1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* -----------------------------------------------------------------------
4  *
5  *   Copyright 2011 Intel Corporation; author Matt Fleming
6  *
7  * ----------------------------------------------------------------------- */
8 
9 #include <linux/efi.h>
10 #include <linux/pci.h>
11 #include <linux/stddef.h>
12 
13 #include <asm/efi.h>
14 #include <asm/e820/types.h>
15 #include <asm/setup.h>
16 #include <asm/desc.h>
17 #include <asm/boot.h>
18 #include <asm/kaslr.h>
19 #include <asm/sev.h>
20 
21 #include "efistub.h"
22 #include "x86-stub.h"
23 
24 extern char _bss[], _ebss[];
25 
26 const efi_system_table_t *efi_system_table;
27 const efi_dxe_services_table_t *efi_dxe_table;
28 static efi_loaded_image_t *image = NULL;
29 static efi_memory_attribute_protocol_t *memattr;
30 
31 typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
32 union sev_memory_acceptance_protocol {
33 	struct {
34 		efi_status_t (__efiapi * allow_unaccepted_memory)(
35 			sev_memory_acceptance_protocol_t *);
36 	};
37 	struct {
38 		u32 allow_unaccepted_memory;
39 	} mixed_mode;
40 };
41 
42 static efi_status_t
preserve_pci_rom_image(efi_pci_io_protocol_t * pci,struct pci_setup_rom ** __rom)43 preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
44 {
45 	struct pci_setup_rom *rom __free(efi_pool) = NULL;
46 	efi_status_t status;
47 	unsigned long size;
48 	uint64_t romsize;
49 	void *romimage;
50 
51 	/*
52 	 * Some firmware images contain EFI function pointers at the place where
53 	 * the romimage and romsize fields are supposed to be. Typically the EFI
54 	 * code is mapped at high addresses, translating to an unrealistically
55 	 * large romsize. The UEFI spec limits the size of option ROMs to 16
56 	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
57 	 */
58 	romimage = efi_table_attr(pci, romimage);
59 	romsize = efi_table_attr(pci, romsize);
60 	if (!romimage || !romsize || romsize > SZ_16M)
61 		return EFI_INVALID_PARAMETER;
62 
63 	size = romsize + sizeof(*rom);
64 
65 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
66 			     (void **)&rom);
67 	if (status != EFI_SUCCESS) {
68 		efi_err("Failed to allocate memory for 'rom'\n");
69 		return status;
70 	}
71 
72 	memset(rom, 0, sizeof(*rom));
73 
74 	rom->data.type	= SETUP_PCI;
75 	rom->data.len	= size - sizeof(struct setup_data);
76 	rom->data.next	= 0;
77 	rom->pcilen	= romsize;
78 
79 	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
80 				PCI_VENDOR_ID, 1, &rom->vendor);
81 
82 	if (status != EFI_SUCCESS) {
83 		efi_err("Failed to read rom->vendor\n");
84 		return status;
85 	}
86 
87 	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
88 				PCI_DEVICE_ID, 1, &rom->devid);
89 
90 	if (status != EFI_SUCCESS) {
91 		efi_err("Failed to read rom->devid\n");
92 		return status;
93 	}
94 
95 	status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
96 				&rom->device, &rom->function);
97 
98 	if (status != EFI_SUCCESS)
99 		return status;
100 
101 	memcpy(rom->romdata, romimage, romsize);
102 	*__rom = no_free_ptr(rom);
103 	return EFI_SUCCESS;
104 }
105 
106 /*
107  * There's no way to return an informative status from this function,
108  * because any analysis (and printing of error messages) needs to be
109  * done directly at the EFI function call-site.
110  *
111  * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
112  * just didn't find any PCI devices, but there's no way to tell outside
113  * the context of the call.
114  */
setup_efi_pci(struct boot_params * params)115 static void setup_efi_pci(struct boot_params *params)
116 {
117 	efi_status_t status;
118 	efi_handle_t *pci_handle __free(efi_pool) = NULL;
119 	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
120 	struct setup_data *data;
121 	unsigned long num;
122 	efi_handle_t h;
123 
124 	status = efi_bs_call(locate_handle_buffer, EFI_LOCATE_BY_PROTOCOL,
125 			     &pci_proto, NULL, &num, &pci_handle);
126 	if (status != EFI_SUCCESS)
127 		return;
128 
129 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
130 
131 	while (data && data->next)
132 		data = (struct setup_data *)(unsigned long)data->next;
133 
134 	for_each_efi_handle(h, pci_handle, num) {
135 		efi_pci_io_protocol_t *pci = NULL;
136 		struct pci_setup_rom *rom;
137 
138 		status = efi_bs_call(handle_protocol, h, &pci_proto,
139 				     (void **)&pci);
140 		if (status != EFI_SUCCESS || !pci)
141 			continue;
142 
143 		status = preserve_pci_rom_image(pci, &rom);
144 		if (status != EFI_SUCCESS)
145 			continue;
146 
147 		if (data)
148 			data->next = (unsigned long)rom;
149 		else
150 			params->hdr.setup_data = (unsigned long)rom;
151 
152 		data = (struct setup_data *)rom;
153 	}
154 }
155 
retrieve_apple_device_properties(struct boot_params * boot_params)156 static void retrieve_apple_device_properties(struct boot_params *boot_params)
157 {
158 	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
159 	struct setup_data *data, *new;
160 	efi_status_t status;
161 	u32 size = 0;
162 	apple_properties_protocol_t *p;
163 
164 	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
165 	if (status != EFI_SUCCESS)
166 		return;
167 
168 	if (efi_table_attr(p, version) != 0x10000) {
169 		efi_err("Unsupported properties proto version\n");
170 		return;
171 	}
172 
173 	efi_call_proto(p, get_all, NULL, &size);
174 	if (!size)
175 		return;
176 
177 	do {
178 		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
179 				     size + sizeof(struct setup_data),
180 				     (void **)&new);
181 		if (status != EFI_SUCCESS) {
182 			efi_err("Failed to allocate memory for 'properties'\n");
183 			return;
184 		}
185 
186 		status = efi_call_proto(p, get_all, new->data, &size);
187 
188 		if (status == EFI_BUFFER_TOO_SMALL)
189 			efi_bs_call(free_pool, new);
190 	} while (status == EFI_BUFFER_TOO_SMALL);
191 
192 	new->type = SETUP_APPLE_PROPERTIES;
193 	new->len  = size;
194 	new->next = 0;
195 
196 	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
197 	if (!data) {
198 		boot_params->hdr.setup_data = (unsigned long)new;
199 	} else {
200 		while (data->next)
201 			data = (struct setup_data *)(unsigned long)data->next;
202 		data->next = (unsigned long)new;
203 	}
204 }
205 
apple_match_product_name(void)206 static bool apple_match_product_name(void)
207 {
208 	static const char type1_product_matches[][15] = {
209 		"MacBookPro11,3",
210 		"MacBookPro11,5",
211 		"MacBookPro13,3",
212 		"MacBookPro14,3",
213 		"MacBookPro15,1",
214 		"MacBookPro15,3",
215 		"MacBookPro16,1",
216 		"MacBookPro16,4",
217 	};
218 	const struct efi_smbios_type1_record *record;
219 	const u8 *product;
220 
221 	record = (struct efi_smbios_type1_record *)efi_get_smbios_record(1);
222 	if (!record)
223 		return false;
224 
225 	product = efi_get_smbios_string(record, product_name);
226 	if (!product)
227 		return false;
228 
229 	for (int i = 0; i < ARRAY_SIZE(type1_product_matches); i++) {
230 		if (!strcmp(product, type1_product_matches[i]))
231 			return true;
232 	}
233 
234 	return false;
235 }
236 
apple_set_os(void)237 static void apple_set_os(void)
238 {
239 	struct {
240 		unsigned long version;
241 		efi_status_t (__efiapi *set_os_version)(const char *);
242 		efi_status_t (__efiapi *set_os_vendor)(const char *);
243 	} *set_os;
244 	efi_status_t status;
245 
246 	if (!efi_is_64bit() || !apple_match_product_name())
247 		return;
248 
249 	status = efi_bs_call(locate_protocol, &APPLE_SET_OS_PROTOCOL_GUID, NULL,
250 			     (void **)&set_os);
251 	if (status != EFI_SUCCESS)
252 		return;
253 
254 	if (set_os->version >= 2) {
255 		status = set_os->set_os_vendor("Apple Inc.");
256 		if (status != EFI_SUCCESS)
257 			efi_err("Failed to set OS vendor via apple_set_os\n");
258 	}
259 
260 	if (set_os->version > 0) {
261 		/* The version being set doesn't seem to matter */
262 		status = set_os->set_os_version("Mac OS X 10.9");
263 		if (status != EFI_SUCCESS)
264 			efi_err("Failed to set OS version via apple_set_os\n");
265 	}
266 }
267 
efi_adjust_memory_range_protection(unsigned long start,unsigned long size)268 efi_status_t efi_adjust_memory_range_protection(unsigned long start,
269 						unsigned long size)
270 {
271 	efi_status_t status;
272 	efi_gcd_memory_space_desc_t desc;
273 	unsigned long end, next;
274 	unsigned long rounded_start, rounded_end;
275 	unsigned long unprotect_start, unprotect_size;
276 
277 	rounded_start = rounddown(start, EFI_PAGE_SIZE);
278 	rounded_end = roundup(start + size, EFI_PAGE_SIZE);
279 
280 	if (memattr != NULL) {
281 		status = efi_call_proto(memattr, set_memory_attributes,
282 					rounded_start,
283 					rounded_end - rounded_start,
284 					EFI_MEMORY_RO);
285 		if (status != EFI_SUCCESS) {
286 			efi_warn("Failed to set EFI_MEMORY_RO attribute\n");
287 			return status;
288 		}
289 
290 		status = efi_call_proto(memattr, clear_memory_attributes,
291 					rounded_start,
292 					rounded_end - rounded_start,
293 					EFI_MEMORY_XP);
294 		if (status != EFI_SUCCESS)
295 			efi_warn("Failed to clear EFI_MEMORY_XP attribute\n");
296 		return status;
297 	}
298 
299 	if (efi_dxe_table == NULL)
300 		return EFI_SUCCESS;
301 
302 	/*
303 	 * Don't modify memory region attributes, they are
304 	 * already suitable, to lower the possibility to
305 	 * encounter firmware bugs.
306 	 */
307 
308 	for (end = start + size; start < end; start = next) {
309 
310 		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
311 
312 		if (status != EFI_SUCCESS)
313 			break;
314 
315 		next = desc.base_address + desc.length;
316 
317 		/*
318 		 * Only system memory is suitable for trampoline/kernel image placement,
319 		 * so only this type of memory needs its attributes to be modified.
320 		 */
321 
322 		if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
323 		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
324 			continue;
325 
326 		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
327 		unprotect_size = min(rounded_end, next) - unprotect_start;
328 
329 		status = efi_dxe_call(set_memory_space_attributes,
330 				      unprotect_start, unprotect_size,
331 				      EFI_MEMORY_WB);
332 
333 		if (status != EFI_SUCCESS) {
334 			efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
335 				 unprotect_start,
336 				 unprotect_start + unprotect_size,
337 				 status);
338 			break;
339 		}
340 	}
341 	return EFI_SUCCESS;
342 }
343 
setup_unaccepted_memory(void)344 static void setup_unaccepted_memory(void)
345 {
346 	efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
347 	sev_memory_acceptance_protocol_t *proto;
348 	efi_status_t status;
349 
350 	if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
351 		return;
352 
353 	/*
354 	 * Enable unaccepted memory before calling exit boot services in order
355 	 * for the UEFI to not accept all memory on EBS.
356 	 */
357 	status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
358 			     (void **)&proto);
359 	if (status != EFI_SUCCESS)
360 		return;
361 
362 	status = efi_call_proto(proto, allow_unaccepted_memory);
363 	if (status != EFI_SUCCESS)
364 		efi_err("Memory acceptance protocol failed\n");
365 }
366 
efistub_fw_vendor(void)367 static efi_char16_t *efistub_fw_vendor(void)
368 {
369 	unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor);
370 
371 	return (efi_char16_t *)vendor;
372 }
373 
374 static const efi_char16_t apple[] = L"Apple";
375 
setup_quirks(struct boot_params * boot_params)376 static void setup_quirks(struct boot_params *boot_params)
377 {
378 	if (!memcmp(efistub_fw_vendor(), apple, sizeof(apple))) {
379 		if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
380 			retrieve_apple_device_properties(boot_params);
381 
382 		apple_set_os();
383 	}
384 }
385 
setup_graphics(struct boot_params * boot_params)386 static void setup_graphics(struct boot_params *boot_params)
387 {
388 	struct screen_info *si = memset(&boot_params->screen_info, 0, sizeof(*si));
389 
390 	efi_setup_gop(si);
391 }
392 
efi_exit(efi_handle_t handle,efi_status_t status)393 static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
394 {
395 	efi_bs_call(exit, handle, status, 0, NULL);
396 	for(;;)
397 		asm("hlt");
398 }
399 
400 /*
401  * Because the x86 boot code expects to be passed a boot_params we
402  * need to create one ourselves (usually the bootloader would create
403  * one for us).
404  */
efi_allocate_bootparams(efi_handle_t handle,struct boot_params ** bp)405 static efi_status_t efi_allocate_bootparams(efi_handle_t handle,
406 					    struct boot_params **bp)
407 {
408 	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
409 	struct boot_params *boot_params;
410 	struct setup_header *hdr;
411 	efi_status_t status;
412 	unsigned long alloc;
413 	char *cmdline_ptr;
414 
415 	status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
416 	if (status != EFI_SUCCESS) {
417 		efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
418 		return status;
419 	}
420 
421 	status = efi_allocate_pages(PARAM_SIZE, &alloc, ULONG_MAX);
422 	if (status != EFI_SUCCESS)
423 		return status;
424 
425 	boot_params = memset((void *)alloc, 0x0, PARAM_SIZE);
426 	hdr	    = &boot_params->hdr;
427 
428 	/* Assign the setup_header fields that the kernel actually cares about */
429 	hdr->root_flags	= 1;
430 	hdr->vid_mode	= 0xffff;
431 
432 	hdr->type_of_loader = 0x21;
433 	hdr->initrd_addr_max = INT_MAX;
434 
435 	/* Convert unicode cmdline to ascii */
436 	cmdline_ptr = efi_convert_cmdline(image);
437 	if (!cmdline_ptr) {
438 		efi_free(PARAM_SIZE, alloc);
439 		return EFI_OUT_OF_RESOURCES;
440 	}
441 
442 	efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr,
443 			  &boot_params->ext_cmd_line_ptr);
444 
445 	*bp = boot_params;
446 	return EFI_SUCCESS;
447 }
448 
add_e820ext(struct boot_params * params,struct setup_data * e820ext,u32 nr_entries)449 static void add_e820ext(struct boot_params *params,
450 			struct setup_data *e820ext, u32 nr_entries)
451 {
452 	struct setup_data *data;
453 
454 	e820ext->type = SETUP_E820_EXT;
455 	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
456 	e820ext->next = 0;
457 
458 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
459 
460 	while (data && data->next)
461 		data = (struct setup_data *)(unsigned long)data->next;
462 
463 	if (data)
464 		data->next = (unsigned long)e820ext;
465 	else
466 		params->hdr.setup_data = (unsigned long)e820ext;
467 }
468 
469 static efi_status_t
setup_e820(struct boot_params * params,struct setup_data * e820ext,u32 e820ext_size)470 setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
471 {
472 	struct boot_e820_entry *entry = params->e820_table;
473 	struct efi_info *efi = &params->efi_info;
474 	struct boot_e820_entry *prev = NULL;
475 	u32 nr_entries;
476 	u32 nr_desc;
477 	int i;
478 
479 	nr_entries = 0;
480 	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
481 
482 	for (i = 0; i < nr_desc; i++) {
483 		efi_memory_desc_t *d;
484 		unsigned int e820_type = 0;
485 		unsigned long m = efi->efi_memmap;
486 
487 #ifdef CONFIG_X86_64
488 		m |= (u64)efi->efi_memmap_hi << 32;
489 #endif
490 
491 		d = efi_memdesc_ptr(m, efi->efi_memdesc_size, i);
492 		switch (d->type) {
493 		case EFI_RESERVED_TYPE:
494 		case EFI_RUNTIME_SERVICES_CODE:
495 		case EFI_RUNTIME_SERVICES_DATA:
496 		case EFI_MEMORY_MAPPED_IO:
497 		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
498 		case EFI_PAL_CODE:
499 			e820_type = E820_TYPE_RESERVED;
500 			break;
501 
502 		case EFI_UNUSABLE_MEMORY:
503 			e820_type = E820_TYPE_UNUSABLE;
504 			break;
505 
506 		case EFI_ACPI_RECLAIM_MEMORY:
507 			e820_type = E820_TYPE_ACPI;
508 			break;
509 
510 		case EFI_LOADER_CODE:
511 		case EFI_LOADER_DATA:
512 		case EFI_BOOT_SERVICES_CODE:
513 		case EFI_BOOT_SERVICES_DATA:
514 		case EFI_CONVENTIONAL_MEMORY:
515 			if (efi_soft_reserve_enabled() &&
516 			    (d->attribute & EFI_MEMORY_SP))
517 				e820_type = E820_TYPE_SOFT_RESERVED;
518 			else
519 				e820_type = E820_TYPE_RAM;
520 			break;
521 
522 		case EFI_ACPI_MEMORY_NVS:
523 			e820_type = E820_TYPE_NVS;
524 			break;
525 
526 		case EFI_PERSISTENT_MEMORY:
527 			e820_type = E820_TYPE_PMEM;
528 			break;
529 
530 		case EFI_UNACCEPTED_MEMORY:
531 			if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
532 				continue;
533 			e820_type = E820_TYPE_RAM;
534 			process_unaccepted_memory(d->phys_addr,
535 						  d->phys_addr + PAGE_SIZE * d->num_pages);
536 			break;
537 		default:
538 			continue;
539 		}
540 
541 		/* Merge adjacent mappings */
542 		if (prev && prev->type == e820_type &&
543 		    (prev->addr + prev->size) == d->phys_addr) {
544 			prev->size += d->num_pages << 12;
545 			continue;
546 		}
547 
548 		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
549 			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
550 				   sizeof(struct setup_data);
551 
552 			if (!e820ext || e820ext_size < need)
553 				return EFI_BUFFER_TOO_SMALL;
554 
555 			/* boot_params map full, switch to e820 extended */
556 			entry = (struct boot_e820_entry *)e820ext->data;
557 		}
558 
559 		entry->addr = d->phys_addr;
560 		entry->size = d->num_pages << PAGE_SHIFT;
561 		entry->type = e820_type;
562 		prev = entry++;
563 		nr_entries++;
564 	}
565 
566 	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
567 		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
568 
569 		add_e820ext(params, e820ext, nr_e820ext);
570 		nr_entries -= nr_e820ext;
571 	}
572 
573 	params->e820_entries = (u8)nr_entries;
574 
575 	return EFI_SUCCESS;
576 }
577 
alloc_e820ext(u32 nr_desc,struct setup_data ** e820ext,u32 * e820ext_size)578 static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
579 				  u32 *e820ext_size)
580 {
581 	efi_status_t status;
582 	unsigned long size;
583 
584 	size = sizeof(struct setup_data) +
585 		sizeof(struct e820_entry) * nr_desc;
586 
587 	if (*e820ext) {
588 		efi_bs_call(free_pool, *e820ext);
589 		*e820ext = NULL;
590 		*e820ext_size = 0;
591 	}
592 
593 	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
594 			     (void **)e820ext);
595 	if (status == EFI_SUCCESS)
596 		*e820ext_size = size;
597 
598 	return status;
599 }
600 
allocate_e820(struct boot_params * params,struct setup_data ** e820ext,u32 * e820ext_size)601 static efi_status_t allocate_e820(struct boot_params *params,
602 				  struct setup_data **e820ext,
603 				  u32 *e820ext_size)
604 {
605 	struct efi_boot_memmap *map __free(efi_pool) = NULL;
606 	efi_status_t status;
607 	__u32 nr_desc;
608 
609 	status = efi_get_memory_map(&map, false);
610 	if (status != EFI_SUCCESS)
611 		return status;
612 
613 	nr_desc = map->map_size / map->desc_size;
614 	if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
615 		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
616 				 EFI_MMAP_NR_SLACK_SLOTS;
617 
618 		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
619 		if (status != EFI_SUCCESS)
620 			return status;
621 	}
622 
623 	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
624 		return allocate_unaccepted_bitmap(nr_desc, map);
625 
626 	return EFI_SUCCESS;
627 }
628 
629 struct exit_boot_struct {
630 	struct boot_params	*boot_params;
631 	struct efi_info		*efi;
632 };
633 
exit_boot_func(struct efi_boot_memmap * map,void * priv)634 static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
635 				   void *priv)
636 {
637 	const char *signature;
638 	struct exit_boot_struct *p = priv;
639 
640 	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
641 				   : EFI32_LOADER_SIGNATURE;
642 	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
643 
644 	efi_set_u64_split((unsigned long)efi_system_table,
645 			  &p->efi->efi_systab, &p->efi->efi_systab_hi);
646 	p->efi->efi_memdesc_size	= map->desc_size;
647 	p->efi->efi_memdesc_version	= map->desc_ver;
648 	efi_set_u64_split((unsigned long)map->map,
649 			  &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
650 	p->efi->efi_memmap_size		= map->map_size;
651 
652 	return EFI_SUCCESS;
653 }
654 
exit_boot(struct boot_params * boot_params,void * handle)655 static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
656 {
657 	struct setup_data *e820ext = NULL;
658 	__u32 e820ext_size = 0;
659 	efi_status_t status;
660 	struct exit_boot_struct priv;
661 
662 	priv.boot_params	= boot_params;
663 	priv.efi		= &boot_params->efi_info;
664 
665 	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
666 	if (status != EFI_SUCCESS)
667 		return status;
668 
669 	/* Might as well exit boot services now */
670 	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
671 	if (status != EFI_SUCCESS)
672 		return status;
673 
674 	/* Historic? */
675 	boot_params->alt_mem_k	= 32 * 1024;
676 
677 	status = setup_e820(boot_params, e820ext, e820ext_size);
678 	if (status != EFI_SUCCESS)
679 		return status;
680 
681 	return EFI_SUCCESS;
682 }
683 
have_unsupported_snp_features(void)684 static bool have_unsupported_snp_features(void)
685 {
686 	u64 unsupported;
687 
688 	unsupported = snp_get_unsupported_features(sev_get_status());
689 	if (unsupported) {
690 		efi_err("Unsupported SEV-SNP features detected: 0x%llx\n",
691 			unsupported);
692 		return true;
693 	}
694 	return false;
695 }
696 
efi_get_seed(void * seed,int size)697 static void efi_get_seed(void *seed, int size)
698 {
699 	efi_get_random_bytes(size, seed);
700 
701 	/*
702 	 * This only updates seed[0] when running on 32-bit, but in that case,
703 	 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
704 	 */
705 	*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
706 }
707 
error(char * str)708 static void error(char *str)
709 {
710 	efi_warn("Decompression failed: %s\n", str);
711 }
712 
713 static const char *cmdline_memmap_override;
714 
parse_options(const char * cmdline)715 static efi_status_t parse_options(const char *cmdline)
716 {
717 	static const char opts[][14] = {
718 		"mem=", "memmap=", "hugepages="
719 	};
720 
721 	for (int i = 0; i < ARRAY_SIZE(opts); i++) {
722 		const char *p = strstr(cmdline, opts[i]);
723 
724 		if (p == cmdline || (p > cmdline && isspace(p[-1]))) {
725 			cmdline_memmap_override = opts[i];
726 			break;
727 		}
728 	}
729 
730 	return efi_parse_options(cmdline);
731 }
732 
efi_decompress_kernel(unsigned long * kernel_entry,struct boot_params * boot_params)733 static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry,
734 					  struct boot_params *boot_params)
735 {
736 	unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
737 	unsigned long addr, alloc_size, entry;
738 	efi_status_t status;
739 	u32 seed[2] = {};
740 
741 	boot_params_ptr	= boot_params;
742 
743 	/* determine the required size of the allocation */
744 	alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
745 			   MIN_KERNEL_ALIGN);
746 
747 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
748 		u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
749 		static const efi_char16_t ami[] = L"American Megatrends";
750 
751 		efi_get_seed(seed, sizeof(seed));
752 
753 		virt_addr += (range * seed[1]) >> 32;
754 		virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
755 
756 		/*
757 		 * Older Dell systems with AMI UEFI firmware v2.0 may hang
758 		 * while decompressing the kernel if physical address
759 		 * randomization is enabled.
760 		 *
761 		 * https://bugzilla.kernel.org/show_bug.cgi?id=218173
762 		 */
763 		if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
764 		    !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
765 			efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n");
766 			seed[0] = 0;
767 		} else if (cmdline_memmap_override) {
768 			efi_info("%s detected on the kernel command line - disabling physical KASLR\n",
769 				 cmdline_memmap_override);
770 			seed[0] = 0;
771 		}
772 
773 		boot_params->hdr.loadflags |= KASLR_FLAG;
774 	}
775 
776 	status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
777 				  seed[0], EFI_LOADER_CODE,
778 				  LOAD_PHYSICAL_ADDR,
779 				  EFI_X86_KERNEL_ALLOC_LIMIT);
780 	if (status != EFI_SUCCESS)
781 		return status;
782 
783 	entry = decompress_kernel((void *)addr, virt_addr, error);
784 	if (entry == ULONG_MAX) {
785 		efi_free(alloc_size, addr);
786 		return EFI_LOAD_ERROR;
787 	}
788 
789 	*kernel_entry = addr + entry;
790 
791 	return efi_adjust_memory_range_protection(addr, kernel_text_size);
792 }
793 
enter_kernel(unsigned long kernel_addr,struct boot_params * boot_params)794 static void __noreturn enter_kernel(unsigned long kernel_addr,
795 				    struct boot_params *boot_params)
796 {
797 	/* enter decompressed kernel with boot_params pointer in RSI/ESI */
798 	asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
799 
800 	unreachable();
801 }
802 
803 /*
804  * On success, this routine will jump to the relocated image directly and never
805  * return.  On failure, it will exit to the firmware via efi_exit() instead of
806  * returning.
807  */
efi_stub_entry(efi_handle_t handle,efi_system_table_t * sys_table_arg,struct boot_params * boot_params)808 void __noreturn efi_stub_entry(efi_handle_t handle,
809 			       efi_system_table_t *sys_table_arg,
810 			       struct boot_params *boot_params)
811 
812 {
813 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
814 	const struct linux_efi_initrd *initrd = NULL;
815 	unsigned long kernel_entry;
816 	struct setup_header *hdr;
817 	efi_status_t status;
818 
819 	efi_system_table = sys_table_arg;
820 	/* Check if we were booted by the EFI firmware */
821 	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
822 		efi_exit(handle, EFI_INVALID_PARAMETER);
823 
824 	if (!IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL) || !boot_params) {
825 		status = efi_allocate_bootparams(handle, &boot_params);
826 		if (status != EFI_SUCCESS)
827 			efi_exit(handle, status);
828 	}
829 
830 	hdr = &boot_params->hdr;
831 
832 	if (have_unsupported_snp_features())
833 		efi_exit(handle, EFI_UNSUPPORTED);
834 
835 	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
836 		efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
837 		if (efi_dxe_table &&
838 		    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
839 			efi_warn("Ignoring DXE services table: invalid signature\n");
840 			efi_dxe_table = NULL;
841 		}
842 	}
843 
844 	/* grab the memory attributes protocol if it exists */
845 	efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
846 
847 	status = efi_setup_5level_paging();
848 	if (status != EFI_SUCCESS) {
849 		efi_err("efi_setup_5level_paging() failed!\n");
850 		goto fail;
851 	}
852 
853 #ifdef CONFIG_CMDLINE_BOOL
854 	status = parse_options(CONFIG_CMDLINE);
855 	if (status != EFI_SUCCESS) {
856 		efi_err("Failed to parse options\n");
857 		goto fail;
858 	}
859 #endif
860 	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
861 		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
862 					       ((u64)boot_params->ext_cmd_line_ptr << 32));
863 		status = parse_options((char *)cmdline_paddr);
864 		if (status != EFI_SUCCESS) {
865 			efi_err("Failed to parse options\n");
866 			goto fail;
867 		}
868 	}
869 
870 	if (efi_mem_encrypt > 0)
871 		hdr->xloadflags |= XLF_MEM_ENCRYPTION;
872 
873 	status = efi_decompress_kernel(&kernel_entry, boot_params);
874 	if (status != EFI_SUCCESS) {
875 		efi_err("Failed to decompress kernel\n");
876 		goto fail;
877 	}
878 
879 	/*
880 	 * At this point, an initrd may already have been loaded by the
881 	 * bootloader and passed via bootparams. We permit an initrd loaded
882 	 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
883 	 *
884 	 * If the device path is not present, any command-line initrd=
885 	 * arguments will be processed only if image is not NULL, which will be
886 	 * the case only if we were loaded via the PE entry point.
887 	 */
888 	status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
889 				 &initrd);
890 	if (status != EFI_SUCCESS)
891 		goto fail;
892 	if (initrd && initrd->size > 0) {
893 		efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
894 				  &boot_params->ext_ramdisk_image);
895 		efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
896 				  &boot_params->ext_ramdisk_size);
897 	}
898 
899 
900 	/*
901 	 * If the boot loader gave us a value for secure_boot then we use that,
902 	 * otherwise we ask the BIOS.
903 	 */
904 	if (boot_params->secure_boot == efi_secureboot_mode_unset)
905 		boot_params->secure_boot = efi_get_secureboot();
906 
907 	/* Ask the firmware to clear memory on unclean shutdown */
908 	efi_enable_reset_attack_mitigation();
909 
910 	efi_random_get_seed();
911 
912 	efi_retrieve_eventlog();
913 
914 	setup_graphics(boot_params);
915 
916 	setup_efi_pci(boot_params);
917 
918 	setup_quirks(boot_params);
919 
920 	setup_unaccepted_memory();
921 
922 	status = exit_boot(boot_params, handle);
923 	if (status != EFI_SUCCESS) {
924 		efi_err("exit_boot() failed!\n");
925 		goto fail;
926 	}
927 
928 	/*
929 	 * Call the SEV init code while still running with the firmware's
930 	 * GDT/IDT, so #VC exceptions will be handled by EFI.
931 	 */
932 	sev_enable(boot_params);
933 
934 	efi_5level_switch();
935 
936 	enter_kernel(kernel_entry, boot_params);
937 fail:
938 	efi_err("efi_stub_entry() failed!\n");
939 
940 	efi_exit(handle, status);
941 }
942 
efi_pe_entry(efi_handle_t handle,efi_system_table_t * sys_table_arg)943 efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
944 				   efi_system_table_t *sys_table_arg)
945 {
946 	efi_stub_entry(handle, sys_table_arg, NULL);
947 }
948 
949 #ifdef CONFIG_EFI_HANDOVER_PROTOCOL
efi_handover_entry(efi_handle_t handle,efi_system_table_t * sys_table_arg,struct boot_params * boot_params)950 void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
951 			struct boot_params *boot_params)
952 {
953 	memset(_bss, 0, _ebss - _bss);
954 	efi_stub_entry(handle, sys_table_arg, boot_params);
955 }
956 
957 #ifndef CONFIG_EFI_MIXED
958 extern __alias(efi_handover_entry)
959 void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
960 		      struct boot_params *boot_params);
961 
962 extern __alias(efi_handover_entry)
963 void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
964 		      struct boot_params *boot_params);
965 #endif
966 #endif
967