 << 0)
259 # define I2S_FORMAT_RIGHT_J       (3 << 0)
260 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
261 # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
262 # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
263 # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
264 # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
265 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
266 
267 /* Page 02h: PLL settings */
268 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
269 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
270 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
271 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
272 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
273 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
274 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
275 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
276 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
277 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
278 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
279 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
280 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
281 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
282 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
283 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
284 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
285 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
286 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
287 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
288 # define AUDIO_DIV_SERCLK_1       0
289 # define AUDIO_DIV_SERCLK_2       1
290 # define AUDIO_DIV_SERCLK_4       2
291 # define AUDIO_DIV_SERCLK_8       3
292 # define AUDIO_DIV_SERCLK_16      4
293 # define AUDIO_DIV_SERCLK_32      5
294 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
295 # define SEL_CLK_SEL_CLK1         (1 << 0)
296 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
297 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
298 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
299 
300 
301 /* Page 09h: EDID Control */
302 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
303 /* next 127 successive registers are the EDID block */
304 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
305 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
306 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
307 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
308 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
309 
310 
311 /* Page 10h: information frames and packets */
312 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
313 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
314 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
315 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
316 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
317 
318 
319 /* Page 11h: audio settings and content info packets */
320 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
321 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
322 # define AIP_CNTRL_0_SWAP         (1 << 1)
323 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
324 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
325 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
326 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
327 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
328 # define CA_I2S_HBR_CHSTAT        (1 << 6)
329 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
330 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
331 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
332 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
333 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
334 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
335 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
336 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
337 # define CTS_N_K(x)               (((x) & 7) << 0)
338 # define CTS_N_M(x)               (((x) & 3) << 4)
339 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
340 # define ENC_CNTRL_RST_ENC        (1 << 0)
341 # define ENC_CNTRL_RST_SEL        (1 << 1)
342 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
343 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
344 # define DIP_FLAGS_ACR            (1 << 0)
345 # define DIP_FLAGS_GC             (1 << 1)
346 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
347 # define DIP_IF_FLAGS_IF1         (1 << 1)
348 # define DIP_IF_FLAGS_IF2         (1 << 2)
349 # define DIP_IF_FLAGS_IF3         (1 << 3)
350 # define DIP_IF_FLAGS_IF4         (1 << 4)
351 # define DIP_IF_FLAGS_IF5         (1 << 5)
352 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
353 
354 
355 /* Page 12h: HDCP and OTP */
356 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
357 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
358 # define TX4_PD_RAM               (1 << 1)
359 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
360 # define TX33_HDMI                (1 << 1)
361 
362 
363 /* Page 13h: Gamut related metadata packets */
364 
365 
366 
367 /* CEC registers: (not paged)
368  */
369 #define REG_CEC_INTSTATUS	  0xee		      /* read */
370 # define CEC_INTSTATUS_CEC	  (1 << 0)
371 # define CEC_INTSTATUS_HDMI	  (1 << 1)
372 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
373 # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
374 #define REG_CEC_DES_FREQ2         0xf5
375 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
376 #define REG_CEC_CLK               0xf6
377 # define CEC_CLK_FRO              0x11
378 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
379 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
380 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
381 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
382 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
383 #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
384 #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
385 # define CEC_RXSHPDINT_RXSENS     BIT(0)
386 # define CEC_RXSHPDINT_HPD        BIT(1)
387 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
388 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
389 # define CEC_RXSHPDLEV_HPD        (1 << 1)
390 
391 #define REG_CEC_ENAMODS           0xff                /* read/write */
392 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
393 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
394 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
395 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
396 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
397 # define CEC_ENAMODS_EN_CEC       (1 << 0)
398 
399 
400 /* Device versions: */
401 #define TDA9989N2                 0x0101
402 #define TDA19989                  0x0201
403 #define TDA19989N2                0x0202
404 #define TDA19988                  0x0301
405 
406 static void
cec_write(struct tda998x_priv * priv,u16 addr,u8 val)407 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
408 {
409 	u8 buf[] = {addr, val};
410 	struct i2c_msg msg = {
411 		.addr = priv->cec_addr,
412 		.len = 2,
413 		.buf = buf,
414 	};
415 	int ret;
416 
417 	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
418 	if (ret < 0)
419 		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
420 			ret, addr);
421 }
422 
423 static u8
cec_read(struct tda998x_priv * priv,u8 addr)424 cec_read(struct tda998x_priv *priv, u8 addr)
425 {
426 	u8 val;
427 	struct i2c_msg msg[2] = {
428 		{
429 			.addr = priv->cec_addr,
430 			.len = 1,
431 			.buf = &addr,
432 		}, {
433 			.addr = priv->cec_addr,
434 			.flags = I2C_M_RD,
435 			.len = 1,
436 			.buf = &val,
437 		},
438 	};
439 	int ret;
440 
441 	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
442 	if (ret < 0) {
443 		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
444 			ret, addr);
445 		val = 0;
446 	}
447 
448 	return val;
449 }
450 
cec_enamods(struct tda998x_priv * priv,u8 mods,bool enable)451 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
452 {
453 	int val = cec_read(priv, REG_CEC_ENAMODS);
454 
455 	if (val < 0)
456 		return;
457 
458 	if (enable)
459 		val |= mods;
460 	else
461 		val &= ~mods;
462 
463 	cec_write(priv, REG_CEC_ENAMODS, val);
464 }
465 
tda998x_cec_set_calibration(struct tda998x_priv * priv,bool enable)466 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
467 {
468 	if (enable) {
469 		u8 val;
470 
471 		cec_write(priv, 0xf3, 0xc0);
472 		cec_write(priv, 0xf4, 0xd4);
473 
474 		/* Enable automatic calibration mode */
475 		val = cec_read(priv, REG_CEC_DES_FREQ2);
476 		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
477 		cec_write(priv, REG_CEC_DES_FREQ2, val);
478 
479 		/* Enable free running oscillator */
480 		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
481 		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
482 
483 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
484 			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
485 	} else {
486 		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
487 	}
488 }
489 
490 /*
491  * Calibration for the internal oscillator: we need to set calibration mode,
492  * and then pulse the IRQ line low for a 10ms ± 1% period.
493  */
tda998x_cec_calibration(struct tda998x_priv * priv)494 static void tda998x_cec_calibration(struct tda998x_priv *priv)
495 {
496 	struct gpio_desc *calib = priv->calib;
497 
498 	mutex_lock(&priv->edid_mutex);
499 	if (priv->hdmi->irq > 0)
500 		disable_irq(priv->hdmi->irq);
501 	gpiod_direction_output(calib, 1);
502 	tda998x_cec_set_calibration(priv, true);
503 
504 	local_irq_disable();
505 	gpiod_set_value(calib, 0);
506 	mdelay(10);
507 	gpiod_set_value(calib, 1);
508 	local_irq_enable();
509 
510 	tda998x_cec_set_calibration(priv, false);
511 	gpiod_direction_input(calib);
512 	if (priv->hdmi->irq > 0)
513 		enable_irq(priv->hdmi->irq);
514 	mutex_unlock(&priv->edid_mutex);
515 }
516 
tda998x_cec_hook_init(void * data)517 static int tda998x_cec_hook_init(void *data)
518 {
519 	struct tda998x_priv *priv = data;
520 	struct gpio_desc *calib;
521 
522 	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
523 	if (IS_ERR(calib)) {
524 		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
525 			 PTR_ERR(calib));
526 		return PTR_ERR(calib);
527 	}
528 
529 	priv->calib = calib;
530 
531 	return 0;
532 }
533 
tda998x_cec_hook_exit(void * data)534 static void tda998x_cec_hook_exit(void *data)
535 {
536 	struct tda998x_priv *priv = data;
537 
538 	gpiod_put(priv->calib);
539 	priv->calib = NULL;
540 }
541 
tda998x_cec_hook_open(void * data)542 static int tda998x_cec_hook_open(void *data)
543 {
544 	struct tda998x_priv *priv = data;
545 
546 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
547 	tda998x_cec_calibration(priv);
548 
549 	return 0;
550 }
551 
tda998x_cec_hook_release(void * data)552 static void tda998x_cec_hook_release(void *data)
553 {
554 	struct tda998x_priv *priv = data;
555 
556 	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
557 }
558 
559 static int
set_page(struct tda998x_priv * priv,u16 reg)560 set_page(struct tda998x_priv *priv, u16 reg)
561 {
562 	if (REG2PAGE(reg) != priv->current_page) {
563 		struct i2c_client *client = priv->hdmi;
564 		u8 buf[] = {
565 				REG_CURPAGE, REG2PAGE(reg)
566 		};
567 		int ret = i2c_master_send(client, buf, sizeof(buf));
568 		if (ret < 0) {
569 			dev_err(&client->dev, "%s %04x err %d\n", __func__,
570 					reg, ret);
571 			return ret;
572 		}
573 
574 		priv->current_page = REG2PAGE(reg);
575 	}
576 	return 0;
577 }
578 
579 static int
reg_read_range(struct tda998x_priv * priv,u16 reg,char * buf,int cnt)580 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
581 {
582 	struct i2c_client *client = priv->hdmi;
583 	u8 addr = REG2ADDR(reg);
584 	int ret;
585 
586 	mutex_lock(&priv->mutex);
587 	ret = set_page(priv, reg);
588 	if (ret < 0)
589 		goto out;
590 
591 	ret = i2c_master_send(client, &addr, sizeof(addr));
592 	if (ret < 0)
593 		goto fail;
594 
595 	ret = i2c_master_recv(client, buf, cnt);
596 	if (ret < 0)
597 		goto fail;
598 
599 	goto out;
600 
601 fail:
602 	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
603 out:
604 	mutex_unlock(&priv->mutex);
605 	return ret;
606 }
607 
608 #define MAX_WRITE_RANGE_BUF 32
609 
610 static void
reg_write_range(struct tda998x_priv * priv,u16 reg,u8 * p,int cnt)611 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
612 {
613 	struct i2c_client *client = priv->hdmi;
614 	/* This is the maximum size of the buffer passed in */
615 	u8 buf[MAX_WRITE_RANGE_BUF + 1];
616 	int ret;
617 
618 	if (cnt > MAX_WRITE_RANGE_BUF) {
619 		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
620 				MAX_WRITE_RANGE_BUF);
621 		return;
622 	}
623 
624 	buf[0] = REG2ADDR(reg);
625 	memcpy(&buf[1], p, cnt);
626 
627 	mutex_lock(&priv->mutex);
628 	ret = set_page(priv, reg);
629 	if (ret < 0)
630 		goto out;
631 
632 	ret = i2c_master_send(client, buf, cnt + 1);
633 	if (ret < 0)
634 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
635 out:
636 	mutex_unlock(&priv->mutex);
637 }
638 
639 static int
reg_read(struct tda998x_priv * priv,u16 reg)640 reg_read(struct tda998x_priv *priv, u16 reg)
641 {
642 	u8 val = 0;
643 	int ret;
644 
645 	ret = reg_read_range(priv, reg, &val, sizeof(val));
646 	if (ret < 0)
647 		return ret;
648 	return val;
649 }
650 
651 static void
reg_write(struct tda998x_priv * priv,u16 reg,u8 val)652 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
653 {
654 	struct i2c_client *client = priv->hdmi;
655 	u8 buf[] = {REG2ADDR(reg), val};
656 	int ret;
657 
658 	mutex_lock(&priv->mutex);
659 	ret = set_page(priv, reg);
660 	if (ret < 0)
661 		goto out;
662 
663 	ret = i2c_master_send(client, buf, sizeof(buf));
664 	if (ret < 0)
665 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
666 out:
667 	mutex_unlock(&priv->mutex);
668 }
669 
670 static void
reg_write16(struct tda998x_priv * priv,u16 reg,u16 val)671 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
672 {
673 	struct i2c_client *client = priv->hdmi;
674 	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
675 	int ret;
676 
677 	mutex_lock(&priv->mutex);
678 	ret = set_page(priv, reg);
679 	if (ret < 0)
680 		goto out;
681 
682 	ret = i2c_master_send(client, buf, sizeof(buf));
683 	if (ret < 0)
684 		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
685 out:
686 	mutex_unlock(&priv->mutex);
687 }
688 
689 static void
reg_set(struct tda998x_priv * priv,u16 reg,u8 val)690 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
691 {
692 	int old_val;
693 
694 	old_val = reg_read(priv, reg);
695 	if (old_val >= 0)
696 		reg_write(priv, reg, old_val | val);
697 }
698 
699 static void
reg_clear(struct tda998x_priv * priv,u16 reg,u8 val)700 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
701 {
702 	int old_val;
703 
704 	old_val = reg_read(priv, reg);
705 	if (old_val >= 0)
706 		reg_write(priv, reg, old_val & ~val);
707 }
708 
709 static void
tda998x_reset(struct tda998x_priv * priv)710 tda998x_reset(struct tda998x_priv *priv)
711 {
712 	/* reset audio and i2c master: */
713 	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
714 	msleep(50);
715 	reg_write(priv, REG_SOFTRESET, 0);
716 	msleep(50);
717 
718 	/* reset transmitter: */
719 	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720 	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
721 
722 	/* PLL registers common configuration */
723 	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
724 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
725 	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
726 	reg_write(priv, REG_SERIALIZER,   0x00);
727 	reg_write(priv, REG_BUFFER_OUT,   0x00);
728 	reg_write(priv, REG_PLL_SCG1,     0x00);
729 	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
730 	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
731 	reg_write(priv, REG_PLL_SCGN1,    0xfa);
732 	reg_write(priv, REG_PLL_SCGN2,    0x00);
733 	reg_write(priv, REG_PLL_SCGR1,    0x5b);
734 	reg_write(priv, REG_PLL_SCGR2,    0x00);
735 	reg_write(priv, REG_PLL_SCG2,     0x10);
736 
737 	/* Write the default value MUX register */
738 	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
739 }
740 
741 /*
742  * The TDA998x has a problem when trying to read the EDID close to a
743  * HPD assertion: it needs a delay of 100ms to avoid timing out while
744  * trying to read EDID data.
745  *
746  * However, tda998x_connector_get_modes() may be called at any moment
747  * after tda998x_connector_detect() indicates that we are connected, so
748  * we need to delay probing modes in tda998x_connector_get_modes() after
749  * we have seen a HPD inactive->active transition.  This code implements
750  * that delay.
751  */
tda998x_edid_delay_done(struct timer_list * t)752 static void tda998x_edid_delay_done(struct timer_list *t)
753 {
754 	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
755 
756 	priv->edid_delay_active = false;
757 	wake_up(&priv->edid_delay_waitq);
758 	schedule_work(&priv->detect_work);
759 }
760 
tda998x_edid_delay_start(struct tda998x_priv * priv)761 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
762 {
763 	priv->edid_delay_active = true;
764 	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
765 }
766 
tda998x_edid_delay_wait(struct tda998x_priv * priv)767 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
768 {
769 	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
770 }
771 
772 /*
773  * We need to run the KMS hotplug event helper outside of our threaded
774  * interrupt routine as this can call back into our get_modes method,
775  * which will want to make use of interrupts.
776  */
tda998x_detect_work(struct work_struct * work)777 static void tda998x_detect_work(struct work_struct *work)
778 {
779 	struct tda998x_priv *priv =
780 		container_of(work, struct tda998x_priv, detect_work);
781 	struct drm_device *dev = priv->connector.dev;
782 
783 	if (dev)
784 		drm_kms_helper_hotplug_event(dev);
785 }
786 
787 /*
788  * only 2 interrupts may occur: screen plug/unplug and EDID read
789  */
tda998x_irq_thread(int irq,void * data)790 static irqreturn_t tda998x_irq_thread(int irq, void *data)
791 {
792 	struct tda998x_priv *priv = data;
793 	u8 sta, cec, lvl, flag0, flag1, flag2;
794 	bool handled = false;
795 
796 	sta = cec_read(priv, REG_CEC_INTSTATUS);
797 	if (sta & CEC_INTSTATUS_HDMI) {
798 		cec = cec_read(priv, REG_CEC_RXSHPDINT);
799 		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
800 		flag0 = reg_read(priv, REG_INT_FLAGS_0);
801 		flag1 = reg_read(priv, REG_INT_FLAGS_1);
802 		flag2 = reg_read(priv, REG_INT_FLAGS_2);
803 		DRM_DEBUG_DRIVER(
804 			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
805 			sta, cec, lvl, flag0, flag1, flag2);
806 
807 		if (cec & CEC_RXSHPDINT_HPD) {
808 			if (lvl & CEC_RXSHPDLEV_HPD) {
809 				tda998x_edid_delay_start(priv);
810 			} else {
811 				schedule_work(&priv->detect_work);
812 				cec_notifier_phys_addr_invalidate(
813 						priv->cec_notify);
814 			}
815 
816 			handled = true;
817 		}
818 
819 		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
820 			priv->wq_edid_wait = 0;
821 			wake_up(&priv->wq_edid);
822 			handled = true;
823 		}
824 	}
825 
826 	return IRQ_RETVAL(handled);
827 }
828 
829 static void
tda998x_write_if(struct tda998x_priv * priv,u8 bit,u16 addr,union hdmi_infoframe * frame)830 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
831 		 union hdmi_infoframe *frame)
832 {
833 	u8 buf[MAX_WRITE_RANGE_BUF];
834 	ssize_t len;
835 
836 	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
837 	if (len < 0) {
838 		dev_err(&priv->hdmi->dev,
839 			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
840 			frame->any.type, len);
841 		return;
842 	}
843 
844 	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
845 	reg_write_range(priv, addr, buf, len);
846 	reg_set(priv, REG_DIP_IF_FLAGS, bit);
847 }
848 
tda998x_write_aif(struct tda998x_priv * priv,const struct hdmi_audio_infoframe * cea)849 static void tda998x_write_aif(struct tda998x_priv *priv,
850 			      const struct hdmi_audio_infoframe *cea)
851 {
852 	union hdmi_infoframe frame;
853 
854 	frame.audio = *cea;
855 
856 	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
857 }
858 
859 static void
tda998x_write_avi(struct tda998x_priv * priv,const struct drm_display_mode * mode)860 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
861 {
862 	union hdmi_infoframe frame;
863 
864 	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
865 						 &priv->connector, mode);
866 	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
867 	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
868 					   priv->rgb_quant_range);
869 
870 	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
871 }
872 
tda998x_write_vsi(struct tda998x_priv * priv,const struct drm_display_mode * mode)873 static void tda998x_write_vsi(struct tda998x_priv *priv,
874 			      const struct drm_display_mode *mode)
875 {
876 	union hdmi_infoframe frame;
877 
878 	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
879 							&priv->connector,
880 							mode))
881 		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
882 	else
883 		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
884 }
885 
886 /* Audio support */
887 
888 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
889 	[AUDIO_ROUTE_I2S] = {
890 		.ena_aclk = 1,
891 		.mux_ap = MUX_AP_SELECT_I2S,
892 		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
893 	},
894 	[AUDIO_ROUTE_SPDIF] = {
895 		.ena_aclk = 0,
896 		.mux_ap = MUX_AP_SELECT_SPDIF,
897 		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
898 	},
899 };
900 
901 /* Configure the TDA998x audio data and clock routing. */
tda998x_derive_routing(struct tda998x_priv * priv,struct tda998x_audio_settings * s,unsigned int route)902 static int tda998x_derive_routing(struct tda998x_priv *priv,
903 				  struct tda998x_audio_settings *s,
904 				  unsigned int route)
905 {
906 	s->route = &tda998x_audio_route[route];
907 	s->ena_ap = priv->audio_port_enable[route];
908 	if (s->ena_ap == 0) {
909 		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
910 		return -EINVAL;
911 	}
912 
913 	return 0;
914 }
915 
916 /*
917  * The audio clock divisor register controls a divider producing Audio_Clk_Out
918  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
919  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
920  *
921  * It seems that Audio_Clk_Out must be the smallest value that is greater
922  * than 128*fs, otherwise audio does not function. There is some suggestion
923  * that 126*fs is a better value.
924  */
tda998x_get_adiv(struct tda998x_priv * priv,unsigned int fs)925 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
926 {
927 	unsigned long min_audio_clk = fs * 128;
928 	unsigned long ser_clk = priv->tmds_clock * 1000;
929 	u8 adiv;
930 
931 	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
932 		if (ser_clk > min_audio_clk << adiv)
933 			break;
934 
935 	dev_dbg(&priv->hdmi->dev,
936 		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
937 		ser_clk, fs, min_audio_clk, adiv);
938 
939 	return adiv;
940 }
941 
942 /*
943  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
944  * generate the CTS value.  It appears that the "measured time stamp" is
945  * the number of TDMS clock cycles within a number of audio input clock
946  * cycles defined by the k and N parameters defined below, in a similar
947  * way to that which is set out in the CTS generation in the HDMI spec.
948  *
949  *  tmdsclk ----> mts -> /m ---> CTS
950  *                 ^
951  *  sclk -> /k -> /N
952  *
953  * CTS = mts / m, where m is 2^M.
954  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
955  * /N is a divider based on the HDMI specified N value.
956  *
957  * This produces the following equation:
958  *  CTS = tmds_clock * k * N / (sclk * m)
959  *
960  * When combined with the sink-side equation, and realising that sclk is
961  * bclk_ratio * fs, we end up with:
962  *  k = m * bclk_ratio / 128.
963  *
964  * Note: S/PDIF always uses a bclk_ratio of 64.
965  */
tda998x_derive_cts_n(struct tda998x_priv * priv,struct tda998x_audio_settings * settings,unsigned int ratio)966 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
967 				struct tda998x_audio_settings *settings,
968 				unsigned int ratio)
969 {
970 	switch (ratio) {
971 	case 16:
972 		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
973 		break;
974 	case 32:
975 		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
976 		break;
977 	case 48:
978 		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
979 		break;
980 	case 64:
981 		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
982 		break;
983 	case 128:
984 		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
985 		break;
986 	default:
987 		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
988 			ratio);
989 		return -EINVAL;
990 	}
991 	return 0;
992 }
993 
tda998x_audio_mute(struct tda998x_priv * priv,bool on)994 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
995 {
996 	if (on) {
997 		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998 		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
999 		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1000 	} else {
1001 		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1002 	}
1003 }
1004 
tda998x_configure_audio(struct tda998x_priv * priv)1005 static void tda998x_configure_audio(struct tda998x_priv *priv)
1006 {
1007 	const struct tda998x_audio_settings *settings = &priv->audio;
1008 	u8 buf[6], adiv;
1009 	u32 n;
1010 
1011 	/* If audio is not configured, there is nothing to do. */
1012 	if (settings->ena_ap == 0)
1013 		return;
1014 
1015 	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1016 
1017 	/* Enable audio ports */
1018 	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1019 	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1020 	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1021 	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1022 	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1023 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1024 					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1025 	reg_write(priv, REG_CTS_N, settings->cts_n);
1026 	reg_write(priv, REG_AUDIO_DIV, adiv);
1027 
1028 	/*
1029 	 * This is the approximate value of N, which happens to be
1030 	 * the recommended values for non-coherent clocks.
1031 	 */
1032 	n = 128 * settings->sample_rate / 1000;
1033 
1034 	/* Write the CTS and N values */
1035 	buf[0] = 0x44;
1036 	buf[1] = 0x42;
1037 	buf[2] = 0x01;
1038 	buf[3] = n;
1039 	buf[4] = n >> 8;
1040 	buf[5] = n >> 16;
1041 	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1042 
1043 	/* Reset CTS generator */
1044 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045 	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1046 
1047 	/* Write the channel status
1048 	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1049 	 * there is a separate register for each I2S wire.
1050 	 */
1051 	buf[0] = settings->status[0];
1052 	buf[1] = settings->status[1];
1053 	buf[2] = settings->status[3];
1054 	buf[3] = settings->status[4];
1055 	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1056 
1057 	tda998x_audio_mute(priv, true);
1058 	msleep(20);
1059 	tda998x_audio_mute(priv, false);
1060 
1061 	tda998x_write_aif(priv, &settings->cea);
1062 }
1063 
tda998x_audio_hw_params(struct device * dev,void * data,struct hdmi_codec_daifmt * daifmt,struct hdmi_codec_params * params)1064 static int tda998x_audio_hw_params(struct device *dev, void *data,
1065 				   struct hdmi_codec_daifmt *daifmt,
1066 				   struct hdmi_codec_params *params)
1067 {
1068 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1069 	unsigned int bclk_ratio;
1070 	bool spdif = daifmt->fmt == HDMI_SPDIF;
1071 	int ret;
1072 	struct tda998x_audio_settings audio = {
1073 		.sample_rate = params->sample_rate,
1074 		.cea = params->cea,
1075 	};
1076 
1077 	memcpy(audio.status, params->iec.status,
1078 	       min(sizeof(audio.status), sizeof(params->iec.status)));
1079 
1080 	switch (daifmt->fmt) {
1081 	case HDMI_I2S:
1082 		audio.i2s_format = I2S_FORMAT_PHILIPS;
1083 		break;
1084 	case HDMI_LEFT_J:
1085 		audio.i2s_format = I2S_FORMAT_LEFT_J;
1086 		break;
1087 	case HDMI_RIGHT_J:
1088 		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1089 		break;
1090 	case HDMI_SPDIF:
1091 		audio.i2s_format = 0;
1092 		break;
1093 	default:
1094 		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1095 		return -EINVAL;
1096 	}
1097 
1098 	if (!spdif &&
1099 	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1100 	     daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1101 		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1102 			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1103 			daifmt->bit_clk_provider,
1104 			daifmt->frame_clk_provider);
1105 		return -EINVAL;
1106 	}
1107 
1108 	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1109 	if (ret < 0)
1110 		return ret;
1111 
1112 	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1113 	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1114 	if (ret < 0)
1115 		return ret;
1116 
1117 	mutex_lock(&priv->audio_mutex);
1118 	priv->audio = audio;
1119 	if (priv->supports_infoframes && priv->sink_has_audio)
1120 		tda998x_configure_audio(priv);
1121 	mutex_unlock(&priv->audio_mutex);
1122 
1123 	return 0;
1124 }
1125 
tda998x_audio_shutdown(struct device * dev,void * data)1126 static void tda998x_audio_shutdown(struct device *dev, void *data)
1127 {
1128 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1129 
1130 	mutex_lock(&priv->audio_mutex);
1131 
1132 	reg_write(priv, REG_ENA_AP, 0);
1133 	priv->audio.ena_ap = 0;
1134 
1135 	mutex_unlock(&priv->audio_mutex);
1136 }
1137 
tda998x_audio_mute_stream(struct device * dev,void * data,bool enable,int direction)1138 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1139 				     bool enable, int direction)
1140 {
1141 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1142 
1143 	mutex_lock(&priv->audio_mutex);
1144 
1145 	tda998x_audio_mute(priv, enable);
1146 
1147 	mutex_unlock(&priv->audio_mutex);
1148 	return 0;
1149 }
1150 
tda998x_audio_get_eld(struct device * dev,void * data,uint8_t * buf,size_t len)1151 static int tda998x_audio_get_eld(struct device *dev, void *data,
1152 				 uint8_t *buf, size_t len)
1153 {
1154 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1155 
1156 	mutex_lock(&priv->audio_mutex);
1157 	memcpy(buf, priv->connector.eld,
1158 	       min(sizeof(priv->connector.eld), len));
1159 	mutex_unlock(&priv->audio_mutex);
1160 
1161 	return 0;
1162 }
1163 
1164 static const struct hdmi_codec_ops audio_codec_ops = {
1165 	.hw_params = tda998x_audio_hw_params,
1166 	.audio_shutdown = tda998x_audio_shutdown,
1167 	.mute_stream = tda998x_audio_mute_stream,
1168 	.get_eld = tda998x_audio_get_eld,
1169 };
1170 
tda998x_audio_codec_init(struct tda998x_priv * priv,struct device * dev)1171 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172 				    struct device *dev)
1173 {
1174 	struct hdmi_codec_pdata codec_data = {
1175 		.ops = &audio_codec_ops,
1176 		.max_i2s_channels = 2,
1177 		.no_i2s_capture = 1,
1178 		.no_spdif_capture = 1,
1179 		.no_capture_mute = 1,
1180 	};
1181 
1182 	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1183 		codec_data.i2s = 1;
1184 	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1185 		codec_data.spdif = 1;
1186 
1187 	priv->audio_pdev = platform_device_register_data(
1188 		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1189 		&codec_data, sizeof(codec_data));
1190 
1191 	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1192 }
1193 
1194 /* DRM connector functions */
1195 
1196 static enum drm_connector_status
tda998x_connector_detect(struct drm_connector * connector,bool force)1197 tda998x_connector_detect(struct drm_connector *connector, bool force)
1198 {
1199 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1200 	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1201 
1202 	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1203 			connector_status_disconnected;
1204 }
1205 
tda998x_connector_destroy(struct drm_connector * connector)1206 static void tda998x_connector_destroy(struct drm_connector *connector)
1207 {
1208 	drm_connector_cleanup(connector);
1209 }
1210 
1211 static const struct drm_connector_funcs tda998x_connector_funcs = {
1212 	.reset = drm_atomic_helper_connector_reset,
1213 	.fill_modes = drm_helper_probe_single_connector_modes,
1214 	.detect = tda998x_connector_detect,
1215 	.destroy = tda998x_connector_destroy,
1216 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1217 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1218 };
1219 
read_edid_block(void * data,u8 * buf,unsigned int blk,size_t length)1220 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1221 {
1222 	struct tda998x_priv *priv = data;
1223 	u8 offset, segptr;
1224 	int ret, i;
1225 
1226 	offset = (blk & 1) ? 128 : 0;
1227 	segptr = blk / 2;
1228 
1229 	mutex_lock(&priv->edid_mutex);
1230 
1231 	reg_write(priv, REG_DDC_ADDR, 0xa0);
1232 	reg_write(priv, REG_DDC_OFFS, offset);
1233 	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1234 	reg_write(priv, REG_DDC_SEGM, segptr);
1235 
1236 	/* enable reading EDID: */
1237 	priv->wq_edid_wait = 1;
1238 	reg_write(priv, REG_EDID_CTRL, 0x1);
1239 
1240 	/* flag must be cleared by sw: */
1241 	reg_write(priv, REG_EDID_CTRL, 0x0);
1242 
1243 	/* wait for block read to complete: */
1244 	if (priv->hdmi->irq) {
1245 		i = wait_event_timeout(priv->wq_edid,
1246 					!priv->wq_edid_wait,
1247 					msecs_to_jiffies(100));
1248 		if (i < 0) {
1249 			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1250 			ret = i;
1251 			goto failed;
1252 		}
1253 	} else {
1254 		for (i = 100; i > 0; i--) {
1255 			msleep(1);
1256 			ret = reg_read(priv, REG_INT_FLAGS_2);
1257 			if (ret < 0)
1258 				goto failed;
1259 			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1260 				break;
1261 		}
1262 	}
1263 
1264 	if (i == 0) {
1265 		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1266 		ret = -ETIMEDOUT;
1267 		goto failed;
1268 	}
1269 
1270 	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1271 	if (ret != length) {
1272 		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1273 			blk, ret);
1274 		goto failed;
1275 	}
1276 
1277 	ret = 0;
1278 
1279  failed:
1280 	mutex_unlock(&priv->edid_mutex);
1281 	return ret;
1282 }
1283 
tda998x_connector_get_modes(struct drm_connector * connector)1284 static int tda998x_connector_get_modes(struct drm_connector *connector)
1285 {
1286 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1287 	const struct drm_edid *drm_edid;
1288 	int n;
1289 
1290 	/*
1291 	 * If we get killed while waiting for the HPD timeout, return
1292 	 * no modes found: we are not in a restartable path, so we
1293 	 * can't handle signals gracefully.
1294 	 */
1295 	if (tda998x_edid_delay_wait(priv))
1296 		return 0;
1297 
1298 	if (priv->rev == TDA19988)
1299 		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1300 
1301 	drm_edid = drm_edid_read_custom(connector, read_edid_block, priv);
1302 
1303 	if (priv->rev == TDA19988)
1304 		reg_set(priv, REG_TX4, TX4_PD_RAM);
1305 
1306 	drm_edid_connector_update(connector, drm_edid);
1307 	cec_notifier_set_phys_addr(priv->cec_notify,
1308 				   connector->display_info.source_physical_address);
1309 
1310 	if (!drm_edid) {
1311 		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1312 		return 0;
1313 	}
1314 
1315 	mutex_lock(&priv->audio_mutex);
1316 	n = drm_edid_connector_add_modes(connector);
1317 	priv->sink_has_audio = connector->display_info.has_audio;
1318 	mutex_unlock(&priv->audio_mutex);
1319 
1320 	drm_edid_free(drm_edid);
1321 
1322 	return n;
1323 }
1324 
1325 static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector * connector)1326 tda998x_connector_best_encoder(struct drm_connector *connector)
1327 {
1328 	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1329 
1330 	return priv->bridge.encoder;
1331 }
1332 
1333 static
1334 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1335 	.get_modes = tda998x_connector_get_modes,
1336 	.best_encoder = tda998x_connector_best_encoder,
1337 };
1338 
tda998x_connector_init(struct tda998x_priv * priv,struct drm_device * drm)1339 static int tda998x_connector_init(struct tda998x_priv *priv,
1340 				  struct drm_device *drm)
1341 {
1342 	struct drm_connector *connector = &priv->connector;
1343 	int ret;
1344 
1345 	connector->interlace_allowed = 1;
1346 
1347 	if (priv->hdmi->irq)
1348 		connector->polled = DRM_CONNECTOR_POLL_HPD;
1349 	else
1350 		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1351 			DRM_CONNECTOR_POLL_DISCONNECT;
1352 
1353 	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1354 	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1355 				 DRM_MODE_CONNECTOR_HDMIA);
1356 	if (ret)
1357 		return ret;
1358 
1359 	drm_connector_attach_encoder(&priv->connector,
1360 				     priv->bridge.encoder);
1361 
1362 	return 0;
1363 }
1364 
1365 /* DRM bridge functions */
1366 
tda998x_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)1367 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1368 				 enum drm_bridge_attach_flags flags)
1369 {
1370 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1371 
1372 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1373 		DRM_ERROR("Fix bridge driver to make connector optional!");
1374 		return -EINVAL;
1375 	}
1376 
1377 	return tda998x_connector_init(priv, bridge->dev);
1378 }
1379 
tda998x_bridge_detach(struct drm_bridge * bridge)1380 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1381 {
1382 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1383 
1384 	drm_connector_cleanup(&priv->connector);
1385 }
1386 
tda998x_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1387 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1388 				     const struct drm_display_info *info,
1389 				     const struct drm_display_mode *mode)
1390 {
1391 	/* TDA19988 dotclock can go up to 165MHz */
1392 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1393 
1394 	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1395 		return MODE_CLOCK_HIGH;
1396 	if (mode->htotal >= BIT(13))
1397 		return MODE_BAD_HVALUE;
1398 	if (mode->vtotal >= BIT(11))
1399 		return MODE_BAD_VVALUE;
1400 	return MODE_OK;
1401 }
1402 
tda998x_bridge_enable(struct drm_bridge * bridge)1403 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1404 {
1405 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1406 
1407 	if (!priv->is_on) {
1408 		/* enable video ports, audio will be enabled later */
1409 		reg_write(priv, REG_ENA_VP_0, 0xff);
1410 		reg_write(priv, REG_ENA_VP_1, 0xff);
1411 		reg_write(priv, REG_ENA_VP_2, 0xff);
1412 		/* set muxing after enabling ports: */
1413 		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1414 		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1415 		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1416 
1417 		priv->is_on = true;
1418 	}
1419 }
1420 
tda998x_bridge_disable(struct drm_bridge * bridge)1421 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1422 {
1423 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1424 
1425 	if (priv->is_on) {
1426 		/* disable video ports */
1427 		reg_write(priv, REG_ENA_VP_0, 0x00);
1428 		reg_write(priv, REG_ENA_VP_1, 0x00);
1429 		reg_write(priv, REG_ENA_VP_2, 0x00);
1430 
1431 		priv->is_on = false;
1432 	}
1433 }
1434 
tda998x_bridge_mode_set(struct drm_bridge * bridge,const struct drm_display_mode * mode,const struct drm_display_mode * adjusted_mode)1435 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1436 				    const struct drm_display_mode *mode,
1437 				    const struct drm_display_mode *adjusted_mode)
1438 {
1439 	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1440 	unsigned long tmds_clock;
1441 	u16 ref_pix, ref_line, n_pix, n_line;
1442 	u16 hs_pix_s, hs_pix_e;
1443 	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1444 	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1445 	u16 vwin1_line_s, vwin1_line_e;
1446 	u16 vwin2_line_s, vwin2_line_e;
1447 	u16 de_pix_s, de_pix_e;
1448 	u8 reg, div, rep, sel_clk;
1449 
1450 	/*
1451 	 * Since we are "computer" like, our source invariably produces
1452 	 * full-range RGB.  If the monitor supports full-range, then use
1453 	 * it, otherwise reduce to limited-range.
1454 	 */
1455 	priv->rgb_quant_range =
1456 		priv->connector.display_info.rgb_quant_range_selectable ?
1457 		HDMI_QUANTIZATION_RANGE_FULL :
1458 		drm_default_rgb_quant_range(adjusted_mode);
1459 
1460 	/*
1461 	 * Internally TDA998x is using ITU-R BT.656 style sync but
1462 	 * we get VESA style sync. TDA998x is using a reference pixel
1463 	 * relative to ITU to sync to the input frame and for output
1464 	 * sync generation. Currently, we are using reference detection
1465 	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1466 	 * which is position of rising VS with coincident rising HS.
1467 	 *
1468 	 * Now there is some issues to take care of:
1469 	 * - HDMI data islands require sync-before-active
1470 	 * - TDA998x register values must be > 0 to be enabled
1471 	 * - REFLINE needs an additional offset of +1
1472 	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1473 	 *
1474 	 * So we add +1 to all horizontal and vertical register values,
1475 	 * plus an additional +3 for REFPIX as we are using RGB input only.
1476 	 */
1477 	n_pix        = mode->htotal;
1478 	n_line       = mode->vtotal;
1479 
1480 	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1481 	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1482 	de_pix_e     = mode->htotal;
1483 	de_pix_s     = mode->htotal - mode->hdisplay;
1484 	ref_pix      = 3 + hs_pix_s;
1485 
1486 	/*
1487 	 * Attached LCD controllers may generate broken sync. Allow
1488 	 * those to adjust the position of the rising VS edge by adding
1489 	 * HSKEW to ref_pix.
1490 	 */
1491 	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1492 		ref_pix += adjusted_mode->hskew;
1493 
1494 	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1495 		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1496 		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1497 		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1498 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1499 		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1500 		vs1_line_e   = vs1_line_s +
1501 			       mode->vsync_end - mode->vsync_start;
1502 		vwin2_line_s = vwin2_line_e = 0;
1503 		vs2_pix_s    = vs2_pix_e  = 0;
1504 		vs2_line_s   = vs2_line_e = 0;
1505 	} else {
1506 		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1507 		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1508 		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1509 		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1510 		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1511 		vs1_line_e   = vs1_line_s +
1512 			       (mode->vsync_end - mode->vsync_start)/2;
1513 		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1514 		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1515 		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1516 		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1517 		vs2_line_e   = vs2_line_s +
1518 			       (mode->vsync_end - mode->vsync_start)/2;
1519 	}
1520 
1521 	/*
1522 	 * Select pixel repeat depending on the double-clock flag
1523 	 * (which means we have to repeat each pixel once.)
1524 	 */
1525 	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1526 	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1527 		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1528 
1529 	/* the TMDS clock is scaled up by the pixel repeat */
1530 	tmds_clock = mode->clock * (1 + rep);
1531 
1532 	/*
1533 	 * The divisor is power-of-2. The TDA9983B datasheet gives
1534 	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1535 	 *   0 - 800 to 1500 Msample/s
1536 	 *   1 - 400 to 800 Msample/s
1537 	 *   2 - 200 to 400 Msample/s
1538 	 *   3 - as 2 above
1539 	 */
1540 	for (div = 0; div < 3; div++)
1541 		if (80000 >> div <= tmds_clock)
1542 			break;
1543 
1544 	mutex_lock(&priv->audio_mutex);
1545 
1546 	priv->tmds_clock = tmds_clock;
1547 
1548 	/* mute the audio FIFO: */
1549 	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1550 
1551 	/* set HDMI HDCP mode off: */
1552 	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1553 	reg_clear(priv, REG_TX33, TX33_HDMI);
1554 	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1555 
1556 	/* no pre-filter or interpolator: */
1557 	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1558 			HVF_CNTRL_0_INTPOL(0));
1559 	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1560 	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1561 	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1562 			VIP_CNTRL_4_BLC(0));
1563 
1564 	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1565 	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1566 					  PLL_SERIAL_3_SRL_DE);
1567 	reg_write(priv, REG_SERIALIZER, 0);
1568 	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1569 
1570 	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1571 	reg_write(priv, REG_SEL_CLK, sel_clk);
1572 	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1573 			PLL_SERIAL_2_SRL_PR(rep));
1574 
1575 	/* set color matrix according to output rgb quant range */
1576 	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1577 		static u8 tda998x_full_to_limited_range[] = {
1578 			MAT_CONTRL_MAT_SC(2),
1579 			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1580 			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1581 			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1582 			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1583 			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1584 		};
1585 		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1586 		reg_write_range(priv, REG_MAT_CONTRL,
1587 				tda998x_full_to_limited_range,
1588 				sizeof(tda998x_full_to_limited_range));
1589 	} else {
1590 		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1591 					MAT_CONTRL_MAT_SC(1));
1592 		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1593 	}
1594 
1595 	/* set BIAS tmds value: */
1596 	reg_write(priv, REG_ANA_GENERAL, 0x09);
1597 
1598 	/*
1599 	 * Sync on rising HSYNC/VSYNC
1600 	 */
1601 	reg = VIP_CNTRL_3_SYNC_HS;
1602 
1603 	/*
1604 	 * TDA19988 requires high-active sync at input stage,
1605 	 * so invert low-active sync provided by master encoder here
1606 	 */
1607 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1608 		reg |= VIP_CNTRL_3_H_TGL;
1609 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1610 		reg |= VIP_CNTRL_3_V_TGL;
1611 	reg_write(priv, REG_VIP_CNTRL_3, reg);
1612 
1613 	reg_write(priv, REG_VIDFORMAT, 0x00);
1614 	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1615 	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1616 	reg_write16(priv, REG_NPIX_MSB, n_pix);
1617 	reg_write16(priv, REG_NLINE_MSB, n_line);
1618 	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1619 	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1620 	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1621 	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1622 	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1623 	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1624 	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1625 	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1626 	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1627 	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1628 	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1629 	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1630 	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1631 	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1632 	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1633 	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1634 
1635 	if (priv->rev == TDA19988) {
1636 		/* let incoming pixels fill the active space (if any) */
1637 		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1638 	}
1639 
1640 	/*
1641 	 * Always generate sync polarity relative to input sync and
1642 	 * revert input stage toggled sync at output stage
1643 	 */
1644 	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1645 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1646 		reg |= TBG_CNTRL_1_H_TGL;
1647 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1648 		reg |= TBG_CNTRL_1_V_TGL;
1649 	reg_write(priv, REG_TBG_CNTRL_1, reg);
1650 
1651 	/* must be last register set: */
1652 	reg_write(priv, REG_TBG_CNTRL_0, 0);
1653 
1654 	/* CEA-861B section 6 says that:
1655 	 * CEA version 1 (CEA-861) has no support for infoframes.
1656 	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1657 	 * and optional basic audio.
1658 	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1659 	 * and optional digital audio, with audio infoframes.
1660 	 *
1661 	 * Since we only support generation of version 2 AVI infoframes,
1662 	 * ignore CEA version 2 and below (iow, behave as if we're a
1663 	 * CEA-861 source.)
1664 	 */
1665 	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1666 
1667 	if (priv->supports_infoframes) {
1668 		/* We need to turn HDMI HDCP stuff on to get audio through */
1669 		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1670 		reg_write(priv, REG_TBG_CNTRL_1, reg);
1671 		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1672 		reg_set(priv, REG_TX33, TX33_HDMI);
1673 
1674 		tda998x_write_avi(priv, adjusted_mode);
1675 		tda998x_write_vsi(priv, adjusted_mode);
1676 
1677 		if (priv->sink_has_audio)
1678 			tda998x_configure_audio(priv);
1679 	}
1680 
1681 	mutex_unlock(&priv->audio_mutex);
1682 }
1683 
1684 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1685 	.attach = tda998x_bridge_attach,
1686 	.detach = tda998x_bridge_detach,
1687 	.mode_valid = tda998x_bridge_mode_valid,
1688 	.disable = tda998x_bridge_disable,
1689 	.mode_set = tda998x_bridge_mode_set,
1690 	.enable = tda998x_bridge_enable,
1691 };
1692 
1693 /* I2C driver functions */
1694 
tda998x_get_audio_ports(struct tda998x_priv * priv,struct device_node * np)1695 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1696 				   struct device_node *np)
1697 {
1698 	const u32 *port_data;
1699 	u32 size;
1700 	int i;
1701 
1702 	port_data = of_get_property(np, "audio-ports", &size);
1703 	if (!port_data)
1704 		return 0;
1705 
1706 	size /= sizeof(u32);
1707 	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1708 		dev_err(&priv->hdmi->dev,
1709 			"Bad number of elements in audio-ports dt-property\n");
1710 		return -EINVAL;
1711 	}
1712 
1713 	size /= 2;
1714 
1715 	for (i = 0; i < size; i++) {
1716 		unsigned int route;
1717 		u8 afmt = be32_to_cpup(&port_data[2*i]);
1718 		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1719 
1720 		switch (afmt) {
1721 		case TDA998x_I2S:
1722 			route = AUDIO_ROUTE_I2S;
1723 			break;
1724 		case TDA998x_SPDIF:
1725 			route = AUDIO_ROUTE_SPDIF;
1726 			break;
1727 		default:
1728 			dev_err(&priv->hdmi->dev,
1729 				"Bad audio format %u\n", afmt);
1730 			return -EINVAL;
1731 		}
1732 
1733 		if (!ena_ap) {
1734 			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1735 			continue;
1736 		}
1737 
1738 		if (priv->audio_port_enable[route]) {
1739 			dev_err(&priv->hdmi->dev,
1740 				"%s format already configured\n",
1741 				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1742 			return -EINVAL;
1743 		}
1744 
1745 		priv->audio_port_enable[route] = ena_ap;
1746 	}
1747 	return 0;
1748 }
1749 
tda998x_destroy(struct device * dev)1750 static void tda998x_destroy(struct device *dev)
1751 {
1752 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1753 
1754 	drm_bridge_remove(&priv->bridge);
1755 
1756 	/* disable all IRQs and free the IRQ handler */
1757 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1758 	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1759 
1760 	if (priv->audio_pdev)
1761 		platform_device_unregister(priv->audio_pdev);
1762 
1763 	if (priv->hdmi->irq)
1764 		free_irq(priv->hdmi->irq, priv);
1765 
1766 	timer_delete_sync(&priv->edid_delay_timer);
1767 	cancel_work_sync(&priv->detect_work);
1768 
1769 	i2c_unregister_device(priv->cec);
1770 
1771 	cec_notifier_conn_unregister(priv->cec_notify);
1772 }
1773 
tda998x_create(struct device * dev)1774 static int tda998x_create(struct device *dev)
1775 {
1776 	struct i2c_client *client = to_i2c_client(dev);
1777 	struct device_node *np = client->dev.of_node;
1778 	struct i2c_board_info cec_info;
1779 	struct tda998x_priv *priv;
1780 	u32 video;
1781 	int rev_lo, rev_hi, ret;
1782 
1783 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1784 	if (!priv)
1785 		return -ENOMEM;
1786 
1787 	dev_set_drvdata(dev, priv);
1788 
1789 	mutex_init(&priv->mutex);	/* protect the page access */
1790 	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1791 	mutex_init(&priv->edid_mutex);
1792 	INIT_LIST_HEAD(&priv->bridge.list);
1793 	init_waitqueue_head(&priv->edid_delay_waitq);
1794 	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1795 	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1796 
1797 	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1798 	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1799 	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1800 
1801 	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1802 	priv->cec_addr = 0x34 + (client->addr & 0x03);
1803 	priv->current_page = 0xff;
1804 	priv->hdmi = client;
1805 
1806 	/* wake up the device: */
1807 	cec_write(priv, REG_CEC_ENAMODS,
1808 			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1809 
1810 	tda998x_reset(priv);
1811 
1812 	/* read version: */
1813 	rev_lo = reg_read(priv, REG_VERSION_LSB);
1814 	if (rev_lo < 0) {
1815 		dev_err(dev, "failed to read version: %d\n", rev_lo);
1816 		return rev_lo;
1817 	}
1818 
1819 	rev_hi = reg_read(priv, REG_VERSION_MSB);
1820 	if (rev_hi < 0) {
1821 		dev_err(dev, "failed to read version: %d\n", rev_hi);
1822 		return rev_hi;
1823 	}
1824 
1825 	priv->rev = rev_lo | rev_hi << 8;
1826 
1827 	/* mask off feature bits: */
1828 	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1829 
1830 	switch (priv->rev) {
1831 	case TDA9989N2:
1832 		dev_info(dev, "found TDA9989 n2");
1833 		break;
1834 	case TDA19989:
1835 		dev_info(dev, "found TDA19989");
1836 		break;
1837 	case TDA19989N2:
1838 		dev_info(dev, "found TDA19989 n2");
1839 		break;
1840 	case TDA19988:
1841 		dev_info(dev, "found TDA19988");
1842 		break;
1843 	default:
1844 		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1845 		return -ENXIO;
1846 	}
1847 
1848 	/* after reset, enable DDC: */
1849 	reg_write(priv, REG_DDC_DISABLE, 0x00);
1850 
1851 	/* set clock on DDC channel: */
1852 	reg_write(priv, REG_TX3, 39);
1853 
1854 	/* if necessary, disable multi-master: */
1855 	if (priv->rev == TDA19989)
1856 		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1857 
1858 	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1859 			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1860 
1861 	/* ensure interrupts are disabled */
1862 	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1863 
1864 	/* clear pending interrupts */
1865 	cec_read(priv, REG_CEC_RXSHPDINT);
1866 	reg_read(priv, REG_INT_FLAGS_0);
1867 	reg_read(priv, REG_INT_FLAGS_1);
1868 	reg_read(priv, REG_INT_FLAGS_2);
1869 
1870 	/* initialize the optional IRQ */
1871 	if (client->irq) {
1872 		unsigned long irq_flags;
1873 
1874 		/* init read EDID waitqueue and HDP work */
1875 		init_waitqueue_head(&priv->wq_edid);
1876 
1877 		irq_flags =
1878 			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1879 
1880 		priv->cec_glue.irq_flags = irq_flags;
1881 
1882 		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1883 		ret = request_threaded_irq(client->irq, NULL,
1884 					   tda998x_irq_thread, irq_flags,
1885 					   "tda998x", priv);
1886 		if (ret) {
1887 			dev_err(dev, "failed to request IRQ#%u: %d\n",
1888 				client->irq, ret);
1889 			goto err_irq;
1890 		}
1891 
1892 		/* enable HPD irq */
1893 		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1894 	}
1895 
1896 	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1897 	if (!priv->cec_notify) {
1898 		ret = -ENOMEM;
1899 		goto fail;
1900 	}
1901 
1902 	priv->cec_glue.parent = dev;
1903 	priv->cec_glue.data = priv;
1904 	priv->cec_glue.init = tda998x_cec_hook_init;
1905 	priv->cec_glue.exit = tda998x_cec_hook_exit;
1906 	priv->cec_glue.open = tda998x_cec_hook_open;
1907 	priv->cec_glue.release = tda998x_cec_hook_release;
1908 
1909 	/*
1910 	 * Some TDA998x are actually two I2C devices merged onto one piece
1911 	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1912 	 * with a slightly modified TDA9950 CEC device.  The CEC device
1913 	 * is at the TDA9950 address, with the address pins strapped across
1914 	 * to the TDA998x address pins.  Hence, it always has the same
1915 	 * offset.
1916 	 */
1917 	memset(&cec_info, 0, sizeof(cec_info));
1918 	strscpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1919 	cec_info.addr = priv->cec_addr;
1920 	cec_info.platform_data = &priv->cec_glue;
1921 	cec_info.irq = client->irq;
1922 
1923 	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1924 	if (IS_ERR(priv->cec)) {
1925 		ret = PTR_ERR(priv->cec);
1926 		goto fail;
1927 	}
1928 
1929 	/* enable EDID read irq: */
1930 	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1931 
1932 	if (np) {
1933 		/* get the device tree parameters */
1934 		ret = of_property_read_u32(np, "video-ports", &video);
1935 		if (ret == 0) {
1936 			priv->vip_cntrl_0 = video >> 16;
1937 			priv->vip_cntrl_1 = video >> 8;
1938 			priv->vip_cntrl_2 = video;
1939 		}
1940 
1941 		ret = tda998x_get_audio_ports(priv, np);
1942 		if (ret)
1943 			goto fail;
1944 
1945 		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1946 		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1947 			tda998x_audio_codec_init(priv, &client->dev);
1948 	}
1949 
1950 	priv->bridge.funcs = &tda998x_bridge_funcs;
1951 #ifdef CONFIG_OF
1952 	priv->bridge.of_node = dev->of_node;
1953 #endif
1954 
1955 	drm_bridge_add(&priv->bridge);
1956 
1957 	return 0;
1958 
1959 fail:
1960 	tda998x_destroy(dev);
1961 err_irq:
1962 	return ret;
1963 }
1964 
1965 /* DRM encoder functions */
1966 
tda998x_encoder_init(struct device * dev,struct drm_device * drm)1967 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
1968 {
1969 	struct tda998x_priv *priv = dev_get_drvdata(dev);
1970 	u32 crtcs = 0;
1971 	int ret;
1972 
1973 	if (dev->of_node)
1974 		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
1975 
1976 	/* If no CRTCs were found, fall back to our old behaviour */
1977 	if (crtcs == 0) {
1978 		dev_warn(dev, "Falling back to first CRTC\n");
1979 		crtcs = 1 << 0;
1980 	}
1981 
1982 	priv->encoder.possible_crtcs = crtcs;
1983 
1984 	ret = drm_simple_encoder_init(drm, &priv->encoder,
1985 				      DRM_MODE_ENCODER_TMDS);
1986 	if (ret)
1987 		goto err_encoder;
1988 
1989 	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
1990 	if (ret)
1991 		goto err_bridge;
1992 
1993 	return 0;
1994 
1995 err_bridge:
1996 	drm_encoder_cleanup(&priv->encoder);
1997 err_encoder:
1998 	return ret;
1999 }
2000 
tda998x_bind(struct device * dev,struct device * master,void * data)2001 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2002 {
2003 	struct drm_device *drm = data;
2004 
2005 	return tda998x_encoder_init(dev, drm);
2006 }
2007 
tda998x_unbind(struct device * dev,struct device * master,void * data)2008 static void tda998x_unbind(struct device *dev, struct device *master,
2009 			   void *data)
2010 {
2011 	struct tda998x_priv *priv = dev_get_drvdata(dev);
2012 
2013 	drm_encoder_cleanup(&priv->encoder);
2014 }
2015 
2016 static const struct component_ops tda998x_ops = {
2017 	.bind = tda998x_bind,
2018 	.unbind = tda998x_unbind,
2019 };
2020 
2021 static int
tda998x_probe(struct i2c_client * client)2022 tda998x_probe(struct i2c_client *client)
2023 {
2024 	int ret;
2025 
2026 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2027 		dev_warn(&client->dev, "adapter does not support I2C\n");
2028 		return -EIO;
2029 	}
2030 
2031 	ret = tda998x_create(&client->dev);
2032 	if (ret)
2033 		return ret;
2034 
2035 	ret = component_add(&client->dev, &tda998x_ops);
2036 	if (ret)
2037 		tda998x_destroy(&client->dev);
2038 	return ret;
2039 }
2040 
tda998x_remove(struct i2c_client * client)2041 static void tda998x_remove(struct i2c_client *client)
2042 {
2043 	component_del(&client->dev, &tda998x_ops);
2044 	tda998x_destroy(&client->dev);
2045 }
2046 
2047 #ifdef CONFIG_OF
2048 static const struct of_device_id tda998x_dt_ids[] = {
2049 	{ .compatible = "nxp,tda998x", },
2050 	{ }
2051 };
2052 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2053 #endif
2054 
2055 static const struct i2c_device_id tda998x_ids[] = {
2056 	{ "tda998x" },
2057 	{ }
2058 };
2059 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2060 
2061 static struct i2c_driver tda998x_driver = {
2062 	.probe = tda998x_probe,
2063 	.remove = tda998x_remove,
2064 	.driver = {
2065 		.name = "tda998x",
2066 		.of_match_table = of_match_ptr(tda998x_dt_ids),
2067 	},
2068 	.id_table = tda998x_ids,
2069 };
2070 
2071 module_i2c_driver(tda998x_driver);
2072 
2073 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2074 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2075 MODULE_LICENSE("GPL");
2076