1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 
202 	return 0;
203 }
204 
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 		  unsigned long offset, unsigned long npages,
208 		  unsigned long *hmm_pfns)
209 {
210 	struct kfd_process *p;
211 	uint32_t gpuidx;
212 	int r;
213 
214 	p = container_of(prange->svms, struct kfd_process, svms);
215 
216 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 		struct kfd_process_device *pdd;
218 
219 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 		if (!pdd) {
222 			pr_debug("failed to find device idx %d\n", gpuidx);
223 			return -EINVAL;
224 		}
225 
226 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 					  hmm_pfns, gpuidx);
228 		if (r)
229 			break;
230 	}
231 
232 	return r;
233 }
234 
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 			 unsigned long offset, unsigned long npages)
237 {
238 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 	int i;
240 
241 	if (!dma_addr)
242 		return;
243 
244 	for (i = offset; i < offset + npages; i++) {
245 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 			continue;
247 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 		dma_addr[i] = 0;
250 	}
251 }
252 
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 	struct kfd_process_device *pdd;
256 	dma_addr_t *dma_addr;
257 	struct device *dev;
258 	struct kfd_process *p;
259 	uint32_t gpuidx;
260 
261 	p = container_of(prange->svms, struct kfd_process, svms);
262 
263 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 		dma_addr = prange->dma_addr[gpuidx];
265 		if (!dma_addr)
266 			continue;
267 
268 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 		if (!pdd) {
270 			pr_debug("failed to find device idx %d\n", gpuidx);
271 			continue;
272 		}
273 		dev = &pdd->dev->adev->pdev->dev;
274 
275 		svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 	}
277 }
278 
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 	uint32_t gpuidx;
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	if (do_unmap)
290 		svm_range_dma_unmap(prange);
291 
292 	if (do_unmap && !p->xnack_enabled) {
293 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 	}
297 
298 	/* free dma_addr array for each gpu */
299 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 		if (prange->dma_addr[gpuidx]) {
301 			kvfree(prange->dma_addr[gpuidx]);
302 			prange->dma_addr[gpuidx] = NULL;
303 		}
304 	}
305 
306 	mutex_destroy(&prange->lock);
307 	mutex_destroy(&prange->migrate_mutex);
308 	kfree(prange);
309 }
310 
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 				 int32_t *prefetch_loc, uint8_t *granularity,
314 				 uint32_t *flags)
315 {
316 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 	*granularity = svms->default_granularity;
319 	*flags =
320 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322 
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 			 uint64_t last, bool update_mem_usage)
326 {
327 	uint64_t size = last - start + 1;
328 	struct svm_range *prange;
329 	struct kfd_process *p;
330 
331 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 	if (!prange)
333 		return NULL;
334 
335 	p = container_of(svms, struct kfd_process, svms);
336 	if (!p->xnack_enabled && update_mem_usage &&
337 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 		kfree(prange);
341 		return NULL;
342 	}
343 	prange->npages = size;
344 	prange->svms = svms;
345 	prange->start = start;
346 	prange->last = last;
347 	INIT_LIST_HEAD(&prange->list);
348 	INIT_LIST_HEAD(&prange->update_list);
349 	INIT_LIST_HEAD(&prange->svm_bo_list);
350 	INIT_LIST_HEAD(&prange->deferred_list);
351 	INIT_LIST_HEAD(&prange->child_list);
352 	atomic_set(&prange->invalid, 0);
353 	prange->validate_timestamp = 0;
354 	prange->vram_pages = 0;
355 	mutex_init(&prange->migrate_mutex);
356 	mutex_init(&prange->lock);
357 
358 	if (p->xnack_enabled)
359 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 			    MAX_GPU_INSTANCE);
361 
362 	svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 					 &prange->prefetch_loc,
364 					 &prange->granularity, &prange->flags);
365 
366 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367 
368 	return prange;
369 }
370 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 		return false;
375 
376 	return true;
377 }
378 
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 	struct svm_range_bo *svm_bo;
382 
383 	svm_bo = container_of(kref, struct svm_range_bo, kref);
384 	pr_debug("svm_bo 0x%p\n", svm_bo);
385 
386 	spin_lock(&svm_bo->list_lock);
387 	while (!list_empty(&svm_bo->range_list)) {
388 		struct svm_range *prange =
389 				list_first_entry(&svm_bo->range_list,
390 						struct svm_range, svm_bo_list);
391 		/* list_del_init tells a concurrent svm_range_vram_node_new when
392 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 		 */
394 		list_del_init(&prange->svm_bo_list);
395 		spin_unlock(&svm_bo->list_lock);
396 
397 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 			 prange->start, prange->last);
399 		mutex_lock(&prange->lock);
400 		prange->svm_bo = NULL;
401 		/* prange should not hold vram page now */
402 		WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 		mutex_unlock(&prange->lock);
404 
405 		spin_lock(&svm_bo->list_lock);
406 	}
407 	spin_unlock(&svm_bo->list_lock);
408 
409 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 		struct kfd_process_device *pdd;
411 		struct kfd_process *p;
412 		struct mm_struct *mm;
413 
414 		mm = svm_bo->eviction_fence->mm;
415 		/*
416 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 		 * released after parent process is gone.
418 		 */
419 		p = kfd_lookup_process_by_mm(mm);
420 		if (p) {
421 			pdd = kfd_get_process_device_data(svm_bo->node, p);
422 			if (pdd)
423 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 			kfd_unref_process(p);
425 		}
426 		mmput(mm);
427 	}
428 
429 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 		/* We're not in the eviction worker. Signal the fence. */
431 		dma_fence_signal(&svm_bo->eviction_fence->base);
432 	dma_fence_put(&svm_bo->eviction_fence->base);
433 	amdgpu_bo_unref(&svm_bo->bo);
434 	kfree(svm_bo);
435 }
436 
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 	struct svm_range_bo *svm_bo;
440 
441 	svm_bo = container_of(work, struct svm_range_bo, release_work);
442 	svm_range_bo_release(&svm_bo->kref);
443 }
444 
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 	struct svm_range_bo *svm_bo;
448 
449 	svm_bo = container_of(kref, struct svm_range_bo, kref);
450 	pr_debug("svm_bo 0x%p\n", svm_bo);
451 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 	schedule_work(&svm_bo->release_work);
453 }
454 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459 
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 	if (svm_bo)
463 		kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465 
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 	mutex_lock(&prange->lock);
470 	if (!prange->svm_bo) {
471 		mutex_unlock(&prange->lock);
472 		return false;
473 	}
474 	if (prange->ttm_res) {
475 		/* We still have a reference, all is well */
476 		mutex_unlock(&prange->lock);
477 		return true;
478 	}
479 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 		/*
481 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 		 * range list, and return false to allocate svm_bo from destination
483 		 * node.
484 		 */
485 		if (prange->svm_bo->node != node) {
486 			mutex_unlock(&prange->lock);
487 
488 			spin_lock(&prange->svm_bo->list_lock);
489 			list_del_init(&prange->svm_bo_list);
490 			spin_unlock(&prange->svm_bo->list_lock);
491 
492 			svm_range_bo_unref(prange->svm_bo);
493 			return false;
494 		}
495 		if (READ_ONCE(prange->svm_bo->evicting)) {
496 			struct dma_fence *f;
497 			struct svm_range_bo *svm_bo;
498 			/* The BO is getting evicted,
499 			 * we need to get a new one
500 			 */
501 			mutex_unlock(&prange->lock);
502 			svm_bo = prange->svm_bo;
503 			f = dma_fence_get(&svm_bo->eviction_fence->base);
504 			svm_range_bo_unref(prange->svm_bo);
505 			/* wait for the fence to avoid long spin-loop
506 			 * at list_empty_careful
507 			 */
508 			dma_fence_wait(f, false);
509 			dma_fence_put(f);
510 		} else {
511 			/* The BO was still around and we got
512 			 * a new reference to it
513 			 */
514 			mutex_unlock(&prange->lock);
515 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 				 prange->svms, prange->start, prange->last);
517 
518 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 			return true;
520 		}
521 
522 	} else {
523 		mutex_unlock(&prange->lock);
524 	}
525 
526 	/* We need a new svm_bo. Spin-loop to wait for concurrent
527 	 * svm_range_bo_release to finish removing this range from
528 	 * its range list and set prange->svm_bo to null. After this,
529 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 	 */
531 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 		cond_resched();
533 
534 	return false;
535 }
536 
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 	struct svm_range_bo *svm_bo;
540 
541 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 	if (!svm_bo)
543 		return NULL;
544 
545 	kref_init(&svm_bo->kref);
546 	INIT_LIST_HEAD(&svm_bo->range_list);
547 	spin_lock_init(&svm_bo->list_lock);
548 
549 	return svm_bo;
550 }
551 
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 			bool clear)
555 {
556 	struct kfd_process_device *pdd;
557 	struct amdgpu_bo_param bp;
558 	struct svm_range_bo *svm_bo;
559 	struct amdgpu_bo_user *ubo;
560 	struct amdgpu_bo *bo;
561 	struct kfd_process *p;
562 	struct mm_struct *mm;
563 	int r;
564 
565 	p = container_of(prange->svms, struct kfd_process, svms);
566 	pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 		 p->lead_thread->pid, prange->svms,
568 		 prange->start, prange->last);
569 
570 	if (svm_range_validate_svm_bo(node, prange))
571 		return 0;
572 
573 	svm_bo = svm_range_bo_new();
574 	if (!svm_bo) {
575 		pr_debug("failed to alloc svm bo\n");
576 		return -ENOMEM;
577 	}
578 	mm = get_task_mm(p->lead_thread);
579 	if (!mm) {
580 		pr_debug("failed to get mm\n");
581 		kfree(svm_bo);
582 		return -ESRCH;
583 	}
584 	svm_bo->node = node;
585 	svm_bo->eviction_fence =
586 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 					   mm,
588 					   svm_bo);
589 	mmput(mm);
590 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 	svm_bo->evicting = 0;
592 	memset(&bp, 0, sizeof(bp));
593 	bp.size = prange->npages * PAGE_SIZE;
594 	bp.byte_align = PAGE_SIZE;
595 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 	bp.type = ttm_bo_type_device;
600 	bp.resv = NULL;
601 	if (node->xcp)
602 		bp.xcp_id_plus1 = node->xcp->id + 1;
603 
604 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 	if (r) {
606 		pr_debug("failed %d to create bo\n", r);
607 		goto create_bo_failed;
608 	}
609 	bo = &ubo->bo;
610 
611 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 		 bp.xcp_id_plus1 - 1);
614 
615 	r = amdgpu_bo_reserve(bo, true);
616 	if (r) {
617 		pr_debug("failed %d to reserve bo\n", r);
618 		goto reserve_bo_failed;
619 	}
620 
621 	if (clear) {
622 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 		if (r) {
624 			pr_debug("failed %d to sync bo\n", r);
625 			amdgpu_bo_unreserve(bo);
626 			goto reserve_bo_failed;
627 		}
628 	}
629 
630 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 	if (r) {
632 		pr_debug("failed %d to reserve bo\n", r);
633 		amdgpu_bo_unreserve(bo);
634 		goto reserve_bo_failed;
635 	}
636 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637 
638 	amdgpu_bo_unreserve(bo);
639 
640 	svm_bo->bo = bo;
641 	prange->svm_bo = svm_bo;
642 	prange->ttm_res = bo->tbo.resource;
643 	prange->offset = 0;
644 
645 	spin_lock(&svm_bo->list_lock);
646 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 	spin_unlock(&svm_bo->list_lock);
648 
649 	pdd = svm_range_get_pdd_by_node(prange, node);
650 	if (pdd)
651 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652 
653 	return 0;
654 
655 reserve_bo_failed:
656 	amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 	dma_fence_put(&svm_bo->eviction_fence->base);
659 	kfree(svm_bo);
660 	prange->ttm_res = NULL;
661 
662 	return r;
663 }
664 
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 	/* serialize prange->svm_bo unref */
668 	mutex_lock(&prange->lock);
669 	/* prange->svm_bo has not been unref */
670 	if (prange->ttm_res) {
671 		prange->ttm_res = NULL;
672 		mutex_unlock(&prange->lock);
673 		svm_range_bo_unref(prange->svm_bo);
674 	} else
675 		mutex_unlock(&prange->lock);
676 }
677 
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 	struct kfd_process *p;
682 	struct kfd_process_device *pdd;
683 
684 	p = container_of(prange->svms, struct kfd_process, svms);
685 	pdd = kfd_process_device_data_by_id(p, gpu_id);
686 	if (!pdd) {
687 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 		return NULL;
689 	}
690 
691 	return pdd->dev;
692 }
693 
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 	struct kfd_process *p;
698 
699 	p = container_of(prange->svms, struct kfd_process, svms);
700 
701 	return kfd_get_process_device_data(node, p);
702 }
703 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 	struct ttm_operation_ctx ctx = { false, false };
707 
708 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709 
710 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712 
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 	uint32_t i;
718 
719 	for (i = 0; i < nattr; i++) {
720 		uint32_t val = attrs[i].value;
721 		int gpuidx = MAX_GPU_INSTANCE;
722 
723 		switch (attrs[i].type) {
724 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 			break;
729 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 			break;
733 		case KFD_IOCTL_SVM_ATTR_ACCESS:
734 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 			break;
738 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 			break;
740 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 			break;
742 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 			break;
744 		default:
745 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 			return -EINVAL;
747 		}
748 
749 		if (gpuidx < 0) {
750 			pr_debug("no GPU 0x%x found\n", val);
751 			return -EINVAL;
752 		} else if (gpuidx < MAX_GPU_INSTANCE &&
753 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 			pr_debug("GPU 0x%x not supported\n", val);
755 			return -EINVAL;
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 		      bool *update_mapping)
766 {
767 	uint32_t i;
768 	int gpuidx;
769 
770 	for (i = 0; i < nattr; i++) {
771 		switch (attrs[i].type) {
772 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 			prange->preferred_loc = attrs[i].value;
774 			break;
775 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 			prange->prefetch_loc = attrs[i].value;
777 			break;
778 		case KFD_IOCTL_SVM_ATTR_ACCESS:
779 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 			if (!p->xnack_enabled)
782 				*update_mapping = true;
783 
784 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 							       attrs[i].value);
786 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 				bitmap_set(prange->bitmap_access, gpuidx, 1);
791 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 			} else {
793 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 			}
796 			break;
797 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 			*update_mapping = true;
799 			prange->flags |= attrs[i].value;
800 			break;
801 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 			*update_mapping = true;
803 			prange->flags &= ~attrs[i].value;
804 			break;
805 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 			break;
808 		default:
809 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 		}
811 	}
812 }
813 
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 	uint32_t i;
819 	int gpuidx;
820 
821 	for (i = 0; i < nattr; i++) {
822 		switch (attrs[i].type) {
823 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 			if (prange->preferred_loc != attrs[i].value)
825 				return false;
826 			break;
827 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 			/* Prefetch should always trigger a migration even
829 			 * if the value of the attribute didn't change.
830 			 */
831 			return false;
832 		case KFD_IOCTL_SVM_ATTR_ACCESS:
833 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 							       attrs[i].value);
837 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 				if (test_bit(gpuidx, prange->bitmap_access) ||
839 				    test_bit(gpuidx, prange->bitmap_aip))
840 					return false;
841 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 				if (!test_bit(gpuidx, prange->bitmap_access))
843 					return false;
844 			} else {
845 				if (!test_bit(gpuidx, prange->bitmap_aip))
846 					return false;
847 			}
848 			break;
849 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 			if ((prange->flags & attrs[i].value) != attrs[i].value)
851 				return false;
852 			break;
853 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 			if ((prange->flags & attrs[i].value) != 0)
855 				return false;
856 			break;
857 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 			if (prange->granularity != attrs[i].value)
859 				return false;
860 			break;
861 		default:
862 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 		}
864 	}
865 
866 	return true;
867 }
868 
869 /**
870  * svm_range_debug_dump - print all range information from svms
871  * @svms: svm range list header
872  *
873  * debug output svm range start, end, prefetch location from svms
874  * interval tree and link list
875  *
876  * Context: The caller must hold svms->lock
877  */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 	struct interval_tree_node *node;
881 	struct svm_range *prange;
882 
883 	pr_debug("dump svms 0x%p list\n", svms);
884 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885 
886 	list_for_each_entry(prange, &svms->list, list) {
887 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 			 prange, prange->start, prange->npages,
889 			 prange->start + prange->npages - 1,
890 			 prange->actual_loc);
891 	}
892 
893 	pr_debug("dump svms 0x%p interval tree\n", svms);
894 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 	while (node) {
897 		prange = container_of(node, struct svm_range, it_node);
898 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 			 prange, prange->start, prange->npages,
900 			 prange->start + prange->npages - 1,
901 			 prange->actual_loc);
902 		node = interval_tree_iter_next(node, 0, ~0ULL);
903 	}
904 }
905 
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 		     uint64_t offset, uint64_t *vram_pages)
909 {
910 	unsigned char *src = (unsigned char *)psrc + offset;
911 	unsigned char *dst;
912 	uint64_t i;
913 
914 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 	if (!dst)
916 		return NULL;
917 
918 	if (!vram_pages) {
919 		memcpy(dst, src, num_elements * size);
920 		return (void *)dst;
921 	}
922 
923 	*vram_pages = 0;
924 	for (i = 0; i < num_elements; i++) {
925 		dma_addr_t *temp;
926 		temp = (dma_addr_t *)dst + i;
927 		*temp = *((dma_addr_t *)src + i);
928 		if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 			(*vram_pages)++;
930 	}
931 
932 	return (void *)dst;
933 }
934 
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 	int i;
939 
940 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 		if (!src->dma_addr[i])
942 			continue;
943 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 					sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 		if (!dst->dma_addr[i])
946 			return -ENOMEM;
947 	}
948 
949 	return 0;
950 }
951 
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 		      uint64_t old_start, uint64_t old_n,
955 		      uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 	unsigned char *new, *old, *pold;
958 	uint64_t d;
959 
960 	if (!ppold)
961 		return 0;
962 	pold = *(unsigned char **)ppold;
963 	if (!pold)
964 		return 0;
965 
966 	d = (new_start - old_start) * size;
967 	/* get dma addr array for new range and calculte its vram page number */
968 	new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 	if (!new)
970 		return -ENOMEM;
971 	d = (new_start == old_start) ? new_n * size : 0;
972 	old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 	if (!old) {
974 		kvfree(new);
975 		return -ENOMEM;
976 	}
977 	kvfree(pold);
978 	*(void **)ppold = old;
979 	*(void **)ppnew = new;
980 
981 	return 0;
982 }
983 
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 		      uint64_t start, uint64_t last)
987 {
988 	uint64_t npages = last - start + 1;
989 	int i, r;
990 
991 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 					  sizeof(*old->dma_addr[i]), old->start,
994 					  npages, new->start, new->npages,
995 					  old->actual_loc ? &new->vram_pages : NULL);
996 		if (r)
997 			return r;
998 	}
999 	if (old->actual_loc)
1000 		old->vram_pages -= new->vram_pages;
1001 
1002 	return 0;
1003 }
1004 
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 		      uint64_t start, uint64_t last)
1008 {
1009 	uint64_t npages = last - start + 1;
1010 
1011 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 		 new->svms, new, new->start, start, last);
1013 
1014 	if (new->start == old->start) {
1015 		new->offset = old->offset;
1016 		old->offset += new->npages;
1017 	} else {
1018 		new->offset = old->offset + npages;
1019 	}
1020 
1021 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 	new->ttm_res = old->ttm_res;
1023 
1024 	spin_lock(&new->svm_bo->list_lock);
1025 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 	spin_unlock(&new->svm_bo->list_lock);
1027 
1028 	return 0;
1029 }
1030 
1031 /**
1032  * svm_range_split_adjust - split range and adjust
1033  *
1034  * @new: new range
1035  * @old: the old range
1036  * @start: the old range adjust to start address in pages
1037  * @last: the old range adjust to last address in pages
1038  *
1039  * Copy system memory dma_addr or vram ttm_res in old range to new
1040  * range from new_start up to size new->npages, the remaining old range is from
1041  * start to last
1042  *
1043  * Return:
1044  * 0 - OK, -ENOMEM - out of memory
1045  */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 		      uint64_t start, uint64_t last)
1049 {
1050 	int r;
1051 
1052 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 		 new->svms, new->start, old->start, old->last, start, last);
1054 
1055 	if (new->start < old->start ||
1056 	    new->last > old->last) {
1057 		WARN_ONCE(1, "invalid new range start or last\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	r = svm_range_split_pages(new, old, start, last);
1062 	if (r)
1063 		return r;
1064 
1065 	if (old->actual_loc && old->ttm_res) {
1066 		r = svm_range_split_nodes(new, old, start, last);
1067 		if (r)
1068 			return r;
1069 	}
1070 
1071 	old->npages = last - start + 1;
1072 	old->start = start;
1073 	old->last = last;
1074 	new->flags = old->flags;
1075 	new->preferred_loc = old->preferred_loc;
1076 	new->prefetch_loc = old->prefetch_loc;
1077 	new->actual_loc = old->actual_loc;
1078 	new->granularity = old->granularity;
1079 	new->mapped_to_gpu = old->mapped_to_gpu;
1080 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083 
1084 	return 0;
1085 }
1086 
1087 /**
1088  * svm_range_split - split a range in 2 ranges
1089  *
1090  * @prange: the svm range to split
1091  * @start: the remaining range start address in pages
1092  * @last: the remaining range last address in pages
1093  * @new: the result new range generated
1094  *
1095  * Two cases only:
1096  * case 1: if start == prange->start
1097  *         prange ==> prange[start, last]
1098  *         new range [last + 1, prange->last]
1099  *
1100  * case 2: if last == prange->last
1101  *         prange ==> prange[start, last]
1102  *         new range [prange->start, start - 1]
1103  *
1104  * Return:
1105  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106  */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 		struct svm_range **new)
1110 {
1111 	uint64_t old_start = prange->start;
1112 	uint64_t old_last = prange->last;
1113 	struct svm_range_list *svms;
1114 	int r = 0;
1115 
1116 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 		 old_start, old_last, start, last);
1118 
1119 	if (old_start != start && old_last != last)
1120 		return -EINVAL;
1121 	if (start < old_start || last > old_last)
1122 		return -EINVAL;
1123 
1124 	svms = prange->svms;
1125 	if (old_start == start)
1126 		*new = svm_range_new(svms, last + 1, old_last, false);
1127 	else
1128 		*new = svm_range_new(svms, old_start, start - 1, false);
1129 	if (!*new)
1130 		return -ENOMEM;
1131 
1132 	r = svm_range_split_adjust(*new, prange, start, last);
1133 	if (r) {
1134 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 			 r, old_start, old_last, start, last);
1136 		svm_range_free(*new, false);
1137 		*new = NULL;
1138 	}
1139 
1140 	return r;
1141 }
1142 
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 		     struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 	struct svm_range *tail = NULL;
1148 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1149 
1150 	if (!r) {
1151 		list_add(&tail->list, insert_list);
1152 		if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1153 			list_add(&tail->update_list, remap_list);
1154 	}
1155 	return r;
1156 }
1157 
1158 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1159 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1160 		     struct list_head *insert_list, struct list_head *remap_list)
1161 {
1162 	struct svm_range *head = NULL;
1163 	int r = svm_range_split(prange, new_start, prange->last, &head);
1164 
1165 	if (!r) {
1166 		list_add(&head->list, insert_list);
1167 		if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1168 			list_add(&head->update_list, remap_list);
1169 	}
1170 	return r;
1171 }
1172 
1173 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1174 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1175 		    struct svm_range *pchild, enum svm_work_list_ops op)
1176 {
1177 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1178 		 pchild, pchild->start, pchild->last, prange, op);
1179 
1180 	pchild->work_item.mm = mm;
1181 	pchild->work_item.op = op;
1182 	list_add_tail(&pchild->child_list, &prange->child_list);
1183 }
1184 
1185 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1186 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1187 {
1188 	return (node_a->adev == node_b->adev ||
1189 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1190 }
1191 
1192 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1193 svm_range_get_pte_flags(struct kfd_node *node,
1194 			struct svm_range *prange, int domain)
1195 {
1196 	struct kfd_node *bo_node;
1197 	uint32_t flags = prange->flags;
1198 	uint32_t mapping_flags = 0;
1199 	uint32_t gc_ip_version = KFD_GC_VERSION(node);
1200 	uint64_t pte_flags;
1201 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1202 	bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1203 	bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1204 	unsigned int mtype_local;
1205 
1206 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1207 		bo_node = prange->svm_bo->node;
1208 
1209 	switch (gc_ip_version) {
1210 	case IP_VERSION(9, 4, 1):
1211 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1212 			if (bo_node == node) {
1213 				mapping_flags |= coherent ?
1214 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1215 			} else {
1216 				mapping_flags |= coherent ?
1217 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1218 				if (svm_nodes_in_same_hive(node, bo_node))
1219 					snoop = true;
1220 			}
1221 		} else {
1222 			mapping_flags |= coherent ?
1223 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1224 		}
1225 		break;
1226 	case IP_VERSION(9, 4, 2):
1227 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1228 			if (bo_node == node) {
1229 				mapping_flags |= coherent ?
1230 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1231 				if (node->adev->gmc.xgmi.connected_to_cpu)
1232 					snoop = true;
1233 			} else {
1234 				mapping_flags |= coherent ?
1235 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1236 				if (svm_nodes_in_same_hive(node, bo_node))
1237 					snoop = true;
1238 			}
1239 		} else {
1240 			mapping_flags |= coherent ?
1241 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1242 		}
1243 		break;
1244 	case IP_VERSION(9, 4, 3):
1245 	case IP_VERSION(9, 4, 4):
1246 	case IP_VERSION(9, 5, 0):
1247 		if (ext_coherent)
1248 			mtype_local = (gc_ip_version < IP_VERSION(9, 5, 0) && !node->adev->rev_id) ?
1249 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_CC;
1250 		else
1251 			mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1252 				amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1253 		snoop = true;
1254 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1255 			/* local HBM region close to partition */
1256 			if (bo_node->adev == node->adev &&
1257 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1258 				mapping_flags |= mtype_local;
1259 			/* local HBM region far from partition or remote XGMI GPU
1260 			 * with regular system scope coherence
1261 			 */
1262 			else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1263 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1264 			/* PCIe P2P on GPUs pre-9.5.0 */
1265 			else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1266 				 !svm_nodes_in_same_hive(bo_node, node))
1267 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1268 			/* Other remote memory */
1269 			else
1270 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1271 		/* system memory accessed by the APU */
1272 		} else if (node->adev->flags & AMD_IS_APU) {
1273 			/* On NUMA systems, locality is determined per-page
1274 			 * in amdgpu_gmc_override_vm_pte_flags
1275 			 */
1276 			if (num_possible_nodes() <= 1)
1277 				mapping_flags |= mtype_local;
1278 			else
1279 				mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1280 		/* system memory accessed by the dGPU */
1281 		} else {
1282 			if (gc_ip_version < IP_VERSION(9, 5, 0))
1283 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1284 			else
1285 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1286 		}
1287 		break;
1288 	case IP_VERSION(12, 0, 0):
1289 	case IP_VERSION(12, 0, 1):
1290 		mapping_flags |= AMDGPU_VM_MTYPE_NC;
1291 		break;
1292 	default:
1293 		mapping_flags |= coherent ?
1294 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1295 	}
1296 
1297 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1298 
1299 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1300 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1301 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1302 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1303 
1304 	pte_flags = AMDGPU_PTE_VALID;
1305 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1306 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1307 	if (gc_ip_version >= IP_VERSION(12, 0, 0))
1308 		pte_flags |= AMDGPU_PTE_IS_PTE;
1309 
1310 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1311 	return pte_flags;
1312 }
1313 
1314 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1315 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1316 			 uint64_t start, uint64_t last,
1317 			 struct dma_fence **fence)
1318 {
1319 	uint64_t init_pte_value = 0;
1320 
1321 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1322 
1323 	return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1324 				      last, init_pte_value, 0, 0, NULL, NULL,
1325 				      fence);
1326 }
1327 
1328 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1329 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1330 			  unsigned long last, uint32_t trigger)
1331 {
1332 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1333 	struct kfd_process_device *pdd;
1334 	struct dma_fence *fence = NULL;
1335 	struct kfd_process *p;
1336 	uint32_t gpuidx;
1337 	int r = 0;
1338 
1339 	if (!prange->mapped_to_gpu) {
1340 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1341 			 prange, prange->start, prange->last);
1342 		return 0;
1343 	}
1344 
1345 	if (prange->start == start && prange->last == last) {
1346 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1347 		prange->mapped_to_gpu = false;
1348 	}
1349 
1350 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1351 		  MAX_GPU_INSTANCE);
1352 	p = container_of(prange->svms, struct kfd_process, svms);
1353 
1354 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1355 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1356 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1357 		if (!pdd) {
1358 			pr_debug("failed to find device idx %d\n", gpuidx);
1359 			return -EINVAL;
1360 		}
1361 
1362 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1363 					     start, last, trigger);
1364 
1365 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1366 					     drm_priv_to_vm(pdd->drm_priv),
1367 					     start, last, &fence);
1368 		if (r)
1369 			break;
1370 
1371 		if (fence) {
1372 			r = dma_fence_wait(fence, false);
1373 			dma_fence_put(fence);
1374 			fence = NULL;
1375 			if (r)
1376 				break;
1377 		}
1378 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1379 	}
1380 
1381 	return r;
1382 }
1383 
1384 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1385 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1386 		     unsigned long offset, unsigned long npages, bool readonly,
1387 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1388 		     struct dma_fence **fence, bool flush_tlb)
1389 {
1390 	struct amdgpu_device *adev = pdd->dev->adev;
1391 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1392 	uint64_t pte_flags;
1393 	unsigned long last_start;
1394 	int last_domain;
1395 	int r = 0;
1396 	int64_t i, j;
1397 
1398 	last_start = prange->start + offset;
1399 
1400 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1401 		 last_start, last_start + npages - 1, readonly);
1402 
1403 	for (i = offset; i < offset + npages; i++) {
1404 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1405 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1406 
1407 		/* Collect all pages in the same address range and memory domain
1408 		 * that can be mapped with a single call to update mapping.
1409 		 */
1410 		if (i < offset + npages - 1 &&
1411 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1412 			continue;
1413 
1414 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1415 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1416 
1417 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1418 		if (readonly)
1419 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1420 
1421 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1422 			 prange->svms, last_start, prange->start + i,
1423 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1424 			 pte_flags);
1425 
1426 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1427 		 * different memory partition based on fpfn/lpfn, we should use
1428 		 * same vm_manager.vram_base_offset regardless memory partition.
1429 		 */
1430 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1431 					   NULL, last_start, prange->start + i,
1432 					   pte_flags,
1433 					   (last_start - prange->start) << PAGE_SHIFT,
1434 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1435 					   NULL, dma_addr, &vm->last_update);
1436 
1437 		for (j = last_start - prange->start; j <= i; j++)
1438 			dma_addr[j] |= last_domain;
1439 
1440 		if (r) {
1441 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1442 			goto out;
1443 		}
1444 		last_start = prange->start + i + 1;
1445 	}
1446 
1447 	r = amdgpu_vm_update_pdes(adev, vm, false);
1448 	if (r) {
1449 		pr_debug("failed %d to update directories 0x%lx\n", r,
1450 			 prange->start);
1451 		goto out;
1452 	}
1453 
1454 	if (fence)
1455 		*fence = dma_fence_get(vm->last_update);
1456 
1457 out:
1458 	return r;
1459 }
1460 
1461 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1462 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1463 		      unsigned long npages, bool readonly,
1464 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1465 {
1466 	struct kfd_process_device *pdd;
1467 	struct amdgpu_device *bo_adev = NULL;
1468 	struct kfd_process *p;
1469 	struct dma_fence *fence = NULL;
1470 	uint32_t gpuidx;
1471 	int r = 0;
1472 
1473 	if (prange->svm_bo && prange->ttm_res)
1474 		bo_adev = prange->svm_bo->node->adev;
1475 
1476 	p = container_of(prange->svms, struct kfd_process, svms);
1477 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1478 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1479 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1480 		if (!pdd) {
1481 			pr_debug("failed to find device idx %d\n", gpuidx);
1482 			return -EINVAL;
1483 		}
1484 
1485 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1486 		if (IS_ERR(pdd))
1487 			return -EINVAL;
1488 
1489 		if (bo_adev && pdd->dev->adev != bo_adev &&
1490 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1491 			pr_debug("cannot map to device idx %d\n", gpuidx);
1492 			continue;
1493 		}
1494 
1495 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1496 					 prange->dma_addr[gpuidx],
1497 					 bo_adev, wait ? &fence : NULL,
1498 					 flush_tlb);
1499 		if (r)
1500 			break;
1501 
1502 		if (fence) {
1503 			r = dma_fence_wait(fence, false);
1504 			dma_fence_put(fence);
1505 			fence = NULL;
1506 			if (r) {
1507 				pr_debug("failed %d to dma fence wait\n", r);
1508 				break;
1509 			}
1510 		}
1511 
1512 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1513 	}
1514 
1515 	return r;
1516 }
1517 
1518 struct svm_validate_context {
1519 	struct kfd_process *process;
1520 	struct svm_range *prange;
1521 	bool intr;
1522 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1523 	struct drm_exec exec;
1524 };
1525 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1526 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1527 {
1528 	struct kfd_process_device *pdd;
1529 	struct amdgpu_vm *vm;
1530 	uint32_t gpuidx;
1531 	int r;
1532 
1533 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1534 	drm_exec_until_all_locked(&ctx->exec) {
1535 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1536 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1537 			if (!pdd) {
1538 				pr_debug("failed to find device idx %d\n", gpuidx);
1539 				r = -EINVAL;
1540 				goto unreserve_out;
1541 			}
1542 			vm = drm_priv_to_vm(pdd->drm_priv);
1543 
1544 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1545 			drm_exec_retry_on_contention(&ctx->exec);
1546 			if (unlikely(r)) {
1547 				pr_debug("failed %d to reserve bo\n", r);
1548 				goto unreserve_out;
1549 			}
1550 		}
1551 	}
1552 
1553 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1554 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1555 		if (!pdd) {
1556 			pr_debug("failed to find device idx %d\n", gpuidx);
1557 			r = -EINVAL;
1558 			goto unreserve_out;
1559 		}
1560 
1561 		r = amdgpu_vm_validate(pdd->dev->adev,
1562 				       drm_priv_to_vm(pdd->drm_priv), NULL,
1563 				       svm_range_bo_validate, NULL);
1564 		if (r) {
1565 			pr_debug("failed %d validate pt bos\n", r);
1566 			goto unreserve_out;
1567 		}
1568 	}
1569 
1570 	return 0;
1571 
1572 unreserve_out:
1573 	drm_exec_fini(&ctx->exec);
1574 	return r;
1575 }
1576 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1577 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1578 {
1579 	drm_exec_fini(&ctx->exec);
1580 }
1581 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1582 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1583 {
1584 	struct kfd_process_device *pdd;
1585 
1586 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1587 	if (!pdd)
1588 		return NULL;
1589 
1590 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1591 }
1592 
1593 /*
1594  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1595  *
1596  * To prevent concurrent destruction or change of range attributes, the
1597  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1598  * because that would block concurrent evictions and lead to deadlocks. To
1599  * serialize concurrent migrations or validations of the same range, the
1600  * prange->migrate_mutex must be held.
1601  *
1602  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1603  * eviction fence.
1604  *
1605  * The following sequence ensures race-free validation and GPU mapping:
1606  *
1607  * 1. Reserve page table (and SVM BO if range is in VRAM)
1608  * 2. hmm_range_fault to get page addresses (if system memory)
1609  * 3. DMA-map pages (if system memory)
1610  * 4-a. Take notifier lock
1611  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1612  * 4-c. Check that the range was not split or otherwise invalidated
1613  * 4-d. Update GPU page table
1614  * 4.e. Release notifier lock
1615  * 5. Release page table (and SVM BO) reservation
1616  */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1617 static int svm_range_validate_and_map(struct mm_struct *mm,
1618 				      unsigned long map_start, unsigned long map_last,
1619 				      struct svm_range *prange, int32_t gpuidx,
1620 				      bool intr, bool wait, bool flush_tlb)
1621 {
1622 	struct svm_validate_context *ctx;
1623 	unsigned long start, end, addr;
1624 	struct kfd_process *p;
1625 	void *owner;
1626 	int32_t idx;
1627 	int r = 0;
1628 
1629 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1630 	if (!ctx)
1631 		return -ENOMEM;
1632 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1633 	ctx->prange = prange;
1634 	ctx->intr = intr;
1635 
1636 	if (gpuidx < MAX_GPU_INSTANCE) {
1637 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1638 		bitmap_set(ctx->bitmap, gpuidx, 1);
1639 	} else if (ctx->process->xnack_enabled) {
1640 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1641 
1642 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1643 		 * GPU, which has ACCESS attribute to the range, create mapping
1644 		 * on that GPU.
1645 		 */
1646 		if (prange->actual_loc) {
1647 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1648 							prange->actual_loc);
1649 			if (gpuidx < 0) {
1650 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1651 					 prange->actual_loc);
1652 				r = -EINVAL;
1653 				goto free_ctx;
1654 			}
1655 			if (test_bit(gpuidx, prange->bitmap_access))
1656 				bitmap_set(ctx->bitmap, gpuidx, 1);
1657 		}
1658 
1659 		/*
1660 		 * If prange is already mapped or with always mapped flag,
1661 		 * update mapping on GPUs with ACCESS attribute
1662 		 */
1663 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1664 			if (prange->mapped_to_gpu ||
1665 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1666 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1667 		}
1668 	} else {
1669 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1670 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1671 	}
1672 
1673 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1674 		r = 0;
1675 		goto free_ctx;
1676 	}
1677 
1678 	if (prange->actual_loc && !prange->ttm_res) {
1679 		/* This should never happen. actual_loc gets set by
1680 		 * svm_migrate_ram_to_vram after allocating a BO.
1681 		 */
1682 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1683 		r = -EINVAL;
1684 		goto free_ctx;
1685 	}
1686 
1687 	r = svm_range_reserve_bos(ctx, intr);
1688 	if (r)
1689 		goto free_ctx;
1690 
1691 	p = container_of(prange->svms, struct kfd_process, svms);
1692 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1693 						MAX_GPU_INSTANCE));
1694 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1695 		if (kfd_svm_page_owner(p, idx) != owner) {
1696 			owner = NULL;
1697 			break;
1698 		}
1699 	}
1700 
1701 	start = map_start << PAGE_SHIFT;
1702 	end = (map_last + 1) << PAGE_SHIFT;
1703 	for (addr = start; !r && addr < end; ) {
1704 		struct hmm_range *hmm_range = NULL;
1705 		unsigned long map_start_vma;
1706 		unsigned long map_last_vma;
1707 		struct vm_area_struct *vma;
1708 		unsigned long next = 0;
1709 		unsigned long offset;
1710 		unsigned long npages;
1711 		bool readonly;
1712 
1713 		vma = vma_lookup(mm, addr);
1714 		if (vma) {
1715 			readonly = !(vma->vm_flags & VM_WRITE);
1716 
1717 			next = min(vma->vm_end, end);
1718 			npages = (next - addr) >> PAGE_SHIFT;
1719 			WRITE_ONCE(p->svms.faulting_task, current);
1720 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1721 						       readonly, owner, NULL,
1722 						       &hmm_range);
1723 			WRITE_ONCE(p->svms.faulting_task, NULL);
1724 			if (r)
1725 				pr_debug("failed %d to get svm range pages\n", r);
1726 		} else {
1727 			r = -EFAULT;
1728 		}
1729 
1730 		if (!r) {
1731 			offset = (addr >> PAGE_SHIFT) - prange->start;
1732 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1733 					      hmm_range->hmm_pfns);
1734 			if (r)
1735 				pr_debug("failed %d to dma map range\n", r);
1736 		}
1737 
1738 		svm_range_lock(prange);
1739 
1740 		/* Free backing memory of hmm_range if it was initialized
1741 		 * Overrride return value to TRY AGAIN only if prior returns
1742 		 * were successful
1743 		 */
1744 		if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1745 			pr_debug("hmm update the range, need validate again\n");
1746 			r = -EAGAIN;
1747 		}
1748 
1749 		if (!r && !list_empty(&prange->child_list)) {
1750 			pr_debug("range split by unmap in parallel, validate again\n");
1751 			r = -EAGAIN;
1752 		}
1753 
1754 		if (!r) {
1755 			map_start_vma = max(map_start, prange->start + offset);
1756 			map_last_vma = min(map_last, prange->start + offset + npages - 1);
1757 			if (map_start_vma <= map_last_vma) {
1758 				offset = map_start_vma - prange->start;
1759 				npages = map_last_vma - map_start_vma + 1;
1760 				r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1761 							  ctx->bitmap, wait, flush_tlb);
1762 			}
1763 		}
1764 
1765 		if (!r && next == end)
1766 			prange->mapped_to_gpu = true;
1767 
1768 		svm_range_unlock(prange);
1769 
1770 		addr = next;
1771 	}
1772 
1773 	svm_range_unreserve_bos(ctx);
1774 	if (!r)
1775 		prange->validate_timestamp = ktime_get_boottime();
1776 
1777 free_ctx:
1778 	kfree(ctx);
1779 
1780 	return r;
1781 }
1782 
1783 /**
1784  * svm_range_list_lock_and_flush_work - flush pending deferred work
1785  *
1786  * @svms: the svm range list
1787  * @mm: the mm structure
1788  *
1789  * Context: Returns with mmap write lock held, pending deferred work flushed
1790  *
1791  */
1792 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1793 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1794 				   struct mm_struct *mm)
1795 {
1796 retry_flush_work:
1797 	flush_work(&svms->deferred_list_work);
1798 	mmap_write_lock(mm);
1799 
1800 	if (list_empty(&svms->deferred_range_list))
1801 		return;
1802 	mmap_write_unlock(mm);
1803 	pr_debug("retry flush\n");
1804 	goto retry_flush_work;
1805 }
1806 
svm_range_restore_work(struct work_struct * work)1807 static void svm_range_restore_work(struct work_struct *work)
1808 {
1809 	struct delayed_work *dwork = to_delayed_work(work);
1810 	struct amdkfd_process_info *process_info;
1811 	struct svm_range_list *svms;
1812 	struct svm_range *prange;
1813 	struct kfd_process *p;
1814 	struct mm_struct *mm;
1815 	int evicted_ranges;
1816 	int invalid;
1817 	int r;
1818 
1819 	svms = container_of(dwork, struct svm_range_list, restore_work);
1820 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1821 	if (!evicted_ranges)
1822 		return;
1823 
1824 	pr_debug("restore svm ranges\n");
1825 
1826 	p = container_of(svms, struct kfd_process, svms);
1827 	process_info = p->kgd_process_info;
1828 
1829 	/* Keep mm reference when svm_range_validate_and_map ranges */
1830 	mm = get_task_mm(p->lead_thread);
1831 	if (!mm) {
1832 		pr_debug("svms 0x%p process mm gone\n", svms);
1833 		return;
1834 	}
1835 
1836 	mutex_lock(&process_info->lock);
1837 	svm_range_list_lock_and_flush_work(svms, mm);
1838 	mutex_lock(&svms->lock);
1839 
1840 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1841 
1842 	list_for_each_entry(prange, &svms->list, list) {
1843 		invalid = atomic_read(&prange->invalid);
1844 		if (!invalid)
1845 			continue;
1846 
1847 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1848 			 prange->svms, prange, prange->start, prange->last,
1849 			 invalid);
1850 
1851 		/*
1852 		 * If range is migrating, wait for migration is done.
1853 		 */
1854 		mutex_lock(&prange->migrate_mutex);
1855 
1856 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1857 					       MAX_GPU_INSTANCE, false, true, false);
1858 		if (r)
1859 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1860 				 prange->start);
1861 
1862 		mutex_unlock(&prange->migrate_mutex);
1863 		if (r)
1864 			goto out_reschedule;
1865 
1866 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1867 			goto out_reschedule;
1868 	}
1869 
1870 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1871 	    evicted_ranges)
1872 		goto out_reschedule;
1873 
1874 	evicted_ranges = 0;
1875 
1876 	r = kgd2kfd_resume_mm(mm);
1877 	if (r) {
1878 		/* No recovery from this failure. Probably the CP is
1879 		 * hanging. No point trying again.
1880 		 */
1881 		pr_debug("failed %d to resume KFD\n", r);
1882 	}
1883 
1884 	pr_debug("restore svm ranges successfully\n");
1885 
1886 out_reschedule:
1887 	mutex_unlock(&svms->lock);
1888 	mmap_write_unlock(mm);
1889 	mutex_unlock(&process_info->lock);
1890 
1891 	/* If validation failed, reschedule another attempt */
1892 	if (evicted_ranges) {
1893 		pr_debug("reschedule to restore svm range\n");
1894 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1895 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1896 
1897 		kfd_smi_event_queue_restore_rescheduled(mm);
1898 	}
1899 	mmput(mm);
1900 }
1901 
1902 /**
1903  * svm_range_evict - evict svm range
1904  * @prange: svm range structure
1905  * @mm: current process mm_struct
1906  * @start: starting process queue number
1907  * @last: last process queue number
1908  * @event: mmu notifier event when range is evicted or migrated
1909  *
1910  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1911  * return to let CPU evict the buffer and proceed CPU pagetable update.
1912  *
1913  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1914  * If invalidation happens while restore work is running, restore work will
1915  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1916  * the queues.
1917  */
1918 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1919 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1920 		unsigned long start, unsigned long last,
1921 		enum mmu_notifier_event event)
1922 {
1923 	struct svm_range_list *svms = prange->svms;
1924 	struct svm_range *pchild;
1925 	struct kfd_process *p;
1926 	int r = 0;
1927 
1928 	p = container_of(svms, struct kfd_process, svms);
1929 
1930 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1931 		 svms, prange->start, prange->last, start, last);
1932 
1933 	if (!p->xnack_enabled ||
1934 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1935 		int evicted_ranges;
1936 		bool mapped = prange->mapped_to_gpu;
1937 
1938 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1939 			if (!pchild->mapped_to_gpu)
1940 				continue;
1941 			mapped = true;
1942 			mutex_lock_nested(&pchild->lock, 1);
1943 			if (pchild->start <= last && pchild->last >= start) {
1944 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1945 					 pchild->start, pchild->last);
1946 				atomic_inc(&pchild->invalid);
1947 			}
1948 			mutex_unlock(&pchild->lock);
1949 		}
1950 
1951 		if (!mapped)
1952 			return r;
1953 
1954 		if (prange->start <= last && prange->last >= start)
1955 			atomic_inc(&prange->invalid);
1956 
1957 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1958 		if (evicted_ranges != 1)
1959 			return r;
1960 
1961 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1962 			 prange->svms, prange->start, prange->last);
1963 
1964 		/* First eviction, stop the queues */
1965 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1966 		if (r)
1967 			pr_debug("failed to quiesce KFD\n");
1968 
1969 		pr_debug("schedule to restore svm %p ranges\n", svms);
1970 		queue_delayed_work(system_freezable_wq, &svms->restore_work,
1971 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1972 	} else {
1973 		unsigned long s, l;
1974 		uint32_t trigger;
1975 
1976 		if (event == MMU_NOTIFY_MIGRATE)
1977 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1978 		else
1979 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1980 
1981 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1982 			 prange->svms, start, last);
1983 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1984 			mutex_lock_nested(&pchild->lock, 1);
1985 			s = max(start, pchild->start);
1986 			l = min(last, pchild->last);
1987 			if (l >= s)
1988 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1989 			mutex_unlock(&pchild->lock);
1990 		}
1991 		s = max(start, prange->start);
1992 		l = min(last, prange->last);
1993 		if (l >= s)
1994 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1995 	}
1996 
1997 	return r;
1998 }
1999 
svm_range_clone(struct svm_range * old)2000 static struct svm_range *svm_range_clone(struct svm_range *old)
2001 {
2002 	struct svm_range *new;
2003 
2004 	new = svm_range_new(old->svms, old->start, old->last, false);
2005 	if (!new)
2006 		return NULL;
2007 	if (svm_range_copy_dma_addrs(new, old)) {
2008 		svm_range_free(new, false);
2009 		return NULL;
2010 	}
2011 	if (old->svm_bo) {
2012 		new->ttm_res = old->ttm_res;
2013 		new->offset = old->offset;
2014 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
2015 		spin_lock(&new->svm_bo->list_lock);
2016 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2017 		spin_unlock(&new->svm_bo->list_lock);
2018 	}
2019 	new->flags = old->flags;
2020 	new->preferred_loc = old->preferred_loc;
2021 	new->prefetch_loc = old->prefetch_loc;
2022 	new->actual_loc = old->actual_loc;
2023 	new->granularity = old->granularity;
2024 	new->mapped_to_gpu = old->mapped_to_gpu;
2025 	new->vram_pages = old->vram_pages;
2026 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2027 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2028 	atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2029 
2030 	return new;
2031 }
2032 
svm_range_set_max_pages(struct amdgpu_device * adev)2033 void svm_range_set_max_pages(struct amdgpu_device *adev)
2034 {
2035 	uint64_t max_pages;
2036 	uint64_t pages, _pages;
2037 	uint64_t min_pages = 0;
2038 	int i, id;
2039 
2040 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2041 		if (adev->kfd.dev->nodes[i]->xcp)
2042 			id = adev->kfd.dev->nodes[i]->xcp->id;
2043 		else
2044 			id = -1;
2045 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2046 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2047 		pages = rounddown_pow_of_two(pages);
2048 		min_pages = min_not_zero(min_pages, pages);
2049 	}
2050 
2051 	do {
2052 		max_pages = READ_ONCE(max_svm_range_pages);
2053 		_pages = min_not_zero(max_pages, min_pages);
2054 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2055 }
2056 
2057 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2058 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2059 		    uint64_t max_pages, struct list_head *insert_list,
2060 		    struct list_head *update_list)
2061 {
2062 	struct svm_range *prange;
2063 	uint64_t l;
2064 
2065 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2066 		 max_pages, start, last);
2067 
2068 	while (last >= start) {
2069 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2070 
2071 		prange = svm_range_new(svms, start, l, true);
2072 		if (!prange)
2073 			return -ENOMEM;
2074 		list_add(&prange->list, insert_list);
2075 		list_add(&prange->update_list, update_list);
2076 
2077 		start = l + 1;
2078 	}
2079 	return 0;
2080 }
2081 
2082 /**
2083  * svm_range_add - add svm range and handle overlap
2084  * @p: the range add to this process svms
2085  * @start: page size aligned
2086  * @size: page size aligned
2087  * @nattr: number of attributes
2088  * @attrs: array of attributes
2089  * @update_list: output, the ranges need validate and update GPU mapping
2090  * @insert_list: output, the ranges need insert to svms
2091  * @remove_list: output, the ranges are replaced and need remove from svms
2092  * @remap_list: output, remap unaligned svm ranges
2093  *
2094  * Check if the virtual address range has overlap with any existing ranges,
2095  * split partly overlapping ranges and add new ranges in the gaps. All changes
2096  * should be applied to the range_list and interval tree transactionally. If
2097  * any range split or allocation fails, the entire update fails. Therefore any
2098  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2099  * unchanged.
2100  *
2101  * If the transaction succeeds, the caller can update and insert clones and
2102  * new ranges, then free the originals.
2103  *
2104  * Otherwise the caller can free the clones and new ranges, while the old
2105  * svm_ranges remain unchanged.
2106  *
2107  * Context: Process context, caller must hold svms->lock
2108  *
2109  * Return:
2110  * 0 - OK, otherwise error code
2111  */
2112 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2113 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2114 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2115 	      struct list_head *update_list, struct list_head *insert_list,
2116 	      struct list_head *remove_list, struct list_head *remap_list)
2117 {
2118 	unsigned long last = start + size - 1UL;
2119 	struct svm_range_list *svms = &p->svms;
2120 	struct interval_tree_node *node;
2121 	struct svm_range *prange;
2122 	struct svm_range *tmp;
2123 	struct list_head new_list;
2124 	int r = 0;
2125 
2126 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2127 
2128 	INIT_LIST_HEAD(update_list);
2129 	INIT_LIST_HEAD(insert_list);
2130 	INIT_LIST_HEAD(remove_list);
2131 	INIT_LIST_HEAD(&new_list);
2132 	INIT_LIST_HEAD(remap_list);
2133 
2134 	node = interval_tree_iter_first(&svms->objects, start, last);
2135 	while (node) {
2136 		struct interval_tree_node *next;
2137 		unsigned long next_start;
2138 
2139 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2140 			 node->last);
2141 
2142 		prange = container_of(node, struct svm_range, it_node);
2143 		next = interval_tree_iter_next(node, start, last);
2144 		next_start = min(node->last, last) + 1;
2145 
2146 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2147 		    prange->mapped_to_gpu) {
2148 			/* nothing to do */
2149 		} else if (node->start < start || node->last > last) {
2150 			/* node intersects the update range and its attributes
2151 			 * will change. Clone and split it, apply updates only
2152 			 * to the overlapping part
2153 			 */
2154 			struct svm_range *old = prange;
2155 
2156 			prange = svm_range_clone(old);
2157 			if (!prange) {
2158 				r = -ENOMEM;
2159 				goto out;
2160 			}
2161 
2162 			list_add(&old->update_list, remove_list);
2163 			list_add(&prange->list, insert_list);
2164 			list_add(&prange->update_list, update_list);
2165 
2166 			if (node->start < start) {
2167 				pr_debug("change old range start\n");
2168 				r = svm_range_split_head(prange, start,
2169 							 insert_list, remap_list);
2170 				if (r)
2171 					goto out;
2172 			}
2173 			if (node->last > last) {
2174 				pr_debug("change old range last\n");
2175 				r = svm_range_split_tail(prange, last,
2176 							 insert_list, remap_list);
2177 				if (r)
2178 					goto out;
2179 			}
2180 		} else {
2181 			/* The node is contained within start..last,
2182 			 * just update it
2183 			 */
2184 			list_add(&prange->update_list, update_list);
2185 		}
2186 
2187 		/* insert a new node if needed */
2188 		if (node->start > start) {
2189 			r = svm_range_split_new(svms, start, node->start - 1,
2190 						READ_ONCE(max_svm_range_pages),
2191 						&new_list, update_list);
2192 			if (r)
2193 				goto out;
2194 		}
2195 
2196 		node = next;
2197 		start = next_start;
2198 	}
2199 
2200 	/* add a final range at the end if needed */
2201 	if (start <= last)
2202 		r = svm_range_split_new(svms, start, last,
2203 					READ_ONCE(max_svm_range_pages),
2204 					&new_list, update_list);
2205 
2206 out:
2207 	if (r) {
2208 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2209 			svm_range_free(prange, false);
2210 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2211 			svm_range_free(prange, true);
2212 	} else {
2213 		list_splice(&new_list, insert_list);
2214 	}
2215 
2216 	return r;
2217 }
2218 
2219 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2220 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2221 					    struct svm_range *prange)
2222 {
2223 	unsigned long start;
2224 	unsigned long last;
2225 
2226 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2227 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2228 
2229 	if (prange->start == start && prange->last == last)
2230 		return;
2231 
2232 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2233 		  prange->svms, prange, start, last, prange->start,
2234 		  prange->last);
2235 
2236 	if (start != 0 && last != 0) {
2237 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2238 		svm_range_remove_notifier(prange);
2239 	}
2240 	prange->it_node.start = prange->start;
2241 	prange->it_node.last = prange->last;
2242 
2243 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2244 	svm_range_add_notifier_locked(mm, prange);
2245 }
2246 
2247 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2248 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2249 			 struct mm_struct *mm)
2250 {
2251 	switch (prange->work_item.op) {
2252 	case SVM_OP_NULL:
2253 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2254 			 svms, prange, prange->start, prange->last);
2255 		break;
2256 	case SVM_OP_UNMAP_RANGE:
2257 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2258 			 svms, prange, prange->start, prange->last);
2259 		svm_range_unlink(prange);
2260 		svm_range_remove_notifier(prange);
2261 		svm_range_free(prange, true);
2262 		break;
2263 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2264 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2265 			 svms, prange, prange->start, prange->last);
2266 		svm_range_update_notifier_and_interval_tree(mm, prange);
2267 		break;
2268 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2269 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2270 			 svms, prange, prange->start, prange->last);
2271 		svm_range_update_notifier_and_interval_tree(mm, prange);
2272 		/* TODO: implement deferred validation and mapping */
2273 		break;
2274 	case SVM_OP_ADD_RANGE:
2275 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2276 			 prange->start, prange->last);
2277 		svm_range_add_to_svms(prange);
2278 		svm_range_add_notifier_locked(mm, prange);
2279 		break;
2280 	case SVM_OP_ADD_RANGE_AND_MAP:
2281 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2282 			 prange, prange->start, prange->last);
2283 		svm_range_add_to_svms(prange);
2284 		svm_range_add_notifier_locked(mm, prange);
2285 		/* TODO: implement deferred validation and mapping */
2286 		break;
2287 	default:
2288 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2289 			 prange->work_item.op);
2290 	}
2291 }
2292 
svm_range_drain_retry_fault(struct svm_range_list * svms)2293 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2294 {
2295 	struct kfd_process_device *pdd;
2296 	struct kfd_process *p;
2297 	uint32_t i;
2298 
2299 	p = container_of(svms, struct kfd_process, svms);
2300 
2301 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2302 		pdd = p->pdds[i];
2303 		if (!pdd)
2304 			continue;
2305 
2306 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2307 
2308 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2309 				pdd->dev->adev->irq.retry_cam_enabled ?
2310 				&pdd->dev->adev->irq.ih :
2311 				&pdd->dev->adev->irq.ih1);
2312 
2313 		if (pdd->dev->adev->irq.retry_cam_enabled)
2314 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2315 				&pdd->dev->adev->irq.ih_soft);
2316 
2317 
2318 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2319 	}
2320 }
2321 
svm_range_deferred_list_work(struct work_struct * work)2322 static void svm_range_deferred_list_work(struct work_struct *work)
2323 {
2324 	struct svm_range_list *svms;
2325 	struct svm_range *prange;
2326 	struct mm_struct *mm;
2327 
2328 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2329 	pr_debug("enter svms 0x%p\n", svms);
2330 
2331 	spin_lock(&svms->deferred_list_lock);
2332 	while (!list_empty(&svms->deferred_range_list)) {
2333 		prange = list_first_entry(&svms->deferred_range_list,
2334 					  struct svm_range, deferred_list);
2335 		spin_unlock(&svms->deferred_list_lock);
2336 
2337 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2338 			 prange->start, prange->last, prange->work_item.op);
2339 
2340 		mm = prange->work_item.mm;
2341 
2342 		mmap_write_lock(mm);
2343 
2344 		/* Remove from deferred_list must be inside mmap write lock, for
2345 		 * two race cases:
2346 		 * 1. unmap_from_cpu may change work_item.op and add the range
2347 		 *    to deferred_list again, cause use after free bug.
2348 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2349 		 *    lock and continue because deferred_list is empty, but
2350 		 *    deferred_list work is actually waiting for mmap lock.
2351 		 */
2352 		spin_lock(&svms->deferred_list_lock);
2353 		list_del_init(&prange->deferred_list);
2354 		spin_unlock(&svms->deferred_list_lock);
2355 
2356 		mutex_lock(&svms->lock);
2357 		mutex_lock(&prange->migrate_mutex);
2358 		while (!list_empty(&prange->child_list)) {
2359 			struct svm_range *pchild;
2360 
2361 			pchild = list_first_entry(&prange->child_list,
2362 						struct svm_range, child_list);
2363 			pr_debug("child prange 0x%p op %d\n", pchild,
2364 				 pchild->work_item.op);
2365 			list_del_init(&pchild->child_list);
2366 			svm_range_handle_list_op(svms, pchild, mm);
2367 		}
2368 		mutex_unlock(&prange->migrate_mutex);
2369 
2370 		svm_range_handle_list_op(svms, prange, mm);
2371 		mutex_unlock(&svms->lock);
2372 		mmap_write_unlock(mm);
2373 
2374 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2375 		 * last mm refcount, schedule release work to avoid circular locking
2376 		 */
2377 		mmput_async(mm);
2378 
2379 		spin_lock(&svms->deferred_list_lock);
2380 	}
2381 	spin_unlock(&svms->deferred_list_lock);
2382 	pr_debug("exit svms 0x%p\n", svms);
2383 }
2384 
2385 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2386 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2387 			struct mm_struct *mm, enum svm_work_list_ops op)
2388 {
2389 	spin_lock(&svms->deferred_list_lock);
2390 	/* if prange is on the deferred list */
2391 	if (!list_empty(&prange->deferred_list)) {
2392 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2393 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2394 		if (op != SVM_OP_NULL &&
2395 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2396 			prange->work_item.op = op;
2397 	} else {
2398 		prange->work_item.op = op;
2399 
2400 		/* Pairs with mmput in deferred_list_work */
2401 		mmget(mm);
2402 		prange->work_item.mm = mm;
2403 		list_add_tail(&prange->deferred_list,
2404 			      &prange->svms->deferred_range_list);
2405 		pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2406 			 prange, prange->start, prange->last, op);
2407 	}
2408 	spin_unlock(&svms->deferred_list_lock);
2409 }
2410 
schedule_deferred_list_work(struct svm_range_list * svms)2411 void schedule_deferred_list_work(struct svm_range_list *svms)
2412 {
2413 	spin_lock(&svms->deferred_list_lock);
2414 	if (!list_empty(&svms->deferred_range_list))
2415 		schedule_work(&svms->deferred_list_work);
2416 	spin_unlock(&svms->deferred_list_lock);
2417 }
2418 
2419 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2420 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2421 		      struct svm_range *prange, unsigned long start,
2422 		      unsigned long last)
2423 {
2424 	struct svm_range *head;
2425 	struct svm_range *tail;
2426 
2427 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2428 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2429 			 prange->start, prange->last);
2430 		return;
2431 	}
2432 	if (start > prange->last || last < prange->start)
2433 		return;
2434 
2435 	head = tail = prange;
2436 	if (start > prange->start)
2437 		svm_range_split(prange, prange->start, start - 1, &tail);
2438 	if (last < tail->last)
2439 		svm_range_split(tail, last + 1, tail->last, &head);
2440 
2441 	if (head != prange && tail != prange) {
2442 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2443 		svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2444 	} else if (tail != prange) {
2445 		svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2446 	} else if (head != prange) {
2447 		svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2448 	} else if (parent != prange) {
2449 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2450 	}
2451 }
2452 
2453 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2454 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2455 			 unsigned long start, unsigned long last)
2456 {
2457 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2458 	struct svm_range_list *svms;
2459 	struct svm_range *pchild;
2460 	struct kfd_process *p;
2461 	unsigned long s, l;
2462 	bool unmap_parent;
2463 	uint32_t i;
2464 
2465 	if (atomic_read(&prange->queue_refcount)) {
2466 		int r;
2467 
2468 		pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2469 			prange->start << PAGE_SHIFT);
2470 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2471 		if (r)
2472 			pr_debug("failed %d to quiesce KFD queues\n", r);
2473 	}
2474 
2475 	p = kfd_lookup_process_by_mm(mm);
2476 	if (!p)
2477 		return;
2478 	svms = &p->svms;
2479 
2480 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2481 		 prange, prange->start, prange->last, start, last);
2482 
2483 	/* calculate time stamps that are used to decide which page faults need be
2484 	 * dropped or handled before unmap pages from gpu vm
2485 	 */
2486 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2487 		struct kfd_process_device *pdd;
2488 		struct amdgpu_device *adev;
2489 		struct amdgpu_ih_ring *ih;
2490 		uint32_t checkpoint_wptr;
2491 
2492 		pdd = p->pdds[i];
2493 		if (!pdd)
2494 			continue;
2495 
2496 		adev = pdd->dev->adev;
2497 
2498 		/* Check and drain ih1 ring if cam not available */
2499 		if (adev->irq.ih1.ring_size) {
2500 			ih = &adev->irq.ih1;
2501 			checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2502 			if (ih->rptr != checkpoint_wptr) {
2503 				svms->checkpoint_ts[i] =
2504 					amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2505 				continue;
2506 			}
2507 		}
2508 
2509 		/* check if dev->irq.ih_soft is not empty */
2510 		ih = &adev->irq.ih_soft;
2511 		checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2512 		if (ih->rptr != checkpoint_wptr)
2513 			svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2514 	}
2515 
2516 	unmap_parent = start <= prange->start && last >= prange->last;
2517 
2518 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2519 		mutex_lock_nested(&pchild->lock, 1);
2520 		s = max(start, pchild->start);
2521 		l = min(last, pchild->last);
2522 		if (l >= s)
2523 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2524 		svm_range_unmap_split(mm, prange, pchild, start, last);
2525 		mutex_unlock(&pchild->lock);
2526 	}
2527 	s = max(start, prange->start);
2528 	l = min(last, prange->last);
2529 	if (l >= s)
2530 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2531 	svm_range_unmap_split(mm, prange, prange, start, last);
2532 
2533 	if (unmap_parent)
2534 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2535 	else
2536 		svm_range_add_list_work(svms, prange, mm,
2537 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2538 	schedule_deferred_list_work(svms);
2539 
2540 	kfd_unref_process(p);
2541 }
2542 
2543 /**
2544  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2545  * @mni: mmu_interval_notifier struct
2546  * @range: mmu_notifier_range struct
2547  * @cur_seq: value to pass to mmu_interval_set_seq()
2548  *
2549  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2550  * is from migration, or CPU page invalidation callback.
2551  *
2552  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2553  * work thread, and split prange if only part of prange is unmapped.
2554  *
2555  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2556  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2557  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2558  * update GPU mapping to recover.
2559  *
2560  * Context: mmap lock, notifier_invalidate_start lock are held
2561  *          for invalidate event, prange lock is held if this is from migration
2562  */
2563 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2564 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2565 				    const struct mmu_notifier_range *range,
2566 				    unsigned long cur_seq)
2567 {
2568 	struct svm_range *prange;
2569 	unsigned long start;
2570 	unsigned long last;
2571 
2572 	if (range->event == MMU_NOTIFY_RELEASE)
2573 		return true;
2574 	if (!mmget_not_zero(mni->mm))
2575 		return true;
2576 
2577 	start = mni->interval_tree.start;
2578 	last = mni->interval_tree.last;
2579 	start = max(start, range->start) >> PAGE_SHIFT;
2580 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2581 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2582 		 start, last, range->start >> PAGE_SHIFT,
2583 		 (range->end - 1) >> PAGE_SHIFT,
2584 		 mni->interval_tree.start >> PAGE_SHIFT,
2585 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2586 
2587 	prange = container_of(mni, struct svm_range, notifier);
2588 
2589 	svm_range_lock(prange);
2590 	mmu_interval_set_seq(mni, cur_seq);
2591 
2592 	switch (range->event) {
2593 	case MMU_NOTIFY_UNMAP:
2594 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2595 		break;
2596 	default:
2597 		svm_range_evict(prange, mni->mm, start, last, range->event);
2598 		break;
2599 	}
2600 
2601 	svm_range_unlock(prange);
2602 	mmput(mni->mm);
2603 
2604 	return true;
2605 }
2606 
2607 /**
2608  * svm_range_from_addr - find svm range from fault address
2609  * @svms: svm range list header
2610  * @addr: address to search range interval tree, in pages
2611  * @parent: parent range if range is on child list
2612  *
2613  * Context: The caller must hold svms->lock
2614  *
2615  * Return: the svm_range found or NULL
2616  */
2617 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2618 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2619 		    struct svm_range **parent)
2620 {
2621 	struct interval_tree_node *node;
2622 	struct svm_range *prange;
2623 	struct svm_range *pchild;
2624 
2625 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2626 	if (!node)
2627 		return NULL;
2628 
2629 	prange = container_of(node, struct svm_range, it_node);
2630 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2631 		 addr, prange->start, prange->last, node->start, node->last);
2632 
2633 	if (addr >= prange->start && addr <= prange->last) {
2634 		if (parent)
2635 			*parent = prange;
2636 		return prange;
2637 	}
2638 	list_for_each_entry(pchild, &prange->child_list, child_list)
2639 		if (addr >= pchild->start && addr <= pchild->last) {
2640 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2641 				 addr, pchild->start, pchild->last);
2642 			if (parent)
2643 				*parent = prange;
2644 			return pchild;
2645 		}
2646 
2647 	return NULL;
2648 }
2649 
2650 /* svm_range_best_restore_location - decide the best fault restore location
2651  * @prange: svm range structure
2652  * @adev: the GPU on which vm fault happened
2653  *
2654  * This is only called when xnack is on, to decide the best location to restore
2655  * the range mapping after GPU vm fault. Caller uses the best location to do
2656  * migration if actual loc is not best location, then update GPU page table
2657  * mapping to the best location.
2658  *
2659  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2660  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2661  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2662  *    if range actual loc is cpu, best_loc is cpu
2663  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2664  *    range actual loc.
2665  * Otherwise, GPU no access, best_loc is -1.
2666  *
2667  * Return:
2668  * -1 means vm fault GPU no access
2669  * 0 for CPU or GPU id
2670  */
2671 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2672 svm_range_best_restore_location(struct svm_range *prange,
2673 				struct kfd_node *node,
2674 				int32_t *gpuidx)
2675 {
2676 	struct kfd_node *bo_node, *preferred_node;
2677 	struct kfd_process *p;
2678 	uint32_t gpuid;
2679 	int r;
2680 
2681 	p = container_of(prange->svms, struct kfd_process, svms);
2682 
2683 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2684 	if (r < 0) {
2685 		pr_debug("failed to get gpuid from kgd\n");
2686 		return -1;
2687 	}
2688 
2689 	if (node->adev->apu_prefer_gtt)
2690 		return 0;
2691 
2692 	if (prange->preferred_loc == gpuid ||
2693 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2694 		return prange->preferred_loc;
2695 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2696 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2697 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2698 			return prange->preferred_loc;
2699 		/* fall through */
2700 	}
2701 
2702 	if (test_bit(*gpuidx, prange->bitmap_access))
2703 		return gpuid;
2704 
2705 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2706 		if (!prange->actual_loc)
2707 			return 0;
2708 
2709 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2710 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2711 			return prange->actual_loc;
2712 		else
2713 			return 0;
2714 	}
2715 
2716 	return -1;
2717 }
2718 
2719 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2720 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2721 			       unsigned long *start, unsigned long *last,
2722 			       bool *is_heap_stack)
2723 {
2724 	struct vm_area_struct *vma;
2725 	struct interval_tree_node *node;
2726 	struct rb_node *rb_node;
2727 	unsigned long start_limit, end_limit;
2728 
2729 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2730 	if (!vma) {
2731 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2732 		return -EFAULT;
2733 	}
2734 
2735 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2736 
2737 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2738 		      (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2739 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2740 		    (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2741 
2742 	/* First range that starts after the fault address */
2743 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2744 	if (node) {
2745 		end_limit = min(end_limit, node->start);
2746 		/* Last range that ends before the fault address */
2747 		rb_node = rb_prev(&node->rb);
2748 	} else {
2749 		/* Last range must end before addr because
2750 		 * there was no range after addr
2751 		 */
2752 		rb_node = rb_last(&p->svms.objects.rb_root);
2753 	}
2754 	if (rb_node) {
2755 		node = container_of(rb_node, struct interval_tree_node, rb);
2756 		if (node->last >= addr) {
2757 			WARN(1, "Overlap with prev node and page fault addr\n");
2758 			return -EFAULT;
2759 		}
2760 		start_limit = max(start_limit, node->last + 1);
2761 	}
2762 
2763 	*start = start_limit;
2764 	*last = end_limit - 1;
2765 
2766 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2767 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2768 		 *start, *last, *is_heap_stack);
2769 
2770 	return 0;
2771 }
2772 
2773 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2774 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2775 			   uint64_t *bo_s, uint64_t *bo_l)
2776 {
2777 	struct amdgpu_bo_va_mapping *mapping;
2778 	struct interval_tree_node *node;
2779 	struct amdgpu_bo *bo = NULL;
2780 	unsigned long userptr;
2781 	uint32_t i;
2782 	int r;
2783 
2784 	for (i = 0; i < p->n_pdds; i++) {
2785 		struct amdgpu_vm *vm;
2786 
2787 		if (!p->pdds[i]->drm_priv)
2788 			continue;
2789 
2790 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2791 		r = amdgpu_bo_reserve(vm->root.bo, false);
2792 		if (r)
2793 			return r;
2794 
2795 		/* Check userptr by searching entire vm->va interval tree */
2796 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2797 		while (node) {
2798 			mapping = container_of((struct rb_node *)node,
2799 					       struct amdgpu_bo_va_mapping, rb);
2800 			bo = mapping->bo_va->base.bo;
2801 
2802 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2803 							 start << PAGE_SHIFT,
2804 							 last << PAGE_SHIFT,
2805 							 &userptr)) {
2806 				node = interval_tree_iter_next(node, 0, ~0ULL);
2807 				continue;
2808 			}
2809 
2810 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2811 				 start, last);
2812 			if (bo_s && bo_l) {
2813 				*bo_s = userptr >> PAGE_SHIFT;
2814 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2815 			}
2816 			amdgpu_bo_unreserve(vm->root.bo);
2817 			return -EADDRINUSE;
2818 		}
2819 		amdgpu_bo_unreserve(vm->root.bo);
2820 	}
2821 	return 0;
2822 }
2823 
2824 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2825 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2826 						struct kfd_process *p,
2827 						struct mm_struct *mm,
2828 						int64_t addr)
2829 {
2830 	struct svm_range *prange = NULL;
2831 	unsigned long start, last;
2832 	uint32_t gpuid, gpuidx;
2833 	bool is_heap_stack;
2834 	uint64_t bo_s = 0;
2835 	uint64_t bo_l = 0;
2836 	int r;
2837 
2838 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2839 					   &is_heap_stack))
2840 		return NULL;
2841 
2842 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2843 	if (r != -EADDRINUSE)
2844 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2845 
2846 	if (r == -EADDRINUSE) {
2847 		if (addr >= bo_s && addr <= bo_l)
2848 			return NULL;
2849 
2850 		/* Create one page svm range if 2MB range overlapping */
2851 		start = addr;
2852 		last = addr;
2853 	}
2854 
2855 	prange = svm_range_new(&p->svms, start, last, true);
2856 	if (!prange) {
2857 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2858 		return NULL;
2859 	}
2860 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2861 		pr_debug("failed to get gpuid from kgd\n");
2862 		svm_range_free(prange, true);
2863 		return NULL;
2864 	}
2865 
2866 	if (is_heap_stack)
2867 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2868 
2869 	svm_range_add_to_svms(prange);
2870 	svm_range_add_notifier_locked(mm, prange);
2871 
2872 	return prange;
2873 }
2874 
2875 /* svm_range_skip_recover - decide if prange can be recovered
2876  * @prange: svm range structure
2877  *
2878  * GPU vm retry fault handle skip recover the range for cases:
2879  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2880  *    deferred list work will drain the stale fault before free the prange.
2881  * 2. prange is on deferred list to add interval notifier after split, or
2882  * 3. prange is child range, it is split from parent prange, recover later
2883  *    after interval notifier is added.
2884  *
2885  * Return: true to skip recover, false to recover
2886  */
svm_range_skip_recover(struct svm_range * prange)2887 static bool svm_range_skip_recover(struct svm_range *prange)
2888 {
2889 	struct svm_range_list *svms = prange->svms;
2890 
2891 	spin_lock(&svms->deferred_list_lock);
2892 	if (list_empty(&prange->deferred_list) &&
2893 	    list_empty(&prange->child_list)) {
2894 		spin_unlock(&svms->deferred_list_lock);
2895 		return false;
2896 	}
2897 	spin_unlock(&svms->deferred_list_lock);
2898 
2899 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2900 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2901 			 svms, prange, prange->start, prange->last);
2902 		return true;
2903 	}
2904 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2905 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2906 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2907 			 svms, prange, prange->start, prange->last);
2908 		return true;
2909 	}
2910 	return false;
2911 }
2912 
2913 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2914 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2915 		      int32_t gpuidx)
2916 {
2917 	struct kfd_process_device *pdd;
2918 
2919 	/* fault is on different page of same range
2920 	 * or fault is skipped to recover later
2921 	 * or fault is on invalid virtual address
2922 	 */
2923 	if (gpuidx == MAX_GPU_INSTANCE) {
2924 		uint32_t gpuid;
2925 		int r;
2926 
2927 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2928 		if (r < 0)
2929 			return;
2930 	}
2931 
2932 	/* fault is recovered
2933 	 * or fault cannot recover because GPU no access on the range
2934 	 */
2935 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2936 	if (pdd)
2937 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2938 }
2939 
2940 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2941 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2942 {
2943 	unsigned long requested = VM_READ;
2944 
2945 	if (write_fault)
2946 		requested |= VM_WRITE;
2947 
2948 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2949 		vma->vm_flags);
2950 	return (vma->vm_flags & requested) == requested;
2951 }
2952 
2953 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2954 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2955 			uint32_t vmid, uint32_t node_id,
2956 			uint64_t addr, uint64_t ts, bool write_fault)
2957 {
2958 	unsigned long start, last, size;
2959 	struct mm_struct *mm = NULL;
2960 	struct svm_range_list *svms;
2961 	struct svm_range *prange;
2962 	struct kfd_process *p;
2963 	ktime_t timestamp = ktime_get_boottime();
2964 	struct kfd_node *node;
2965 	int32_t best_loc;
2966 	int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2967 	bool write_locked = false;
2968 	struct vm_area_struct *vma;
2969 	bool migration = false;
2970 	int r = 0;
2971 
2972 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2973 		pr_debug("device does not support SVM\n");
2974 		return -EFAULT;
2975 	}
2976 
2977 	p = kfd_lookup_process_by_pasid(pasid, NULL);
2978 	if (!p) {
2979 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2980 		return 0;
2981 	}
2982 	svms = &p->svms;
2983 
2984 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2985 
2986 	if (atomic_read(&svms->drain_pagefaults)) {
2987 		pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
2988 		r = 0;
2989 		goto out;
2990 	}
2991 
2992 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2993 	if (!node) {
2994 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2995 			 vmid);
2996 		r = -EFAULT;
2997 		goto out;
2998 	}
2999 
3000 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3001 		pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3002 		r = -EFAULT;
3003 		goto out;
3004 	}
3005 
3006 	if (!p->xnack_enabled) {
3007 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3008 		r = -EFAULT;
3009 		goto out;
3010 	}
3011 
3012 	/* p->lead_thread is available as kfd_process_wq_release flush the work
3013 	 * before releasing task ref.
3014 	 */
3015 	mm = get_task_mm(p->lead_thread);
3016 	if (!mm) {
3017 		pr_debug("svms 0x%p failed to get mm\n", svms);
3018 		r = 0;
3019 		goto out;
3020 	}
3021 
3022 	mmap_read_lock(mm);
3023 retry_write_locked:
3024 	mutex_lock(&svms->lock);
3025 
3026 	/* check if this page fault time stamp is before svms->checkpoint_ts */
3027 	if (svms->checkpoint_ts[gpuidx] != 0) {
3028 		if (amdgpu_ih_ts_after_or_equal(ts,  svms->checkpoint_ts[gpuidx])) {
3029 			pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3030 			r = -EAGAIN;
3031 			goto out_unlock_svms;
3032 		} else {
3033 			/* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3034 			 * to zero to avoid following ts wrap around give wrong comparing
3035 			 */
3036 			svms->checkpoint_ts[gpuidx] = 0;
3037 		}
3038 	}
3039 
3040 	prange = svm_range_from_addr(svms, addr, NULL);
3041 	if (!prange) {
3042 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3043 			 svms, addr);
3044 		if (!write_locked) {
3045 			/* Need the write lock to create new range with MMU notifier.
3046 			 * Also flush pending deferred work to make sure the interval
3047 			 * tree is up to date before we add a new range
3048 			 */
3049 			mutex_unlock(&svms->lock);
3050 			mmap_read_unlock(mm);
3051 			mmap_write_lock(mm);
3052 			write_locked = true;
3053 			goto retry_write_locked;
3054 		}
3055 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
3056 		if (!prange) {
3057 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3058 				 svms, addr);
3059 			mmap_write_downgrade(mm);
3060 			r = -EFAULT;
3061 			goto out_unlock_svms;
3062 		}
3063 	}
3064 	if (write_locked)
3065 		mmap_write_downgrade(mm);
3066 
3067 	mutex_lock(&prange->migrate_mutex);
3068 
3069 	if (svm_range_skip_recover(prange)) {
3070 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3071 		r = 0;
3072 		goto out_unlock_range;
3073 	}
3074 
3075 	/* skip duplicate vm fault on different pages of same range */
3076 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3077 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3078 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3079 			 svms, prange->start, prange->last);
3080 		r = 0;
3081 		goto out_unlock_range;
3082 	}
3083 
3084 	/* __do_munmap removed VMA, return success as we are handling stale
3085 	 * retry fault.
3086 	 */
3087 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3088 	if (!vma) {
3089 		pr_debug("address 0x%llx VMA is removed\n", addr);
3090 		r = 0;
3091 		goto out_unlock_range;
3092 	}
3093 
3094 	if (!svm_fault_allowed(vma, write_fault)) {
3095 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3096 			write_fault ? "write" : "read");
3097 		r = -EPERM;
3098 		goto out_unlock_range;
3099 	}
3100 
3101 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3102 	if (best_loc == -1) {
3103 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3104 			 svms, prange->start, prange->last);
3105 		r = -EACCES;
3106 		goto out_unlock_range;
3107 	}
3108 
3109 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3110 		 svms, prange->start, prange->last, best_loc,
3111 		 prange->actual_loc);
3112 
3113 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3114 				       write_fault, timestamp);
3115 
3116 	/* Align migration range start and size to granularity size */
3117 	size = 1UL << prange->granularity;
3118 	start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3119 	last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3120 	if (prange->actual_loc != 0 || best_loc != 0) {
3121 		if (best_loc) {
3122 			r = svm_migrate_to_vram(prange, best_loc, start, last,
3123 					mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3124 			if (r) {
3125 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3126 					 r, addr);
3127 				/* Fallback to system memory if migration to
3128 				 * VRAM failed
3129 				 */
3130 				if (prange->actual_loc && prange->actual_loc != best_loc)
3131 					r = svm_migrate_vram_to_ram(prange, mm, start, last,
3132 						KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3133 				else
3134 					r = 0;
3135 			}
3136 		} else {
3137 			r = svm_migrate_vram_to_ram(prange, mm, start, last,
3138 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3139 		}
3140 		if (r) {
3141 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3142 				 r, svms, start, last);
3143 			goto out_migrate_fail;
3144 		} else {
3145 			migration = true;
3146 		}
3147 	}
3148 
3149 	r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3150 				       false, false);
3151 	if (r)
3152 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3153 			 r, svms, start, last);
3154 
3155 out_migrate_fail:
3156 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3157 				     migration);
3158 
3159 out_unlock_range:
3160 	mutex_unlock(&prange->migrate_mutex);
3161 out_unlock_svms:
3162 	mutex_unlock(&svms->lock);
3163 	mmap_read_unlock(mm);
3164 
3165 	if (r != -EAGAIN)
3166 		svm_range_count_fault(node, p, gpuidx);
3167 
3168 	mmput(mm);
3169 out:
3170 	kfd_unref_process(p);
3171 
3172 	if (r == -EAGAIN) {
3173 		pr_debug("recover vm fault later\n");
3174 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3175 		r = 0;
3176 	}
3177 	return r;
3178 }
3179 
3180 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3181 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3182 {
3183 	struct svm_range *prange, *pchild;
3184 	uint64_t reserved_size = 0;
3185 	uint64_t size;
3186 	int r = 0;
3187 
3188 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3189 
3190 	mutex_lock(&p->svms.lock);
3191 
3192 	list_for_each_entry(prange, &p->svms.list, list) {
3193 		svm_range_lock(prange);
3194 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3195 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3196 			if (xnack_enabled) {
3197 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3198 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3199 			} else {
3200 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3201 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3202 				if (r)
3203 					goto out_unlock;
3204 				reserved_size += size;
3205 			}
3206 		}
3207 
3208 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3209 		if (xnack_enabled) {
3210 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3211 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3212 		} else {
3213 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3214 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3215 			if (r)
3216 				goto out_unlock;
3217 			reserved_size += size;
3218 		}
3219 out_unlock:
3220 		svm_range_unlock(prange);
3221 		if (r)
3222 			break;
3223 	}
3224 
3225 	if (r)
3226 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3227 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3228 	else
3229 		/* Change xnack mode must be inside svms lock, to avoid race with
3230 		 * svm_range_deferred_list_work unreserve memory in parallel.
3231 		 */
3232 		p->xnack_enabled = xnack_enabled;
3233 
3234 	mutex_unlock(&p->svms.lock);
3235 	return r;
3236 }
3237 
svm_range_list_fini(struct kfd_process * p)3238 void svm_range_list_fini(struct kfd_process *p)
3239 {
3240 	struct svm_range *prange;
3241 	struct svm_range *next;
3242 
3243 	pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3244 		 &p->svms);
3245 
3246 	cancel_delayed_work_sync(&p->svms.restore_work);
3247 
3248 	/* Ensure list work is finished before process is destroyed */
3249 	flush_work(&p->svms.deferred_list_work);
3250 
3251 	/*
3252 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3253 	 * not find kfd process and take mm lock to recover fault.
3254 	 * stop kfd page fault handing, then wait pending page faults got drained
3255 	 */
3256 	atomic_set(&p->svms.drain_pagefaults, 1);
3257 	svm_range_drain_retry_fault(&p->svms);
3258 
3259 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3260 		svm_range_unlink(prange);
3261 		svm_range_remove_notifier(prange);
3262 		svm_range_free(prange, true);
3263 	}
3264 
3265 	mutex_destroy(&p->svms.lock);
3266 
3267 	pr_debug("process pid %d svms 0x%p done\n",
3268 		p->lead_thread->pid, &p->svms);
3269 }
3270 
svm_range_list_init(struct kfd_process * p)3271 int svm_range_list_init(struct kfd_process *p)
3272 {
3273 	struct svm_range_list *svms = &p->svms;
3274 	int i;
3275 
3276 	svms->objects = RB_ROOT_CACHED;
3277 	mutex_init(&svms->lock);
3278 	INIT_LIST_HEAD(&svms->list);
3279 	atomic_set(&svms->evicted_ranges, 0);
3280 	atomic_set(&svms->drain_pagefaults, 0);
3281 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3282 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3283 	INIT_LIST_HEAD(&svms->deferred_range_list);
3284 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3285 	spin_lock_init(&svms->deferred_list_lock);
3286 
3287 	for (i = 0; i < p->n_pdds; i++)
3288 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3289 			bitmap_set(svms->bitmap_supported, i, 1);
3290 
3291 	 /* Value of default granularity cannot exceed 0x1B, the
3292 	  * number of pages supported by a 4-level paging table
3293 	  */
3294 	svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3295 	pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3296 
3297 	return 0;
3298 }
3299 
3300 /**
3301  * svm_range_check_vm - check if virtual address range mapped already
3302  * @p: current kfd_process
3303  * @start: range start address, in pages
3304  * @last: range last address, in pages
3305  * @bo_s: mapping start address in pages if address range already mapped
3306  * @bo_l: mapping last address in pages if address range already mapped
3307  *
3308  * The purpose is to avoid virtual address ranges already allocated by
3309  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3310  * It looks for each pdd in the kfd_process.
3311  *
3312  * Context: Process context
3313  *
3314  * Return 0 - OK, if the range is not mapped.
3315  * Otherwise error code:
3316  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3317  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3318  * a signal. Release all buffer reservations and return to user-space.
3319  */
3320 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3321 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3322 		   uint64_t *bo_s, uint64_t *bo_l)
3323 {
3324 	struct amdgpu_bo_va_mapping *mapping;
3325 	struct interval_tree_node *node;
3326 	uint32_t i;
3327 	int r;
3328 
3329 	for (i = 0; i < p->n_pdds; i++) {
3330 		struct amdgpu_vm *vm;
3331 
3332 		if (!p->pdds[i]->drm_priv)
3333 			continue;
3334 
3335 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3336 		r = amdgpu_bo_reserve(vm->root.bo, false);
3337 		if (r)
3338 			return r;
3339 
3340 		node = interval_tree_iter_first(&vm->va, start, last);
3341 		if (node) {
3342 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3343 				 start, last);
3344 			mapping = container_of((struct rb_node *)node,
3345 					       struct amdgpu_bo_va_mapping, rb);
3346 			if (bo_s && bo_l) {
3347 				*bo_s = mapping->start;
3348 				*bo_l = mapping->last;
3349 			}
3350 			amdgpu_bo_unreserve(vm->root.bo);
3351 			return -EADDRINUSE;
3352 		}
3353 		amdgpu_bo_unreserve(vm->root.bo);
3354 	}
3355 
3356 	return 0;
3357 }
3358 
3359 /**
3360  * svm_range_is_valid - check if virtual address range is valid
3361  * @p: current kfd_process
3362  * @start: range start address, in pages
3363  * @size: range size, in pages
3364  *
3365  * Valid virtual address range means it belongs to one or more VMAs
3366  *
3367  * Context: Process context
3368  *
3369  * Return:
3370  *  0 - OK, otherwise error code
3371  */
3372 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3373 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3374 {
3375 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3376 	struct vm_area_struct *vma;
3377 	unsigned long end;
3378 	unsigned long start_unchg = start;
3379 
3380 	start <<= PAGE_SHIFT;
3381 	end = start + (size << PAGE_SHIFT);
3382 	do {
3383 		vma = vma_lookup(p->mm, start);
3384 		if (!vma || (vma->vm_flags & device_vma))
3385 			return -EFAULT;
3386 		start = min(end, vma->vm_end);
3387 	} while (start < end);
3388 
3389 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3390 				  NULL);
3391 }
3392 
3393 /**
3394  * svm_range_best_prefetch_location - decide the best prefetch location
3395  * @prange: svm range structure
3396  *
3397  * For xnack off:
3398  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3399  * can be CPU or GPU.
3400  *
3401  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3402  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3403  * the best prefetch location is always CPU, because GPU can not have coherent
3404  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3405  *
3406  * For xnack on:
3407  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3408  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3409  *
3410  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3411  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3412  * prefetch location is always CPU.
3413  *
3414  * Context: Process context
3415  *
3416  * Return:
3417  * 0 for CPU or GPU id
3418  */
3419 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3420 svm_range_best_prefetch_location(struct svm_range *prange)
3421 {
3422 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3423 	uint32_t best_loc = prange->prefetch_loc;
3424 	struct kfd_process_device *pdd;
3425 	struct kfd_node *bo_node;
3426 	struct kfd_process *p;
3427 	uint32_t gpuidx;
3428 
3429 	p = container_of(prange->svms, struct kfd_process, svms);
3430 
3431 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3432 		goto out;
3433 
3434 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3435 	if (!bo_node) {
3436 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3437 		best_loc = 0;
3438 		goto out;
3439 	}
3440 
3441 	if (bo_node->adev->apu_prefer_gtt) {
3442 		best_loc = 0;
3443 		goto out;
3444 	}
3445 
3446 	if (p->xnack_enabled)
3447 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3448 	else
3449 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3450 			  MAX_GPU_INSTANCE);
3451 
3452 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3453 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3454 		if (!pdd) {
3455 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3456 			continue;
3457 		}
3458 
3459 		if (pdd->dev->adev == bo_node->adev)
3460 			continue;
3461 
3462 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3463 			best_loc = 0;
3464 			break;
3465 		}
3466 	}
3467 
3468 out:
3469 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3470 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3471 		 best_loc);
3472 
3473 	return best_loc;
3474 }
3475 
3476 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3477  * @mm: current process mm_struct
3478  * @prange: svm range structure
3479  * @migrated: output, true if migration is triggered
3480  *
3481  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3482  * from ram to vram.
3483  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3484  * from vram to ram.
3485  *
3486  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3487  * and restore work:
3488  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3489  *    stops all queues, schedule restore work
3490  * 2. svm_range_restore_work wait for migration is done by
3491  *    a. svm_range_validate_vram takes prange->migrate_mutex
3492  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3493  * 3. restore work update mappings of GPU, resume all queues.
3494  *
3495  * Context: Process context
3496  *
3497  * Return:
3498  * 0 - OK, otherwise - error code of migration
3499  */
3500 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3501 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3502 			    bool *migrated)
3503 {
3504 	uint32_t best_loc;
3505 	int r = 0;
3506 
3507 	*migrated = false;
3508 	best_loc = svm_range_best_prefetch_location(prange);
3509 
3510 	/* when best_loc is a gpu node and same as prange->actual_loc
3511 	 * we still need do migration as prange->actual_loc !=0 does
3512 	 * not mean all pages in prange are vram. hmm migrate will pick
3513 	 * up right pages during migration.
3514 	 */
3515 	if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3516 	    (best_loc == 0 && prange->actual_loc == 0))
3517 		return 0;
3518 
3519 	if (!best_loc) {
3520 		r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3521 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3522 		*migrated = !r;
3523 		return r;
3524 	}
3525 
3526 	r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3527 				mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3528 	*migrated = !r;
3529 
3530 	return 0;
3531 }
3532 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3533 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3534 {
3535 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3536 	 * signaled yet and we're under the protection of the fence->lock.
3537 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3538 	 * here any more.
3539 	 *
3540 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3541 	 */
3542 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3543 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3544 		schedule_work(&fence->svm_bo->eviction_work);
3545 	}
3546 
3547 	return 0;
3548 }
3549 
svm_range_evict_svm_bo_worker(struct work_struct * work)3550 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3551 {
3552 	struct svm_range_bo *svm_bo;
3553 	struct mm_struct *mm;
3554 	int r = 0;
3555 
3556 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3557 
3558 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3559 		mm = svm_bo->eviction_fence->mm;
3560 	} else {
3561 		svm_range_bo_unref(svm_bo);
3562 		return;
3563 	}
3564 
3565 	mmap_read_lock(mm);
3566 	spin_lock(&svm_bo->list_lock);
3567 	while (!list_empty(&svm_bo->range_list) && !r) {
3568 		struct svm_range *prange =
3569 				list_first_entry(&svm_bo->range_list,
3570 						struct svm_range, svm_bo_list);
3571 		int retries = 3;
3572 
3573 		list_del_init(&prange->svm_bo_list);
3574 		spin_unlock(&svm_bo->list_lock);
3575 
3576 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3577 			 prange->start, prange->last);
3578 
3579 		mutex_lock(&prange->migrate_mutex);
3580 		do {
3581 			/* migrate all vram pages in this prange to sys ram
3582 			 * after that prange->actual_loc should be zero
3583 			 */
3584 			r = svm_migrate_vram_to_ram(prange, mm,
3585 					prange->start, prange->last,
3586 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3587 		} while (!r && prange->actual_loc && --retries);
3588 
3589 		if (!r && prange->actual_loc)
3590 			pr_info_once("Migration failed during eviction");
3591 
3592 		if (!prange->actual_loc) {
3593 			mutex_lock(&prange->lock);
3594 			prange->svm_bo = NULL;
3595 			mutex_unlock(&prange->lock);
3596 		}
3597 		mutex_unlock(&prange->migrate_mutex);
3598 
3599 		spin_lock(&svm_bo->list_lock);
3600 	}
3601 	spin_unlock(&svm_bo->list_lock);
3602 	mmap_read_unlock(mm);
3603 	mmput(mm);
3604 
3605 	dma_fence_signal(&svm_bo->eviction_fence->base);
3606 
3607 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3608 	 * has been called in svm_migrate_vram_to_ram
3609 	 */
3610 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3611 	svm_range_bo_unref(svm_bo);
3612 }
3613 
3614 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3615 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3616 		   uint64_t start, uint64_t size, uint32_t nattr,
3617 		   struct kfd_ioctl_svm_attribute *attrs)
3618 {
3619 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3620 	struct list_head update_list;
3621 	struct list_head insert_list;
3622 	struct list_head remove_list;
3623 	struct list_head remap_list;
3624 	struct svm_range_list *svms;
3625 	struct svm_range *prange;
3626 	struct svm_range *next;
3627 	bool update_mapping = false;
3628 	bool flush_tlb;
3629 	int r, ret = 0;
3630 
3631 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3632 		 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3633 
3634 	r = svm_range_check_attr(p, nattr, attrs);
3635 	if (r)
3636 		return r;
3637 
3638 	svms = &p->svms;
3639 
3640 	mutex_lock(&process_info->lock);
3641 
3642 	svm_range_list_lock_and_flush_work(svms, mm);
3643 
3644 	r = svm_range_is_valid(p, start, size);
3645 	if (r) {
3646 		pr_debug("invalid range r=%d\n", r);
3647 		mmap_write_unlock(mm);
3648 		goto out;
3649 	}
3650 
3651 	mutex_lock(&svms->lock);
3652 
3653 	/* Add new range and split existing ranges as needed */
3654 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3655 			  &insert_list, &remove_list, &remap_list);
3656 	if (r) {
3657 		mutex_unlock(&svms->lock);
3658 		mmap_write_unlock(mm);
3659 		goto out;
3660 	}
3661 	/* Apply changes as a transaction */
3662 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3663 		svm_range_add_to_svms(prange);
3664 		svm_range_add_notifier_locked(mm, prange);
3665 	}
3666 	list_for_each_entry(prange, &update_list, update_list) {
3667 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3668 		/* TODO: unmap ranges from GPU that lost access */
3669 	}
3670 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3671 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3672 			 prange->svms, prange, prange->start,
3673 			 prange->last);
3674 		svm_range_unlink(prange);
3675 		svm_range_remove_notifier(prange);
3676 		svm_range_free(prange, false);
3677 	}
3678 
3679 	mmap_write_downgrade(mm);
3680 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3681 	 * this fails we may be left with partially completed actions. There
3682 	 * is no clean way of rolling back to the previous state in such a
3683 	 * case because the rollback wouldn't be guaranteed to work either.
3684 	 */
3685 	list_for_each_entry(prange, &update_list, update_list) {
3686 		bool migrated;
3687 
3688 		mutex_lock(&prange->migrate_mutex);
3689 
3690 		r = svm_range_trigger_migration(mm, prange, &migrated);
3691 		if (r)
3692 			goto out_unlock_range;
3693 
3694 		if (migrated && (!p->xnack_enabled ||
3695 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3696 		    prange->mapped_to_gpu) {
3697 			pr_debug("restore_work will update mappings of GPUs\n");
3698 			mutex_unlock(&prange->migrate_mutex);
3699 			continue;
3700 		}
3701 
3702 		if (!migrated && !update_mapping) {
3703 			mutex_unlock(&prange->migrate_mutex);
3704 			continue;
3705 		}
3706 
3707 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3708 
3709 		r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3710 					       MAX_GPU_INSTANCE, true, true, flush_tlb);
3711 		if (r)
3712 			pr_debug("failed %d to map svm range\n", r);
3713 
3714 out_unlock_range:
3715 		mutex_unlock(&prange->migrate_mutex);
3716 		if (r)
3717 			ret = r;
3718 	}
3719 
3720 	list_for_each_entry(prange, &remap_list, update_list) {
3721 		pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3722 			 prange, prange->start, prange->last);
3723 		mutex_lock(&prange->migrate_mutex);
3724 		r = svm_range_validate_and_map(mm,  prange->start, prange->last, prange,
3725 					       MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3726 		if (r)
3727 			pr_debug("failed %d on remap svm range\n", r);
3728 		mutex_unlock(&prange->migrate_mutex);
3729 		if (r)
3730 			ret = r;
3731 	}
3732 
3733 	dynamic_svm_range_dump(svms);
3734 
3735 	mutex_unlock(&svms->lock);
3736 	mmap_read_unlock(mm);
3737 out:
3738 	mutex_unlock(&process_info->lock);
3739 
3740 	pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3741 		 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3742 
3743 	return ret ? ret : r;
3744 }
3745 
3746 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3747 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3748 		   uint64_t start, uint64_t size, uint32_t nattr,
3749 		   struct kfd_ioctl_svm_attribute *attrs)
3750 {
3751 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3752 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3753 	bool get_preferred_loc = false;
3754 	bool get_prefetch_loc = false;
3755 	bool get_granularity = false;
3756 	bool get_accessible = false;
3757 	bool get_flags = false;
3758 	uint64_t last = start + size - 1UL;
3759 	uint8_t granularity = 0xff;
3760 	struct interval_tree_node *node;
3761 	struct svm_range_list *svms;
3762 	struct svm_range *prange;
3763 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3764 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3765 	uint32_t flags_and = 0xffffffff;
3766 	uint32_t flags_or = 0;
3767 	int gpuidx;
3768 	uint32_t i;
3769 	int r = 0;
3770 
3771 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3772 		 start + size - 1, nattr);
3773 
3774 	/* Flush pending deferred work to avoid racing with deferred actions from
3775 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3776 	 * can still race with get_attr because we don't hold the mmap lock. But that
3777 	 * would be a race condition in the application anyway, and undefined
3778 	 * behaviour is acceptable in that case.
3779 	 */
3780 	flush_work(&p->svms.deferred_list_work);
3781 
3782 	mmap_read_lock(mm);
3783 	r = svm_range_is_valid(p, start, size);
3784 	mmap_read_unlock(mm);
3785 	if (r) {
3786 		pr_debug("invalid range r=%d\n", r);
3787 		return r;
3788 	}
3789 
3790 	for (i = 0; i < nattr; i++) {
3791 		switch (attrs[i].type) {
3792 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3793 			get_preferred_loc = true;
3794 			break;
3795 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3796 			get_prefetch_loc = true;
3797 			break;
3798 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3799 			get_accessible = true;
3800 			break;
3801 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3802 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3803 			get_flags = true;
3804 			break;
3805 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3806 			get_granularity = true;
3807 			break;
3808 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3809 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3810 			fallthrough;
3811 		default:
3812 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3813 			return -EINVAL;
3814 		}
3815 	}
3816 
3817 	svms = &p->svms;
3818 
3819 	mutex_lock(&svms->lock);
3820 
3821 	node = interval_tree_iter_first(&svms->objects, start, last);
3822 	if (!node) {
3823 		pr_debug("range attrs not found return default values\n");
3824 		svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3825 						 &granularity, &flags_and);
3826 		flags_or = flags_and;
3827 		if (p->xnack_enabled)
3828 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3829 				    MAX_GPU_INSTANCE);
3830 		else
3831 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3832 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3833 		goto fill_values;
3834 	}
3835 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3836 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3837 
3838 	while (node) {
3839 		struct interval_tree_node *next;
3840 
3841 		prange = container_of(node, struct svm_range, it_node);
3842 		next = interval_tree_iter_next(node, start, last);
3843 
3844 		if (get_preferred_loc) {
3845 			if (prange->preferred_loc ==
3846 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3847 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3848 			     location != prange->preferred_loc)) {
3849 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3850 				get_preferred_loc = false;
3851 			} else {
3852 				location = prange->preferred_loc;
3853 			}
3854 		}
3855 		if (get_prefetch_loc) {
3856 			if (prange->prefetch_loc ==
3857 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3858 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3859 			     prefetch_loc != prange->prefetch_loc)) {
3860 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3861 				get_prefetch_loc = false;
3862 			} else {
3863 				prefetch_loc = prange->prefetch_loc;
3864 			}
3865 		}
3866 		if (get_accessible) {
3867 			bitmap_and(bitmap_access, bitmap_access,
3868 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3869 			bitmap_and(bitmap_aip, bitmap_aip,
3870 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3871 		}
3872 		if (get_flags) {
3873 			flags_and &= prange->flags;
3874 			flags_or |= prange->flags;
3875 		}
3876 
3877 		if (get_granularity && prange->granularity < granularity)
3878 			granularity = prange->granularity;
3879 
3880 		node = next;
3881 	}
3882 fill_values:
3883 	mutex_unlock(&svms->lock);
3884 
3885 	for (i = 0; i < nattr; i++) {
3886 		switch (attrs[i].type) {
3887 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3888 			attrs[i].value = location;
3889 			break;
3890 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3891 			attrs[i].value = prefetch_loc;
3892 			break;
3893 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3894 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3895 							       attrs[i].value);
3896 			if (gpuidx < 0) {
3897 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3898 				return -EINVAL;
3899 			}
3900 			if (test_bit(gpuidx, bitmap_access))
3901 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3902 			else if (test_bit(gpuidx, bitmap_aip))
3903 				attrs[i].type =
3904 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3905 			else
3906 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3907 			break;
3908 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3909 			attrs[i].value = flags_and;
3910 			break;
3911 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3912 			attrs[i].value = ~flags_or;
3913 			break;
3914 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3915 			attrs[i].value = (uint32_t)granularity;
3916 			break;
3917 		}
3918 	}
3919 
3920 	return 0;
3921 }
3922 
kfd_criu_resume_svm(struct kfd_process * p)3923 int kfd_criu_resume_svm(struct kfd_process *p)
3924 {
3925 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3926 	int nattr_common = 4, nattr_accessibility = 1;
3927 	struct criu_svm_metadata *criu_svm_md = NULL;
3928 	struct svm_range_list *svms = &p->svms;
3929 	struct criu_svm_metadata *next = NULL;
3930 	uint32_t set_flags = 0xffffffff;
3931 	int i, j, num_attrs, ret = 0;
3932 	uint64_t set_attr_size;
3933 	struct mm_struct *mm;
3934 
3935 	if (list_empty(&svms->criu_svm_metadata_list)) {
3936 		pr_debug("No SVM data from CRIU restore stage 2\n");
3937 		return ret;
3938 	}
3939 
3940 	mm = get_task_mm(p->lead_thread);
3941 	if (!mm) {
3942 		pr_err("failed to get mm for the target process\n");
3943 		return -ESRCH;
3944 	}
3945 
3946 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3947 
3948 	i = j = 0;
3949 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3950 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3951 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3952 
3953 		for (j = 0; j < num_attrs; j++) {
3954 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3955 				 i, j, criu_svm_md->data.attrs[j].type,
3956 				 i, j, criu_svm_md->data.attrs[j].value);
3957 			switch (criu_svm_md->data.attrs[j].type) {
3958 			/* During Checkpoint operation, the query for
3959 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3960 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3961 			 * not used by the range which was checkpointed. Care
3962 			 * must be taken to not restore with an invalid value
3963 			 * otherwise the gpuidx value will be invalid and
3964 			 * set_attr would eventually fail so just replace those
3965 			 * with another dummy attribute such as
3966 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3967 			 */
3968 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3969 				if (criu_svm_md->data.attrs[j].value ==
3970 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3971 					criu_svm_md->data.attrs[j].type =
3972 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3973 					criu_svm_md->data.attrs[j].value = 0;
3974 				}
3975 				break;
3976 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3977 				set_flags = criu_svm_md->data.attrs[j].value;
3978 				break;
3979 			default:
3980 				break;
3981 			}
3982 		}
3983 
3984 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3985 		 * it needs to be inserted before restoring the ranges so
3986 		 * allocate extra space for it before calling set_attr
3987 		 */
3988 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3989 						(num_attrs + 1);
3990 		set_attr_new = krealloc(set_attr, set_attr_size,
3991 					    GFP_KERNEL);
3992 		if (!set_attr_new) {
3993 			ret = -ENOMEM;
3994 			goto exit;
3995 		}
3996 		set_attr = set_attr_new;
3997 
3998 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3999 					sizeof(struct kfd_ioctl_svm_attribute));
4000 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4001 		set_attr[num_attrs].value = ~set_flags;
4002 
4003 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4004 					 criu_svm_md->data.size, num_attrs + 1,
4005 					 set_attr);
4006 		if (ret) {
4007 			pr_err("CRIU: failed to set range attributes\n");
4008 			goto exit;
4009 		}
4010 
4011 		i++;
4012 	}
4013 exit:
4014 	kfree(set_attr);
4015 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4016 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4017 						criu_svm_md->data.start_addr);
4018 		kfree(criu_svm_md);
4019 	}
4020 
4021 	mmput(mm);
4022 	return ret;
4023 
4024 }
4025 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4026 int kfd_criu_restore_svm(struct kfd_process *p,
4027 			 uint8_t __user *user_priv_ptr,
4028 			 uint64_t *priv_data_offset,
4029 			 uint64_t max_priv_data_size)
4030 {
4031 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4032 	int nattr_common = 4, nattr_accessibility = 1;
4033 	struct criu_svm_metadata *criu_svm_md = NULL;
4034 	struct svm_range_list *svms = &p->svms;
4035 	uint32_t num_devices;
4036 	int ret = 0;
4037 
4038 	num_devices = p->n_pdds;
4039 	/* Handle one SVM range object at a time, also the number of gpus are
4040 	 * assumed to be same on the restore node, checking must be done while
4041 	 * evaluating the topology earlier
4042 	 */
4043 
4044 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4045 		(nattr_common + nattr_accessibility * num_devices);
4046 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4047 
4048 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4049 								svm_attrs_size;
4050 
4051 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4052 	if (!criu_svm_md) {
4053 		pr_err("failed to allocate memory to store svm metadata\n");
4054 		return -ENOMEM;
4055 	}
4056 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4057 		ret = -EINVAL;
4058 		goto exit;
4059 	}
4060 
4061 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4062 			     svm_priv_data_size);
4063 	if (ret) {
4064 		ret = -EFAULT;
4065 		goto exit;
4066 	}
4067 	*priv_data_offset += svm_priv_data_size;
4068 
4069 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4070 
4071 	return 0;
4072 
4073 
4074 exit:
4075 	kfree(criu_svm_md);
4076 	return ret;
4077 }
4078 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4079 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4080 		       uint64_t *svm_priv_data_size)
4081 {
4082 	uint64_t total_size, accessibility_size, common_attr_size;
4083 	int nattr_common = 4, nattr_accessibility = 1;
4084 	int num_devices = p->n_pdds;
4085 	struct svm_range_list *svms;
4086 	struct svm_range *prange;
4087 	uint32_t count = 0;
4088 
4089 	*svm_priv_data_size = 0;
4090 
4091 	svms = &p->svms;
4092 	if (!svms)
4093 		return -EINVAL;
4094 
4095 	mutex_lock(&svms->lock);
4096 	list_for_each_entry(prange, &svms->list, list) {
4097 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4098 			 prange, prange->start, prange->npages,
4099 			 prange->start + prange->npages - 1);
4100 		count++;
4101 	}
4102 	mutex_unlock(&svms->lock);
4103 
4104 	*num_svm_ranges = count;
4105 	/* Only the accessbility attributes need to be queried for all the gpus
4106 	 * individually, remaining ones are spanned across the entire process
4107 	 * regardless of the various gpu nodes. Of the remaining attributes,
4108 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4109 	 *
4110 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4111 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4112 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4113 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4114 	 *
4115 	 * ** ACCESSBILITY ATTRIBUTES **
4116 	 * (Considered as one, type is altered during query, value is gpuid)
4117 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4118 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4119 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4120 	 */
4121 	if (*num_svm_ranges > 0) {
4122 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4123 			nattr_common;
4124 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4125 			nattr_accessibility * num_devices;
4126 
4127 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4128 			common_attr_size + accessibility_size;
4129 
4130 		*svm_priv_data_size = *num_svm_ranges * total_size;
4131 	}
4132 
4133 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4134 		 *svm_priv_data_size);
4135 	return 0;
4136 }
4137 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4138 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4139 			    uint8_t __user *user_priv_data,
4140 			    uint64_t *priv_data_offset)
4141 {
4142 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4143 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4144 	uint64_t svm_priv_data_size, query_attr_size = 0;
4145 	int index, nattr_common = 4, ret = 0;
4146 	struct svm_range_list *svms;
4147 	int num_devices = p->n_pdds;
4148 	struct svm_range *prange;
4149 	struct mm_struct *mm;
4150 
4151 	svms = &p->svms;
4152 	if (!svms)
4153 		return -EINVAL;
4154 
4155 	mm = get_task_mm(p->lead_thread);
4156 	if (!mm) {
4157 		pr_err("failed to get mm for the target process\n");
4158 		return -ESRCH;
4159 	}
4160 
4161 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4162 				(nattr_common + num_devices);
4163 
4164 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4165 	if (!query_attr) {
4166 		ret = -ENOMEM;
4167 		goto exit;
4168 	}
4169 
4170 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4171 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4172 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4173 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4174 
4175 	for (index = 0; index < num_devices; index++) {
4176 		struct kfd_process_device *pdd = p->pdds[index];
4177 
4178 		query_attr[index + nattr_common].type =
4179 			KFD_IOCTL_SVM_ATTR_ACCESS;
4180 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4181 	}
4182 
4183 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4184 
4185 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4186 	if (!svm_priv) {
4187 		ret = -ENOMEM;
4188 		goto exit_query;
4189 	}
4190 
4191 	index = 0;
4192 	list_for_each_entry(prange, &svms->list, list) {
4193 
4194 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4195 		svm_priv->start_addr = prange->start;
4196 		svm_priv->size = prange->npages;
4197 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4198 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4199 			 prange, prange->start, prange->npages,
4200 			 prange->start + prange->npages - 1,
4201 			 prange->npages * PAGE_SIZE);
4202 
4203 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4204 					 svm_priv->size,
4205 					 (nattr_common + num_devices),
4206 					 svm_priv->attrs);
4207 		if (ret) {
4208 			pr_err("CRIU: failed to obtain range attributes\n");
4209 			goto exit_priv;
4210 		}
4211 
4212 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4213 				 svm_priv_data_size)) {
4214 			pr_err("Failed to copy svm priv to user\n");
4215 			ret = -EFAULT;
4216 			goto exit_priv;
4217 		}
4218 
4219 		*priv_data_offset += svm_priv_data_size;
4220 
4221 	}
4222 
4223 
4224 exit_priv:
4225 	kfree(svm_priv);
4226 exit_query:
4227 	kfree(query_attr);
4228 exit:
4229 	mmput(mm);
4230 	return ret;
4231 }
4232 
4233 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4234 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4235 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4236 {
4237 	struct mm_struct *mm = current->mm;
4238 	int r;
4239 
4240 	start >>= PAGE_SHIFT;
4241 	size >>= PAGE_SHIFT;
4242 
4243 	switch (op) {
4244 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4245 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4246 		break;
4247 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4248 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4249 		break;
4250 	default:
4251 		r = EINVAL;
4252 		break;
4253 	}
4254 
4255 	return r;
4256 }
4257