1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36
37 #define DC_LOGGER_INIT(logger)
38
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 .min_refresh = 120,
41 .max_refresh = 175,
42 .res = {
43 {.width = 3840, .height = 2160, },
44 {.width = 3440, .height = 1440, },
45 {.width = 2560, .height = 1440, },
46 {.width = 1920, .height = 1080, }},
47 };
48
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 .min_refresh = 55,
51 .max_refresh = 65,
52 .res = {
53 {.width = 2560, .height = 1440, },
54 {.width = 1920, .height = 1080, }},
55 };
56
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 .gpuvm_enable = 0,
59 .gpuvm_max_page_table_levels = 4,
60 .hostvm_enable = 0,
61 .rob_buffer_size_kbytes = 128,
62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 .config_return_buffer_size_in_kbytes = 1280,
64 .compressed_buffer_segment_size_in_kbytes = 64,
65 .meta_fifo_size_in_kentries = 22,
66 .zero_size_buffer_entries = 512,
67 .compbuf_reserved_space_64b = 256,
68 .compbuf_reserved_space_zs = 64,
69 .dpp_output_buffer_pixels = 2560,
70 .opp_output_buffer_lines = 1,
71 .pixel_chunk_size_kbytes = 8,
72 .alpha_pixel_chunk_size_kbytes = 4,
73 .min_pixel_chunk_size_bytes = 1024,
74 .dcc_meta_buffer_size_bytes = 6272,
75 .meta_chunk_size_kbytes = 2,
76 .min_meta_chunk_size_bytes = 256,
77 .writeback_chunk_size_kbytes = 8,
78 .ptoi_supported = false,
79 .num_dsc = 4,
80 .maximum_dsc_bits_per_component = 12,
81 .maximum_pixels_per_line_per_dsc_unit = 6016,
82 .dsc422_native_support = true,
83 .is_line_buffer_bpp_fixed = true,
84 .line_buffer_fixed_bpp = 57,
85 .line_buffer_size_bits = 1171920,
86 .max_line_buffer_lines = 32,
87 .writeback_interface_buffer_size_kbytes = 90,
88 .max_num_dpp = 4,
89 .max_num_otg = 4,
90 .max_num_hdmi_frl_outputs = 1,
91 .max_num_wb = 1,
92 .max_dchub_pscl_bw_pix_per_clk = 4,
93 .max_pscl_lb_bw_pix_per_clk = 2,
94 .max_lb_vscl_bw_pix_per_clk = 4,
95 .max_vscl_hscl_bw_pix_per_clk = 4,
96 .max_hscl_ratio = 6,
97 .max_vscl_ratio = 6,
98 .max_hscl_taps = 8,
99 .max_vscl_taps = 8,
100 .dpte_buffer_size_in_pte_reqs_luma = 64,
101 .dpte_buffer_size_in_pte_reqs_chroma = 34,
102 .dispclk_ramp_margin_percent = 1,
103 .max_inter_dcn_tile_repeaters = 8,
104 .cursor_buffer_size = 16,
105 .cursor_chunk_size = 2,
106 .writeback_line_buffer_buffer_size = 0,
107 .writeback_min_hscl_ratio = 1,
108 .writeback_min_vscl_ratio = 1,
109 .writeback_max_hscl_ratio = 1,
110 .writeback_max_vscl_ratio = 1,
111 .writeback_max_hscl_taps = 1,
112 .writeback_max_vscl_taps = 1,
113 .dppclk_delay_subtotal = 47,
114 .dppclk_delay_scl = 50,
115 .dppclk_delay_scl_lb_only = 16,
116 .dppclk_delay_cnvc_formatter = 28,
117 .dppclk_delay_cnvc_cursor = 6,
118 .dispclk_delay_subtotal = 125,
119 .dynamic_metadata_vm_enabled = false,
120 .odm_combine_4to1_supported = false,
121 .dcc_supported = true,
122 .max_num_dp2p0_outputs = 2,
123 .max_num_dp2p0_streams = 4,
124 };
125
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 .clock_limits = {
128 {
129 .state = 0,
130 .dcfclk_mhz = 1564.0,
131 .fabricclk_mhz = 2500.0,
132 .dispclk_mhz = 2150.0,
133 .dppclk_mhz = 2150.0,
134 .phyclk_mhz = 810.0,
135 .phyclk_d18_mhz = 667.0,
136 .phyclk_d32_mhz = 625.0,
137 .socclk_mhz = 1200.0,
138 .dscclk_mhz = 716.667,
139 .dram_speed_mts = 18000.0,
140 .dtbclk_mhz = 1564.0,
141 },
142 },
143 .num_states = 1,
144 .sr_exit_time_us = 42.97,
145 .sr_enter_plus_exit_time_us = 49.94,
146 .sr_exit_z8_time_us = 285.0,
147 .sr_enter_plus_exit_z8_time_us = 320,
148 .writeback_latency_us = 12.0,
149 .round_trip_ping_latency_dcfclk_cycles = 263,
150 .urgent_latency_pixel_data_only_us = 4.0,
151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 .urgent_latency_vm_data_only_us = 4.0,
153 .fclk_change_latency_us = 25,
154 .usr_retraining_latency_us = 2,
155 .smn_latency_us = 2,
156 .mall_allocated_for_dcn_mbytes = 64,
157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 .pct_ideal_sdp_bw_after_urgent = 90.0,
161 .pct_ideal_fabric_bw_after_urgent = 67.0,
162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0,
165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 .max_avg_sdp_bw_use_normal_percent = 80.0,
167 .max_avg_fabric_bw_use_normal_percent = 60.0,
168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 .max_avg_dram_bw_use_normal_percent = 15.0,
170 .num_chans = 24,
171 .dram_channel_width_bytes = 2,
172 .fabric_datapath_to_dcn_data_return_bytes = 64,
173 .return_bus_width_bytes = 64,
174 .downspread_percent = 0.38,
175 .dcn_downspread_percent = 0.5,
176 .dram_clock_change_latency_us = 400,
177 .dispclk_dppclk_vco_speed_mhz = 4300.0,
178 .do_urgent_latency_adjustment = true,
179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182
183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
184 bool *repopulate_pipes, int *split, bool *merge);
185
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
187 {
188 /* defaults */
189 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
190 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
191 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
192 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
193 /* For min clocks use as reported by PM FW and report those as min */
194 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
195 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
196 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
197 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
198
199 dc_assert_fp_enabled();
200
201 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
202 if (dcfclk_mhz_for_the_second_state)
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
204 else
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
206
207 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
208 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
209
210 /* Set A - Normal - default values */
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
221
222 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
232
233 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
234 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
235 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
246 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
247 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
248 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
249 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
250 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
251 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
252 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
253 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
254 }
255 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
256 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
264 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
265 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
266 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
267 }
268
269 /*
270 * Finds dummy_latency_index when MCLK switching using firmware based
271 * vblank stretch is enabled. This function will iterate through the
272 * table of dummy pstate latencies until the lowest value that allows
273 * dm_allow_self_refresh_and_mclk_switch to happen is found
274 */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
276 struct dc_state *context,
277 display_e2e_pipe_params_st *pipes,
278 int pipe_cnt,
279 int vlevel)
280 {
281 const int max_latency_table_entries = 4;
282 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
283 int dummy_latency_index = 0;
284 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
285
286 dc_assert_fp_enabled();
287
288 while (dummy_latency_index < max_latency_table_entries) {
289 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
290 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
291 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
292 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
293 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
294
295 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
296 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
297 dcn32_subvp_in_use(dc, context))
298 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
299
300 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
301 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
302 break;
303
304 dummy_latency_index++;
305 }
306
307 if (dummy_latency_index == max_latency_table_entries) {
308 ASSERT(dummy_latency_index != max_latency_table_entries);
309 /* If the execution gets here, it means dummy p_states are
310 * not possible. This should never happen and would mean
311 * something is severely wrong.
312 * Here we reset dummy_latency_index to 3, because it is
313 * better to have underflows than system crashes.
314 */
315 dummy_latency_index = max_latency_table_entries - 1;
316 }
317
318 return dummy_latency_index;
319 }
320
321 /**
322 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
323 * and populate pipe_ctx with those params.
324 * @dc: [in] current dc state
325 * @context: [in] new dc state
326 * @pipes: [in] DML pipe params array
327 * @pipe_cnt: [in] DML pipe count
328 *
329 * This function must be called AFTER the phantom pipes are added to context
330 * and run through DML (so that the DLG params for the phantom pipes can be
331 * populated), and BEFORE we program the timing for the phantom pipes.
332 */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
334 struct dc_state *context,
335 display_e2e_pipe_params_st *pipes,
336 int pipe_cnt)
337 {
338 uint32_t i, pipe_idx;
339
340 dc_assert_fp_enabled();
341
342 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
343 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
344
345 if (!pipe->stream)
346 continue;
347
348 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
349 pipes[pipe_idx].pipe.dest.vstartup_start =
350 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
351 pipes[pipe_idx].pipe.dest.vupdate_offset =
352 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
353 pipes[pipe_idx].pipe.dest.vupdate_width =
354 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
355 pipes[pipe_idx].pipe.dest.vready_offset =
356 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
357 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
358 }
359 pipe_idx++;
360 }
361 }
362
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
364 {
365 float memory_bw_kbytes_sec;
366 float fabric_bw_kbytes_sec;
367 float sdp_bw_kbytes_sec;
368 float limiting_bw_kbytes_sec;
369
370 memory_bw_kbytes_sec = entry->dram_speed_mts *
371 dcn3_2_soc.num_chans *
372 dcn3_2_soc.dram_channel_width_bytes *
373 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374
375 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
376 dcn3_2_soc.return_bus_width_bytes *
377 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
378
379 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
380 dcn3_2_soc.return_bus_width_bytes *
381 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
382
383 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
384
385 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
387
388 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
389 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
390
391 return limiting_bw_kbytes_sec;
392 }
393
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
395 {
396 if (entry->dcfclk_mhz > 0) {
397 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
398
399 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
400 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
401 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
402 } else if (entry->fabricclk_mhz > 0) {
403 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
404
405 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
406 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
408 } else if (entry->dram_speed_mts > 0) {
409 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
410 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
411
412 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
413 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
414 }
415 }
416
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
418 unsigned int *num_entries,
419 struct _vcs_dpi_voltage_scaling_st *entry)
420 {
421 int i = 0;
422 int index = 0;
423
424 dc_assert_fp_enabled();
425
426 if (*num_entries == 0) {
427 table[0] = *entry;
428 (*num_entries)++;
429 } else {
430 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
431 index++;
432 if (index >= *num_entries)
433 break;
434 }
435
436 for (i = *num_entries; i > index; i--)
437 table[i] = table[i - 1];
438
439 table[index] = *entry;
440 (*num_entries)++;
441 }
442 }
443
444 /**
445 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
446 * @dc: current dc state
447 * @context: new dc state
448 * @ref_pipe: Main pipe for the phantom stream
449 * @phantom_stream: target phantom stream state
450 * @pipes: DML pipe params
451 * @pipe_cnt: number of DML pipes
452 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
453 *
454 * Set timing params of the phantom stream based on calculated output from DML.
455 * This function first gets the DML pipe index using the DC pipe index, then
456 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
457 * lines required for SubVP MCLK switching and assigns to the phantom stream
458 * accordingly.
459 *
460 * - The number of SubVP lines calculated in DML does not take into account
461 * FW processing delays and required pstate allow width, so we must include
462 * that separately.
463 *
464 * - Set phantom backporch = vstartup of main pipe
465 */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)466 void dcn32_set_phantom_stream_timing(struct dc *dc,
467 struct dc_state *context,
468 struct pipe_ctx *ref_pipe,
469 struct dc_stream_state *phantom_stream,
470 display_e2e_pipe_params_st *pipes,
471 unsigned int pipe_cnt,
472 unsigned int dc_pipe_idx)
473 {
474 unsigned int i, pipe_idx;
475 struct pipe_ctx *pipe;
476 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
477 unsigned int num_dpp;
478 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
479 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
480 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
481 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
482 struct dc_stream_state *main_stream = ref_pipe->stream;
483
484 dc_assert_fp_enabled();
485
486 // Find DML pipe index (pipe_idx) using dc_pipe_idx
487 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
488 pipe = &context->res_ctx.pipe_ctx[i];
489
490 if (!pipe->stream)
491 continue;
492
493 if (i == dc_pipe_idx)
494 break;
495
496 pipe_idx++;
497 }
498
499 // Calculate lines required for pstate allow width and FW processing delays
500 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
501 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
502 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
503 (double)ref_pipe->stream->timing.h_total;
504
505 // Update clks_cfg for calling into recalculate
506 pipes[0].clks_cfg.voltage = vlevel;
507 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
508 pipes[0].clks_cfg.socclk_mhz = socclk;
509
510 // DML calculation for MALL region doesn't take into account FW delay
511 // and required pstate allow width for multi-display cases
512 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
513 * to 2 swaths (i.e. 16 lines)
514 */
515 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
516 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
517
518 // W/A for DCC corruption with certain high resolution timings.
519 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
520 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
521 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
522
523 /* dc->debug.subvp_extra_lines 0 by default*/
524 phantom_vactive += dc->debug.subvp_extra_lines;
525
526 // For backporch of phantom pipe, use vstartup of the main pipe
527 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
528
529 phantom_stream->dst.y = 0;
530 phantom_stream->dst.height = phantom_vactive;
531 /* When scaling, DML provides the end to end required number of lines for MALL.
532 * dst.height is always correct for this case, but src.height is not which causes a
533 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
534 * phantom for this case.
535 */
536 phantom_stream->src.y = 0;
537 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
538
539 phantom_stream->timing.v_addressable = phantom_vactive;
540 phantom_stream->timing.v_front_porch = 1;
541 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
542 phantom_stream->timing.v_front_porch +
543 phantom_stream->timing.v_sync_width +
544 phantom_bp;
545 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
546 }
547
548 /**
549 * dcn32_get_num_free_pipes - Calculate number of free pipes
550 * @dc: current dc state
551 * @context: new dc state
552 *
553 * This function assumes that a "used" pipe is a pipe that has
554 * both a stream and a plane assigned to it.
555 *
556 * Return: Number of free pipes available in the context
557 */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
559 {
560 unsigned int i;
561 unsigned int free_pipes = 0;
562 unsigned int num_pipes = 0;
563
564 for (i = 0; i < dc->res_pool->pipe_count; i++) {
565 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
566
567 if (pipe->stream && !pipe->top_pipe) {
568 while (pipe) {
569 num_pipes++;
570 pipe = pipe->bottom_pipe;
571 }
572 }
573 }
574
575 free_pipes = dc->res_pool->pipe_count - num_pipes;
576 return free_pipes;
577 }
578
579 /**
580 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
581 * @dc: current dc state
582 * @context: new dc state
583 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
584 *
585 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
586 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
587 * we are forcing SubVP P-State switching on the current config.
588 *
589 * The number of pipes used for the chosen surface must be less than or equal to the
590 * number of free pipes available.
591 *
592 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
593 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
594 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
595 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
596 *
597 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
598 */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)599 static bool dcn32_assign_subvp_pipe(struct dc *dc,
600 struct dc_state *context,
601 unsigned int *index)
602 {
603 unsigned int i, pipe_idx;
604 unsigned int max_frame_time = 0;
605 bool valid_assignment_found = false;
606 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
607 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
608
609 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
610 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
611 unsigned int num_pipes = 0;
612 unsigned int refresh_rate = 0;
613
614 if (!pipe->stream)
615 continue;
616
617 // Round up
618 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
619 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
620 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
621 /* SubVP pipe candidate requirements:
622 * - Refresh rate < 120hz
623 * - Not able to switch in vactive naturally (switching in active means the
624 * DET provides enough buffer to hide the P-State switch latency -- trying
625 * to combine this with SubVP can cause issues with the scheduling).
626 * - Not TMZ surface
627 */
628 if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
629 !pipe->stream->hw_cursor_req &&
630 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
631 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
632 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
633 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
634 !pipe->plane_state->address.tmz_surface &&
635 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
636 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
637 dcn32_allow_subvp_with_active_margin(pipe)))) {
638 while (pipe) {
639 num_pipes++;
640 pipe = pipe->bottom_pipe;
641 }
642
643 pipe = &context->res_ctx.pipe_ctx[i];
644 if (num_pipes <= free_pipes) {
645 struct dc_stream_state *stream = pipe->stream;
646 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
647 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
648 if (frame_us > max_frame_time) {
649 *index = i;
650 max_frame_time = frame_us;
651 valid_assignment_found = true;
652 }
653 }
654 }
655 pipe_idx++;
656 }
657 return valid_assignment_found;
658 }
659
660 /**
661 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
662 * @dc: current dc state
663 * @context: new dc state
664 *
665 * This function returns true if there are enough free pipes
666 * to create the required phantom pipes for any given stream
667 * (that does not already have phantom pipe assigned).
668 *
669 * e.g. For a 2 stream config where the first stream uses one
670 * pipe and the second stream uses 2 pipes (i.e. pipe split),
671 * this function will return true because there is 1 remaining
672 * pipe which can be used as the phantom pipe for the non pipe
673 * split pipe.
674 *
675 * Return:
676 * True if there are enough free pipes to assign phantom pipes to at least one
677 * stream that does not already have phantom pipes assigned. Otherwise false.
678 */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)679 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
680 {
681 unsigned int i, split_cnt, free_pipes;
682 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
683 bool subvp_possible = false;
684
685 for (i = 0; i < dc->res_pool->pipe_count; i++) {
686 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
687
688 // Find the minimum pipe split count for non SubVP pipes
689 if (resource_is_pipe_type(pipe, OPP_HEAD) &&
690 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
691 split_cnt = 0;
692 while (pipe) {
693 split_cnt++;
694 pipe = pipe->bottom_pipe;
695 }
696
697 if (split_cnt < min_pipe_split)
698 min_pipe_split = split_cnt;
699 }
700 }
701
702 free_pipes = dcn32_get_num_free_pipes(dc, context);
703
704 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
705 // should not equal to the pipe_count)
706 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
707 subvp_possible = true;
708
709 return subvp_possible;
710 }
711
712 /**
713 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
714 * @dc: current dc state
715 * @context: new dc state
716 *
717 * High level algorithm:
718 * 1. Find longest microschedule length (in us) between the two SubVP pipes
719 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
720 * pipes still allows for the maximum microschedule to fit in the active
721 * region for both pipes.
722 *
723 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
724 */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)725 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
726 {
727 struct pipe_ctx *subvp_pipes[2] = {0};
728 struct dc_stream_state *phantom = NULL;
729 uint32_t microschedule_lines = 0;
730 uint32_t index = 0;
731 uint32_t i;
732 uint32_t max_microschedule_us = 0;
733 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
734
735 for (i = 0; i < dc->res_pool->pipe_count; i++) {
736 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
737 uint32_t time_us = 0;
738
739 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
740 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
741 */
742 phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
743 if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe &&
744 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
745 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
746 phantom->timing.v_addressable;
747
748 // Round up when calculating microschedule time (+ 1 at the end)
749 time_us = (microschedule_lines * phantom->timing.h_total) /
750 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
751 dc->caps.subvp_prefetch_end_to_mall_start_us +
752 dc->caps.subvp_fw_processing_delay_us + 1;
753 if (time_us > max_microschedule_us)
754 max_microschedule_us = time_us;
755
756 subvp_pipes[index] = pipe;
757 index++;
758
759 // Maximum 2 SubVP pipes
760 if (index == 2)
761 break;
762 }
763 }
764 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
765 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
766 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
767 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
768 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
769 subvp_pipes[0]->stream->timing.h_total) /
770 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
771 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
772 subvp_pipes[1]->stream->timing.h_total) /
773 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
774
775 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
776 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
777 return true;
778
779 return false;
780 }
781
782 /**
783 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
784 * @dc: current dc state
785 * @context: new dc state
786 *
787 * High level algorithm:
788 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
789 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
790 * (the margin is equal to the MALL region + DRR margin (500us))
791 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
792 * then report the configuration as supported
793 *
794 * Return: True if the SubVP + DRR config is schedulable, false otherwise
795 */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)796 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
797 {
798 bool schedulable = false;
799 uint32_t i;
800 struct pipe_ctx *pipe = NULL;
801 struct pipe_ctx *drr_pipe = NULL;
802 struct dc_crtc_timing *main_timing = NULL;
803 struct dc_crtc_timing *phantom_timing = NULL;
804 struct dc_crtc_timing *drr_timing = NULL;
805 int16_t prefetch_us = 0;
806 int16_t mall_region_us = 0;
807 int16_t drr_frame_us = 0; // nominal frame time
808 int16_t subvp_active_us = 0;
809 int16_t stretched_drr_us = 0;
810 int16_t drr_stretched_vblank_us = 0;
811 int16_t max_vblank_mallregion = 0;
812 struct dc_stream_state *phantom_stream;
813 bool subvp_found = false;
814 bool drr_found = false;
815
816 // Find SubVP pipe
817 for (i = 0; i < dc->res_pool->pipe_count; i++) {
818 pipe = &context->res_ctx.pipe_ctx[i];
819
820 // We check for master pipe, but it shouldn't matter since we only need
821 // the pipe for timing info (stream should be same for any pipe splits)
822 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
823 !resource_is_pipe_type(pipe, DPP_PIPE))
824 continue;
825
826 // Find the SubVP pipe
827 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
828 subvp_found = true;
829 break;
830 }
831 }
832
833 // Find the DRR pipe
834 for (i = 0; i < dc->res_pool->pipe_count; i++) {
835 drr_pipe = &context->res_ctx.pipe_ctx[i];
836
837 // We check for master pipe only
838 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
839 !resource_is_pipe_type(drr_pipe, DPP_PIPE))
840 continue;
841
842 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
843 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
844 drr_found = true;
845 break;
846 }
847 }
848
849 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
850 if (phantom_stream && subvp_found && drr_found) {
851 main_timing = &pipe->stream->timing;
852 phantom_timing = &phantom_stream->timing;
853 drr_timing = &drr_pipe->stream->timing;
854 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
855 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
856 dc->caps.subvp_prefetch_end_to_mall_start_us;
857 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
858 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
859 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
860 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
861 // P-State allow width and FW delays already included phantom_timing->v_addressable
862 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
863 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
864 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
865 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
866 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
867 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
868 }
869
870 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
871 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
872 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
873 * and the max of (VBLANK blanking time, MALL region)).
874 */
875 if (drr_timing &&
876 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
877 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
878 schedulable = true;
879
880 return schedulable;
881 }
882
883
884 /**
885 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
886 * @dc: current dc state
887 * @context: new dc state
888 *
889 * High level algorithm:
890 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
891 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
892 * then report the configuration as supported
893 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
894 *
895 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
896 */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)897 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
898 {
899 struct pipe_ctx *pipe = NULL;
900 struct pipe_ctx *subvp_pipe = NULL;
901 bool found = false;
902 bool schedulable = false;
903 uint32_t i = 0;
904 uint8_t vblank_index = 0;
905 uint16_t prefetch_us = 0;
906 uint16_t mall_region_us = 0;
907 uint16_t vblank_frame_us = 0;
908 uint16_t subvp_active_us = 0;
909 uint16_t vblank_blank_us = 0;
910 uint16_t max_vblank_mallregion = 0;
911 struct dc_crtc_timing *main_timing = NULL;
912 struct dc_crtc_timing *phantom_timing = NULL;
913 struct dc_crtc_timing *vblank_timing = NULL;
914 struct dc_stream_state *phantom_stream;
915 enum mall_stream_type pipe_mall_type;
916
917 /* For SubVP + VBLANK/DRR cases, we assume there can only be
918 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
919 * is supported, it is either a single VBLANK case or two VBLANK
920 * displays which are synchronized (in which case they have identical
921 * timings).
922 */
923 for (i = 0; i < dc->res_pool->pipe_count; i++) {
924 pipe = &context->res_ctx.pipe_ctx[i];
925 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
926
927 // We check for master pipe, but it shouldn't matter since we only need
928 // the pipe for timing info (stream should be same for any pipe splits)
929 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
930 !resource_is_pipe_type(pipe, DPP_PIPE))
931 continue;
932
933 if (!found && pipe_mall_type == SUBVP_NONE) {
934 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
935 vblank_index = i;
936 found = true;
937 }
938
939 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
940 subvp_pipe = pipe;
941 }
942 if (found && subvp_pipe) {
943 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
944 main_timing = &subvp_pipe->stream->timing;
945 phantom_timing = &phantom_stream->timing;
946 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
947 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
948 // Also include the prefetch end to mallstart delay time
949 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
950 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
951 dc->caps.subvp_prefetch_end_to_mall_start_us;
952 // P-State allow width and FW delays already included phantom_timing->v_addressable
953 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
954 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
955 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
956 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
957 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
958 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
959 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
960 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
961 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
962
963 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
964 // and the max of (VBLANK blanking time, MALL region)
965 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
966 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
967 schedulable = true;
968 }
969 return schedulable;
970 }
971
972 /**
973 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
974 *
975 * @dc: Current DC state
976 * @context: New DC state to be programmed
977 *
978 * SubVP + SubVP is admissible under the following conditions:
979 * - All SubVP pipes are < 120Hz OR
980 * - All SubVP pipes are >= 120hz
981 *
982 * Return: True if admissible, false otherwise
983 */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)984 static bool subvp_subvp_admissable(struct dc *dc,
985 struct dc_state *context)
986 {
987 bool result = false;
988 uint32_t i;
989 uint8_t subvp_count = 0;
990 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
991 uint64_t refresh_rate = 0;
992
993 for (i = 0; i < dc->res_pool->pipe_count; i++) {
994 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
995
996 if (!pipe->stream)
997 continue;
998
999 if (pipe->plane_state && !pipe->top_pipe &&
1000 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
1001 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1002 pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1);
1003 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1004 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1005
1006 if ((uint32_t)refresh_rate < min_refresh)
1007 min_refresh = (uint32_t)refresh_rate;
1008 if ((uint32_t)refresh_rate > max_refresh)
1009 max_refresh = (uint32_t)refresh_rate;
1010 subvp_count++;
1011 }
1012 }
1013
1014 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1015 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1016 max_refresh <= subvp_high_refresh_list.max_refresh)))
1017 result = true;
1018
1019 return result;
1020 }
1021
1022 /**
1023 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1024 * and handle static analysis based on the case.
1025 * @dc: current dc state
1026 * @context: new dc state
1027 * @vlevel: Voltage level calculated by DML
1028 *
1029 * Three cases:
1030 * 1. SubVP + SubVP
1031 * 2. SubVP + VBLANK (DRR checked internally)
1032 * 3. SubVP + VACTIVE (currently unsupported)
1033 *
1034 * Return: True if statically schedulable, false otherwise
1035 */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1036 static bool subvp_validate_static_schedulability(struct dc *dc,
1037 struct dc_state *context,
1038 int vlevel)
1039 {
1040 bool schedulable = false;
1041 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1042 uint32_t i, pipe_idx;
1043 uint8_t subvp_count = 0;
1044 uint8_t vactive_count = 0;
1045 uint8_t non_subvp_pipes = 0;
1046
1047 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1048 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1049 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1050
1051 if (!pipe->stream)
1052 continue;
1053
1054 if (pipe->plane_state && !pipe->top_pipe) {
1055 if (pipe_mall_type == SUBVP_MAIN)
1056 subvp_count++;
1057 if (pipe_mall_type == SUBVP_NONE)
1058 non_subvp_pipes++;
1059 }
1060
1061 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1062 // switching (SubVP + VACTIVE unsupported). In situations where we force
1063 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1064 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1065 pipe_mall_type == SUBVP_NONE) {
1066 vactive_count++;
1067 }
1068 pipe_idx++;
1069 }
1070
1071 if (subvp_count == 2) {
1072 // Static schedulability check for SubVP + SubVP case
1073 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1074 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1075 // Single SubVP configs will be supported by default as long as it's suppported by DML
1076 schedulable = true;
1077 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1078 if (dcn32_subvp_drr_admissable(dc, context))
1079 schedulable = subvp_drr_schedulable(dc, context);
1080 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1081 schedulable = subvp_vblank_schedulable(dc, context);
1082 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1083 vactive_count > 0) {
1084 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1085 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1086 // SubVP + VACTIVE currently unsupported
1087 schedulable = false;
1088 }
1089 return schedulable;
1090 }
1091
assign_subvp_index(struct dc * dc,struct dc_state * context)1092 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1093 {
1094 int i;
1095 int index = 0;
1096
1097 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1098 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1099
1100 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1101 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1102 pipe_ctx->subvp_index = index++;
1103 } else {
1104 pipe_ctx->subvp_index = 0;
1105 }
1106 }
1107 }
1108
1109 struct pipe_slice_table {
1110 struct {
1111 struct dc_stream_state *stream;
1112 int slice_count;
1113 } odm_combines[MAX_STREAMS];
1114 int odm_combine_count;
1115
1116 struct {
1117 struct pipe_ctx *pri_pipe;
1118 struct dc_plane_state *plane;
1119 int slice_count;
1120 } mpc_combines[MAX_PLANES];
1121 int mpc_combine_count;
1122 };
1123
1124
update_slice_table_for_stream(struct pipe_slice_table * table,struct dc_stream_state * stream,int diff)1125 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1126 struct dc_stream_state *stream, int diff)
1127 {
1128 int i;
1129
1130 for (i = 0; i < table->odm_combine_count; i++) {
1131 if (table->odm_combines[i].stream == stream) {
1132 table->odm_combines[i].slice_count += diff;
1133 break;
1134 }
1135 }
1136
1137 if (i == table->odm_combine_count) {
1138 table->odm_combine_count++;
1139 table->odm_combines[i].stream = stream;
1140 table->odm_combines[i].slice_count = diff;
1141 }
1142 }
1143
update_slice_table_for_plane(struct pipe_slice_table * table,struct pipe_ctx * dpp_pipe,struct dc_plane_state * plane,int diff)1144 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1145 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1146 {
1147 int i;
1148 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1149
1150 for (i = 0; i < table->mpc_combine_count; i++) {
1151 if (table->mpc_combines[i].plane == plane &&
1152 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1153 table->mpc_combines[i].slice_count += diff;
1154 break;
1155 }
1156 }
1157
1158 if (i == table->mpc_combine_count) {
1159 table->mpc_combine_count++;
1160 table->mpc_combines[i].plane = plane;
1161 table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1162 table->mpc_combines[i].slice_count = diff;
1163 }
1164 }
1165
init_pipe_slice_table_from_context(struct pipe_slice_table * table,struct dc_state * context)1166 static void init_pipe_slice_table_from_context(
1167 struct pipe_slice_table *table,
1168 struct dc_state *context)
1169 {
1170 int i, j;
1171 struct pipe_ctx *otg_master;
1172 struct pipe_ctx *dpp_pipes[MAX_PIPES];
1173 struct dc_stream_state *stream;
1174 int count;
1175
1176 memset(table, 0, sizeof(*table));
1177
1178 for (i = 0; i < context->stream_count; i++) {
1179 stream = context->streams[i];
1180 otg_master = resource_get_otg_master_for_stream(
1181 &context->res_ctx, stream);
1182 if (!otg_master)
1183 continue;
1184
1185 count = resource_get_odm_slice_count(otg_master);
1186 update_slice_table_for_stream(table, stream, count);
1187
1188 count = resource_get_dpp_pipes_for_opp_head(otg_master,
1189 &context->res_ctx, dpp_pipes);
1190 for (j = 0; j < count; j++)
1191 if (dpp_pipes[j]->plane_state)
1192 update_slice_table_for_plane(table, dpp_pipes[j],
1193 dpp_pipes[j]->plane_state, 1);
1194 }
1195 }
1196
update_pipe_slice_table_with_split_flags(struct pipe_slice_table * table,struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1197 static bool update_pipe_slice_table_with_split_flags(
1198 struct pipe_slice_table *table,
1199 struct dc *dc,
1200 struct dc_state *context,
1201 struct vba_vars_st *vba,
1202 int split[MAX_PIPES],
1203 bool merge[MAX_PIPES])
1204 {
1205 /* NOTE: we are deprecating the support for the concept of pipe splitting
1206 * or pipe merging. Instead we append slices to the end and remove
1207 * slices from the end. The following code converts a pipe split or
1208 * merge to an append or remove operation.
1209 *
1210 * For example:
1211 * When split flags describe the following pipe connection transition
1212 *
1213 * from:
1214 * pipe 0 (split=2) -> pipe 1 (split=2)
1215 * to: (old behavior)
1216 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1217 *
1218 * the code below actually does:
1219 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1220 *
1221 * This is the new intended behavior and for future DCNs we will retire
1222 * the old concept completely.
1223 */
1224 struct pipe_ctx *pipe;
1225 bool odm;
1226 int dc_pipe_idx, dml_pipe_idx = 0;
1227 bool updated = false;
1228
1229 for (dc_pipe_idx = 0;
1230 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1231 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1232 if (resource_is_pipe_type(pipe, FREE_PIPE))
1233 continue;
1234
1235 if (merge[dc_pipe_idx]) {
1236 if (resource_is_pipe_type(pipe, OPP_HEAD))
1237 /* merging OPP head means reducing ODM slice
1238 * count by 1
1239 */
1240 update_slice_table_for_stream(table, pipe->stream, -1);
1241 else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1242 resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1243 /* merging DPP pipe of the first ODM slice means
1244 * reducing MPC slice count by 1
1245 */
1246 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1247 updated = true;
1248 }
1249
1250 if (split[dc_pipe_idx]) {
1251 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1252 dm_odm_combine_mode_disabled;
1253 if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1254 update_slice_table_for_stream(
1255 table, pipe->stream, split[dc_pipe_idx] - 1);
1256 else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1257 update_slice_table_for_plane(table, pipe,
1258 pipe->plane_state, split[dc_pipe_idx] - 1);
1259 updated = true;
1260 }
1261 dml_pipe_idx++;
1262 }
1263 return updated;
1264 }
1265
update_pipes_with_slice_table(struct dc * dc,struct dc_state * context,struct pipe_slice_table * table)1266 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1267 struct pipe_slice_table *table)
1268 {
1269 int i;
1270
1271 for (i = 0; i < table->odm_combine_count; i++)
1272 resource_update_pipes_for_stream_with_slice_count(context,
1273 dc->current_state, dc->res_pool,
1274 table->odm_combines[i].stream,
1275 table->odm_combines[i].slice_count);
1276
1277 for (i = 0; i < table->mpc_combine_count; i++)
1278 resource_update_pipes_for_plane_with_slice_count(context,
1279 dc->current_state, dc->res_pool,
1280 table->mpc_combines[i].plane,
1281 table->mpc_combines[i].slice_count);
1282 }
1283
update_pipes_with_split_flags(struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1284 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1285 struct vba_vars_st *vba, int split[MAX_PIPES],
1286 bool merge[MAX_PIPES])
1287 {
1288 struct pipe_slice_table slice_table;
1289 bool updated;
1290
1291 init_pipe_slice_table_from_context(&slice_table, context);
1292 updated = update_pipe_slice_table_with_split_flags(
1293 &slice_table, dc, context, vba,
1294 split, merge);
1295 update_pipes_with_slice_table(dc, context, &slice_table);
1296 return updated;
1297 }
1298
should_apply_odm_power_optimization(struct dc * dc,struct dc_state * context,struct vba_vars_st * v,int * split,bool * merge)1299 static bool should_apply_odm_power_optimization(struct dc *dc,
1300 struct dc_state *context, struct vba_vars_st *v, int *split,
1301 bool *merge)
1302 {
1303 struct dc_stream_state *stream = context->streams[0];
1304 struct pipe_slice_table slice_table;
1305 int i;
1306
1307 /*
1308 * this debug flag allows us to disable ODM power optimization feature
1309 * unconditionally. we force the feature off if this is set to false.
1310 */
1311 if (!dc->debug.enable_single_display_2to1_odm_policy)
1312 return false;
1313
1314 /* current design and test coverage is only limited to allow ODM power
1315 * optimization for single stream. Supporting it for multiple streams
1316 * use case would require additional algorithm to decide how to
1317 * optimize power consumption when there are not enough free pipes to
1318 * allocate for all the streams. This level of optimization would
1319 * require multiple attempts of revalidation to make an optimized
1320 * decision. Unfortunately We do not support revalidation flow in
1321 * current version of DML.
1322 */
1323 if (context->stream_count != 1)
1324 return false;
1325
1326 /*
1327 * Our hardware doesn't support ODM for HDMI TMDS
1328 */
1329 if (dc_is_hdmi_signal(stream->signal))
1330 return false;
1331
1332 /*
1333 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1334 * ODM segment has the same size.
1335 */
1336 if (!is_h_timing_divisible_by_2(stream))
1337 return false;
1338
1339 /*
1340 * No power benefits if the timing's pixel clock is not high enough to
1341 * raise display clock from minimum power state.
1342 */
1343 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1344 return false;
1345
1346 if (dc->config.enable_windowed_mpo_odm) {
1347 /*
1348 * ODM power optimization should only be allowed if the feature
1349 * can be seamlessly toggled off within an update. This would
1350 * require that the feature is applied on top of a minimal
1351 * state. A minimal state is defined as a state validated
1352 * without the need of pipe split. Therefore, when transition to
1353 * toggle the feature off, the same stream and plane
1354 * configuration can be supported by the pipe resource in the
1355 * first ODM slice alone without the need to acquire extra
1356 * resources.
1357 */
1358 init_pipe_slice_table_from_context(&slice_table, context);
1359 update_pipe_slice_table_with_split_flags(
1360 &slice_table, dc, context, v,
1361 split, merge);
1362 for (i = 0; i < slice_table.mpc_combine_count; i++)
1363 if (slice_table.mpc_combines[i].slice_count > 1)
1364 return false;
1365
1366 for (i = 0; i < slice_table.odm_combine_count; i++)
1367 if (slice_table.odm_combines[i].slice_count > 1)
1368 return false;
1369 } else {
1370 /*
1371 * the new ODM power optimization feature reduces software
1372 * design limitation and allows ODM power optimization to be
1373 * supported even with presence of overlay planes. The new
1374 * feature is enabled based on enable_windowed_mpo_odm flag. If
1375 * the flag is not set, we limit our feature scope due to
1376 * previous software design limitation
1377 */
1378 if (context->stream_status[0].plane_count != 1)
1379 return false;
1380
1381 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1382 &stream->src, sizeof(struct rect)) != 0)
1383 return false;
1384
1385 if (stream->src.width >= 5120 &&
1386 stream->src.width > stream->dst.width)
1387 return false;
1388 }
1389 return true;
1390 }
1391
try_odm_power_optimization_and_revalidate(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * split,bool * merge,unsigned int * vlevel,int pipe_cnt)1392 static void try_odm_power_optimization_and_revalidate(
1393 struct dc *dc,
1394 struct dc_state *context,
1395 display_e2e_pipe_params_st *pipes,
1396 int *split,
1397 bool *merge,
1398 unsigned int *vlevel,
1399 int pipe_cnt)
1400 {
1401 int i;
1402 unsigned int new_vlevel;
1403 unsigned int cur_policy[MAX_PIPES];
1404
1405 for (i = 0; i < pipe_cnt; i++) {
1406 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1407 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1408 }
1409
1410 new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1411
1412 if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1413 memset(split, 0, MAX_PIPES * sizeof(int));
1414 memset(merge, 0, MAX_PIPES * sizeof(bool));
1415 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1416 context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1417 } else {
1418 for (i = 0; i < pipe_cnt; i++)
1419 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1420 }
1421 }
1422
is_test_pattern_enabled(struct dc_state * context)1423 static bool is_test_pattern_enabled(
1424 struct dc_state *context)
1425 {
1426 int i;
1427
1428 for (i = 0; i < context->stream_count; i++) {
1429 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1430 return true;
1431 }
1432
1433 return false;
1434 }
1435
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt,bool * repopulate_pipes)1436 static bool dcn32_full_validate_bw_helper(struct dc *dc,
1437 struct dc_state *context,
1438 display_e2e_pipe_params_st *pipes,
1439 int *vlevel,
1440 int *split,
1441 bool *merge,
1442 int *pipe_cnt,
1443 bool *repopulate_pipes)
1444 {
1445 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1446 unsigned int dc_pipe_idx = 0;
1447 int i = 0;
1448 bool found_supported_config = false;
1449 int vlevel_temp = 0;
1450
1451 dc_assert_fp_enabled();
1452
1453 /*
1454 * DML favors voltage over p-state, but we're more interested in
1455 * supporting p-state over voltage. We can't support p-state in
1456 * prefetch mode > 0 so try capping the prefetch mode to start.
1457 * Override present for testing.
1458 */
1459 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1460 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1461 dm_prefetch_support_uclk_fclk_and_stutter;
1462 else
1463 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1464 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1465
1466 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1467 /* This may adjust vlevel and maxMpcComb */
1468 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1469 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1470 vba->VoltageLevel = *vlevel;
1471 }
1472
1473 /* Apply split and merge flags before checking for subvp */
1474 if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
1475 return false;
1476 memset(split, 0, MAX_PIPES * sizeof(int));
1477 memset(merge, 0, MAX_PIPES * sizeof(bool));
1478
1479 /* Conditions for setting up phantom pipes for SubVP:
1480 * 1. Not force disable SubVP
1481 * 2. Full update (i.e. !fast_validate)
1482 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1483 * 4. Display configuration passes validation
1484 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1485 */
1486 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1487 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1488 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1489 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1490 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1491 dc->debug.force_subvp_mclk_switch)) {
1492
1493 vlevel_temp = *vlevel;
1494
1495 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1496 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1497 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1498 * Adding phantom pipes won't change the validation result, so change the DML input param
1499 * for P-State support before adding phantom pipes and recalculating the DML result.
1500 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1501 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1502 * enough to support MCLK switching.
1503 */
1504 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1505 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1506 dm_prefetch_support_uclk_fclk_and_stutter) {
1507 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1508 dm_prefetch_support_fclk_and_stutter;
1509 /* There are params (such as FabricClock) that need to be recalculated
1510 * after validation fails (otherwise it will be 0). Calculation for
1511 * phantom vactive requires call into DML, so we must ensure all the
1512 * vba params are valid otherwise we'll get incorrect phantom vactive.
1513 */
1514 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1515 }
1516
1517 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1518
1519 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1520 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1521 // so the phantom pipe DLG params can be assigned correctly.
1522 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1523 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1524
1525 /* Check that vlevel requested supports pstate or not
1526 * if not, select the lowest vlevel that supports it
1527 */
1528 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1529 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1530 *vlevel = i;
1531 break;
1532 }
1533 }
1534
1535 if (*vlevel < context->bw_ctx.dml.soc.num_states
1536 && subvp_validate_static_schedulability(dc, context, *vlevel))
1537 found_supported_config = true;
1538 if (found_supported_config) {
1539 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1540 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1541 /* find lowest vlevel that supports the config */
1542 for (i = *vlevel; i >= 0; i--) {
1543 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1544 *vlevel = i;
1545 } else {
1546 break;
1547 }
1548 }
1549 }
1550 }
1551 }
1552
1553 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1554 found_supported_config = false;
1555
1556 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1557 // remove phantom pipes and repopulate dml pipes
1558 if (!found_supported_config) {
1559 dc_state_remove_phantom_streams_and_planes(dc, context);
1560 dc_state_release_phantom_streams_and_planes(dc, context);
1561 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1562 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1563
1564 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1565 /* This may adjust vlevel and maxMpcComb */
1566 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1567 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1568 vba->VoltageLevel = *vlevel;
1569 }
1570 } else {
1571 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1572 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1573
1574 /* Call validate_apply_pipe_split flags after calling DML getters for
1575 * phantom dlg params, or some of the VBA params indicating pipe split
1576 * can be overwritten by the getters.
1577 *
1578 * When setting up SubVP config, all pipes are merged before attempting to
1579 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1580 * and phantom pipes will be split in the regular pipe splitting sequence.
1581 */
1582 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1583 vba->VoltageLevel = *vlevel;
1584 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1585 // until driver has acquired the DMCUB lock to do it safely.
1586 assign_subvp_index(dc, context);
1587 }
1588 }
1589
1590 if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1591 try_odm_power_optimization_and_revalidate(
1592 dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1593
1594 return true;
1595 }
1596
is_dtbclk_required(struct dc * dc,struct dc_state * context)1597 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1598 {
1599 int i;
1600
1601 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1602 if (!context->res_ctx.pipe_ctx[i].stream)
1603 continue;
1604 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1605 return true;
1606 }
1607 return false;
1608 }
1609
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1610 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1611 {
1612 struct dc_crtc_timing patched_crtc_timing;
1613 uint32_t asic_blank_end = 0;
1614 uint32_t asic_blank_start = 0;
1615 uint32_t newVstartup = 0;
1616
1617 patched_crtc_timing = *dc_crtc_timing;
1618
1619 if (patched_crtc_timing.flags.INTERLACE == 1) {
1620 if (patched_crtc_timing.v_front_porch < 2)
1621 patched_crtc_timing.v_front_porch = 2;
1622 } else {
1623 if (patched_crtc_timing.v_front_porch < 1)
1624 patched_crtc_timing.v_front_porch = 1;
1625 }
1626
1627 /* blank_start = frame end - front porch */
1628 asic_blank_start = patched_crtc_timing.v_total -
1629 patched_crtc_timing.v_front_porch;
1630
1631 /* blank_end = blank_start - active */
1632 asic_blank_end = asic_blank_start -
1633 patched_crtc_timing.v_border_bottom -
1634 patched_crtc_timing.v_addressable -
1635 patched_crtc_timing.v_border_top;
1636
1637 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1638
1639 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1640 }
1641
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1642 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1643 display_e2e_pipe_params_st *pipes,
1644 int pipe_cnt, int vlevel)
1645 {
1646 int i, pipe_idx, active_hubp_count = 0;
1647 bool usr_retraining_support = false;
1648 bool unbounded_req_enabled = false;
1649 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1650
1651 dc_assert_fp_enabled();
1652
1653 /* Writeback MCIF_WB arbitration parameters */
1654 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1655
1656 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1657 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1658 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1659 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1660 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1661 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1662 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1663 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1664 != dm_dram_clock_change_unsupported;
1665
1666 /* Pstate change might not be supported by hardware, but it might be
1667 * possible with firmware driven vertical blank stretching.
1668 */
1669 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1670
1671 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1672 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1673 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1674 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1675 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1676 else
1677 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1678
1679 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1680 ASSERT(usr_retraining_support);
1681
1682 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1683 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1684
1685 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1686
1687 if (unbounded_req_enabled && pipe_cnt > 1) {
1688 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1689 ASSERT(false);
1690 unbounded_req_enabled = false;
1691 }
1692
1693 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1694 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1695 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1696
1697 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1698 if (!context->res_ctx.pipe_ctx[i].stream)
1699 continue;
1700 if (context->res_ctx.pipe_ctx[i].plane_state)
1701 active_hubp_count++;
1702 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1703 pipe_idx);
1704 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1705 pipe_idx);
1706 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1707 pipe_idx);
1708 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1709 pipe_idx);
1710
1711 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1712 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1713 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1714 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1715 } else {
1716 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1717 pipe_idx);
1718 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1719 }
1720
1721 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1722 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1723 if (context->res_ctx.pipe_ctx[i].plane_state)
1724 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1725 else
1726 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1727 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1728
1729 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1730
1731 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1732 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1733 else
1734 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1735
1736 /* MALL Allocation Sizes */
1737 /* count from active, top pipes per plane only */
1738 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1739 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1740 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1741 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1742 /* SS: all active surfaces stored in MALL */
1743 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1744 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1745
1746 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1747 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1748 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1749 }
1750 } else {
1751 /* SUBVP: phantom surfaces only stored in MALL */
1752 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1753 }
1754 }
1755
1756 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1757 dcn20_adjust_freesync_v_startup(
1758 &context->res_ctx.pipe_ctx[i].stream->timing,
1759 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1760
1761 pipe_idx++;
1762 }
1763 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1764 if (!active_hubp_count) {
1765 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1766 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1767 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1768 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1769 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1770 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1771 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1772 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1773 }
1774 /*save a original dppclock copy*/
1775 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1776 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1777 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1778 * 1000;
1779 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1780 * 1000;
1781
1782 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1783
1784 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1785
1786 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1787 if (context->res_ctx.pipe_ctx[i].stream)
1788 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1789 }
1790
1791 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1792
1793 if (!context->res_ctx.pipe_ctx[i].stream)
1794 continue;
1795
1796 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1797 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1798 pipe_cnt, pipe_idx);
1799
1800 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1801 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1802 pipe_idx++;
1803 }
1804 }
1805
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1806 static struct pipe_ctx *dcn32_find_split_pipe(
1807 struct dc *dc,
1808 struct dc_state *context,
1809 int old_index)
1810 {
1811 struct pipe_ctx *pipe = NULL;
1812 int i;
1813
1814 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1815 pipe = &context->res_ctx.pipe_ctx[old_index];
1816 pipe->pipe_idx = old_index;
1817 }
1818
1819 if (!pipe)
1820 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1821 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1822 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1823 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1824 pipe = &context->res_ctx.pipe_ctx[i];
1825 pipe->pipe_idx = i;
1826 break;
1827 }
1828 }
1829 }
1830
1831 /*
1832 * May need to fix pipes getting tossed from 1 opp to another on flip
1833 * Add for debugging transient underflow during topology updates:
1834 * ASSERT(pipe);
1835 */
1836 if (!pipe)
1837 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1838 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1839 pipe = &context->res_ctx.pipe_ctx[i];
1840 pipe->pipe_idx = i;
1841 break;
1842 }
1843 }
1844
1845 return pipe;
1846 }
1847
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1848 static bool dcn32_split_stream_for_mpc_or_odm(
1849 const struct dc *dc,
1850 struct resource_context *res_ctx,
1851 struct pipe_ctx *pri_pipe,
1852 struct pipe_ctx *sec_pipe,
1853 bool odm)
1854 {
1855 int pipe_idx = sec_pipe->pipe_idx;
1856 const struct resource_pool *pool = dc->res_pool;
1857
1858 DC_LOGGER_INIT(dc->ctx->logger);
1859
1860 if (odm && pri_pipe->plane_state) {
1861 /* ODM + window MPO, where MPO window is on left half only */
1862 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1863 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1864
1865 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1866 __func__,
1867 pri_pipe->pipe_idx);
1868 return true;
1869 }
1870
1871 /* ODM + window MPO, where MPO window is on right half only */
1872 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1873
1874 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1875 __func__,
1876 pri_pipe->pipe_idx);
1877 return true;
1878 }
1879 }
1880
1881 *sec_pipe = *pri_pipe;
1882
1883 sec_pipe->pipe_idx = pipe_idx;
1884 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1885 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1886 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1887 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1888 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1889 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1890 sec_pipe->stream_res.dsc = NULL;
1891 if (odm) {
1892 if (pri_pipe->next_odm_pipe) {
1893 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1894 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1895 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1896 }
1897 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1898 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1899 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1900 }
1901 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1902 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1903 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1904 }
1905 pri_pipe->next_odm_pipe = sec_pipe;
1906 sec_pipe->prev_odm_pipe = pri_pipe;
1907 ASSERT(sec_pipe->top_pipe == NULL);
1908
1909 if (!sec_pipe->top_pipe)
1910 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1911 else
1912 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1913 if (sec_pipe->stream->timing.flags.DSC == 1) {
1914 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1915 ASSERT(sec_pipe->stream_res.dsc);
1916 if (sec_pipe->stream_res.dsc == NULL)
1917 return false;
1918 }
1919 } else {
1920 if (pri_pipe->bottom_pipe) {
1921 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1922 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1923 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1924 }
1925 pri_pipe->bottom_pipe = sec_pipe;
1926 sec_pipe->top_pipe = pri_pipe;
1927
1928 ASSERT(pri_pipe->plane_state);
1929 }
1930
1931 return true;
1932 }
1933
dcn32_apply_merge_split_flags_helper(struct dc * dc,struct dc_state * context,bool * repopulate_pipes,int * split,bool * merge)1934 static bool dcn32_apply_merge_split_flags_helper(
1935 struct dc *dc,
1936 struct dc_state *context,
1937 bool *repopulate_pipes,
1938 int *split,
1939 bool *merge)
1940 {
1941 int i, pipe_idx;
1942 bool newly_split[MAX_PIPES] = { false };
1943 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1944
1945 if (dc->config.enable_windowed_mpo_odm) {
1946 if (update_pipes_with_split_flags(
1947 dc, context, vba, split, merge))
1948 *repopulate_pipes = true;
1949 } else {
1950
1951 /* the code below will be removed once windowed mpo odm is fully
1952 * enabled.
1953 */
1954 /* merge pipes if necessary */
1955 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1956 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1957
1958 /*skip pipes that don't need merging*/
1959 if (!merge[i])
1960 continue;
1961
1962 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1963 if (pipe->prev_odm_pipe) {
1964 /*split off odm pipe*/
1965 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1966 if (pipe->next_odm_pipe)
1967 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1968
1969 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1970 if (pipe->bottom_pipe) {
1971 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1972 /*MPC split rules will handle this case*/
1973 pipe->bottom_pipe->top_pipe = NULL;
1974 } else {
1975 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1976 * the previous ODM pipe and its associated stream assets
1977 */
1978 if (pipe->prev_odm_pipe->bottom_pipe) {
1979 /* 3 plane MPO*/
1980 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1981 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1982 } else {
1983 /* 2 plane MPO*/
1984 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1985 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1986 }
1987
1988 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1989 }
1990 }
1991
1992 if (pipe->top_pipe) {
1993 pipe->top_pipe->bottom_pipe = NULL;
1994 }
1995
1996 pipe->bottom_pipe = NULL;
1997 pipe->next_odm_pipe = NULL;
1998 pipe->plane_state = NULL;
1999 pipe->stream = NULL;
2000 pipe->top_pipe = NULL;
2001 pipe->prev_odm_pipe = NULL;
2002 if (pipe->stream_res.dsc)
2003 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2004 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2005 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2006 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2007 *repopulate_pipes = true;
2008 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2009 struct pipe_ctx *top_pipe = pipe->top_pipe;
2010 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2011
2012 top_pipe->bottom_pipe = bottom_pipe;
2013 if (bottom_pipe)
2014 bottom_pipe->top_pipe = top_pipe;
2015
2016 pipe->top_pipe = NULL;
2017 pipe->bottom_pipe = NULL;
2018 pipe->plane_state = NULL;
2019 pipe->stream = NULL;
2020 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2021 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2022 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2023 *repopulate_pipes = true;
2024 } else
2025 ASSERT(0); /* Should never try to merge master pipe */
2026
2027 }
2028
2029 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2030 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2031 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2032 struct pipe_ctx *hsplit_pipe = NULL;
2033 bool odm;
2034 int old_index = -1;
2035
2036 if (!pipe->stream || newly_split[i])
2037 continue;
2038
2039 pipe_idx++;
2040 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2041
2042 if (!pipe->plane_state && !odm)
2043 continue;
2044
2045 if (split[i]) {
2046 if (odm) {
2047 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2048 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2049 else if (old_pipe->next_odm_pipe)
2050 old_index = old_pipe->next_odm_pipe->pipe_idx;
2051 } else {
2052 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2053 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2054 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2055 else if (old_pipe->bottom_pipe &&
2056 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2057 old_index = old_pipe->bottom_pipe->pipe_idx;
2058 }
2059 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2060 ASSERT(hsplit_pipe);
2061 if (!hsplit_pipe)
2062 return false;
2063
2064 if (!dcn32_split_stream_for_mpc_or_odm(
2065 dc, &context->res_ctx,
2066 pipe, hsplit_pipe, odm))
2067 return false;
2068
2069 newly_split[hsplit_pipe->pipe_idx] = true;
2070 *repopulate_pipes = true;
2071 }
2072 if (split[i] == 4) {
2073 struct pipe_ctx *pipe_4to1;
2074
2075 if (odm && old_pipe->next_odm_pipe)
2076 old_index = old_pipe->next_odm_pipe->pipe_idx;
2077 else if (!odm && old_pipe->bottom_pipe &&
2078 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2079 old_index = old_pipe->bottom_pipe->pipe_idx;
2080 else
2081 old_index = -1;
2082 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2083 ASSERT(pipe_4to1);
2084 if (!pipe_4to1)
2085 return false;
2086 if (!dcn32_split_stream_for_mpc_or_odm(
2087 dc, &context->res_ctx,
2088 pipe, pipe_4to1, odm))
2089 return false;
2090 newly_split[pipe_4to1->pipe_idx] = true;
2091
2092 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2093 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2094 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2095 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2096 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2097 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2098 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2099 else
2100 old_index = -1;
2101 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2102 ASSERT(pipe_4to1);
2103 if (!pipe_4to1)
2104 return false;
2105 if (!dcn32_split_stream_for_mpc_or_odm(
2106 dc, &context->res_ctx,
2107 hsplit_pipe, pipe_4to1, odm))
2108 return false;
2109 newly_split[pipe_4to1->pipe_idx] = true;
2110 }
2111 if (odm)
2112 dcn20_build_mapped_resource(dc, context, pipe->stream);
2113 }
2114
2115 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2116 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2117
2118 if (pipe->plane_state) {
2119 if (!resource_build_scaling_params(pipe))
2120 return false;
2121 }
2122 }
2123
2124 for (i = 0; i < context->stream_count; i++) {
2125 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
2126 context->streams[i]);
2127
2128 if (otg_master)
2129 resource_build_test_pattern_params(&context->res_ctx, otg_master);
2130 }
2131 }
2132 return true;
2133 }
2134
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)2135 bool dcn32_internal_validate_bw(struct dc *dc,
2136 struct dc_state *context,
2137 display_e2e_pipe_params_st *pipes,
2138 int *pipe_cnt_out,
2139 int *vlevel_out,
2140 bool fast_validate)
2141 {
2142 bool out = false;
2143 bool repopulate_pipes = false;
2144 int split[MAX_PIPES] = { 0 };
2145 bool merge[MAX_PIPES] = { false };
2146 int pipe_cnt, i, pipe_idx;
2147 int vlevel = context->bw_ctx.dml.soc.num_states;
2148 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2149
2150 dc_assert_fp_enabled();
2151
2152 ASSERT(pipes);
2153 if (!pipes)
2154 return false;
2155
2156 /* For each full update, remove all existing phantom pipes first */
2157 dc_state_remove_phantom_streams_and_planes(dc, context);
2158 dc_state_release_phantom_streams_and_planes(dc, context);
2159
2160 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2161
2162 for (i = 0; i < context->stream_count; i++)
2163 resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1);
2164 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2165
2166 if (!pipe_cnt) {
2167 out = true;
2168 goto validate_out;
2169 }
2170
2171 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2172 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
2173
2174 if (!fast_validate) {
2175 if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
2176 &pipe_cnt, &repopulate_pipes))
2177 goto validate_fail;
2178 }
2179
2180 if (fast_validate ||
2181 (dc->debug.dml_disallow_alternate_prefetch_modes &&
2182 (vlevel == context->bw_ctx.dml.soc.num_states ||
2183 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
2184 /*
2185 * If dml_disallow_alternate_prefetch_modes is false, then we have already
2186 * tried alternate prefetch modes during full validation.
2187 *
2188 * If mode is unsupported or there is no p-state support, then
2189 * fall back to favouring voltage.
2190 *
2191 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
2192 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
2193 */
2194 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2195 dm_prefetch_support_none;
2196
2197 context->bw_ctx.dml.validate_max_state = fast_validate;
2198 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2199
2200 context->bw_ctx.dml.validate_max_state = false;
2201
2202 if (vlevel < context->bw_ctx.dml.soc.num_states) {
2203 memset(split, 0, sizeof(split));
2204 memset(merge, 0, sizeof(merge));
2205 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2206 /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
2207 vba->VoltageLevel = vlevel;
2208 }
2209 }
2210
2211 dml_log_mode_support_params(&context->bw_ctx.dml);
2212
2213 if (vlevel == context->bw_ctx.dml.soc.num_states)
2214 goto validate_fail;
2215
2216 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2217 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2218 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2219
2220 if (!pipe->stream)
2221 continue;
2222
2223 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2224 && !dc->config.enable_windowed_mpo_odm
2225 && pipe->plane_state && mpo_pipe
2226 && memcmp(&mpo_pipe->plane_state->clip_rect,
2227 &pipe->stream->src,
2228 sizeof(struct rect)) != 0) {
2229 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2230 goto validate_fail;
2231 }
2232 pipe_idx++;
2233 }
2234
2235 if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
2236 goto validate_fail;
2237
2238 /* Actual dsc count per stream dsc validation*/
2239 if (!dcn20_validate_dsc(dc, context)) {
2240 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2241 goto validate_fail;
2242 }
2243
2244 if (repopulate_pipes) {
2245 int flag_max_mpc_comb = vba->maxMpcComb;
2246 int flag_vlevel = vlevel;
2247 int i;
2248
2249 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2250 if (!dc->config.enable_windowed_mpo_odm)
2251 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2252
2253 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2254 * we have to re-calculate the DET allocation and run through DML once more to
2255 * ensure all the params are calculated correctly. We do not need to run the
2256 * pipe split check again after this call (pipes are already split / merged).
2257 * */
2258 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2259 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2260
2261 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2262
2263 if (vlevel == context->bw_ctx.dml.soc.num_states) {
2264 /* failed after DET size changes */
2265 goto validate_fail;
2266 } else if (flag_max_mpc_comb == 0 &&
2267 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2268 /* check the context constructed with pipe split flags is still valid*/
2269 bool flags_valid = false;
2270 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2271 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2272 vba->maxMpcComb = flag_max_mpc_comb;
2273 vba->VoltageLevel = i;
2274 vlevel = i;
2275 flags_valid = true;
2276 break;
2277 }
2278 }
2279
2280 /* this should never happen */
2281 if (!flags_valid)
2282 goto validate_fail;
2283 }
2284 }
2285 *vlevel_out = vlevel;
2286 *pipe_cnt_out = pipe_cnt;
2287
2288 out = true;
2289 goto validate_out;
2290
2291 validate_fail:
2292 out = false;
2293
2294 validate_out:
2295 return out;
2296 }
2297
2298
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2299 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2300 display_e2e_pipe_params_st *pipes,
2301 int pipe_cnt,
2302 int vlevel)
2303 {
2304 int i, pipe_idx, vlevel_temp = 0;
2305 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2306 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2307 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2308 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2309 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2310 dm_dram_clock_change_unsupported;
2311 unsigned int dummy_latency_index = 0;
2312 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2313 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2314 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2315 unsigned int min_dram_speed_mts_margin;
2316 bool need_fclk_lat_as_dummy = false;
2317 bool is_subvp_p_drr = false;
2318 struct dc_stream_state *fpo_candidate_stream = NULL;
2319 struct dc_stream_status *stream_status = NULL;
2320
2321 dc_assert_fp_enabled();
2322
2323 /* need to find dummy latency index for subvp */
2324 if (subvp_in_use) {
2325 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2326 if (!pstate_en) {
2327 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2328 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2329 pstate_en = true;
2330 is_subvp_p_drr = true;
2331 }
2332 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2333 context, pipes, pipe_cnt, vlevel);
2334
2335 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2336 * scheduled correctly to account for dummy pstate.
2337 */
2338 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2339 need_fclk_lat_as_dummy = true;
2340 context->bw_ctx.dml.soc.fclk_change_latency_us =
2341 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2342 }
2343 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2344 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2345 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2346 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2347 if (is_subvp_p_drr) {
2348 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2349 }
2350 }
2351
2352 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2353 for (i = 0; i < context->stream_count; i++) {
2354 stream_status = NULL;
2355 if (context->streams[i])
2356 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2357 if (stream_status)
2358 stream_status->fpo_in_use = false;
2359 }
2360
2361 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2362 pstate_en && vlevel != 0)) {
2363 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2364 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2365 if (fpo_candidate_stream) {
2366 stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
2367 if (stream_status)
2368 stream_status->fpo_in_use = true;
2369 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2370 }
2371
2372 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2373 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2374 context, pipes, pipe_cnt, vlevel);
2375
2376 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2377 * we reinstate the original dram_clock_change_latency_us on the context
2378 * and all variables that may have changed up to this point, except the
2379 * newly found dummy_latency_index
2380 */
2381 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2382 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2383 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2384 * prefetch is scheduled correctly to account for dummy pstate.
2385 */
2386 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2387 need_fclk_lat_as_dummy = true;
2388 context->bw_ctx.dml.soc.fclk_change_latency_us =
2389 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2390 }
2391 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2392 if (vlevel_temp < vlevel) {
2393 vlevel = vlevel_temp;
2394 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2395 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2396 pstate_en = true;
2397 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2398 } else {
2399 /* Restore FCLK latency and re-run validation to go back to original validation
2400 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2401 * voltage level)
2402 */
2403 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2404 for (i = 0; i < context->stream_count; i++) {
2405 stream_status = NULL;
2406 if (context->streams[i])
2407 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2408 if (stream_status)
2409 stream_status->fpo_in_use = false;
2410 }
2411 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2412 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2413 }
2414 }
2415 }
2416
2417 /* Set B:
2418 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2419 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2420 * calculations to cover bootup clocks.
2421 * DCFCLK: soc.clock_limits[2] when available
2422 * UCLK: soc.clock_limits[2] when available
2423 */
2424 if (dcn3_2_soc.num_states > 2) {
2425 vlevel_temp = 2;
2426 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2427 } else
2428 dcfclk = 615; //DCFCLK Vmin_lv
2429
2430 pipes[0].clks_cfg.voltage = vlevel_temp;
2431 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2432 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2433
2434 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2435 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2436 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2437 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2438 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2439 }
2440 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2441 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2442 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2443 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2444 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2445 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2446 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2447 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2448 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2449 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2450
2451 /* Set D:
2452 * All clocks min.
2453 * DCFCLK: Min, as reported by PM FW when available
2454 * UCLK : Min, as reported by PM FW when available
2455 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2456 */
2457
2458 /*
2459 if (dcn3_2_soc.num_states > 2) {
2460 vlevel_temp = 0;
2461 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2462 } else
2463 dcfclk = 615; //DCFCLK Vmin_lv
2464
2465 pipes[0].clks_cfg.voltage = vlevel_temp;
2466 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2467 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2468
2469 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2470 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2471 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2472 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2473 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2474 }
2475 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2476 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2477 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2478 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2479 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2480 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2481 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2482 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2483 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2484 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2485 */
2486
2487 /* Set C, for Dummy P-State:
2488 * All clocks min.
2489 * DCFCLK: Min, as reported by PM FW, when available
2490 * UCLK : Min, as reported by PM FW, when available
2491 * pstate latency as per UCLK state dummy pstate latency
2492 */
2493
2494 // For Set A and Set C use values from validation
2495 pipes[0].clks_cfg.voltage = vlevel;
2496 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2497 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2498
2499 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2500 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2501 }
2502
2503 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2504 min_dram_speed_mts = dram_speed_from_validation;
2505 min_dram_speed_mts_margin = 160;
2506
2507 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2508 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2509
2510 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2511 dm_dram_clock_change_unsupported) {
2512 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2513
2514 min_dram_speed_mts =
2515 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2516 }
2517
2518 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2519 /* find largest table entry that is lower than dram speed,
2520 * but lower than DPM0 still uses DPM0
2521 */
2522 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2523 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2524 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2525 break;
2526 }
2527
2528 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2529 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2530
2531 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2532 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2533 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2534 }
2535
2536 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2537 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2538 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2539 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2540 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2541 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2544 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2545 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2546 * value.
2547 */
2548 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2549 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2550
2551 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2552 /* The only difference between A and C is p-state latency, if p-state is not supported
2553 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2554 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2555 */
2556 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2557 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2558 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2559 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2560 */
2561 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2562 } else {
2563 /* Set A:
2564 * All clocks min.
2565 * DCFCLK: Min, as reported by PM FW, when available
2566 * UCLK: Min, as reported by PM FW, when available
2567 */
2568
2569 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2570 */
2571 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2572 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2573 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2574
2575 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2576 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2577 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2578 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2579 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2580 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2581 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2582 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2583 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2584 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2585 }
2586
2587 /* Make set D = set A since we do not optimized watermarks for MALL */
2588 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2589
2590 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2591 if (!context->res_ctx.pipe_ctx[i].stream)
2592 continue;
2593
2594 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2595 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2596
2597 if (dc->config.forced_clocks) {
2598 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2599 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2600 }
2601 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2602 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2603 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2604 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2605
2606 pipe_idx++;
2607 }
2608
2609 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2610
2611 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2612 if (need_fclk_lat_as_dummy)
2613 context->bw_ctx.dml.soc.fclk_change_latency_us =
2614 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2615
2616 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2617
2618 if (!pstate_en)
2619 /* Restore full p-state latency */
2620 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2621 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2622
2623 /* revert fclk lat changes if required */
2624 if (need_fclk_lat_as_dummy)
2625 context->bw_ctx.dml.soc.fclk_change_latency_us =
2626 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2627 }
2628
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2629 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2630 unsigned int *optimal_dcfclk,
2631 unsigned int *optimal_fclk)
2632 {
2633 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2634
2635 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2636 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2637 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2638 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2639
2640 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2641
2642 if (optimal_fclk)
2643 *optimal_fclk = bw_from_dram /
2644 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2645
2646 if (optimal_dcfclk)
2647 *optimal_dcfclk = bw_from_dram /
2648 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2649 }
2650
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2651 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2652 unsigned int index)
2653 {
2654 int i;
2655
2656 if (*num_entries == 0)
2657 return;
2658
2659 for (i = index; i < *num_entries - 1; i++) {
2660 table[i] = table[i + 1];
2661 }
2662 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2663 }
2664
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2665 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2666 {
2667 int i;
2668 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2669 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2670
2671 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2672 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2673 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2674 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2675 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2676 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2677 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2678 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2679 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2680 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2681 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2682 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2683 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2684 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2685 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2686 }
2687
2688 /* Scan through clock values we currently have and if they are 0,
2689 * then populate it with dcn3_2_soc.clock_limits[] value.
2690 *
2691 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2692 * 0, will cause it to skip building the clock table.
2693 */
2694 if (max_dcfclk_mhz == 0)
2695 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2696 if (max_dispclk_mhz == 0)
2697 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2698 if (max_dtbclk_mhz == 0)
2699 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2700 if (max_uclk_mhz == 0)
2701 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2702 }
2703
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2704 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2705 struct _vcs_dpi_voltage_scaling_st *second_entry)
2706 {
2707 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2708 *first_entry = *second_entry;
2709 *second_entry = temp_entry;
2710 }
2711
2712 /*
2713 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2714 */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2715 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2716 {
2717 unsigned int start_index = 0;
2718 unsigned int end_index = 0;
2719 unsigned int current_bw = 0;
2720
2721 for (int i = 0; i < (*num_entries - 1); i++) {
2722 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2723 current_bw = table[i].net_bw_in_kbytes_sec;
2724 start_index = i;
2725 end_index = ++i;
2726
2727 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2728 end_index = ++i;
2729 }
2730
2731 if (start_index != end_index) {
2732 for (int j = start_index; j < end_index; j++) {
2733 for (int k = start_index; k < end_index; k++) {
2734 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2735 swap_table_entries(&table[k], &table[k+1]);
2736 }
2737 }
2738 }
2739
2740 start_index = 0;
2741 end_index = 0;
2742
2743 }
2744 }
2745
2746 /*
2747 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2748 * and remove entries that do not
2749 */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2750 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2751 {
2752 for (int i = 0; i < (*num_entries - 1); i++) {
2753 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2754 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2755 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2756 remove_entry_from_table_at_index(table, num_entries, i);
2757 }
2758 }
2759 }
2760
2761 /*
2762 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2763 * Input:
2764 * max_clk_limit - struct containing the desired clock timings
2765 * Output:
2766 * curr_clk_limit - struct containing the timings that need to be overwritten
2767 * Return: 0 upon success, non-zero for failure
2768 */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2769 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2770 struct clk_limit_table_entry *curr_clk_limit)
2771 {
2772 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2773 return -1; //invalid parameters
2774
2775 //only overwrite if desired max clock frequency is initialized
2776 if (max_clk_limit->dcfclk_mhz != 0)
2777 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2778
2779 if (max_clk_limit->fclk_mhz != 0)
2780 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2781
2782 if (max_clk_limit->memclk_mhz != 0)
2783 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2784
2785 if (max_clk_limit->socclk_mhz != 0)
2786 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2787
2788 if (max_clk_limit->dtbclk_mhz != 0)
2789 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2790
2791 if (max_clk_limit->dispclk_mhz != 0)
2792 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2793
2794 return 0;
2795 }
2796
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2797 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2798 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2799 {
2800 int i, j;
2801 struct _vcs_dpi_voltage_scaling_st entry = {0};
2802 struct clk_limit_table_entry max_clk_data = {0};
2803
2804 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2805
2806 static const unsigned int num_dcfclk_stas = 5;
2807 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2808
2809 unsigned int num_uclk_dpms = 0;
2810 unsigned int num_fclk_dpms = 0;
2811 unsigned int num_dcfclk_dpms = 0;
2812
2813 unsigned int num_dc_uclk_dpms = 0;
2814 unsigned int num_dc_fclk_dpms = 0;
2815 unsigned int num_dc_dcfclk_dpms = 0;
2816
2817 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2818 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2819 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2820 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2821 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2822 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2823 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2824 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2825 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2826 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2827 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2828 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2829 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2830 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2831 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2832
2833 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2834 num_uclk_dpms++;
2835 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2836 num_dc_uclk_dpms++;
2837 }
2838 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2839 num_fclk_dpms++;
2840 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2841 num_dc_fclk_dpms++;
2842 }
2843 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2844 num_dcfclk_dpms++;
2845 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2846 num_dc_dcfclk_dpms++;
2847 }
2848 }
2849
2850 if (!disable_dc_mode_overwrite) {
2851 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2852 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2853 num_uclk_dpms = num_dc_uclk_dpms;
2854 num_fclk_dpms = num_dc_fclk_dpms;
2855 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2856 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2857 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2858 }
2859
2860 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2861 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2862
2863 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2864 return -1;
2865
2866 if (max_clk_data.dppclk_mhz == 0)
2867 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2868
2869 if (max_clk_data.fclk_mhz == 0)
2870 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2871 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2872 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2873
2874 if (max_clk_data.phyclk_mhz == 0)
2875 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2876
2877 *num_entries = 0;
2878 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2879 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2880 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2881 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2882 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2883 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2884 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2885
2886 // Insert all the DCFCLK STAs
2887 for (i = 0; i < num_dcfclk_stas; i++) {
2888 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2889 entry.fabricclk_mhz = 0;
2890 entry.dram_speed_mts = 0;
2891
2892 get_optimal_ntuple(&entry);
2893 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2894 insert_entry_into_table_sorted(table, num_entries, &entry);
2895 }
2896
2897 // Insert the max DCFCLK
2898 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2899 entry.fabricclk_mhz = 0;
2900 entry.dram_speed_mts = 0;
2901
2902 get_optimal_ntuple(&entry);
2903 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2904 insert_entry_into_table_sorted(table, num_entries, &entry);
2905
2906 // Insert the UCLK DPMS
2907 for (i = 0; i < num_uclk_dpms; i++) {
2908 entry.dcfclk_mhz = 0;
2909 entry.fabricclk_mhz = 0;
2910 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2911
2912 get_optimal_ntuple(&entry);
2913 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2914 insert_entry_into_table_sorted(table, num_entries, &entry);
2915 }
2916
2917 // If FCLK is coarse grained, insert individual DPMs.
2918 if (num_fclk_dpms > 2) {
2919 for (i = 0; i < num_fclk_dpms; i++) {
2920 entry.dcfclk_mhz = 0;
2921 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2922 entry.dram_speed_mts = 0;
2923
2924 get_optimal_ntuple(&entry);
2925 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2926 insert_entry_into_table_sorted(table, num_entries, &entry);
2927 }
2928 }
2929 // If FCLK fine grained, only insert max
2930 else {
2931 entry.dcfclk_mhz = 0;
2932 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2933 entry.dram_speed_mts = 0;
2934
2935 get_optimal_ntuple(&entry);
2936 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2937 insert_entry_into_table_sorted(table, num_entries, &entry);
2938 }
2939
2940 // At this point, the table contains all "points of interest" based on
2941 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2942 // ratios (by derate, are exact).
2943
2944 // Remove states that require higher clocks than are supported
2945 for (i = *num_entries - 1; i >= 0 ; i--) {
2946 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2947 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2948 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2949 remove_entry_from_table_at_index(table, num_entries, i);
2950 }
2951
2952 // Insert entry with all max dc limits without bandwidth matching
2953 if (!disable_dc_mode_overwrite) {
2954 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2955
2956 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2957 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2958 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2959
2960 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2961 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2962
2963 sort_entries_with_same_bw(table, num_entries);
2964 remove_inconsistent_entries(table, num_entries);
2965 }
2966
2967 // At this point, the table only contains supported points of interest
2968 // it could be used as is, but some states may be redundant due to
2969 // coarse grained nature of some clocks, so we want to round up to
2970 // coarse grained DPMs and remove duplicates.
2971
2972 // Round up UCLKs
2973 for (i = *num_entries - 1; i >= 0 ; i--) {
2974 for (j = 0; j < num_uclk_dpms; j++) {
2975 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2976 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2977 break;
2978 }
2979 }
2980 }
2981
2982 // If FCLK is coarse grained, round up to next DPMs
2983 if (num_fclk_dpms > 2) {
2984 for (i = *num_entries - 1; i >= 0 ; i--) {
2985 for (j = 0; j < num_fclk_dpms; j++) {
2986 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2987 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2988 break;
2989 }
2990 }
2991 }
2992 }
2993 // Otherwise, round up to minimum.
2994 else {
2995 for (i = *num_entries - 1; i >= 0 ; i--) {
2996 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2997 table[i].fabricclk_mhz = min_fclk_mhz;
2998 }
2999 }
3000 }
3001
3002 // Round DCFCLKs up to minimum
3003 for (i = *num_entries - 1; i >= 0 ; i--) {
3004 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3005 table[i].dcfclk_mhz = min_dcfclk_mhz;
3006 }
3007 }
3008
3009 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3010 i = 0;
3011 while (i < *num_entries - 1) {
3012 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3013 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3014 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3015 remove_entry_from_table_at_index(table, num_entries, i + 1);
3016 else
3017 i++;
3018 }
3019
3020 // Fix up the state indicies
3021 for (i = *num_entries - 1; i >= 0 ; i--) {
3022 table[i].state = i;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /*
3029 * dcn32_update_bw_bounding_box
3030 *
3031 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
3032 * spreadsheet with actual values as per dGPU SKU:
3033 * - with passed few options from dc->config
3034 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
3035 * need to get it from PM FW)
3036 * - with passed latency values (passed in ns units) in dc-> bb override for
3037 * debugging purposes
3038 * - with passed latencies from VBIOS (in 100_ns units) if available for
3039 * certain dGPU SKU
3040 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3041 * of the same ASIC)
3042 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3043 * FW for different clocks (which might differ for certain dGPU SKU of the
3044 * same ASIC)
3045 */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)3046 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3047 {
3048 dc_assert_fp_enabled();
3049
3050 /* Overrides from dc->config options */
3051 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3052
3053 /* Override from passed dc->bb_overrides if available*/
3054 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3055 && dc->bb_overrides.sr_exit_time_ns) {
3056 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3057 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3058 }
3059
3060 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3061 != dc->bb_overrides.sr_enter_plus_exit_time_ns
3062 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3063 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3064 dcn3_2_soc.sr_enter_plus_exit_time_us =
3065 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3066 }
3067
3068 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3069 && dc->bb_overrides.urgent_latency_ns) {
3070 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3071 dc->dml2_options.bbox_overrides.urgent_latency_us =
3072 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3073 }
3074
3075 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3076 != dc->bb_overrides.dram_clock_change_latency_ns
3077 && dc->bb_overrides.dram_clock_change_latency_ns) {
3078 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3079 dcn3_2_soc.dram_clock_change_latency_us =
3080 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3081 }
3082
3083 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3084 != dc->bb_overrides.fclk_clock_change_latency_ns
3085 && dc->bb_overrides.fclk_clock_change_latency_ns) {
3086 dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3087 dcn3_2_soc.fclk_change_latency_us =
3088 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3089 }
3090
3091 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3092 != dc->bb_overrides.dummy_clock_change_latency_ns
3093 && dc->bb_overrides.dummy_clock_change_latency_ns) {
3094 dcn3_2_soc.dummy_pstate_latency_us =
3095 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3096 }
3097
3098 /* Override from VBIOS if VBIOS bb_info available */
3099 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3100 struct bp_soc_bb_info bb_info = {0};
3101
3102 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3103 if (bb_info.dram_clock_change_latency_100ns > 0)
3104 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3105 dcn3_2_soc.dram_clock_change_latency_us =
3106 bb_info.dram_clock_change_latency_100ns * 10;
3107
3108 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3109 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3110 dcn3_2_soc.sr_enter_plus_exit_time_us =
3111 bb_info.dram_sr_enter_exit_latency_100ns * 10;
3112
3113 if (bb_info.dram_sr_exit_latency_100ns > 0)
3114 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3115 dcn3_2_soc.sr_exit_time_us =
3116 bb_info.dram_sr_exit_latency_100ns * 10;
3117 }
3118 }
3119
3120 /* Override from VBIOS for num_chan */
3121 if (dc->ctx->dc_bios->vram_info.num_chans) {
3122 dc->dml2_options.bbox_overrides.dram_num_chan =
3123 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3124 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3125 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3126 }
3127
3128 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3129 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3130 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3131
3132 /* DML DSC delay factor workaround */
3133 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3134
3135 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3136
3137 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3138 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3139 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3140 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3141 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3142 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3143 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3144
3145 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3146 if (bw_params->clk_table.entries[0].memclk_mhz) {
3147 if (dc->debug.use_legacy_soc_bb_mechanism) {
3148 unsigned int i = 0, j = 0, num_states = 0;
3149
3150 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3151 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3152 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3153 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3154 unsigned int min_dcfclk = UINT_MAX;
3155 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3156 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3157 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3158 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3159 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3160
3161 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3162 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3163 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3164 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3165 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3166 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3167 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3168 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3169 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3170 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3171 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3172 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3173 }
3174 if (min_dcfclk > dcfclk_sta_targets[0])
3175 dcfclk_sta_targets[0] = min_dcfclk;
3176 if (!max_dcfclk_mhz)
3177 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3178 if (!max_dispclk_mhz)
3179 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3180 if (!max_dppclk_mhz)
3181 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3182 if (!max_phyclk_mhz)
3183 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3184
3185 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3186 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3187 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3188 num_dcfclk_sta_targets++;
3189 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3190 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3191 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3192 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3193 dcfclk_sta_targets[i] = max_dcfclk_mhz;
3194 break;
3195 }
3196 }
3197 // Update size of array since we "removed" duplicates
3198 num_dcfclk_sta_targets = i + 1;
3199 }
3200
3201 num_uclk_states = bw_params->clk_table.num_entries;
3202
3203 // Calculate optimal dcfclk for each uclk
3204 for (i = 0; i < num_uclk_states; i++) {
3205 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3206 &optimal_dcfclk_for_uclk[i], NULL);
3207 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3208 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3209 }
3210 }
3211
3212 // Calculate optimal uclk for each dcfclk sta target
3213 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3214 for (j = 0; j < num_uclk_states; j++) {
3215 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3216 optimal_uclk_for_dcfclk_sta_targets[i] =
3217 bw_params->clk_table.entries[j].memclk_mhz * 16;
3218 break;
3219 }
3220 }
3221 }
3222
3223 i = 0;
3224 j = 0;
3225 // create the final dcfclk and uclk table
3226 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3227 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3228 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3229 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3230 } else {
3231 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3232 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3233 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3234 } else {
3235 j = num_uclk_states;
3236 }
3237 }
3238 }
3239
3240 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3241 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3242 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3243 }
3244
3245 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3246 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3247 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3248 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3249 }
3250
3251 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
3252 * MAX_NUM_DPM_LVL is 8.
3253 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
3254 * DC__VOLTAGE_STATES is 40.
3255 */
3256 if (num_states > MAX_NUM_DPM_LVL) {
3257 ASSERT(0);
3258 return;
3259 }
3260
3261 dcn3_2_soc.num_states = num_states;
3262 for (i = 0; i < dcn3_2_soc.num_states; i++) {
3263 dcn3_2_soc.clock_limits[i].state = i;
3264 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3265 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3266
3267 /* Fill all states with max values of all these clocks */
3268 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3269 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
3270 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
3271 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
3272
3273 /* Populate from bw_params for DTBCLK, SOCCLK */
3274 if (i > 0) {
3275 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3276 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3277 } else {
3278 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3279 }
3280 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3281 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3282 }
3283
3284 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3285 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3286 else
3287 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3288
3289 if (!dram_speed_mts[i] && i > 0)
3290 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3291 else
3292 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3293
3294 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3295 /* PHYCLK_D18, PHYCLK_D32 */
3296 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3297 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3298 }
3299 } else {
3300 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3301 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3302 }
3303
3304 /* Re-init DML with updated bb */
3305 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3306 if (dc->current_state)
3307 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3308 }
3309
3310 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3311 unsigned int i = 0;
3312
3313 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3314
3315 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3316 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3317
3318 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3319 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3320
3321 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3322 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3323
3324 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3325 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3326
3327 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3328 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3329
3330 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3331 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3332
3333 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3334 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3335
3336 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3337 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3338 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3339 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3340 }
3341
3342 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3343 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3344 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3345 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3346 }
3347
3348 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3349 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3350 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3351 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3352 }
3353
3354 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3355 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3356 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3357 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3358 }
3359
3360 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3361 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3362 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3363 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3364 }
3365
3366 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3367 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3368 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3369 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3370 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3371 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3372 }
3373 }
3374 }
3375 }
3376
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)3377 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3378 int pipe_cnt)
3379 {
3380 dc_assert_fp_enabled();
3381
3382 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3383 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3384 }
3385
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)3386 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3387 {
3388 bool allow = false;
3389 uint32_t refresh_rate = 0;
3390 uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3391 uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3392 uint32_t i;
3393
3394 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3395 uint32_t width = subvp_active_margin_list.res[i].width;
3396 uint32_t height = subvp_active_margin_list.res[i].height;
3397
3398 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3399 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3400 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3401 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3402
3403 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3404 dcn32_check_native_scaling_for_res(pipe, width, height)) {
3405 allow = true;
3406 break;
3407 }
3408 }
3409 return allow;
3410 }
3411
3412 /**
3413 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3414 *
3415 * @dc: Current DC state
3416 * @context: New DC state to be programmed
3417 * @pipe: Pipe to be considered for use in subvp
3418 *
3419 * On high refresh rate display configs, we will allow subvp under the following conditions:
3420 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3421 * 2. Refresh rate is between 120hz - 165hz
3422 * 3. No scaling
3423 * 4. Freesync is inactive
3424 * 5. For single display cases, freesync must be disabled
3425 *
3426 * Return: True if pipe can be used for subvp, false otherwise
3427 */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3428 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3429 {
3430 bool allow = false;
3431 uint32_t refresh_rate = 0;
3432 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3433 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3434 uint32_t min_refresh = subvp_max_refresh;
3435 uint32_t i;
3436
3437 /* Only allow SubVP on high refresh displays if all connected displays
3438 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3439 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3440 */
3441 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3442 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3443
3444 if (!pipe_ctx->stream)
3445 continue;
3446 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3447 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3448 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3449
3450 if (refresh_rate < min_refresh)
3451 min_refresh = refresh_rate;
3452 }
3453
3454 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3455 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3456 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3457 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3458 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3459 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3460 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3461 uint32_t width = subvp_high_refresh_list.res[i].width;
3462 uint32_t height = subvp_high_refresh_list.res[i].height;
3463
3464 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3465 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3466 allow = true;
3467 break;
3468 }
3469 }
3470 }
3471 }
3472 }
3473 return allow;
3474 }
3475
3476 /**
3477 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3478 *
3479 * @dc: Current DC state
3480 * @context: New DC state to be programmed
3481 *
3482 * Return: Max vratio for prefetch
3483 */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3484 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3485 {
3486 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3487 int i;
3488
3489 /* For single display MPO configs, allow the max vratio to be 8
3490 * if any plane is YUV420 format
3491 */
3492 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3493 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3494 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3495 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3496 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3497 }
3498 }
3499 }
3500 return max_vratio_pre;
3501 }
3502
3503 /**
3504 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3505 *
3506 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3507 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3508 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3509 * ActiveMargin <= 0 to be the FPO stream candidate if found.
3510 *
3511 *
3512 * @dc: current dc state
3513 * @context: new dc state
3514 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3515 *
3516 * Return: void
3517 */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3518 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3519 {
3520 unsigned int i, pipe_idx;
3521 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3522
3523 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3524 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3525
3526 /* In DCN32/321, FPO uses per-pipe P-State force.
3527 * If there's no planes, HUBP is power gated and
3528 * therefore programming UCLK_PSTATE_FORCE does
3529 * nothing (P-State will always be asserted naturally
3530 * on a pipe that has HUBP power gated. Therefore we
3531 * only want to enable FPO if the FPO pipe has both
3532 * a stream and a plane.
3533 */
3534 if (!pipe->stream || !pipe->plane_state)
3535 continue;
3536
3537 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3538 *fpo_candidate_stream = pipe->stream;
3539 break;
3540 }
3541 pipe_idx++;
3542 }
3543 }
3544
3545 /**
3546 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3547 *
3548 * @dc: current dc state
3549 * @context: new dc state
3550 * @fpo_candidate_stream: candidate stream to be chosen for FPO
3551 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3552 *
3553 * Return: True if VACTIVE display is found, false otherwise
3554 */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,struct dc_stream_state * fpo_candidate_stream,uint32_t vactive_margin_req_us)3555 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
3556 {
3557 unsigned int i, pipe_idx;
3558 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3559 bool vactive_found = true;
3560 unsigned int blank_us = 0;
3561
3562 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3563 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3564
3565 if (!pipe->stream)
3566 continue;
3567
3568 /* Don't need to check for vactive margin on the FPO candidate stream */
3569 if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
3570 pipe_idx++;
3571 continue;
3572 }
3573
3574 /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
3575 * in order for us to have found a valid "vactive" config for FPO + Vactive
3576 */
3577 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3578 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3579 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
3580 pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
3581 vactive_found = false;
3582 break;
3583 }
3584 pipe_idx++;
3585 }
3586 return vactive_found;
3587 }
3588
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3589 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3590 {
3591 dc_assert_fp_enabled();
3592 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3593 }
3594
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3595 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3596 {
3597 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3598 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3599 dc->dml.soc.num_chans <= 8) {
3600 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3601
3602 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3603 num_mclk_levels > 1) {
3604 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3605 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3606 }
3607 }
3608 }
3609