1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume(struct kfd_node *kfd);
66 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)67 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68 {
69 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70 
71 	switch (sdma_version) {
72 	case IP_VERSION(4, 0, 0):/* VEGA10 */
73 	case IP_VERSION(4, 0, 1):/* VEGA12 */
74 	case IP_VERSION(4, 1, 0):/* RAVEN */
75 	case IP_VERSION(4, 1, 1):/* RAVEN */
76 	case IP_VERSION(4, 1, 2):/* RENOIR */
77 	case IP_VERSION(5, 2, 1):/* VANGOGH */
78 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81 		kfd->device_info.num_sdma_queues_per_engine = 2;
82 		break;
83 	case IP_VERSION(4, 2, 0):/* VEGA20 */
84 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
85 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86 	case IP_VERSION(4, 4, 2):
87 	case IP_VERSION(4, 4, 5):
88 	case IP_VERSION(4, 4, 4):
89 	case IP_VERSION(5, 0, 0):/* NAVI10 */
90 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91 	case IP_VERSION(5, 0, 2):/* NAVI14 */
92 	case IP_VERSION(5, 0, 5):/* NAVI12 */
93 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97 	case IP_VERSION(6, 0, 0):
98 	case IP_VERSION(6, 0, 1):
99 	case IP_VERSION(6, 0, 2):
100 	case IP_VERSION(6, 0, 3):
101 	case IP_VERSION(6, 1, 0):
102 	case IP_VERSION(6, 1, 1):
103 	case IP_VERSION(6, 1, 2):
104 	case IP_VERSION(6, 1, 3):
105 	case IP_VERSION(7, 0, 0):
106 	case IP_VERSION(7, 0, 1):
107 		kfd->device_info.num_sdma_queues_per_engine = 8;
108 		break;
109 	default:
110 		dev_warn(kfd_device,
111 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
112 			sdma_version);
113 		kfd->device_info.num_sdma_queues_per_engine = 8;
114 	}
115 
116 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
117 
118 	switch (sdma_version) {
119 	case IP_VERSION(6, 0, 0):
120 	case IP_VERSION(6, 0, 1):
121 	case IP_VERSION(6, 0, 2):
122 	case IP_VERSION(6, 0, 3):
123 	case IP_VERSION(6, 1, 0):
124 	case IP_VERSION(6, 1, 1):
125 	case IP_VERSION(6, 1, 2):
126 	case IP_VERSION(6, 1, 3):
127 	case IP_VERSION(7, 0, 0):
128 	case IP_VERSION(7, 0, 1):
129 		/* Reserve 1 for paging and 1 for gfx */
130 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
131 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
132 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
133 			   kfd->adev->sdma.num_instances *
134 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
135 		break;
136 	default:
137 		break;
138 	}
139 }
140 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)141 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
142 {
143 	uint32_t gc_version = KFD_GC_VERSION(kfd);
144 
145 	switch (gc_version) {
146 	case IP_VERSION(9, 0, 1): /* VEGA10 */
147 	case IP_VERSION(9, 1, 0): /* RAVEN */
148 	case IP_VERSION(9, 2, 1): /* VEGA12 */
149 	case IP_VERSION(9, 2, 2): /* RAVEN */
150 	case IP_VERSION(9, 3, 0): /* RENOIR */
151 	case IP_VERSION(9, 4, 0): /* VEGA20 */
152 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
153 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
154 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
155 		break;
156 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
157 	case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
158 	case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
159 		kfd->device_info.event_interrupt_class =
160 						&event_interrupt_class_v9_4_3;
161 		break;
162 	case IP_VERSION(10, 3, 1): /* VANGOGH */
163 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
164 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
165 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
166 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
167 	case IP_VERSION(10, 1, 4):
168 	case IP_VERSION(10, 1, 10): /* NAVI10 */
169 	case IP_VERSION(10, 1, 2): /* NAVI12 */
170 	case IP_VERSION(10, 1, 1): /* NAVI14 */
171 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
172 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
173 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
174 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
175 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
176 		break;
177 	case IP_VERSION(11, 0, 0):
178 	case IP_VERSION(11, 0, 1):
179 	case IP_VERSION(11, 0, 2):
180 	case IP_VERSION(11, 0, 3):
181 	case IP_VERSION(11, 0, 4):
182 	case IP_VERSION(11, 5, 0):
183 	case IP_VERSION(11, 5, 1):
184 	case IP_VERSION(11, 5, 2):
185 	case IP_VERSION(11, 5, 3):
186 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187 		break;
188 	case IP_VERSION(12, 0, 0):
189 	case IP_VERSION(12, 0, 1):
190 		/* GFX12_TODO: Change to v12 version. */
191 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
192 		break;
193 	default:
194 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
195 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
196 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
197 	}
198 }
199 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)200 static void kfd_device_info_init(struct kfd_dev *kfd,
201 				 bool vf, uint32_t gfx_target_version)
202 {
203 	uint32_t gc_version = KFD_GC_VERSION(kfd);
204 	uint32_t asic_type = kfd->adev->asic_type;
205 
206 	kfd->device_info.max_pasid_bits = 16;
207 	kfd->device_info.max_no_of_hqd = 24;
208 	kfd->device_info.num_of_watch_points = 4;
209 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
210 	kfd->device_info.gfx_target_version = gfx_target_version;
211 
212 	if (KFD_IS_SOC15(kfd)) {
213 		kfd->device_info.doorbell_size = 8;
214 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
215 		kfd->device_info.supports_cwsr = true;
216 
217 		kfd_device_info_set_sdma_info(kfd);
218 
219 		kfd_device_info_set_event_interrupt_class(kfd);
220 
221 		if (gc_version < IP_VERSION(11, 0, 0)) {
222 			/* Navi2x+, Navi1x+ */
223 			if (gc_version == IP_VERSION(10, 3, 6))
224 				kfd->device_info.no_atomic_fw_version = 14;
225 			else if (gc_version == IP_VERSION(10, 3, 7))
226 				kfd->device_info.no_atomic_fw_version = 3;
227 			else if (gc_version >= IP_VERSION(10, 3, 0))
228 				kfd->device_info.no_atomic_fw_version = 92;
229 			else if (gc_version >= IP_VERSION(10, 1, 1))
230 				kfd->device_info.no_atomic_fw_version = 145;
231 
232 			/* Navi1x+ */
233 			if (gc_version >= IP_VERSION(10, 1, 1))
234 				kfd->device_info.needs_pci_atomics = true;
235 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
236 			/*
237 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
238 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
239 			 * PCIe atomics support.
240 			 */
241 			kfd->device_info.needs_pci_atomics = true;
242 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
243 		} else if (gc_version < IP_VERSION(13, 0, 0)) {
244 			kfd->device_info.needs_pci_atomics = true;
245 			kfd->device_info.no_atomic_fw_version = 2090;
246 		} else {
247 			kfd->device_info.needs_pci_atomics = true;
248 		}
249 	} else {
250 		kfd->device_info.doorbell_size = 4;
251 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
252 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
253 		kfd->device_info.num_sdma_queues_per_engine = 2;
254 
255 		if (asic_type != CHIP_KAVERI &&
256 		    asic_type != CHIP_HAWAII &&
257 		    asic_type != CHIP_TONGA)
258 			kfd->device_info.supports_cwsr = true;
259 
260 		if (asic_type != CHIP_HAWAII && !vf)
261 			kfd->device_info.needs_pci_atomics = true;
262 	}
263 }
264 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)265 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
266 {
267 	struct kfd_dev *kfd = NULL;
268 	const struct kfd2kgd_calls *f2g = NULL;
269 	uint32_t gfx_target_version = 0;
270 
271 	switch (adev->asic_type) {
272 #ifdef CONFIG_DRM_AMDGPU_CIK
273 	case CHIP_KAVERI:
274 		gfx_target_version = 70000;
275 		if (!vf)
276 			f2g = &gfx_v7_kfd2kgd;
277 		break;
278 #endif
279 	case CHIP_CARRIZO:
280 		gfx_target_version = 80001;
281 		if (!vf)
282 			f2g = &gfx_v8_kfd2kgd;
283 		break;
284 #ifdef CONFIG_DRM_AMDGPU_CIK
285 	case CHIP_HAWAII:
286 		gfx_target_version = 70001;
287 		if (!amdgpu_exp_hw_support)
288 			pr_info(
289 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
290 				);
291 		else if (!vf)
292 			f2g = &gfx_v7_kfd2kgd;
293 		break;
294 #endif
295 	case CHIP_TONGA:
296 		gfx_target_version = 80002;
297 		if (!vf)
298 			f2g = &gfx_v8_kfd2kgd;
299 		break;
300 	case CHIP_FIJI:
301 	case CHIP_POLARIS10:
302 		gfx_target_version = 80003;
303 		f2g = &gfx_v8_kfd2kgd;
304 		break;
305 	case CHIP_POLARIS11:
306 	case CHIP_POLARIS12:
307 	case CHIP_VEGAM:
308 		gfx_target_version = 80003;
309 		if (!vf)
310 			f2g = &gfx_v8_kfd2kgd;
311 		break;
312 	default:
313 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
314 		/* Vega 10 */
315 		case IP_VERSION(9, 0, 1):
316 			gfx_target_version = 90000;
317 			f2g = &gfx_v9_kfd2kgd;
318 			break;
319 		/* Raven */
320 		case IP_VERSION(9, 1, 0):
321 		case IP_VERSION(9, 2, 2):
322 			gfx_target_version = 90002;
323 			if (!vf)
324 				f2g = &gfx_v9_kfd2kgd;
325 			break;
326 		/* Vega12 */
327 		case IP_VERSION(9, 2, 1):
328 			gfx_target_version = 90004;
329 			if (!vf)
330 				f2g = &gfx_v9_kfd2kgd;
331 			break;
332 		/* Renoir */
333 		case IP_VERSION(9, 3, 0):
334 			gfx_target_version = 90012;
335 			if (!vf)
336 				f2g = &gfx_v9_kfd2kgd;
337 			break;
338 		/* Vega20 */
339 		case IP_VERSION(9, 4, 0):
340 			gfx_target_version = 90006;
341 			if (!vf)
342 				f2g = &gfx_v9_kfd2kgd;
343 			break;
344 		/* Arcturus */
345 		case IP_VERSION(9, 4, 1):
346 			gfx_target_version = 90008;
347 			f2g = &arcturus_kfd2kgd;
348 			break;
349 		/* Aldebaran */
350 		case IP_VERSION(9, 4, 2):
351 			gfx_target_version = 90010;
352 			f2g = &aldebaran_kfd2kgd;
353 			break;
354 		case IP_VERSION(9, 4, 3):
355 			gfx_target_version = adev->rev_id >= 1 ? 90402
356 					   : adev->flags & AMD_IS_APU ? 90400
357 					   : 90401;
358 			f2g = &gc_9_4_3_kfd2kgd;
359 			break;
360 		case IP_VERSION(9, 4, 4):
361 			gfx_target_version = 90402;
362 			f2g = &gc_9_4_3_kfd2kgd;
363 			break;
364 		case IP_VERSION(9, 5, 0):
365 			gfx_target_version = 90500;
366 			f2g = &gc_9_4_3_kfd2kgd;
367 			break;
368 		/* Navi10 */
369 		case IP_VERSION(10, 1, 10):
370 			gfx_target_version = 100100;
371 			if (!vf)
372 				f2g = &gfx_v10_kfd2kgd;
373 			break;
374 		/* Navi12 */
375 		case IP_VERSION(10, 1, 2):
376 			gfx_target_version = 100101;
377 			f2g = &gfx_v10_kfd2kgd;
378 			break;
379 		/* Navi14 */
380 		case IP_VERSION(10, 1, 1):
381 			gfx_target_version = 100102;
382 			if (!vf)
383 				f2g = &gfx_v10_kfd2kgd;
384 			break;
385 		/* Cyan Skillfish */
386 		case IP_VERSION(10, 1, 3):
387 		case IP_VERSION(10, 1, 4):
388 			gfx_target_version = 100103;
389 			if (!vf)
390 				f2g = &gfx_v10_kfd2kgd;
391 			break;
392 		/* Sienna Cichlid */
393 		case IP_VERSION(10, 3, 0):
394 			gfx_target_version = 100300;
395 			f2g = &gfx_v10_3_kfd2kgd;
396 			break;
397 		/* Navy Flounder */
398 		case IP_VERSION(10, 3, 2):
399 			gfx_target_version = 100301;
400 			f2g = &gfx_v10_3_kfd2kgd;
401 			break;
402 		/* Van Gogh */
403 		case IP_VERSION(10, 3, 1):
404 			gfx_target_version = 100303;
405 			if (!vf)
406 				f2g = &gfx_v10_3_kfd2kgd;
407 			break;
408 		/* Dimgrey Cavefish */
409 		case IP_VERSION(10, 3, 4):
410 			gfx_target_version = 100302;
411 			f2g = &gfx_v10_3_kfd2kgd;
412 			break;
413 		/* Beige Goby */
414 		case IP_VERSION(10, 3, 5):
415 			gfx_target_version = 100304;
416 			f2g = &gfx_v10_3_kfd2kgd;
417 			break;
418 		/* Yellow Carp */
419 		case IP_VERSION(10, 3, 3):
420 			gfx_target_version = 100305;
421 			if (!vf)
422 				f2g = &gfx_v10_3_kfd2kgd;
423 			break;
424 		case IP_VERSION(10, 3, 6):
425 		case IP_VERSION(10, 3, 7):
426 			gfx_target_version = 100306;
427 			if (!vf)
428 				f2g = &gfx_v10_3_kfd2kgd;
429 			break;
430 		case IP_VERSION(11, 0, 0):
431 			gfx_target_version = 110000;
432 			f2g = &gfx_v11_kfd2kgd;
433 			break;
434 		case IP_VERSION(11, 0, 1):
435 		case IP_VERSION(11, 0, 4):
436 			gfx_target_version = 110003;
437 			f2g = &gfx_v11_kfd2kgd;
438 			break;
439 		case IP_VERSION(11, 0, 2):
440 			gfx_target_version = 110002;
441 			f2g = &gfx_v11_kfd2kgd;
442 			break;
443 		case IP_VERSION(11, 0, 3):
444 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
445 			gfx_target_version = 110001;
446 			f2g = &gfx_v11_kfd2kgd;
447 			break;
448 		case IP_VERSION(11, 5, 0):
449 			gfx_target_version = 110500;
450 			f2g = &gfx_v11_kfd2kgd;
451 			break;
452 		case IP_VERSION(11, 5, 1):
453 			gfx_target_version = 110501;
454 			f2g = &gfx_v11_kfd2kgd;
455 			break;
456 		case IP_VERSION(11, 5, 2):
457 			gfx_target_version = 110502;
458 			f2g = &gfx_v11_kfd2kgd;
459 			break;
460 		case IP_VERSION(11, 5, 3):
461 			gfx_target_version = 110503;
462 			f2g = &gfx_v11_kfd2kgd;
463 			break;
464 		case IP_VERSION(12, 0, 0):
465 			gfx_target_version = 120000;
466 			f2g = &gfx_v12_kfd2kgd;
467 			break;
468 		case IP_VERSION(12, 0, 1):
469 			gfx_target_version = 120001;
470 			f2g = &gfx_v12_kfd2kgd;
471 			break;
472 		default:
473 			break;
474 		}
475 		break;
476 	}
477 
478 	if (!f2g) {
479 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
480 			dev_info(kfd_device,
481 				"GC IP %06x %s not supported in kfd\n",
482 				amdgpu_ip_version(adev, GC_HWIP, 0),
483 				vf ? "VF" : "");
484 		else
485 			dev_info(kfd_device, "%s %s not supported in kfd\n",
486 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
487 		return NULL;
488 	}
489 
490 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
491 	if (!kfd)
492 		return NULL;
493 
494 	kfd->adev = adev;
495 	kfd_device_info_init(kfd, vf, gfx_target_version);
496 	kfd->init_complete = false;
497 	kfd->kfd2kgd = f2g;
498 	atomic_set(&kfd->compute_profile, 0);
499 
500 	mutex_init(&kfd->doorbell_mutex);
501 
502 	ida_init(&kfd->doorbell_ida);
503 
504 	return kfd;
505 }
506 
kfd_cwsr_init(struct kfd_dev * kfd)507 static void kfd_cwsr_init(struct kfd_dev *kfd)
508 {
509 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
510 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
511 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
512 					     > KFD_CWSR_TMA_OFFSET);
513 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
514 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
515 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
516 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
517 					     > KFD_CWSR_TMA_OFFSET);
518 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
519 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
520 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
521 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
522 					     > KFD_CWSR_TMA_OFFSET);
523 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
524 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
525 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
526 			   KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
527 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
528 					     > KFD_CWSR_TMA_OFFSET);
529 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
530 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
531 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
532 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
533 			kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
534 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
535 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
536 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
537 					     > KFD_CWSR_TMA_OFFSET);
538 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
539 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
540 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
541 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
542 					     > KFD_CWSR_TMA_OFFSET);
543 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
544 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
545 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
546 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
547 					     > KFD_CWSR_TMA_OFFSET);
548 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
549 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
550 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
551 			/* The gfx11 cwsr trap handler must fit inside a single
552 			   page. */
553 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
554 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
555 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
556 		} else {
557 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
558 					     > KFD_CWSR_TMA_OFFSET);
559 			kfd->cwsr_isa = cwsr_trap_gfx12_hex;
560 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
561 		}
562 
563 		kfd->cwsr_enabled = true;
564 	}
565 }
566 
kfd_gws_init(struct kfd_node * node)567 static int kfd_gws_init(struct kfd_node *node)
568 {
569 	int ret = 0;
570 	struct kfd_dev *kfd = node->kfd;
571 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
572 
573 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
574 		return 0;
575 
576 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
577 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
578 			&& kfd->mec2_fw_version >= 0x81b3) ||
579 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
580 			&& kfd->mec2_fw_version >= 0x1b3)  ||
581 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
582 			&& kfd->mec2_fw_version >= 0x30)   ||
583 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
584 			&& kfd->mec2_fw_version >= 0x28) ||
585 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
586 		 KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
587 		(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
588 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
589 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
590 			&& kfd->mec2_fw_version >= 0x6b) ||
591 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
592 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
593 			&& mes_rev >= 68) ||
594 		(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
595 		if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
596 			node->adev->gds.gws_size = 64;
597 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
598 				node->adev->gds.gws_size, &node->gws);
599 	}
600 
601 	return ret;
602 }
603 
kfd_smi_init(struct kfd_node * dev)604 static void kfd_smi_init(struct kfd_node *dev)
605 {
606 	INIT_LIST_HEAD(&dev->smi_clients);
607 	spin_lock_init(&dev->smi_lock);
608 }
609 
kfd_init_node(struct kfd_node * node)610 static int kfd_init_node(struct kfd_node *node)
611 {
612 	int err = -1;
613 
614 	if (kfd_interrupt_init(node)) {
615 		dev_err(kfd_device, "Error initializing interrupts\n");
616 		goto kfd_interrupt_error;
617 	}
618 
619 	node->dqm = device_queue_manager_init(node);
620 	if (!node->dqm) {
621 		dev_err(kfd_device, "Error initializing queue manager\n");
622 		goto device_queue_manager_error;
623 	}
624 
625 	if (kfd_gws_init(node)) {
626 		dev_err(kfd_device, "Could not allocate %d gws\n",
627 			node->adev->gds.gws_size);
628 		goto gws_error;
629 	}
630 
631 	if (kfd_resume(node))
632 		goto kfd_resume_error;
633 
634 	if (kfd_topology_add_device(node)) {
635 		dev_err(kfd_device, "Error adding device to topology\n");
636 		goto kfd_topology_add_device_error;
637 	}
638 
639 	kfd_smi_init(node);
640 
641 	return 0;
642 
643 kfd_topology_add_device_error:
644 kfd_resume_error:
645 gws_error:
646 	device_queue_manager_uninit(node->dqm);
647 device_queue_manager_error:
648 	kfd_interrupt_exit(node);
649 kfd_interrupt_error:
650 	if (node->gws)
651 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
652 
653 	/* Cleanup the node memory here */
654 	kfree(node);
655 	return err;
656 }
657 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)658 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
659 {
660 	struct kfd_node *knode;
661 	unsigned int i;
662 
663 	/*
664 	 * flush_work ensures that there are no outstanding
665 	 * work-queue items that will access interrupt_ring. New work items
666 	 * can't be created because we stopped interrupt handling above.
667 	 */
668 	flush_workqueue(kfd->ih_wq);
669 	destroy_workqueue(kfd->ih_wq);
670 
671 	for (i = 0; i < num_nodes; i++) {
672 		knode = kfd->nodes[i];
673 		device_queue_manager_uninit(knode->dqm);
674 		kfd_interrupt_exit(knode);
675 		kfd_topology_remove_device(knode);
676 		if (knode->gws)
677 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
678 		kfree(knode);
679 		kfd->nodes[i] = NULL;
680 	}
681 }
682 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)683 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
684 				       unsigned int kfd_node_idx)
685 {
686 	struct amdgpu_device *adev = node->adev;
687 	uint32_t xcc_mask = node->xcc_mask;
688 	uint32_t xcc, mapped_xcc;
689 	/*
690 	 * Interrupt bitmap is setup for processing interrupts from
691 	 * different XCDs and AIDs.
692 	 * Interrupt bitmap is defined as follows:
693 	 * 1. Bits 0-15 - correspond to the NodeId field.
694 	 *    Each bit corresponds to NodeId number. For example, if
695 	 *    a KFD node has interrupt bitmap set to 0x7, then this
696 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
697 	 *    in the IH cookie.
698 	 * 2. Bits 16-31 - unused.
699 	 *
700 	 * Please note that the kfd_node_idx argument passed to this
701 	 * function is not related to NodeId field received in the
702 	 * IH cookie.
703 	 *
704 	 * In CPX mode, a KFD node will process an interrupt if:
705 	 * - the Node Id matches the corresponding bit set in
706 	 *   Bits 0-15.
707 	 * - AND VMID reported in the interrupt lies within the
708 	 *   VMID range of the node.
709 	 */
710 	for_each_inst(xcc, xcc_mask) {
711 		mapped_xcc = GET_INST(GC, xcc);
712 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
713 	}
714 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
715 							node->interrupt_bitmap);
716 }
717 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)718 bool kgd2kfd_device_init(struct kfd_dev *kfd,
719 			 const struct kgd2kfd_shared_resources *gpu_resources)
720 {
721 	unsigned int size, map_process_packet_size, i;
722 	struct kfd_node *node;
723 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
724 	unsigned int max_proc_per_quantum;
725 	int partition_mode;
726 	int xcp_idx;
727 
728 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
729 			KGD_ENGINE_MEC1);
730 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
731 			KGD_ENGINE_MEC2);
732 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
733 			KGD_ENGINE_SDMA1);
734 	kfd->shared_resources = *gpu_resources;
735 
736 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
737 
738 	if (kfd->num_nodes == 0) {
739 		dev_err(kfd_device,
740 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
741 			kfd->adev->gfx.num_xcc_per_xcp);
742 		goto out;
743 	}
744 
745 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
746 	 * 32 and 64-bit requests are possible and must be
747 	 * supported.
748 	 */
749 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
750 	if (!kfd->pci_atomic_requested &&
751 	    kfd->device_info.needs_pci_atomics &&
752 	    (!kfd->device_info.no_atomic_fw_version ||
753 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
754 		dev_info(kfd_device,
755 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
756 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
757 			 kfd->mec_fw_version,
758 			 kfd->device_info.no_atomic_fw_version);
759 		return false;
760 	}
761 
762 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
763 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
764 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
765 
766 	/* For multi-partition capable GPUs, we need special handling for VMIDs
767 	 * depending on partition mode.
768 	 * In CPX mode, the VMID range needs to be shared between XCDs.
769 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
770 	 * divide them equally, we change starting VMID to 4 and not use
771 	 * VMID 3.
772 	 * If the VMID range changes for multi-partition capable GPUs, then
773 	 * this code MUST be revisited.
774 	 */
775 	if (kfd->adev->xcp_mgr) {
776 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
777 								 AMDGPU_XCP_FL_LOCKED);
778 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
779 		    kfd->num_nodes != 1) {
780 			vmid_num_kfd /= 2;
781 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
782 		}
783 	}
784 
785 	/* Verify module parameters regarding mapped process number*/
786 	if (hws_max_conc_proc >= 0)
787 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
788 	else
789 		max_proc_per_quantum = vmid_num_kfd;
790 
791 	/* calculate max size of mqds needed for queues */
792 	size = max_num_of_queues_per_device *
793 			kfd->device_info.mqd_size_aligned;
794 
795 	/*
796 	 * calculate max size of runlist packet.
797 	 * There can be only 2 packets at once
798 	 */
799 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
800 				sizeof(struct pm4_mes_map_process_aldebaran) :
801 				sizeof(struct pm4_mes_map_process);
802 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
803 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
804 		+ sizeof(struct pm4_mes_runlist)) * 2;
805 
806 	/* Add size of HIQ & DIQ */
807 	size += KFD_KERNEL_QUEUE_SIZE * 2;
808 
809 	/* add another 512KB for all other allocations on gart (HPD, fences) */
810 	size += 512 * 1024;
811 
812 	if (amdgpu_amdkfd_alloc_gtt_mem(
813 			kfd->adev, size, &kfd->gtt_mem,
814 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
815 			false)) {
816 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
817 		goto alloc_gtt_mem_failure;
818 	}
819 
820 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
821 
822 	/* Initialize GTT sa with 512 byte chunk size */
823 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
824 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
825 		goto kfd_gtt_sa_init_error;
826 	}
827 
828 	if (kfd_doorbell_init(kfd)) {
829 		dev_err(kfd_device,
830 			"Error initializing doorbell aperture\n");
831 		goto kfd_doorbell_error;
832 	}
833 
834 	if (amdgpu_use_xgmi_p2p)
835 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
836 
837 	/*
838 	 * For multi-partition capable GPUs, the KFD abstracts all partitions
839 	 * within a socket as xGMI connected in the topology so assign a unique
840 	 * hive id per device based on the pci device location if device is in
841 	 * PCIe mode.
842 	 */
843 	if (!kfd->hive_id && kfd->num_nodes > 1)
844 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
845 
846 	kfd->noretry = kfd->adev->gmc.noretry;
847 
848 	kfd_cwsr_init(kfd);
849 
850 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
851 				kfd->num_nodes);
852 
853 	/* Allocate the KFD nodes */
854 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
855 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
856 		if (!node)
857 			goto node_alloc_error;
858 
859 		node->node_id = i;
860 		node->adev = kfd->adev;
861 		node->kfd = kfd;
862 		node->kfd2kgd = kfd->kfd2kgd;
863 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
864 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
865 		/* TODO : Check if error handling is needed */
866 		if (node->xcp) {
867 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
868 						    &node->xcc_mask);
869 			++xcp_idx;
870 		} else {
871 			node->xcc_mask =
872 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
873 		}
874 
875 		if (node->xcp) {
876 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
877 				node->node_id, node->xcp->mem_id,
878 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
879 		}
880 
881 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
882 		    kfd->num_nodes != 1) {
883 			/* For multi-partition capable GPUs and CPX mode, first
884 			 * XCD gets VMID range 4-9 and second XCD gets VMID
885 			 * range 10-15.
886 			 */
887 
888 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
889 						first_vmid_kfd :
890 						first_vmid_kfd+vmid_num_kfd;
891 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
892 						last_vmid_kfd-vmid_num_kfd :
893 						last_vmid_kfd;
894 			node->compute_vmid_bitmap =
895 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
896 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
897 		} else {
898 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
899 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
900 			node->compute_vmid_bitmap =
901 				gpu_resources->compute_vmid_bitmap;
902 		}
903 		node->max_proc_per_quantum = max_proc_per_quantum;
904 		atomic_set(&node->sram_ecc_flag, 0);
905 
906 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
907 					&node->local_mem_info, node->xcp);
908 
909 		if (kfd->adev->xcp_mgr)
910 			kfd_setup_interrupt_bitmap(node, i);
911 
912 		/* Initialize the KFD node */
913 		if (kfd_init_node(node)) {
914 			dev_err(kfd_device, "Error initializing KFD node\n");
915 			goto node_init_error;
916 		}
917 
918 		spin_lock_init(&node->watch_points_lock);
919 
920 		kfd->nodes[i] = node;
921 	}
922 
923 	svm_range_set_max_pages(kfd->adev);
924 
925 	kfd->init_complete = true;
926 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
927 		 kfd->adev->pdev->device);
928 
929 	pr_debug("Starting kfd with the following scheduling policy %d\n",
930 		node->dqm->sched_policy);
931 
932 	goto out;
933 
934 node_init_error:
935 node_alloc_error:
936 	kfd_cleanup_nodes(kfd, i);
937 	kfd_doorbell_fini(kfd);
938 kfd_doorbell_error:
939 	kfd_gtt_sa_fini(kfd);
940 kfd_gtt_sa_init_error:
941 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
942 alloc_gtt_mem_failure:
943 	dev_err(kfd_device,
944 		"device %x:%x NOT added due to errors\n",
945 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
946 out:
947 	return kfd->init_complete;
948 }
949 
kgd2kfd_device_exit(struct kfd_dev * kfd)950 void kgd2kfd_device_exit(struct kfd_dev *kfd)
951 {
952 	if (kfd->init_complete) {
953 		/* Cleanup KFD nodes */
954 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
955 		/* Cleanup common/shared resources */
956 		kfd_doorbell_fini(kfd);
957 		ida_destroy(&kfd->doorbell_ida);
958 		kfd_gtt_sa_fini(kfd);
959 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
960 	}
961 
962 	kfree(kfd);
963 }
964 
kgd2kfd_pre_reset(struct kfd_dev * kfd,struct amdgpu_reset_context * reset_context)965 int kgd2kfd_pre_reset(struct kfd_dev *kfd,
966 		      struct amdgpu_reset_context *reset_context)
967 {
968 	struct kfd_node *node;
969 	int i;
970 
971 	if (!kfd->init_complete)
972 		return 0;
973 
974 	for (i = 0; i < kfd->num_nodes; i++) {
975 		node = kfd->nodes[i];
976 		kfd_smi_event_update_gpu_reset(node, false, reset_context);
977 	}
978 
979 	kgd2kfd_suspend(kfd, false);
980 
981 	for (i = 0; i < kfd->num_nodes; i++)
982 		kfd_signal_reset_event(kfd->nodes[i]);
983 
984 	return 0;
985 }
986 
987 /*
988  * Fix me. KFD won't be able to resume existing process for now.
989  * We will keep all existing process in a evicted state and
990  * wait the process to be terminated.
991  */
992 
kgd2kfd_post_reset(struct kfd_dev * kfd)993 int kgd2kfd_post_reset(struct kfd_dev *kfd)
994 {
995 	int ret;
996 	struct kfd_node *node;
997 	int i;
998 
999 	if (!kfd->init_complete)
1000 		return 0;
1001 
1002 	for (i = 0; i < kfd->num_nodes; i++) {
1003 		ret = kfd_resume(kfd->nodes[i]);
1004 		if (ret)
1005 			return ret;
1006 	}
1007 
1008 	mutex_lock(&kfd_processes_mutex);
1009 	--kfd_locked;
1010 	mutex_unlock(&kfd_processes_mutex);
1011 
1012 	for (i = 0; i < kfd->num_nodes; i++) {
1013 		node = kfd->nodes[i];
1014 		atomic_set(&node->sram_ecc_flag, 0);
1015 		kfd_smi_event_update_gpu_reset(node, true, NULL);
1016 	}
1017 
1018 	return 0;
1019 }
1020 
kfd_is_locked(void)1021 bool kfd_is_locked(void)
1022 {
1023 	lockdep_assert_held(&kfd_processes_mutex);
1024 	return  (kfd_locked > 0);
1025 }
1026 
kgd2kfd_suspend(struct kfd_dev * kfd,bool run_pm)1027 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1028 {
1029 	struct kfd_node *node;
1030 	int i;
1031 
1032 	if (!kfd->init_complete)
1033 		return;
1034 
1035 	/* for runtime suspend, skip locking kfd */
1036 	if (!run_pm) {
1037 		mutex_lock(&kfd_processes_mutex);
1038 		/* For first KFD device suspend all the KFD processes */
1039 		if (++kfd_locked == 1)
1040 			kfd_suspend_all_processes();
1041 		mutex_unlock(&kfd_processes_mutex);
1042 	}
1043 
1044 	for (i = 0; i < kfd->num_nodes; i++) {
1045 		node = kfd->nodes[i];
1046 		node->dqm->ops.stop(node->dqm);
1047 	}
1048 }
1049 
kgd2kfd_resume(struct kfd_dev * kfd,bool run_pm)1050 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1051 {
1052 	int ret, i;
1053 
1054 	if (!kfd->init_complete)
1055 		return 0;
1056 
1057 	for (i = 0; i < kfd->num_nodes; i++) {
1058 		ret = kfd_resume(kfd->nodes[i]);
1059 		if (ret)
1060 			return ret;
1061 	}
1062 
1063 	/* for runtime resume, skip unlocking kfd */
1064 	if (!run_pm) {
1065 		mutex_lock(&kfd_processes_mutex);
1066 		if (--kfd_locked == 0)
1067 			ret = kfd_resume_all_processes();
1068 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1069 		mutex_unlock(&kfd_processes_mutex);
1070 	}
1071 
1072 	return ret;
1073 }
1074 
kfd_resume(struct kfd_node * node)1075 static int kfd_resume(struct kfd_node *node)
1076 {
1077 	int err = 0;
1078 
1079 	err = node->dqm->ops.start(node->dqm);
1080 	if (err)
1081 		dev_err(kfd_device,
1082 			"Error starting queue manager for device %x:%x\n",
1083 			node->adev->pdev->vendor, node->adev->pdev->device);
1084 
1085 	return err;
1086 }
1087 
1088 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1089 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1090 {
1091 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1092 	bool is_patched = false;
1093 	unsigned long flags;
1094 	struct kfd_node *node;
1095 
1096 	if (!kfd->init_complete)
1097 		return;
1098 
1099 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1100 		dev_err_once(kfd_device, "Ring entry too small\n");
1101 		return;
1102 	}
1103 
1104 	for (i = 0; i < kfd->num_nodes; i++) {
1105 		node = kfd->nodes[i];
1106 		spin_lock_irqsave(&node->interrupt_lock, flags);
1107 
1108 		if (node->interrupts_active
1109 		    && interrupt_is_wanted(node, ih_ring_entry,
1110 			    	patched_ihre, &is_patched)
1111 		    && enqueue_ih_ring_entry(node,
1112 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1113 			queue_work(node->kfd->ih_wq, &node->interrupt_work);
1114 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1115 			return;
1116 		}
1117 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1118 	}
1119 
1120 }
1121 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1122 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1123 {
1124 	struct kfd_process *p;
1125 	int r;
1126 
1127 	/* Because we are called from arbitrary context (workqueue) as opposed
1128 	 * to process context, kfd_process could attempt to exit while we are
1129 	 * running so the lookup function increments the process ref count.
1130 	 */
1131 	p = kfd_lookup_process_by_mm(mm);
1132 	if (!p)
1133 		return -ESRCH;
1134 
1135 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1136 	r = kfd_process_evict_queues(p, trigger);
1137 
1138 	kfd_unref_process(p);
1139 	return r;
1140 }
1141 
kgd2kfd_resume_mm(struct mm_struct * mm)1142 int kgd2kfd_resume_mm(struct mm_struct *mm)
1143 {
1144 	struct kfd_process *p;
1145 	int r;
1146 
1147 	/* Because we are called from arbitrary context (workqueue) as opposed
1148 	 * to process context, kfd_process could attempt to exit while we are
1149 	 * running so the lookup function increments the process ref count.
1150 	 */
1151 	p = kfd_lookup_process_by_mm(mm);
1152 	if (!p)
1153 		return -ESRCH;
1154 
1155 	r = kfd_process_restore_queues(p);
1156 
1157 	kfd_unref_process(p);
1158 	return r;
1159 }
1160 
1161 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1162  *   prepare for safe eviction of KFD BOs that belong to the specified
1163  *   process.
1164  *
1165  * @mm: mm_struct that identifies the specified KFD process
1166  * @fence: eviction fence attached to KFD process BOs
1167  *
1168  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1169 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1170 					       struct dma_fence *fence)
1171 {
1172 	struct kfd_process *p;
1173 	unsigned long active_time;
1174 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1175 
1176 	if (!fence)
1177 		return -EINVAL;
1178 
1179 	if (dma_fence_is_signaled(fence))
1180 		return 0;
1181 
1182 	p = kfd_lookup_process_by_mm(mm);
1183 	if (!p)
1184 		return -ENODEV;
1185 
1186 	if (fence->seqno == p->last_eviction_seqno)
1187 		goto out;
1188 
1189 	p->last_eviction_seqno = fence->seqno;
1190 
1191 	/* Avoid KFD process starvation. Wait for at least
1192 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1193 	 */
1194 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1195 	if (delay_jiffies > active_time)
1196 		delay_jiffies -= active_time;
1197 	else
1198 		delay_jiffies = 0;
1199 
1200 	/* During process initialization eviction_work.dwork is initialized
1201 	 * to kfd_evict_bo_worker
1202 	 */
1203 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1204 	     p->lead_thread->pid, delay_jiffies);
1205 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1206 out:
1207 	kfd_unref_process(p);
1208 	return 0;
1209 }
1210 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1211 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1212 				unsigned int chunk_size)
1213 {
1214 	if (WARN_ON(buf_size < chunk_size))
1215 		return -EINVAL;
1216 	if (WARN_ON(buf_size == 0))
1217 		return -EINVAL;
1218 	if (WARN_ON(chunk_size == 0))
1219 		return -EINVAL;
1220 
1221 	kfd->gtt_sa_chunk_size = chunk_size;
1222 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1223 
1224 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1225 					   GFP_KERNEL);
1226 	if (!kfd->gtt_sa_bitmap)
1227 		return -ENOMEM;
1228 
1229 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1230 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1231 
1232 	mutex_init(&kfd->gtt_sa_lock);
1233 
1234 	return 0;
1235 }
1236 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1237 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1238 {
1239 	mutex_destroy(&kfd->gtt_sa_lock);
1240 	bitmap_free(kfd->gtt_sa_bitmap);
1241 }
1242 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1243 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1244 						unsigned int bit_num,
1245 						unsigned int chunk_size)
1246 {
1247 	return start_addr + bit_num * chunk_size;
1248 }
1249 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1250 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1251 						unsigned int bit_num,
1252 						unsigned int chunk_size)
1253 {
1254 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1255 }
1256 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1257 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1258 			struct kfd_mem_obj **mem_obj)
1259 {
1260 	unsigned int found, start_search, cur_size;
1261 	struct kfd_dev *kfd = node->kfd;
1262 
1263 	if (size == 0)
1264 		return -EINVAL;
1265 
1266 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1267 		return -ENOMEM;
1268 
1269 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1270 	if (!(*mem_obj))
1271 		return -ENOMEM;
1272 
1273 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1274 
1275 	start_search = 0;
1276 
1277 	mutex_lock(&kfd->gtt_sa_lock);
1278 
1279 kfd_gtt_restart_search:
1280 	/* Find the first chunk that is free */
1281 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1282 					kfd->gtt_sa_num_of_chunks,
1283 					start_search);
1284 
1285 	pr_debug("Found = %d\n", found);
1286 
1287 	/* If there wasn't any free chunk, bail out */
1288 	if (found == kfd->gtt_sa_num_of_chunks)
1289 		goto kfd_gtt_no_free_chunk;
1290 
1291 	/* Update fields of mem_obj */
1292 	(*mem_obj)->range_start = found;
1293 	(*mem_obj)->range_end = found;
1294 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1295 					kfd->gtt_start_gpu_addr,
1296 					found,
1297 					kfd->gtt_sa_chunk_size);
1298 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1299 					kfd->gtt_start_cpu_ptr,
1300 					found,
1301 					kfd->gtt_sa_chunk_size);
1302 
1303 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1304 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1305 
1306 	/* If we need only one chunk, mark it as allocated and get out */
1307 	if (size <= kfd->gtt_sa_chunk_size) {
1308 		pr_debug("Single bit\n");
1309 		__set_bit(found, kfd->gtt_sa_bitmap);
1310 		goto kfd_gtt_out;
1311 	}
1312 
1313 	/* Otherwise, try to see if we have enough contiguous chunks */
1314 	cur_size = size - kfd->gtt_sa_chunk_size;
1315 	do {
1316 		(*mem_obj)->range_end =
1317 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1318 					kfd->gtt_sa_num_of_chunks, ++found);
1319 		/*
1320 		 * If next free chunk is not contiguous than we need to
1321 		 * restart our search from the last free chunk we found (which
1322 		 * wasn't contiguous to the previous ones
1323 		 */
1324 		if ((*mem_obj)->range_end != found) {
1325 			start_search = found;
1326 			goto kfd_gtt_restart_search;
1327 		}
1328 
1329 		/*
1330 		 * If we reached end of buffer, bail out with error
1331 		 */
1332 		if (found == kfd->gtt_sa_num_of_chunks)
1333 			goto kfd_gtt_no_free_chunk;
1334 
1335 		/* Check if we don't need another chunk */
1336 		if (cur_size <= kfd->gtt_sa_chunk_size)
1337 			cur_size = 0;
1338 		else
1339 			cur_size -= kfd->gtt_sa_chunk_size;
1340 
1341 	} while (cur_size > 0);
1342 
1343 	pr_debug("range_start = %d, range_end = %d\n",
1344 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1345 
1346 	/* Mark the chunks as allocated */
1347 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1348 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1349 
1350 kfd_gtt_out:
1351 	mutex_unlock(&kfd->gtt_sa_lock);
1352 	return 0;
1353 
1354 kfd_gtt_no_free_chunk:
1355 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1356 	mutex_unlock(&kfd->gtt_sa_lock);
1357 	kfree(*mem_obj);
1358 	return -ENOMEM;
1359 }
1360 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1361 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1362 {
1363 	struct kfd_dev *kfd = node->kfd;
1364 
1365 	/* Act like kfree when trying to free a NULL object */
1366 	if (!mem_obj)
1367 		return 0;
1368 
1369 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1370 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1371 
1372 	mutex_lock(&kfd->gtt_sa_lock);
1373 
1374 	/* Mark the chunks as free */
1375 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1376 		     mem_obj->range_end - mem_obj->range_start + 1);
1377 
1378 	mutex_unlock(&kfd->gtt_sa_lock);
1379 
1380 	kfree(mem_obj);
1381 	return 0;
1382 }
1383 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1384 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1385 {
1386 	/*
1387 	 * TODO: Currently update SRAM ECC flag for first node.
1388 	 * This needs to be updated later when we can
1389 	 * identify SRAM ECC error on other nodes also.
1390 	 */
1391 	if (kfd)
1392 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1393 }
1394 
kfd_inc_compute_active(struct kfd_node * node)1395 void kfd_inc_compute_active(struct kfd_node *node)
1396 {
1397 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1398 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1399 }
1400 
kfd_dec_compute_active(struct kfd_node * node)1401 void kfd_dec_compute_active(struct kfd_node *node)
1402 {
1403 	int count = atomic_dec_return(&node->kfd->compute_profile);
1404 
1405 	if (count == 0)
1406 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1407 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1408 }
1409 
kfd_compute_active(struct kfd_node * node)1410 static bool kfd_compute_active(struct kfd_node *node)
1411 {
1412 	if (atomic_read(&node->kfd->compute_profile))
1413 		return true;
1414 	return false;
1415 }
1416 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1417 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1418 {
1419 	/*
1420 	 * TODO: For now, raise the throttling event only on first node.
1421 	 * This will need to change after we are able to determine
1422 	 * which node raised the throttling event.
1423 	 */
1424 	if (kfd && kfd->init_complete)
1425 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1426 							throttle_bitmask);
1427 }
1428 
1429 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1430  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1431  * When the device has more than two engines, we reserve two for PCIe to enable
1432  * full-duplex and the rest are used as XGMI.
1433  */
kfd_get_num_sdma_engines(struct kfd_node * node)1434 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1435 {
1436 	/* If XGMI is not supported, all SDMA engines are PCIe */
1437 	if (!node->adev->gmc.xgmi.supported)
1438 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1439 
1440 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1441 }
1442 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1443 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1444 {
1445 	/* After reserved for PCIe, the rest of engines are XGMI */
1446 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1447 		kfd_get_num_sdma_engines(node);
1448 }
1449 
kgd2kfd_check_and_lock_kfd(void)1450 int kgd2kfd_check_and_lock_kfd(void)
1451 {
1452 	mutex_lock(&kfd_processes_mutex);
1453 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1454 		mutex_unlock(&kfd_processes_mutex);
1455 		return -EBUSY;
1456 	}
1457 
1458 	++kfd_locked;
1459 	mutex_unlock(&kfd_processes_mutex);
1460 
1461 	return 0;
1462 }
1463 
kgd2kfd_unlock_kfd(void)1464 void kgd2kfd_unlock_kfd(void)
1465 {
1466 	mutex_lock(&kfd_processes_mutex);
1467 	--kfd_locked;
1468 	mutex_unlock(&kfd_processes_mutex);
1469 }
1470 
kgd2kfd_start_sched(struct kfd_dev * kfd,uint32_t node_id)1471 int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1472 {
1473 	struct kfd_node *node;
1474 	int ret;
1475 
1476 	if (!kfd->init_complete)
1477 		return 0;
1478 
1479 	if (node_id >= kfd->num_nodes) {
1480 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1481 			 node_id, kfd->num_nodes - 1);
1482 		return -EINVAL;
1483 	}
1484 	node = kfd->nodes[node_id];
1485 
1486 	ret = node->dqm->ops.unhalt(node->dqm);
1487 	if (ret)
1488 		dev_err(kfd_device, "Error in starting scheduler\n");
1489 
1490 	return ret;
1491 }
1492 
kgd2kfd_stop_sched(struct kfd_dev * kfd,uint32_t node_id)1493 int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1494 {
1495 	struct kfd_node *node;
1496 
1497 	if (!kfd->init_complete)
1498 		return 0;
1499 
1500 	if (node_id >= kfd->num_nodes) {
1501 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1502 			 node_id, kfd->num_nodes - 1);
1503 		return -EINVAL;
1504 	}
1505 
1506 	node = kfd->nodes[node_id];
1507 	return node->dqm->ops.halt(node->dqm);
1508 }
1509 
kgd2kfd_compute_active(struct kfd_dev * kfd,uint32_t node_id)1510 bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1511 {
1512 	struct kfd_node *node;
1513 
1514 	if (!kfd->init_complete)
1515 		return false;
1516 
1517 	if (node_id >= kfd->num_nodes) {
1518 		dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1519 			 node_id, kfd->num_nodes - 1);
1520 		return false;
1521 	}
1522 
1523 	node = kfd->nodes[node_id];
1524 
1525 	return kfd_compute_active(node);
1526 }
1527 
1528 /**
1529  * kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1530  * @adev: amdgpu device
1531  * @entry: vm fault interrupt vector
1532  * @retry_fault: if this is retry fault
1533  *
1534  * retry fault -
1535  *    with CAM enabled, adev primary ring
1536  *                           |  gmc_v9_0_process_interrupt()
1537  *                      adev soft_ring
1538  *                           |  gmc_v9_0_process_interrupt() worker failed to recover page fault
1539  *                      KFD node ih_fifo
1540  *                           |  KFD interrupt_wq worker
1541  *                      kfd_signal_vm_fault_event
1542  *
1543  *    without CAM,      adev primary ring1
1544  *                           |  gmc_v9_0_process_interrupt worker failed to recvoer page fault
1545  *                      KFD node ih_fifo
1546  *                           |  KFD interrupt_wq worker
1547  *                      kfd_signal_vm_fault_event
1548  *
1549  * no-retry fault -
1550  *                      adev primary ring
1551  *                           |  gmc_v9_0_process_interrupt()
1552  *                      KFD node ih_fifo
1553  *                           |  KFD interrupt_wq worker
1554  *                      kfd_signal_vm_fault_event
1555  *
1556  * fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1557  *            of same process, don't copy interrupt to KFD node ih_fifo.
1558  *            With gdb debugger enabled, need convert the retry fault to no-retry fault for
1559  *            debugger, cannot use the fast path.
1560  *
1561  * Return:
1562  *   true - use the fast path to handle this fault
1563  *   false - use normal path to handle it
1564  */
kgd2kfd_vmfault_fast_path(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry,bool retry_fault)1565 bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1566 			       bool retry_fault)
1567 {
1568 	struct kfd_process *p;
1569 	u32 cam_index;
1570 
1571 	if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1572 		p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
1573 		if (!p)
1574 			return true;
1575 
1576 		if (p->gpu_page_fault && !p->debug_trap_enabled) {
1577 			if (retry_fault && adev->irq.retry_cam_enabled) {
1578 				cam_index = entry->src_data[2] & 0x3ff;
1579 				WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1580 			}
1581 
1582 			kfd_unref_process(p);
1583 			return true;
1584 		}
1585 
1586 		/*
1587 		 * This is the first page fault, set flag and then signal user space
1588 		 */
1589 		p->gpu_page_fault = true;
1590 		kfd_unref_process(p);
1591 	}
1592 	return false;
1593 }
1594 
1595 #if defined(CONFIG_DEBUG_FS)
1596 
1597 /* This function will send a package to HIQ to hang the HWS
1598  * which will trigger a GPU reset and bring the HWS back to normal state
1599  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1600 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1601 {
1602 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1603 		pr_err("HWS is not enabled");
1604 		return -EINVAL;
1605 	}
1606 
1607 	if (dev->kfd->shared_resources.enable_mes) {
1608 		dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1609 		return -EINVAL;
1610 	}
1611 
1612 	return dqm_debugfs_hang_hws(dev->dqm);
1613 }
1614 
1615 #endif
1616