1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5 
6 /*
7  * This file works with the SPU2 version of the SPU. SPU2 has different message
8  * formats than the previous version of the SPU. All SPU message format
9  * differences should be hidden in the spux.c,h files.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/string_choices.h>
15 
16 #include "util.h"
17 #include "spu.h"
18 #include "spu2.h"
19 
20 #define SPU2_TX_STATUS_LEN  0	/* SPU2 has no STATUS in input packet */
21 
22 /*
23  * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
24  * register. Defaults to 2.
25  */
26 #define SPU2_RX_STATUS_LEN  2
27 
28 enum spu2_proto_sel {
29 	SPU2_PROTO_RESV = 0,
30 	SPU2_MACSEC_SECTAG8_ECB = 1,
31 	SPU2_MACSEC_SECTAG8_SCB = 2,
32 	SPU2_MACSEC_SECTAG16 = 3,
33 	SPU2_MACSEC_SECTAG16_8_XPN = 4,
34 	SPU2_IPSEC = 5,
35 	SPU2_IPSEC_ESN = 6,
36 	SPU2_TLS_CIPHER = 7,
37 	SPU2_TLS_AEAD = 8,
38 	SPU2_DTLS_CIPHER = 9,
39 	SPU2_DTLS_AEAD = 10
40 };
41 
42 static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
43 	"DES", "3DES"
44 };
45 
46 static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
47 	"XTS", "CCM", "GCM"
48 };
49 
50 static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
51 	"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
52 	"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
53 	"SHA3-384", "SHA3-512"
54 };
55 
56 static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
57 	"Rabin", "CCM", "GCM", "Reserved"
58 };
59 
spu2_ciph_type_name(enum spu2_cipher_type cipher_type)60 static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
61 {
62 	if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
63 		return "Reserved";
64 	return spu2_cipher_type_names[cipher_type];
65 }
66 
spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)67 static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
68 {
69 	if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
70 		return "Reserved";
71 	return spu2_cipher_mode_names[cipher_mode];
72 }
73 
spu2_hash_type_name(enum spu2_hash_type hash_type)74 static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
75 {
76 	if (hash_type >= SPU2_HASH_TYPE_LAST)
77 		return "Reserved";
78 	return spu2_hash_type_names[hash_type];
79 }
80 
spu2_hash_mode_name(enum spu2_hash_mode hash_mode)81 static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
82 {
83 	if (hash_mode >= SPU2_HASH_MODE_LAST)
84 		return "Reserved";
85 	return spu2_hash_mode_names[hash_mode];
86 }
87 
88 /*
89  * Convert from a software cipher mode value to the corresponding value
90  * for SPU2.
91  */
spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,enum spu2_cipher_mode * spu2_mode)92 static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
93 				  enum spu2_cipher_mode *spu2_mode)
94 {
95 	switch (cipher_mode) {
96 	case CIPHER_MODE_ECB:
97 		*spu2_mode = SPU2_CIPHER_MODE_ECB;
98 		break;
99 	case CIPHER_MODE_CBC:
100 		*spu2_mode = SPU2_CIPHER_MODE_CBC;
101 		break;
102 	case CIPHER_MODE_OFB:
103 		*spu2_mode = SPU2_CIPHER_MODE_OFB;
104 		break;
105 	case CIPHER_MODE_CFB:
106 		*spu2_mode = SPU2_CIPHER_MODE_CFB;
107 		break;
108 	case CIPHER_MODE_CTR:
109 		*spu2_mode = SPU2_CIPHER_MODE_CTR;
110 		break;
111 	case CIPHER_MODE_CCM:
112 		*spu2_mode = SPU2_CIPHER_MODE_CCM;
113 		break;
114 	case CIPHER_MODE_GCM:
115 		*spu2_mode = SPU2_CIPHER_MODE_GCM;
116 		break;
117 	case CIPHER_MODE_XTS:
118 		*spu2_mode = SPU2_CIPHER_MODE_XTS;
119 		break;
120 	default:
121 		return -EINVAL;
122 	}
123 	return 0;
124 }
125 
126 /**
127  * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
128  * cipher type and mode.
129  * @cipher_alg:  [in]  cipher algorithm value from software enumeration
130  * @cipher_mode: [in]  cipher mode value from software enumeration
131  * @cipher_type: [in]  cipher type value from software enumeration
132  * @spu2_type:   [out] cipher type value used by spu2 hardware
133  * @spu2_mode:   [out] cipher mode value used by spu2 hardware
134  *
135  * Return:  0 if successful
136  */
spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,enum spu_cipher_mode cipher_mode,enum spu_cipher_type cipher_type,enum spu2_cipher_type * spu2_type,enum spu2_cipher_mode * spu2_mode)137 static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
138 			     enum spu_cipher_mode cipher_mode,
139 			     enum spu_cipher_type cipher_type,
140 			     enum spu2_cipher_type *spu2_type,
141 			     enum spu2_cipher_mode *spu2_mode)
142 {
143 	int err;
144 
145 	err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
146 	if (err) {
147 		flow_log("Invalid cipher mode %d\n", cipher_mode);
148 		return err;
149 	}
150 
151 	switch (cipher_alg) {
152 	case CIPHER_ALG_NONE:
153 		*spu2_type = SPU2_CIPHER_TYPE_NONE;
154 		break;
155 	case CIPHER_ALG_RC4:
156 		/* SPU2 does not support RC4 */
157 		err = -EINVAL;
158 		*spu2_type = SPU2_CIPHER_TYPE_NONE;
159 		break;
160 	case CIPHER_ALG_DES:
161 		*spu2_type = SPU2_CIPHER_TYPE_DES;
162 		break;
163 	case CIPHER_ALG_3DES:
164 		*spu2_type = SPU2_CIPHER_TYPE_3DES;
165 		break;
166 	case CIPHER_ALG_AES:
167 		switch (cipher_type) {
168 		case CIPHER_TYPE_AES128:
169 			*spu2_type = SPU2_CIPHER_TYPE_AES128;
170 			break;
171 		case CIPHER_TYPE_AES192:
172 			*spu2_type = SPU2_CIPHER_TYPE_AES192;
173 			break;
174 		case CIPHER_TYPE_AES256:
175 			*spu2_type = SPU2_CIPHER_TYPE_AES256;
176 			break;
177 		default:
178 			err = -EINVAL;
179 		}
180 		break;
181 	case CIPHER_ALG_LAST:
182 	default:
183 		err = -EINVAL;
184 		break;
185 	}
186 
187 	if (err)
188 		flow_log("Invalid cipher alg %d or type %d\n",
189 			 cipher_alg, cipher_type);
190 	return err;
191 }
192 
193 /*
194  * Convert from a software hash mode value to the corresponding value
195  * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
196  */
spu2_hash_mode_xlate(enum hash_mode hash_mode,enum spu2_hash_mode * spu2_mode)197 static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
198 				enum spu2_hash_mode *spu2_mode)
199 {
200 	switch (hash_mode) {
201 	case HASH_MODE_XCBC:
202 		*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
203 		break;
204 	case HASH_MODE_CMAC:
205 		*spu2_mode = SPU2_HASH_MODE_CMAC;
206 		break;
207 	case HASH_MODE_HMAC:
208 		*spu2_mode = SPU2_HASH_MODE_HMAC;
209 		break;
210 	case HASH_MODE_CCM:
211 		*spu2_mode = SPU2_HASH_MODE_CCM;
212 		break;
213 	case HASH_MODE_GCM:
214 		*spu2_mode = SPU2_HASH_MODE_GCM;
215 		break;
216 	default:
217 		return -EINVAL;
218 	}
219 	return 0;
220 }
221 
222 /**
223  * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
224  * and mode.
225  * @hash_alg:  [in] hash algorithm value from software enumeration
226  * @hash_mode: [in] hash mode value from software enumeration
227  * @hash_type: [in] hash type value from software enumeration
228  * @ciph_type: [in] cipher type value from software enumeration
229  * @spu2_type: [out] hash type value used by SPU2 hardware
230  * @spu2_mode: [out] hash mode value used by SPU2 hardware
231  *
232  * Return:  0 if successful
233  */
234 static int
spu2_hash_xlate(enum hash_alg hash_alg,enum hash_mode hash_mode,enum hash_type hash_type,enum spu_cipher_type ciph_type,enum spu2_hash_type * spu2_type,enum spu2_hash_mode * spu2_mode)235 spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
236 		enum hash_type hash_type, enum spu_cipher_type ciph_type,
237 		enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
238 {
239 	int err;
240 
241 	err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
242 	if (err) {
243 		flow_log("Invalid hash mode %d\n", hash_mode);
244 		return err;
245 	}
246 
247 	switch (hash_alg) {
248 	case HASH_ALG_NONE:
249 		*spu2_type = SPU2_HASH_TYPE_NONE;
250 		break;
251 	case HASH_ALG_MD5:
252 		*spu2_type = SPU2_HASH_TYPE_MD5;
253 		break;
254 	case HASH_ALG_SHA1:
255 		*spu2_type = SPU2_HASH_TYPE_SHA1;
256 		break;
257 	case HASH_ALG_SHA224:
258 		*spu2_type = SPU2_HASH_TYPE_SHA224;
259 		break;
260 	case HASH_ALG_SHA256:
261 		*spu2_type = SPU2_HASH_TYPE_SHA256;
262 		break;
263 	case HASH_ALG_SHA384:
264 		*spu2_type = SPU2_HASH_TYPE_SHA384;
265 		break;
266 	case HASH_ALG_SHA512:
267 		*spu2_type = SPU2_HASH_TYPE_SHA512;
268 		break;
269 	case HASH_ALG_AES:
270 		switch (ciph_type) {
271 		case CIPHER_TYPE_AES128:
272 			*spu2_type = SPU2_HASH_TYPE_AES128;
273 			break;
274 		case CIPHER_TYPE_AES192:
275 			*spu2_type = SPU2_HASH_TYPE_AES192;
276 			break;
277 		case CIPHER_TYPE_AES256:
278 			*spu2_type = SPU2_HASH_TYPE_AES256;
279 			break;
280 		default:
281 			err = -EINVAL;
282 		}
283 		break;
284 	case HASH_ALG_SHA3_224:
285 		*spu2_type = SPU2_HASH_TYPE_SHA3_224;
286 		break;
287 	case HASH_ALG_SHA3_256:
288 		*spu2_type = SPU2_HASH_TYPE_SHA3_256;
289 		break;
290 	case HASH_ALG_SHA3_384:
291 		*spu2_type = SPU2_HASH_TYPE_SHA3_384;
292 		break;
293 	case HASH_ALG_SHA3_512:
294 		*spu2_type = SPU2_HASH_TYPE_SHA3_512;
295 		break;
296 	case HASH_ALG_LAST:
297 	default:
298 		err = -EINVAL;
299 		break;
300 	}
301 
302 	if (err)
303 		flow_log("Invalid hash alg %d or type %d\n",
304 			 hash_alg, hash_type);
305 	return err;
306 }
307 
308 /* Dump FMD ctrl0. The ctrl0 input is in host byte order */
spu2_dump_fmd_ctrl0(u64 ctrl0)309 static void spu2_dump_fmd_ctrl0(u64 ctrl0)
310 {
311 	enum spu2_cipher_type ciph_type;
312 	enum spu2_cipher_mode ciph_mode;
313 	enum spu2_hash_type hash_type;
314 	enum spu2_hash_mode hash_mode;
315 	char *ciph_name;
316 	char *ciph_mode_name;
317 	char *hash_name;
318 	char *hash_mode_name;
319 	u8 cfb;
320 	u8 proto;
321 
322 	packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
323 	if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
324 		packet_log("  encrypt\n");
325 	else
326 		packet_log("  decrypt\n");
327 
328 	ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
329 	ciph_name = spu2_ciph_type_name(ciph_type);
330 	packet_log("  Cipher type: %s\n", ciph_name);
331 
332 	if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
333 		ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
334 		ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
335 		packet_log("  Cipher mode: %s\n", ciph_mode_name);
336 	}
337 
338 	cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
339 	packet_log("  CFB %#x\n", cfb);
340 
341 	proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
342 	packet_log("  protocol %#x\n", proto);
343 
344 	if (ctrl0 & SPU2_HASH_FIRST)
345 		packet_log("  hash first\n");
346 	else
347 		packet_log("  cipher first\n");
348 
349 	if (ctrl0 & SPU2_CHK_TAG)
350 		packet_log("  check tag\n");
351 
352 	hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
353 	hash_name = spu2_hash_type_name(hash_type);
354 	packet_log("  Hash type: %s\n", hash_name);
355 
356 	if (hash_type != SPU2_HASH_TYPE_NONE) {
357 		hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
358 		hash_mode_name = spu2_hash_mode_name(hash_mode);
359 		packet_log("  Hash mode: %s\n", hash_mode_name);
360 	}
361 
362 	if (ctrl0 & SPU2_CIPH_PAD_EN) {
363 		packet_log("  Cipher pad: %#2llx\n",
364 			   (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
365 	}
366 }
367 
368 /* Dump FMD ctrl1. The ctrl1 input is in host byte order */
spu2_dump_fmd_ctrl1(u64 ctrl1)369 static void spu2_dump_fmd_ctrl1(u64 ctrl1)
370 {
371 	u8 hash_key_len;
372 	u8 ciph_key_len;
373 	u8 ret_iv_len;
374 	u8 iv_offset;
375 	u8 iv_len;
376 	u8 hash_tag_len;
377 	u8 ret_md;
378 
379 	packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
380 	if (ctrl1 & SPU2_TAG_LOC)
381 		packet_log("  Tag after payload\n");
382 
383 	packet_log("  Msg includes ");
384 	if (ctrl1 & SPU2_HAS_FR_DATA)
385 		packet_log("FD ");
386 	if (ctrl1 & SPU2_HAS_AAD1)
387 		packet_log("AAD1 ");
388 	if (ctrl1 & SPU2_HAS_NAAD)
389 		packet_log("NAAD ");
390 	if (ctrl1 & SPU2_HAS_AAD2)
391 		packet_log("AAD2 ");
392 	if (ctrl1 & SPU2_HAS_ESN)
393 		packet_log("ESN ");
394 	packet_log("\n");
395 
396 	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
397 	packet_log("  Hash key len %u\n", hash_key_len);
398 
399 	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
400 	packet_log("  Cipher key len %u\n", ciph_key_len);
401 
402 	if (ctrl1 & SPU2_GENIV)
403 		packet_log("  Generate IV\n");
404 
405 	if (ctrl1 & SPU2_HASH_IV)
406 		packet_log("  IV included in hash\n");
407 
408 	if (ctrl1 & SPU2_RET_IV)
409 		packet_log("  Return IV in output before payload\n");
410 
411 	ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
412 	packet_log("  Length of returned IV %u bytes\n",
413 		   ret_iv_len ? ret_iv_len : 16);
414 
415 	iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
416 	packet_log("  IV offset %u\n", iv_offset);
417 
418 	iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
419 	packet_log("  Input IV len %u bytes\n", iv_len);
420 
421 	hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
422 	packet_log("  Hash tag length %u bytes\n", hash_tag_len);
423 
424 	packet_log("  Return ");
425 	ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
426 	if (ret_md)
427 		packet_log("FMD ");
428 	if (ret_md == SPU2_RET_FMD_OMD)
429 		packet_log("OMD ");
430 	else if (ret_md == SPU2_RET_FMD_OMD_IV)
431 		packet_log("OMD IV ");
432 	if (ctrl1 & SPU2_RETURN_FD)
433 		packet_log("FD ");
434 	if (ctrl1 & SPU2_RETURN_AAD1)
435 		packet_log("AAD1 ");
436 	if (ctrl1 & SPU2_RETURN_NAAD)
437 		packet_log("NAAD ");
438 	if (ctrl1 & SPU2_RETURN_AAD2)
439 		packet_log("AAD2 ");
440 	if (ctrl1 & SPU2_RETURN_PAY)
441 		packet_log("Payload");
442 	packet_log("\n");
443 }
444 
445 /* Dump FMD ctrl2. The ctrl2 input is in host byte order */
spu2_dump_fmd_ctrl2(u64 ctrl2)446 static void spu2_dump_fmd_ctrl2(u64 ctrl2)
447 {
448 	packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
449 
450 	packet_log("  AAD1 offset %llu length %llu bytes\n",
451 		   ctrl2 & SPU2_AAD1_OFFSET,
452 		   (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
453 	packet_log("  AAD2 offset %llu\n",
454 		   (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
455 	packet_log("  Payload offset %llu\n",
456 		   (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
457 }
458 
459 /* Dump FMD ctrl3. The ctrl3 input is in host byte order */
spu2_dump_fmd_ctrl3(u64 ctrl3)460 static void spu2_dump_fmd_ctrl3(u64 ctrl3)
461 {
462 	packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
463 
464 	packet_log("  Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
465 	packet_log("  TLS length %llu bytes\n",
466 		   (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
467 }
468 
spu2_dump_fmd(struct SPU2_FMD * fmd)469 static void spu2_dump_fmd(struct SPU2_FMD *fmd)
470 {
471 	spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
472 	spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
473 	spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
474 	spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
475 }
476 
spu2_dump_omd(u8 * omd,u16 hash_key_len,u16 ciph_key_len,u16 hash_iv_len,u16 ciph_iv_len)477 static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
478 			  u16 hash_iv_len, u16 ciph_iv_len)
479 {
480 	u8 *ptr = omd;
481 
482 	packet_log(" OMD:\n");
483 
484 	if (hash_key_len) {
485 		packet_log("  Hash Key Length %u bytes\n", hash_key_len);
486 		packet_dump("  KEY: ", ptr, hash_key_len);
487 		ptr += hash_key_len;
488 	}
489 
490 	if (ciph_key_len) {
491 		packet_log("  Cipher Key Length %u bytes\n", ciph_key_len);
492 		packet_dump("  KEY: ", ptr, ciph_key_len);
493 		ptr += ciph_key_len;
494 	}
495 
496 	if (hash_iv_len) {
497 		packet_log("  Hash IV Length %u bytes\n", hash_iv_len);
498 		packet_dump("  hash IV: ", ptr, hash_iv_len);
499 		ptr += hash_iv_len;
500 	}
501 
502 	if (ciph_iv_len) {
503 		packet_log("  Cipher IV Length %u bytes\n", ciph_iv_len);
504 		packet_dump("  cipher IV: ", ptr, ciph_iv_len);
505 	}
506 }
507 
508 /* Dump a SPU2 header for debug */
spu2_dump_msg_hdr(u8 * buf,unsigned int buf_len)509 void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
510 {
511 	struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
512 	u8 *omd;
513 	u64 ctrl1;
514 	u16 hash_key_len;
515 	u16 ciph_key_len;
516 	u16 hash_iv_len;
517 	u16 ciph_iv_len;
518 	u16 omd_len;
519 
520 	packet_log("\n");
521 	packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
522 
523 	spu2_dump_fmd(fmd);
524 	omd = (u8 *)(fmd + 1);
525 
526 	ctrl1 = le64_to_cpu(fmd->ctrl1);
527 	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
528 	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
529 	hash_iv_len = 0;
530 	ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
531 	spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
532 		      ciph_iv_len);
533 
534 	/* Double check sanity */
535 	omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
536 	if (FMD_SIZE + omd_len != buf_len) {
537 		packet_log
538 		    (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
539 		     buf_len, FMD_SIZE + omd_len);
540 	}
541 	packet_log("\n");
542 }
543 
544 /**
545  * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
546  * subsequent skcipher requests for this context.
547  * @fmd:               Start of FMD field to be written
548  * @spu2_type:         Cipher algorithm
549  * @spu2_mode:         Cipher mode
550  * @cipher_key_len:    Length of cipher key, in bytes
551  * @cipher_iv_len:     Length of cipher initialization vector, in bytes
552  *
553  * Return:  0 (success)
554  */
spu2_fmd_init(struct SPU2_FMD * fmd,enum spu2_cipher_type spu2_type,enum spu2_cipher_mode spu2_mode,u32 cipher_key_len,u32 cipher_iv_len)555 static int spu2_fmd_init(struct SPU2_FMD *fmd,
556 			 enum spu2_cipher_type spu2_type,
557 			 enum spu2_cipher_mode spu2_mode,
558 			 u32 cipher_key_len, u32 cipher_iv_len)
559 {
560 	u64 ctrl0;
561 	u64 ctrl1;
562 	u64 ctrl2;
563 	u64 ctrl3;
564 	u32 aad1_offset;
565 	u32 aad2_offset;
566 	u16 aad1_len = 0;
567 	u64 payload_offset;
568 
569 	ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
570 	    (spu2_mode << SPU2_CIPH_MODE_SHIFT);
571 
572 	ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
573 	    ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
574 	    ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
575 
576 	/*
577 	 * AAD1 offset is from start of FD. FD length is always 0 for this
578 	 * driver. So AAD1_offset is always 0.
579 	 */
580 	aad1_offset = 0;
581 	aad2_offset = aad1_offset;
582 	payload_offset = 0;
583 	ctrl2 = aad1_offset |
584 	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
585 	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
586 	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
587 
588 	ctrl3 = 0;
589 
590 	fmd->ctrl0 = cpu_to_le64(ctrl0);
591 	fmd->ctrl1 = cpu_to_le64(ctrl1);
592 	fmd->ctrl2 = cpu_to_le64(ctrl2);
593 	fmd->ctrl3 = cpu_to_le64(ctrl3);
594 
595 	return 0;
596 }
597 
598 /**
599  * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
600  * SPU request packet.
601  * @fmd:            Start of FMD field to be written
602  * @is_inbound:     true if decrypting. false if encrypting.
603  * @auth_first:     true if alg authenticates before encrypting
604  * @protocol:       protocol selector
605  * @cipher_type:    cipher algorithm
606  * @cipher_mode:    cipher mode
607  * @auth_type:      authentication type
608  * @auth_mode:      authentication mode
609  */
spu2_fmd_ctrl0_write(struct SPU2_FMD * fmd,bool is_inbound,bool auth_first,enum spu2_proto_sel protocol,enum spu2_cipher_type cipher_type,enum spu2_cipher_mode cipher_mode,enum spu2_hash_type auth_type,enum spu2_hash_mode auth_mode)610 static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
611 				 bool is_inbound, bool auth_first,
612 				 enum spu2_proto_sel protocol,
613 				 enum spu2_cipher_type cipher_type,
614 				 enum spu2_cipher_mode cipher_mode,
615 				 enum spu2_hash_type auth_type,
616 				 enum spu2_hash_mode auth_mode)
617 {
618 	u64 ctrl0 = 0;
619 
620 	if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
621 		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
622 
623 	ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
624 	    ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
625 
626 	if (protocol)
627 		ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
628 
629 	if (auth_first)
630 		ctrl0 |= SPU2_HASH_FIRST;
631 
632 	if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
633 		ctrl0 |= SPU2_CHK_TAG;
634 
635 	ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
636 		  ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
637 
638 	fmd->ctrl0 = cpu_to_le64(ctrl0);
639 }
640 
641 /**
642  * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
643  * SPU request packet.
644  * @fmd:            Start of FMD field to be written
645  * @is_inbound:     true if decrypting. false if encrypting.
646  * @assoc_size:     Length of additional associated data, in bytes
647  * @auth_key_len:   Length of authentication key, in bytes
648  * @cipher_key_len: Length of cipher key, in bytes
649  * @gen_iv:         If true, hw generates IV and returns in response
650  * @hash_iv:        IV participates in hash. Used for IPSEC and TLS.
651  * @return_iv:      Return IV in output packet before payload
652  * @ret_iv_len:     Length of IV returned from SPU, in bytes
653  * @ret_iv_offset:  Offset into full IV of start of returned IV
654  * @cipher_iv_len:  Length of input cipher IV, in bytes
655  * @digest_size:    Length of digest (aka, hash tag or ICV), in bytes
656  * @return_payload: Return payload in SPU response
657  * @return_md : return metadata in SPU response
658  *
659  * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
660  * associated data goes in AAD2.
661  */
spu2_fmd_ctrl1_write(struct SPU2_FMD * fmd,bool is_inbound,u64 assoc_size,u64 auth_key_len,u64 cipher_key_len,bool gen_iv,bool hash_iv,bool return_iv,u64 ret_iv_len,u64 ret_iv_offset,u64 cipher_iv_len,u64 digest_size,bool return_payload,bool return_md)662 static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
663 				 u64 assoc_size,
664 				 u64 auth_key_len, u64 cipher_key_len,
665 				 bool gen_iv, bool hash_iv, bool return_iv,
666 				 u64 ret_iv_len, u64 ret_iv_offset,
667 				 u64 cipher_iv_len, u64 digest_size,
668 				 bool return_payload, bool return_md)
669 {
670 	u64 ctrl1 = 0;
671 
672 	if (is_inbound && digest_size)
673 		ctrl1 |= SPU2_TAG_LOC;
674 
675 	if (assoc_size) {
676 		ctrl1 |= SPU2_HAS_AAD2;
677 		ctrl1 |= SPU2_RETURN_AAD2;  /* need aad2 for gcm aes esp */
678 	}
679 
680 	if (auth_key_len)
681 		ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
682 			  SPU2_HASH_KEY_LEN);
683 
684 	if (cipher_key_len)
685 		ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
686 			  SPU2_CIPH_KEY_LEN);
687 
688 	if (gen_iv)
689 		ctrl1 |= SPU2_GENIV;
690 
691 	if (hash_iv)
692 		ctrl1 |= SPU2_HASH_IV;
693 
694 	if (return_iv) {
695 		ctrl1 |= SPU2_RET_IV;
696 		ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
697 		ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
698 	}
699 
700 	ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
701 
702 	if (digest_size)
703 		ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
704 			  SPU2_HASH_TAG_LEN);
705 
706 	/* Let's ask for the output pkt to include FMD, but don't need to
707 	 * get keys and IVs back in OMD.
708 	 */
709 	if (return_md)
710 		ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
711 	else
712 		ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
713 
714 	/* Crypto API does not get assoc data back. So no need for AAD2. */
715 
716 	if (return_payload)
717 		ctrl1 |= SPU2_RETURN_PAY;
718 
719 	fmd->ctrl1 = cpu_to_le64(ctrl1);
720 }
721 
722 /**
723  * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
724  * SPU2 header.
725  * @fmd:            Start of FMD field to be written
726  * @cipher_offset:  Number of bytes from Start of Packet (end of FD field) where
727  *                  data to be encrypted or decrypted begins
728  * @auth_key_len:   Length of authentication key, in bytes
729  * @auth_iv_len:    Length of authentication initialization vector, in bytes
730  * @cipher_key_len: Length of cipher key, in bytes
731  * @cipher_iv_len:  Length of cipher IV, in bytes
732  */
spu2_fmd_ctrl2_write(struct SPU2_FMD * fmd,u64 cipher_offset,u64 auth_key_len,u64 auth_iv_len,u64 cipher_key_len,u64 cipher_iv_len)733 static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
734 				 u64 auth_key_len, u64 auth_iv_len,
735 				 u64 cipher_key_len, u64 cipher_iv_len)
736 {
737 	u64 ctrl2;
738 	u64 aad1_offset;
739 	u64 aad2_offset;
740 	u16 aad1_len = 0;
741 	u64 payload_offset;
742 
743 	/* AAD1 offset is from start of FD. FD length always 0. */
744 	aad1_offset = 0;
745 
746 	aad2_offset = aad1_offset;
747 	payload_offset = cipher_offset;
748 	ctrl2 = aad1_offset |
749 	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
750 	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
751 	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
752 
753 	fmd->ctrl2 = cpu_to_le64(ctrl2);
754 }
755 
756 /**
757  * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
758  * @fmd:          Fixed meta data. First field in SPU2 msg header.
759  * @payload_len:  Length of payload, in bytes
760  */
spu2_fmd_ctrl3_write(struct SPU2_FMD * fmd,u64 payload_len)761 static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
762 {
763 	u64 ctrl3;
764 
765 	ctrl3 = payload_len & SPU2_PL_LEN;
766 
767 	fmd->ctrl3 = cpu_to_le64(ctrl3);
768 }
769 
770 /**
771  * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
772  * SPU message for a given cipher and hash alg context.
773  * @cipher_alg:		The cipher algorithm
774  * @cipher_mode:	The cipher mode
775  * @blocksize:		The size of a block of data for this algo
776  *
777  * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
778  * FMD and just keeps computing until it receives a DMA descriptor with the EOF
779  * flag set. So we consider the max payload to be infinite. AES CCM is an
780  * exception.
781  *
782  * Return: Max payload length in bytes
783  */
spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,enum spu_cipher_mode cipher_mode,unsigned int blocksize)784 u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
785 			 enum spu_cipher_mode cipher_mode,
786 			 unsigned int blocksize)
787 {
788 	if ((cipher_alg == CIPHER_ALG_AES) &&
789 	    (cipher_mode == CIPHER_MODE_CCM)) {
790 		u32 excess = SPU2_MAX_PAYLOAD % blocksize;
791 
792 		return SPU2_MAX_PAYLOAD - excess;
793 	} else {
794 		return SPU_MAX_PAYLOAD_INF;
795 	}
796 }
797 
798 /**
799  * spu2_payload_length() -  Given a SPU2 message header, extract the payload
800  * length.
801  * @spu_hdr:  Start of SPU message header (FMD)
802  *
803  * Return: payload length, in bytes
804  */
spu2_payload_length(u8 * spu_hdr)805 u32 spu2_payload_length(u8 *spu_hdr)
806 {
807 	struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
808 	u32 pl_len;
809 	u64 ctrl3;
810 
811 	ctrl3 = le64_to_cpu(fmd->ctrl3);
812 	pl_len = ctrl3 & SPU2_PL_LEN;
813 
814 	return pl_len;
815 }
816 
817 /**
818  * spu2_response_hdr_len() - Determine the expected length of a SPU response
819  * header.
820  * @auth_key_len:  Length of authentication key, in bytes
821  * @enc_key_len:   Length of encryption key, in bytes
822  * @is_hash:       Unused
823  *
824  * For SPU2, includes just FMD. OMD is never requested.
825  *
826  * Return: Length of FMD, in bytes
827  */
spu2_response_hdr_len(u16 auth_key_len,u16 enc_key_len,bool is_hash)828 u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
829 {
830 	return FMD_SIZE;
831 }
832 
833 /**
834  * spu2_hash_pad_len() - Calculate the length of hash padding required to extend
835  * data to a full block size.
836  * @hash_alg:        hash algorithm
837  * @hash_mode:       hash mode
838  * @chunksize:       length of data, in bytes
839  * @hash_block_size: size of a hash block, in bytes
840  *
841  * SPU2 hardware does all hash padding
842  *
843  * Return:  length of hash pad in bytes
844  */
spu2_hash_pad_len(enum hash_alg hash_alg,enum hash_mode hash_mode,u32 chunksize,u16 hash_block_size)845 u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
846 		      u32 chunksize, u16 hash_block_size)
847 {
848 	return 0;
849 }
850 
851 /**
852  * spu2_gcm_ccm_pad_len() -  Determine the length of GCM/CCM padding for either
853  * the AAD field or the data.
854  * @cipher_mode:  Unused
855  * @data_size:    Unused
856  *
857  * Return:  0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
858  */
spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,unsigned int data_size)859 u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
860 			 unsigned int data_size)
861 {
862 	return 0;
863 }
864 
865 /**
866  * spu2_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
867  * associated data in a SPU2 output packet.
868  * @cipher_mode:   cipher mode
869  * @assoc_len:     length of additional associated data, in bytes
870  * @iv_len:        length of initialization vector, in bytes
871  * @is_encrypt:    true if encrypting. false if decrypt.
872  *
873  * Return: Length of buffer to catch associated data in response
874  */
spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,unsigned int assoc_len,unsigned int iv_len,bool is_encrypt)875 u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
876 			unsigned int assoc_len, unsigned int iv_len,
877 			bool is_encrypt)
878 {
879 	u32 resp_len = assoc_len;
880 
881 	if (is_encrypt)
882 		/* gcm aes esp has to write 8-byte IV in response */
883 		resp_len += iv_len;
884 	return resp_len;
885 }
886 
887 /**
888  * spu2_aead_ivlen() - Calculate the length of the AEAD IV to be included
889  * in a SPU request after the AAD and before the payload.
890  * @cipher_mode:  cipher mode
891  * @iv_len:   initialization vector length in bytes
892  *
893  * For SPU2, AEAD IV is included in OMD and does not need to be repeated
894  * prior to the payload.
895  *
896  * Return: Length of AEAD IV in bytes
897  */
spu2_aead_ivlen(enum spu_cipher_mode cipher_mode,u16 iv_len)898 u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
899 {
900 	return 0;
901 }
902 
903 /**
904  * spu2_hash_type() - Determine the type of hash operation.
905  * @src_sent:  The number of bytes in the current request that have already
906  *             been sent to the SPU to be hashed.
907  *
908  * SPU2 always does a FULL hash operation
909  */
spu2_hash_type(u32 src_sent)910 enum hash_type spu2_hash_type(u32 src_sent)
911 {
912 	return HASH_TYPE_FULL;
913 }
914 
915 /**
916  * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
917  * return.
918  * @alg_digest_size: Number of bytes in the final digest for the given algo
919  * @alg:             The hash algorithm
920  * @htype:           Type of hash operation (init, update, full, etc)
921  *
922  */
spu2_digest_size(u32 alg_digest_size,enum hash_alg alg,enum hash_type htype)923 u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
924 		     enum hash_type htype)
925 {
926 	return alg_digest_size;
927 }
928 
929 /**
930  * spu2_create_request() - Build a SPU2 request message header, includint FMD and
931  * OMD.
932  * @spu_hdr: Start of buffer where SPU request header is to be written
933  * @req_opts: SPU request message options
934  * @cipher_parms: Parameters related to cipher algorithm
935  * @hash_parms:   Parameters related to hash algorithm
936  * @aead_parms:   Parameters related to AEAD operation
937  * @data_size:    Length of data to be encrypted or authenticated. If AEAD, does
938  *		  not include length of AAD.
939  *
940  * Construct the message starting at spu_hdr. Caller should allocate this buffer
941  * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
942  *
943  * Return: the length of the SPU header in bytes. 0 if an error occurs.
944  */
spu2_create_request(u8 * spu_hdr,struct spu_request_opts * req_opts,struct spu_cipher_parms * cipher_parms,struct spu_hash_parms * hash_parms,struct spu_aead_parms * aead_parms,unsigned int data_size)945 u32 spu2_create_request(u8 *spu_hdr,
946 			struct spu_request_opts *req_opts,
947 			struct spu_cipher_parms *cipher_parms,
948 			struct spu_hash_parms *hash_parms,
949 			struct spu_aead_parms *aead_parms,
950 			unsigned int data_size)
951 {
952 	struct SPU2_FMD *fmd;
953 	u8 *ptr;
954 	unsigned int buf_len;
955 	int err;
956 	enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
957 	enum spu2_cipher_mode spu2_ciph_mode;
958 	enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
959 	enum spu2_hash_mode spu2_auth_mode;
960 	bool return_md = true;
961 	enum spu2_proto_sel proto = SPU2_PROTO_RESV;
962 
963 	/* size of the payload */
964 	unsigned int payload_len =
965 	    hash_parms->prebuf_len + data_size + hash_parms->pad_len -
966 	    ((req_opts->is_aead && req_opts->is_inbound) ?
967 	     hash_parms->digestsize : 0);
968 
969 	/* offset of prebuf or data from start of AAD2 */
970 	unsigned int cipher_offset = aead_parms->assoc_size +
971 			aead_parms->aad_pad_len + aead_parms->iv_len;
972 
973 	/* total size of the data following OMD (without STAT word padding) */
974 	unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
975 						 aead_parms->iv_len,
976 						 hash_parms->prebuf_len,
977 						 data_size,
978 						 aead_parms->aad_pad_len,
979 						 aead_parms->data_pad_len,
980 						 hash_parms->pad_len);
981 	unsigned int assoc_size = aead_parms->assoc_size;
982 
983 	if (req_opts->is_aead &&
984 	    (cipher_parms->alg == CIPHER_ALG_AES) &&
985 	    (cipher_parms->mode == CIPHER_MODE_GCM))
986 		/*
987 		 * On SPU 2, aes gcm cipher first on encrypt, auth first on
988 		 * decrypt
989 		 */
990 		req_opts->auth_first = req_opts->is_inbound;
991 
992 	/* and do opposite for ccm (auth 1st on encrypt) */
993 	if (req_opts->is_aead &&
994 	    (cipher_parms->alg == CIPHER_ALG_AES) &&
995 	    (cipher_parms->mode == CIPHER_MODE_CCM))
996 		req_opts->auth_first = !req_opts->is_inbound;
997 
998 	flow_log("%s()\n", __func__);
999 	flow_log("  in:%u authFirst:%u\n",
1000 		 req_opts->is_inbound, req_opts->auth_first);
1001 	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1002 		 cipher_parms->mode, cipher_parms->type);
1003 	flow_log("  is_esp: %s\n", str_yes_no(req_opts->is_esp));
1004 	flow_log("    key: %d\n", cipher_parms->key_len);
1005 	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1006 	flow_log("    iv: %d\n", cipher_parms->iv_len);
1007 	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1008 	flow_log("  auth alg:%u mode:%u type %u\n",
1009 		 hash_parms->alg, hash_parms->mode, hash_parms->type);
1010 	flow_log("  digestsize: %u\n", hash_parms->digestsize);
1011 	flow_log("  authkey: %d\n", hash_parms->key_len);
1012 	flow_dump("  authkey: ", hash_parms->key_buf, hash_parms->key_len);
1013 	flow_log("  assoc_size:%u\n", assoc_size);
1014 	flow_log("  prebuf_len:%u\n", hash_parms->prebuf_len);
1015 	flow_log("  data_size:%u\n", data_size);
1016 	flow_log("  hash_pad_len:%u\n", hash_parms->pad_len);
1017 	flow_log("  real_db_size:%u\n", real_db_size);
1018 	flow_log("  cipher_offset:%u payload_len:%u\n",
1019 		 cipher_offset, payload_len);
1020 	flow_log("  aead_iv: %u\n", aead_parms->iv_len);
1021 
1022 	/* Convert to spu2 values for cipher alg, hash alg */
1023 	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1024 				cipher_parms->type,
1025 				&spu2_ciph_type, &spu2_ciph_mode);
1026 
1027 	/* If we are doing GCM hashing only - either via rfc4543 transform
1028 	 * or because we happen to do GCM with AAD only and no payload - we
1029 	 * need to configure hardware to use hash key rather than cipher key
1030 	 * and put data into payload.  This is because unlike SPU-M, running
1031 	 * GCM cipher with 0 size payload is not permitted.
1032 	 */
1033 	if ((req_opts->is_rfc4543) ||
1034 	    ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
1035 	    (payload_len == 0))) {
1036 		/* Use hashing (only) and set up hash key */
1037 		spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
1038 		hash_parms->key_len = cipher_parms->key_len;
1039 		memcpy(hash_parms->key_buf, cipher_parms->key_buf,
1040 		       cipher_parms->key_len);
1041 		cipher_parms->key_len = 0;
1042 
1043 		if (req_opts->is_rfc4543)
1044 			payload_len += assoc_size;
1045 		else
1046 			payload_len = assoc_size;
1047 		cipher_offset = 0;
1048 		assoc_size = 0;
1049 	}
1050 
1051 	if (err)
1052 		return 0;
1053 
1054 	flow_log("spu2 cipher type %s, cipher mode %s\n",
1055 		 spu2_ciph_type_name(spu2_ciph_type),
1056 		 spu2_ciph_mode_name(spu2_ciph_mode));
1057 
1058 	err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
1059 			      hash_parms->type,
1060 			      cipher_parms->type,
1061 			      &spu2_auth_type, &spu2_auth_mode);
1062 	if (err)
1063 		return 0;
1064 
1065 	flow_log("spu2 hash type %s, hash mode %s\n",
1066 		 spu2_hash_type_name(spu2_auth_type),
1067 		 spu2_hash_mode_name(spu2_auth_mode));
1068 
1069 	fmd = (struct SPU2_FMD *)spu_hdr;
1070 
1071 	spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
1072 			     proto, spu2_ciph_type, spu2_ciph_mode,
1073 			     spu2_auth_type, spu2_auth_mode);
1074 
1075 	spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
1076 			     hash_parms->key_len, cipher_parms->key_len,
1077 			     false, false,
1078 			     aead_parms->return_iv, aead_parms->ret_iv_len,
1079 			     aead_parms->ret_iv_off,
1080 			     cipher_parms->iv_len, hash_parms->digestsize,
1081 			     !req_opts->bd_suppress, return_md);
1082 
1083 	spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
1084 			     cipher_parms->key_len, cipher_parms->iv_len);
1085 
1086 	spu2_fmd_ctrl3_write(fmd, payload_len);
1087 
1088 	ptr = (u8 *)(fmd + 1);
1089 	buf_len = sizeof(struct SPU2_FMD);
1090 
1091 	/* Write OMD */
1092 	if (hash_parms->key_len) {
1093 		memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
1094 		ptr += hash_parms->key_len;
1095 		buf_len += hash_parms->key_len;
1096 	}
1097 	if (cipher_parms->key_len) {
1098 		memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
1099 		ptr += cipher_parms->key_len;
1100 		buf_len += cipher_parms->key_len;
1101 	}
1102 	if (cipher_parms->iv_len) {
1103 		memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
1104 		ptr += cipher_parms->iv_len;
1105 		buf_len += cipher_parms->iv_len;
1106 	}
1107 
1108 	packet_dump("  SPU request header: ", spu_hdr, buf_len);
1109 
1110 	return buf_len;
1111 }
1112 
1113 /**
1114  * spu2_cipher_req_init() - Build an skcipher SPU2 request message header,
1115  * including FMD and OMD.
1116  * @spu_hdr:       Location of start of SPU request (FMD field)
1117  * @cipher_parms:  Parameters describing cipher request
1118  *
1119  * Called at setkey time to initialize a msg header that can be reused for all
1120  * subsequent skcipher requests. Construct the message starting at spu_hdr.
1121  * Caller should allocate this buffer in DMA-able memory at least
1122  * SPU_HEADER_ALLOC_LEN bytes long.
1123  *
1124  * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
1125  * error occurs.
1126  */
spu2_cipher_req_init(u8 * spu_hdr,struct spu_cipher_parms * cipher_parms)1127 u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
1128 {
1129 	struct SPU2_FMD *fmd;
1130 	u8 *omd;
1131 	enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
1132 	enum spu2_cipher_mode spu2_mode;
1133 	int err;
1134 
1135 	flow_log("%s()\n", __func__);
1136 	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1137 		 cipher_parms->mode, cipher_parms->type);
1138 	flow_log("  cipher_iv_len: %u\n", cipher_parms->iv_len);
1139 	flow_log("    key: %d\n", cipher_parms->key_len);
1140 	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1141 
1142 	/* Convert to spu2 values */
1143 	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1144 				cipher_parms->type, &spu2_type, &spu2_mode);
1145 	if (err)
1146 		return 0;
1147 
1148 	flow_log("spu2 cipher type %s, cipher mode %s\n",
1149 		 spu2_ciph_type_name(spu2_type),
1150 		 spu2_ciph_mode_name(spu2_mode));
1151 
1152 	/* Construct the FMD header */
1153 	fmd = (struct SPU2_FMD *)spu_hdr;
1154 	err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
1155 			    cipher_parms->iv_len);
1156 	if (err)
1157 		return 0;
1158 
1159 	/* Write cipher key to OMD */
1160 	omd = (u8 *)(fmd + 1);
1161 	if (cipher_parms->key_buf && cipher_parms->key_len)
1162 		memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
1163 
1164 	packet_dump("  SPU request header: ", spu_hdr,
1165 		    FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
1166 
1167 	return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
1168 }
1169 
1170 /**
1171  * spu2_cipher_req_finish() - Finish building a SPU request message header for a
1172  * block cipher request.
1173  * @spu_hdr:         Start of the request message header (MH field)
1174  * @spu_req_hdr_len: Length in bytes of the SPU request header
1175  * @is_inbound:      0 encrypt, 1 decrypt
1176  * @cipher_parms:    Parameters describing cipher operation to be performed
1177  * @data_size:       Length of the data in the BD field
1178  *
1179  * Assumes much of the header was already filled in at setkey() time in
1180  * spu_cipher_req_init().
1181  * spu_cipher_req_init() fills in the encryption key.
1182  */
spu2_cipher_req_finish(u8 * spu_hdr,u16 spu_req_hdr_len,unsigned int is_inbound,struct spu_cipher_parms * cipher_parms,unsigned int data_size)1183 void spu2_cipher_req_finish(u8 *spu_hdr,
1184 			    u16 spu_req_hdr_len,
1185 			    unsigned int is_inbound,
1186 			    struct spu_cipher_parms *cipher_parms,
1187 			    unsigned int data_size)
1188 {
1189 	struct SPU2_FMD *fmd;
1190 	u8 *omd;		/* start of optional metadata */
1191 	u64 ctrl0;
1192 	u64 ctrl3;
1193 
1194 	flow_log("%s()\n", __func__);
1195 	flow_log(" in: %u\n", is_inbound);
1196 	flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
1197 		 cipher_parms->type);
1198 	flow_log(" iv len: %d\n", cipher_parms->iv_len);
1199 	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1200 	flow_log(" data_size: %u\n", data_size);
1201 
1202 	fmd = (struct SPU2_FMD *)spu_hdr;
1203 	omd = (u8 *)(fmd + 1);
1204 
1205 	/*
1206 	 * FMD ctrl0 was initialized at setkey time. update it to indicate
1207 	 * whether we are encrypting or decrypting.
1208 	 */
1209 	ctrl0 = le64_to_cpu(fmd->ctrl0);
1210 	if (is_inbound)
1211 		ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN;	/* decrypt */
1212 	else
1213 		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;	/* encrypt */
1214 	fmd->ctrl0 = cpu_to_le64(ctrl0);
1215 
1216 	if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
1217 		/* cipher iv provided so put it in here */
1218 		memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
1219 		       cipher_parms->iv_len);
1220 	}
1221 
1222 	ctrl3 = le64_to_cpu(fmd->ctrl3);
1223 	data_size &= SPU2_PL_LEN;
1224 	ctrl3 |= data_size;
1225 	fmd->ctrl3 = cpu_to_le64(ctrl3);
1226 
1227 	packet_dump("  SPU request header: ", spu_hdr, spu_req_hdr_len);
1228 }
1229 
1230 /**
1231  * spu2_request_pad() - Create pad bytes at the end of the data.
1232  * @pad_start:      Start of buffer where pad bytes are to be written
1233  * @gcm_padding:    Length of GCM padding, in bytes
1234  * @hash_pad_len:   Number of bytes of padding extend data to full block
1235  * @auth_alg:       Authentication algorithm
1236  * @auth_mode:      Authentication mode
1237  * @total_sent:     Length inserted at end of hash pad
1238  * @status_padding: Number of bytes of padding to align STATUS word
1239  *
1240  * There may be three forms of pad:
1241  *  1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
1242  *  2. hash pad - pad to a block length, with 0x80 data terminator and
1243  *                size at the end
1244  *  3. STAT pad - to ensure the STAT field is 4-byte aligned
1245  */
spu2_request_pad(u8 * pad_start,u32 gcm_padding,u32 hash_pad_len,enum hash_alg auth_alg,enum hash_mode auth_mode,unsigned int total_sent,u32 status_padding)1246 void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
1247 		      enum hash_alg auth_alg, enum hash_mode auth_mode,
1248 		      unsigned int total_sent, u32 status_padding)
1249 {
1250 	u8 *ptr = pad_start;
1251 
1252 	/* fix data alignent for GCM */
1253 	if (gcm_padding > 0) {
1254 		flow_log("  GCM: padding to 16 byte alignment: %u bytes\n",
1255 			 gcm_padding);
1256 		memset(ptr, 0, gcm_padding);
1257 		ptr += gcm_padding;
1258 	}
1259 
1260 	if (hash_pad_len > 0) {
1261 		/* clear the padding section */
1262 		memset(ptr, 0, hash_pad_len);
1263 
1264 		/* terminate the data */
1265 		*ptr = 0x80;
1266 		ptr += (hash_pad_len - sizeof(u64));
1267 
1268 		/* add the size at the end as required per alg */
1269 		if (auth_alg == HASH_ALG_MD5)
1270 			*(__le64 *)ptr = cpu_to_le64(total_sent * 8ull);
1271 		else		/* SHA1, SHA2-224, SHA2-256 */
1272 			*(__be64 *)ptr = cpu_to_be64(total_sent * 8ull);
1273 		ptr += sizeof(u64);
1274 	}
1275 
1276 	/* pad to a 4byte alignment for STAT */
1277 	if (status_padding > 0) {
1278 		flow_log("  STAT: padding to 4 byte alignment: %u bytes\n",
1279 			 status_padding);
1280 
1281 		memset(ptr, 0, status_padding);
1282 		ptr += status_padding;
1283 	}
1284 }
1285 
1286 /**
1287  * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
1288  * tweak field in the packet payload (it uses IV instead)
1289  *
1290  * Return: 0
1291  */
spu2_xts_tweak_in_payload(void)1292 u8 spu2_xts_tweak_in_payload(void)
1293 {
1294 	return 0;
1295 }
1296 
1297 /**
1298  * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
1299  * response message.
1300  *
1301  * Return: Length of STATUS field in bytes.
1302  */
spu2_tx_status_len(void)1303 u8 spu2_tx_status_len(void)
1304 {
1305 	return SPU2_TX_STATUS_LEN;
1306 }
1307 
1308 /**
1309  * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
1310  * response message.
1311  *
1312  * Return: Length of STATUS field in bytes.
1313  */
spu2_rx_status_len(void)1314 u8 spu2_rx_status_len(void)
1315 {
1316 	return SPU2_RX_STATUS_LEN;
1317 }
1318 
1319 /**
1320  * spu2_status_process() - Process the status from a SPU response message.
1321  * @statp:  start of STATUS word
1322  *
1323  * Return:  0 - if status is good and response should be processed
1324  *         !0 - status indicates an error and response is invalid
1325  */
spu2_status_process(u8 * statp)1326 int spu2_status_process(u8 *statp)
1327 {
1328 	/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
1329 	u16 status = le16_to_cpu(*(__le16 *)statp);
1330 
1331 	if (status == 0)
1332 		return 0;
1333 
1334 	flow_log("rx status is %#x\n", status);
1335 	if (status == SPU2_INVALID_ICV)
1336 		return SPU_INVALID_ICV;
1337 
1338 	return -EBADMSG;
1339 }
1340 
1341 /**
1342  * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
1343  *
1344  * @digestsize:		Digest size of this request
1345  * @cipher_parms:	(pointer to) cipher parmaeters, includes IV buf & IV len
1346  * @assoclen:		Length of AAD data
1347  * @chunksize:		length of input data to be sent in this req
1348  * @is_encrypt:		true if this is an output/encrypt operation
1349  * @is_esp:		true if this is an ESP / RFC4309 operation
1350  *
1351  */
spu2_ccm_update_iv(unsigned int digestsize,struct spu_cipher_parms * cipher_parms,unsigned int assoclen,unsigned int chunksize,bool is_encrypt,bool is_esp)1352 void spu2_ccm_update_iv(unsigned int digestsize,
1353 			struct spu_cipher_parms *cipher_parms,
1354 			unsigned int assoclen, unsigned int chunksize,
1355 			bool is_encrypt, bool is_esp)
1356 {
1357 	int L;  /* size of length field, in bytes */
1358 
1359 	/*
1360 	 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
1361 	 * testmgr contains (L-1) in bottom 3 bits of first byte,
1362 	 * per RFC 3610.
1363 	 */
1364 	if (is_esp)
1365 		L = CCM_ESP_L_VALUE;
1366 	else
1367 		L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
1368 		      CCM_B0_L_PRIME_SHIFT) + 1;
1369 
1370 	/* SPU2 doesn't want these length bytes nor the first byte... */
1371 	cipher_parms->iv_len -= (1 + L);
1372 	memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
1373 		cipher_parms->iv_len);
1374 }
1375 
1376 /**
1377  * spu2_wordalign_padlen() - SPU2 does not require padding.
1378  * @data_size: length of data field in bytes
1379  *
1380  * Return: length of status field padding, in bytes (always 0 on SPU2)
1381  */
spu2_wordalign_padlen(u32 data_size)1382 u32 spu2_wordalign_padlen(u32 data_size)
1383 {
1384 	return 0;
1385 }
1386