1 // SPDX-License-Identifier: BSD-3-Clause
2 /* rfc3961 Kerberos 5 simplified crypto profile.
3  *
4  * Parts borrowed from net/sunrpc/auth_gss/.
5  */
6 /*
7  * COPYRIGHT (c) 2008
8  * The Regents of the University of Michigan
9  * ALL RIGHTS RESERVED
10  *
11  * Permission is granted to use, copy, create derivative works
12  * and redistribute this software and such derivative works
13  * for any purpose, so long as the name of The University of
14  * Michigan is not used in any advertising or publicity
15  * pertaining to the use of distribution of this software
16  * without specific, written prior authorization.  If the
17  * above copyright notice or any other identification of the
18  * University of Michigan is included in any copy of any
19  * portion of this software, then the disclaimer below must
20  * also be included.
21  *
22  * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
23  * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
24  * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
25  * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
26  * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
27  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
28  * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
29  * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
30  * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
31  * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
32  * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGES.
34  */
35 
36 /*
37  * Copyright (C) 1998 by the FundsXpress, INC.
38  *
39  * All rights reserved.
40  *
41  * Export of this software from the United States of America may require
42  * a specific license from the United States Government.  It is the
43  * responsibility of any person or organization contemplating export to
44  * obtain such a license before exporting.
45  *
46  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
47  * distribute this software and its documentation for any purpose and
48  * without fee is hereby granted, provided that the above copyright
49  * notice appear in all copies and that both that copyright notice and
50  * this permission notice appear in supporting documentation, and that
51  * the name of FundsXpress. not be used in advertising or publicity pertaining
52  * to distribution of the software without specific, written prior
53  * permission.  FundsXpress makes no representations about the suitability of
54  * this software for any purpose.  It is provided "as is" without express
55  * or implied warranty.
56  *
57  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
58  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
59  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
60  */
61 
62 /*
63  * Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
64  * Written by David Howells (dhowells@redhat.com)
65  */
66 
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68 
69 #include <linux/random.h>
70 #include <linux/scatterlist.h>
71 #include <linux/skbuff.h>
72 #include <linux/slab.h>
73 #include <linux/lcm.h>
74 #include <linux/rtnetlink.h>
75 #include <crypto/authenc.h>
76 #include <crypto/skcipher.h>
77 #include <crypto/hash.h>
78 #include "internal.h"
79 
80 /* Maximum blocksize for the supported crypto algorithms */
81 #define KRB5_MAX_BLOCKSIZE  (16)
82 
crypto_shash_update_sg(struct shash_desc * desc,struct scatterlist * sg,size_t offset,size_t len)83 int crypto_shash_update_sg(struct shash_desc *desc, struct scatterlist *sg,
84 			   size_t offset, size_t len)
85 {
86 	struct sg_mapping_iter miter;
87 	size_t i, n;
88 	int ret = 0;
89 
90 	sg_miter_start(&miter, sg, sg_nents(sg),
91 		       SG_MITER_FROM_SG | SG_MITER_LOCAL);
92 	for (i = 0; i < len; i += n) {
93 		sg_miter_next(&miter);
94 		n = min(miter.length, len - i);
95 		ret = crypto_shash_update(desc, miter.addr, n);
96 		if (ret < 0)
97 			break;
98 	}
99 	sg_miter_stop(&miter);
100 	return ret;
101 }
102 
rfc3961_do_encrypt(struct crypto_sync_skcipher * tfm,void * iv,const struct krb5_buffer * in,struct krb5_buffer * out)103 static int rfc3961_do_encrypt(struct crypto_sync_skcipher *tfm, void *iv,
104 			      const struct krb5_buffer *in, struct krb5_buffer *out)
105 {
106 	struct scatterlist sg[1];
107 	u8 local_iv[KRB5_MAX_BLOCKSIZE] __aligned(KRB5_MAX_BLOCKSIZE) = {0};
108 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
109 	int ret;
110 
111 	if (WARN_ON(in->len != out->len))
112 		return -EINVAL;
113 	if (out->len % crypto_sync_skcipher_blocksize(tfm) != 0)
114 		return -EINVAL;
115 
116 	if (crypto_sync_skcipher_ivsize(tfm) > KRB5_MAX_BLOCKSIZE)
117 		return -EINVAL;
118 
119 	if (iv)
120 		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
121 
122 	memcpy(out->data, in->data, out->len);
123 	sg_init_one(sg, out->data, out->len);
124 
125 	skcipher_request_set_sync_tfm(req, tfm);
126 	skcipher_request_set_callback(req, 0, NULL, NULL);
127 	skcipher_request_set_crypt(req, sg, sg, out->len, local_iv);
128 
129 	ret = crypto_skcipher_encrypt(req);
130 	skcipher_request_zero(req);
131 	return ret;
132 }
133 
134 /*
135  * Calculate an unkeyed basic hash.
136  */
rfc3961_calc_H(const struct krb5_enctype * krb5,const struct krb5_buffer * data,struct krb5_buffer * digest,gfp_t gfp)137 static int rfc3961_calc_H(const struct krb5_enctype *krb5,
138 			  const struct krb5_buffer *data,
139 			  struct krb5_buffer *digest,
140 			  gfp_t gfp)
141 {
142 	struct crypto_shash *tfm;
143 	struct shash_desc *desc;
144 	size_t desc_size;
145 	int ret = -ENOMEM;
146 
147 	tfm = crypto_alloc_shash(krb5->hash_name, 0, 0);
148 	if (IS_ERR(tfm))
149 		return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
150 
151 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
152 
153 	desc = kzalloc(desc_size, gfp);
154 	if (!desc)
155 		goto error_tfm;
156 
157 	digest->len = crypto_shash_digestsize(tfm);
158 	digest->data = kzalloc(digest->len, gfp);
159 	if (!digest->data)
160 		goto error_desc;
161 
162 	desc->tfm = tfm;
163 	ret = crypto_shash_init(desc);
164 	if (ret < 0)
165 		goto error_digest;
166 
167 	ret = crypto_shash_finup(desc, data->data, data->len, digest->data);
168 	if (ret < 0)
169 		goto error_digest;
170 
171 	goto error_desc;
172 
173 error_digest:
174 	kfree_sensitive(digest->data);
175 error_desc:
176 	kfree_sensitive(desc);
177 error_tfm:
178 	crypto_free_shash(tfm);
179 	return ret;
180 }
181 
182 /*
183  * This is the n-fold function as described in rfc3961, sec 5.1
184  * Taken from MIT Kerberos and modified.
185  */
rfc3961_nfold(const struct krb5_buffer * source,struct krb5_buffer * result)186 static void rfc3961_nfold(const struct krb5_buffer *source, struct krb5_buffer *result)
187 {
188 	const u8 *in = source->data;
189 	u8 *out = result->data;
190 	unsigned long ulcm;
191 	unsigned int inbits, outbits;
192 	int byte, i, msbit;
193 
194 	/* the code below is more readable if I make these bytes instead of bits */
195 	inbits = source->len;
196 	outbits = result->len;
197 
198 	/* first compute lcm(n,k) */
199 	ulcm = lcm(inbits, outbits);
200 
201 	/* now do the real work */
202 	memset(out, 0, outbits);
203 	byte = 0;
204 
205 	/* this will end up cycling through k lcm(k,n)/k times, which
206 	 * is correct.
207 	 */
208 	for (i = ulcm-1; i >= 0; i--) {
209 		/* compute the msbit in k which gets added into this byte */
210 		msbit = (
211 			/* first, start with the msbit in the first,
212 			 * unrotated byte
213 			 */
214 			((inbits << 3) - 1) +
215 			/* then, for each byte, shift to the right
216 			 * for each repetition
217 			 */
218 			(((inbits << 3) + 13) * (i/inbits)) +
219 			/* last, pick out the correct byte within
220 			 * that shifted repetition
221 			 */
222 			((inbits - (i % inbits)) << 3)
223 			 ) % (inbits << 3);
224 
225 		/* pull out the byte value itself */
226 		byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8) |
227 			  (in[((inbits)     - (msbit >> 3)) % inbits]))
228 			 >> ((msbit & 7) + 1)) & 0xff;
229 
230 		/* do the addition */
231 		byte += out[i % outbits];
232 		out[i % outbits] = byte & 0xff;
233 
234 		/* keep around the carry bit, if any */
235 		byte >>= 8;
236 	}
237 
238 	/* if there's a carry bit left over, add it back in */
239 	if (byte) {
240 		for (i = outbits - 1; i >= 0; i--) {
241 			/* do the addition */
242 			byte += out[i];
243 			out[i] = byte & 0xff;
244 
245 			/* keep around the carry bit, if any */
246 			byte >>= 8;
247 		}
248 	}
249 }
250 
251 /*
252  * Calculate a derived key, DK(Base Key, Well-Known Constant)
253  *
254  * DK(Key, Constant) = random-to-key(DR(Key, Constant))
255  * DR(Key, Constant) = k-truncate(E(Key, Constant, initial-cipher-state))
256  * K1 = E(Key, n-fold(Constant), initial-cipher-state)
257  * K2 = E(Key, K1, initial-cipher-state)
258  * K3 = E(Key, K2, initial-cipher-state)
259  * K4 = ...
260  * DR(Key, Constant) = k-truncate(K1 | K2 | K3 | K4 ...)
261  * [rfc3961 sec 5.1]
262  */
rfc3961_calc_DK(const struct krb5_enctype * krb5,const struct krb5_buffer * inkey,const struct krb5_buffer * in_constant,struct krb5_buffer * result,gfp_t gfp)263 static int rfc3961_calc_DK(const struct krb5_enctype *krb5,
264 			   const struct krb5_buffer *inkey,
265 			   const struct krb5_buffer *in_constant,
266 			   struct krb5_buffer *result,
267 			   gfp_t gfp)
268 {
269 	unsigned int blocksize, keybytes, keylength, n;
270 	struct krb5_buffer inblock, outblock, rawkey;
271 	struct crypto_sync_skcipher *cipher;
272 	int ret = -EINVAL;
273 
274 	blocksize = krb5->block_len;
275 	keybytes = krb5->key_bytes;
276 	keylength = krb5->key_len;
277 
278 	if (inkey->len != keylength || result->len != keylength)
279 		return -EINVAL;
280 	if (!krb5->random_to_key && result->len != keybytes)
281 		return -EINVAL;
282 
283 	cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
284 	if (IS_ERR(cipher)) {
285 		ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
286 		goto err_return;
287 	}
288 	ret = crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len);
289 	if (ret < 0)
290 		goto err_free_cipher;
291 
292 	ret = -ENOMEM;
293 	inblock.data = kzalloc(blocksize * 2 + keybytes, gfp);
294 	if (!inblock.data)
295 		goto err_free_cipher;
296 
297 	inblock.len	= blocksize;
298 	outblock.data	= inblock.data + blocksize;
299 	outblock.len	= blocksize;
300 	rawkey.data	= outblock.data + blocksize;
301 	rawkey.len	= keybytes;
302 
303 	/* initialize the input block */
304 
305 	if (in_constant->len == inblock.len)
306 		memcpy(inblock.data, in_constant->data, inblock.len);
307 	else
308 		rfc3961_nfold(in_constant, &inblock);
309 
310 	/* loop encrypting the blocks until enough key bytes are generated */
311 	n = 0;
312 	while (n < rawkey.len) {
313 		rfc3961_do_encrypt(cipher, NULL, &inblock, &outblock);
314 
315 		if (keybytes - n <= outblock.len) {
316 			memcpy(rawkey.data + n, outblock.data, keybytes - n);
317 			break;
318 		}
319 
320 		memcpy(rawkey.data + n, outblock.data, outblock.len);
321 		memcpy(inblock.data, outblock.data, outblock.len);
322 		n += outblock.len;
323 	}
324 
325 	/* postprocess the key */
326 	if (!krb5->random_to_key) {
327 		/* Identity random-to-key function. */
328 		memcpy(result->data, rawkey.data, rawkey.len);
329 		ret = 0;
330 	} else {
331 		ret = krb5->random_to_key(krb5, &rawkey, result);
332 	}
333 
334 	kfree_sensitive(inblock.data);
335 err_free_cipher:
336 	crypto_free_sync_skcipher(cipher);
337 err_return:
338 	return ret;
339 }
340 
341 /*
342  * Calculate single encryption, E()
343  *
344  *	E(Key, octets)
345  */
rfc3961_calc_E(const struct krb5_enctype * krb5,const struct krb5_buffer * key,const struct krb5_buffer * in_data,struct krb5_buffer * result,gfp_t gfp)346 static int rfc3961_calc_E(const struct krb5_enctype *krb5,
347 			  const struct krb5_buffer *key,
348 			  const struct krb5_buffer *in_data,
349 			  struct krb5_buffer *result,
350 			  gfp_t gfp)
351 {
352 	struct crypto_sync_skcipher *cipher;
353 	int ret;
354 
355 	cipher = crypto_alloc_sync_skcipher(krb5->derivation_enc, 0, 0);
356 	if (IS_ERR(cipher)) {
357 		ret = (PTR_ERR(cipher) == -ENOENT) ? -ENOPKG : PTR_ERR(cipher);
358 		goto err;
359 	}
360 
361 	ret = crypto_sync_skcipher_setkey(cipher, key->data, key->len);
362 	if (ret < 0)
363 		goto err_free;
364 
365 	ret = rfc3961_do_encrypt(cipher, NULL, in_data, result);
366 
367 err_free:
368 	crypto_free_sync_skcipher(cipher);
369 err:
370 	return ret;
371 }
372 
373 /*
374  * Calculate the pseudo-random function, PRF().
375  *
376  *      tmp1 = H(octet-string)
377  *      tmp2 = truncate tmp1 to multiple of m
378  *      PRF = E(DK(protocol-key, prfconstant), tmp2, initial-cipher-state)
379  *
380  *      The "prfconstant" used in the PRF operation is the three-octet string
381  *      "prf".
382  *      [rfc3961 sec 5.3]
383  */
rfc3961_calc_PRF(const struct krb5_enctype * krb5,const struct krb5_buffer * protocol_key,const struct krb5_buffer * octet_string,struct krb5_buffer * result,gfp_t gfp)384 static int rfc3961_calc_PRF(const struct krb5_enctype *krb5,
385 			    const struct krb5_buffer *protocol_key,
386 			    const struct krb5_buffer *octet_string,
387 			    struct krb5_buffer *result,
388 			    gfp_t gfp)
389 {
390 	static const struct krb5_buffer prfconstant = { 3, "prf" };
391 	struct krb5_buffer derived_key;
392 	struct krb5_buffer tmp1, tmp2;
393 	unsigned int m = krb5->block_len;
394 	void *buffer;
395 	int ret;
396 
397 	if (result->len != krb5->prf_len)
398 		return -EINVAL;
399 
400 	tmp1.len = krb5->hash_len;
401 	derived_key.len = krb5->key_bytes;
402 	buffer = kzalloc(round16(tmp1.len) + round16(derived_key.len), gfp);
403 	if (!buffer)
404 		return -ENOMEM;
405 
406 	tmp1.data = buffer;
407 	derived_key.data = buffer + round16(tmp1.len);
408 
409 	ret = rfc3961_calc_H(krb5, octet_string, &tmp1, gfp);
410 	if (ret < 0)
411 		goto err;
412 
413 	tmp2.len = tmp1.len & ~(m - 1);
414 	tmp2.data = tmp1.data;
415 
416 	ret = rfc3961_calc_DK(krb5, protocol_key, &prfconstant, &derived_key, gfp);
417 	if (ret < 0)
418 		goto err;
419 
420 	ret = rfc3961_calc_E(krb5, &derived_key, &tmp2, result, gfp);
421 
422 err:
423 	kfree_sensitive(buffer);
424 	return ret;
425 }
426 
427 /*
428  * Derive the Ke and Ki keys and package them into a key parameter that can be
429  * given to the setkey of a authenc AEAD crypto object.
430  */
authenc_derive_encrypt_keys(const struct krb5_enctype * krb5,const struct krb5_buffer * TK,unsigned int usage,struct krb5_buffer * setkey,gfp_t gfp)431 int authenc_derive_encrypt_keys(const struct krb5_enctype *krb5,
432 				const struct krb5_buffer *TK,
433 				unsigned int usage,
434 				struct krb5_buffer *setkey,
435 				gfp_t gfp)
436 {
437 	struct crypto_authenc_key_param *param;
438 	struct krb5_buffer Ke, Ki;
439 	struct rtattr *rta;
440 	int ret;
441 
442 	Ke.len  = krb5->Ke_len;
443 	Ki.len  = krb5->Ki_len;
444 	setkey->len = RTA_LENGTH(sizeof(*param)) + Ke.len + Ki.len;
445 	setkey->data = kzalloc(setkey->len, GFP_KERNEL);
446 	if (!setkey->data)
447 		return -ENOMEM;
448 
449 	rta = setkey->data;
450 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
451 	rta->rta_len = RTA_LENGTH(sizeof(*param));
452 	param = RTA_DATA(rta);
453 	param->enckeylen = htonl(Ke.len);
454 
455 	Ki.data = (void *)(param + 1);
456 	Ke.data = Ki.data + Ki.len;
457 
458 	ret = krb5_derive_Ke(krb5, TK, usage, &Ke, gfp);
459 	if (ret < 0) {
460 		pr_err("get_Ke failed %d\n", ret);
461 		return ret;
462 	}
463 	ret = krb5_derive_Ki(krb5, TK, usage, &Ki, gfp);
464 	if (ret < 0)
465 		pr_err("get_Ki failed %d\n", ret);
466 	return ret;
467 }
468 
469 /*
470  * Package predefined Ke and Ki keys and into a key parameter that can be given
471  * to the setkey of an authenc AEAD crypto object.
472  */
authenc_load_encrypt_keys(const struct krb5_enctype * krb5,const struct krb5_buffer * Ke,const struct krb5_buffer * Ki,struct krb5_buffer * setkey,gfp_t gfp)473 int authenc_load_encrypt_keys(const struct krb5_enctype *krb5,
474 			      const struct krb5_buffer *Ke,
475 			      const struct krb5_buffer *Ki,
476 			      struct krb5_buffer *setkey,
477 			      gfp_t gfp)
478 {
479 	struct crypto_authenc_key_param *param;
480 	struct rtattr *rta;
481 
482 	setkey->len = RTA_LENGTH(sizeof(*param)) + Ke->len + Ki->len;
483 	setkey->data = kzalloc(setkey->len, GFP_KERNEL);
484 	if (!setkey->data)
485 		return -ENOMEM;
486 
487 	rta = setkey->data;
488 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
489 	rta->rta_len = RTA_LENGTH(sizeof(*param));
490 	param = RTA_DATA(rta);
491 	param->enckeylen = htonl(Ke->len);
492 	memcpy((void *)(param + 1), Ki->data, Ki->len);
493 	memcpy((void *)(param + 1) + Ki->len, Ke->data, Ke->len);
494 	return 0;
495 }
496 
497 /*
498  * Derive the Kc key for checksum-only mode and package it into a key parameter
499  * that can be given to the setkey of a hash crypto object.
500  */
rfc3961_derive_checksum_key(const struct krb5_enctype * krb5,const struct krb5_buffer * TK,unsigned int usage,struct krb5_buffer * setkey,gfp_t gfp)501 int rfc3961_derive_checksum_key(const struct krb5_enctype *krb5,
502 				const struct krb5_buffer *TK,
503 				unsigned int usage,
504 				struct krb5_buffer *setkey,
505 				gfp_t gfp)
506 {
507 	int ret;
508 
509 	setkey->len = krb5->Kc_len;
510 	setkey->data = kzalloc(setkey->len, GFP_KERNEL);
511 	if (!setkey->data)
512 		return -ENOMEM;
513 
514 	ret = krb5_derive_Kc(krb5, TK, usage, setkey, gfp);
515 	if (ret < 0)
516 		pr_err("get_Kc failed %d\n", ret);
517 	return ret;
518 }
519 
520 /*
521  * Package a predefined Kc key for checksum-only mode into a key parameter that
522  * can be given to the setkey of a hash crypto object.
523  */
rfc3961_load_checksum_key(const struct krb5_enctype * krb5,const struct krb5_buffer * Kc,struct krb5_buffer * setkey,gfp_t gfp)524 int rfc3961_load_checksum_key(const struct krb5_enctype *krb5,
525 			      const struct krb5_buffer *Kc,
526 			      struct krb5_buffer *setkey,
527 			      gfp_t gfp)
528 {
529 	setkey->len = krb5->Kc_len;
530 	setkey->data = kmemdup(Kc->data, Kc->len, GFP_KERNEL);
531 	if (!setkey->data)
532 		return -ENOMEM;
533 	return 0;
534 }
535 
536 /*
537  * Apply encryption and checksumming functions to part of a scatterlist.
538  */
krb5_aead_encrypt(const struct krb5_enctype * krb5,struct crypto_aead * aead,struct scatterlist * sg,unsigned int nr_sg,size_t sg_len,size_t data_offset,size_t data_len,bool preconfounded)539 ssize_t krb5_aead_encrypt(const struct krb5_enctype *krb5,
540 			  struct crypto_aead *aead,
541 			  struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
542 			  size_t data_offset, size_t data_len,
543 			  bool preconfounded)
544 {
545 	struct aead_request *req;
546 	ssize_t ret, done;
547 	size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset;
548 	void *buffer;
549 	u8 *iv;
550 
551 	if (WARN_ON(data_offset != krb5->conf_len))
552 		return -EINVAL; /* Data is in wrong place */
553 
554 	secure_offset	= 0;
555 	base_len	= krb5->conf_len + data_len;
556 	pad_len		= 0;
557 	secure_len	= base_len + pad_len;
558 	cksum_offset	= secure_len;
559 	if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len))
560 		return -EFAULT;
561 
562 	bsize = krb5_aead_size(aead) +
563 		krb5_aead_ivsize(aead);
564 	buffer = kzalloc(bsize, GFP_NOFS);
565 	if (!buffer)
566 		return -ENOMEM;
567 
568 	/* Insert the confounder into the buffer */
569 	ret = -EFAULT;
570 	if (!preconfounded) {
571 		get_random_bytes(buffer, krb5->conf_len);
572 		done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len,
573 					    secure_offset);
574 		if (done != krb5->conf_len)
575 			goto error;
576 	}
577 
578 	/* We may need to pad out to the crypto blocksize. */
579 	if (pad_len) {
580 		done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len);
581 		if (done != pad_len)
582 			goto error;
583 	}
584 
585 	/* Hash and encrypt the message. */
586 	req = buffer;
587 	iv = buffer + krb5_aead_size(aead);
588 
589 	aead_request_set_tfm(req, aead);
590 	aead_request_set_callback(req, 0, NULL, NULL);
591 	aead_request_set_crypt(req, sg, sg, secure_len, iv);
592 	ret = crypto_aead_encrypt(req);
593 	if (ret < 0)
594 		goto error;
595 
596 	ret = secure_len + krb5->cksum_len;
597 
598 error:
599 	kfree_sensitive(buffer);
600 	return ret;
601 }
602 
603 /*
604  * Apply decryption and checksumming functions to a message.  The offset and
605  * length are updated to reflect the actual content of the encrypted region.
606  */
krb5_aead_decrypt(const struct krb5_enctype * krb5,struct crypto_aead * aead,struct scatterlist * sg,unsigned int nr_sg,size_t * _offset,size_t * _len)607 int krb5_aead_decrypt(const struct krb5_enctype *krb5,
608 		      struct crypto_aead *aead,
609 		      struct scatterlist *sg, unsigned int nr_sg,
610 		      size_t *_offset, size_t *_len)
611 {
612 	struct aead_request *req;
613 	size_t bsize;
614 	void *buffer;
615 	int ret;
616 	u8 *iv;
617 
618 	if (WARN_ON(*_offset != 0))
619 		return -EINVAL; /* Can't set offset on aead */
620 
621 	if (*_len < krb5->conf_len + krb5->cksum_len)
622 		return -EPROTO;
623 
624 	bsize = krb5_aead_size(aead) +
625 		krb5_aead_ivsize(aead);
626 	buffer = kzalloc(bsize, GFP_NOFS);
627 	if (!buffer)
628 		return -ENOMEM;
629 
630 	/* Decrypt the message and verify its checksum. */
631 	req = buffer;
632 	iv = buffer + krb5_aead_size(aead);
633 
634 	aead_request_set_tfm(req, aead);
635 	aead_request_set_callback(req, 0, NULL, NULL);
636 	aead_request_set_crypt(req, sg, sg, *_len, iv);
637 	ret = crypto_aead_decrypt(req);
638 	if (ret < 0)
639 		goto error;
640 
641 	/* Adjust the boundaries of the data. */
642 	*_offset += krb5->conf_len;
643 	*_len -= krb5->conf_len + krb5->cksum_len;
644 	ret = 0;
645 
646 error:
647 	kfree_sensitive(buffer);
648 	return ret;
649 }
650 
651 /*
652  * Generate a checksum over some metadata and part of an skbuff and insert the
653  * MIC into the skbuff immediately prior to the data.
654  */
rfc3961_get_mic(const struct krb5_enctype * krb5,struct crypto_shash * shash,const struct krb5_buffer * metadata,struct scatterlist * sg,unsigned int nr_sg,size_t sg_len,size_t data_offset,size_t data_len)655 ssize_t rfc3961_get_mic(const struct krb5_enctype *krb5,
656 			struct crypto_shash *shash,
657 			const struct krb5_buffer *metadata,
658 			struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
659 			size_t data_offset, size_t data_len)
660 {
661 	struct shash_desc *desc;
662 	ssize_t ret, done;
663 	size_t bsize;
664 	void *buffer, *digest;
665 
666 	if (WARN_ON(data_offset != krb5->cksum_len))
667 		return -EMSGSIZE;
668 
669 	bsize = krb5_shash_size(shash) +
670 		krb5_digest_size(shash);
671 	buffer = kzalloc(bsize, GFP_NOFS);
672 	if (!buffer)
673 		return -ENOMEM;
674 
675 	/* Calculate the MIC with key Kc and store it into the skb */
676 	desc = buffer;
677 	desc->tfm = shash;
678 	ret = crypto_shash_init(desc);
679 	if (ret < 0)
680 		goto error;
681 
682 	if (metadata) {
683 		ret = crypto_shash_update(desc, metadata->data, metadata->len);
684 		if (ret < 0)
685 			goto error;
686 	}
687 
688 	ret = crypto_shash_update_sg(desc, sg, data_offset, data_len);
689 	if (ret < 0)
690 		goto error;
691 
692 	digest = buffer + krb5_shash_size(shash);
693 	ret = crypto_shash_final(desc, digest);
694 	if (ret < 0)
695 		goto error;
696 
697 	ret = -EFAULT;
698 	done = sg_pcopy_from_buffer(sg, nr_sg, digest, krb5->cksum_len,
699 				    data_offset - krb5->cksum_len);
700 	if (done != krb5->cksum_len)
701 		goto error;
702 
703 	ret = krb5->cksum_len + data_len;
704 
705 error:
706 	kfree_sensitive(buffer);
707 	return ret;
708 }
709 
710 /*
711  * Check the MIC on a region of an skbuff.  The offset and length are updated
712  * to reflect the actual content of the secure region.
713  */
rfc3961_verify_mic(const struct krb5_enctype * krb5,struct crypto_shash * shash,const struct krb5_buffer * metadata,struct scatterlist * sg,unsigned int nr_sg,size_t * _offset,size_t * _len)714 int rfc3961_verify_mic(const struct krb5_enctype *krb5,
715 		       struct crypto_shash *shash,
716 		       const struct krb5_buffer *metadata,
717 		       struct scatterlist *sg, unsigned int nr_sg,
718 		       size_t *_offset, size_t *_len)
719 {
720 	struct shash_desc *desc;
721 	ssize_t done;
722 	size_t bsize, data_offset, data_len, offset = *_offset, len = *_len;
723 	void *buffer = NULL;
724 	int ret;
725 	u8 *cksum, *cksum2;
726 
727 	if (len < krb5->cksum_len)
728 		return -EPROTO;
729 	data_offset = offset + krb5->cksum_len;
730 	data_len = len - krb5->cksum_len;
731 
732 	bsize = krb5_shash_size(shash) +
733 		krb5_digest_size(shash) * 2;
734 	buffer = kzalloc(bsize, GFP_NOFS);
735 	if (!buffer)
736 		return -ENOMEM;
737 
738 	cksum = buffer +
739 		krb5_shash_size(shash);
740 	cksum2 = buffer +
741 		krb5_shash_size(shash) +
742 		krb5_digest_size(shash);
743 
744 	/* Calculate the MIC */
745 	desc = buffer;
746 	desc->tfm = shash;
747 	ret = crypto_shash_init(desc);
748 	if (ret < 0)
749 		goto error;
750 
751 	if (metadata) {
752 		ret = crypto_shash_update(desc, metadata->data, metadata->len);
753 		if (ret < 0)
754 			goto error;
755 	}
756 
757 	crypto_shash_update_sg(desc, sg, data_offset, data_len);
758 	crypto_shash_final(desc, cksum);
759 
760 	ret = -EFAULT;
761 	done = sg_pcopy_to_buffer(sg, nr_sg, cksum2, krb5->cksum_len, offset);
762 	if (done != krb5->cksum_len)
763 		goto error;
764 
765 	if (memcmp(cksum, cksum2, krb5->cksum_len) != 0) {
766 		ret = -EBADMSG;
767 		goto error;
768 	}
769 
770 	*_offset += krb5->cksum_len;
771 	*_len -= krb5->cksum_len;
772 	ret = 0;
773 
774 error:
775 	kfree_sensitive(buffer);
776 	return ret;
777 }
778 
779 const struct krb5_crypto_profile rfc3961_simplified_profile = {
780 	.calc_PRF		= rfc3961_calc_PRF,
781 	.calc_Kc		= rfc3961_calc_DK,
782 	.calc_Ke		= rfc3961_calc_DK,
783 	.calc_Ki		= rfc3961_calc_DK,
784 	.derive_encrypt_keys	= authenc_derive_encrypt_keys,
785 	.load_encrypt_keys	= authenc_load_encrypt_keys,
786 	.derive_checksum_key	= rfc3961_derive_checksum_key,
787 	.load_checksum_key	= rfc3961_load_checksum_key,
788 	.encrypt		= krb5_aead_encrypt,
789 	.decrypt		= krb5_aead_decrypt,
790 	.get_mic		= rfc3961_get_mic,
791 	.verify_mic		= rfc3961_verify_mic,
792 };
793