1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/kstrtox.h>
27 #include <linux/memblock.h>
28 #include <linux/export.h>
29 #include <linux/mm.h>
30 #include <linux/page-flags.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/reboot.h>
35 #include <linux/virtio_anchor.h>
36 #include <linux/stackprotector.h>
37
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51
52 #include <asm/cpuid.h>
53 #include <asm/paravirt.h>
54 #include <asm/apic.h>
55 #include <asm/page.h>
56 #include <asm/xen/pci.h>
57 #include <asm/xen/hypercall.h>
58 #include <asm/xen/hypervisor.h>
59 #include <asm/xen/cpuid.h>
60 #include <asm/fixmap.h>
61 #include <asm/processor.h>
62 #include <asm/proto.h>
63 #include <asm/msr-index.h>
64 #include <asm/traps.h>
65 #include <asm/setup.h>
66 #include <asm/desc.h>
67 #include <asm/pgalloc.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/hypervisor.h>
71 #include <asm/mach_traps.h>
72 #include <asm/mtrr.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76 #include <asm/irq_stack.h>
77 #ifdef CONFIG_X86_IOPL_IOPERM
78 #include <asm/io_bitmap.h>
79 #endif
80
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/proc_cap_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88
89 #include "xen-ops.h"
90
91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92
93 void *xen_initial_gdt;
94
95 static int xen_cpu_up_prepare_pv(unsigned int cpu);
96 static int xen_cpu_dead_pv(unsigned int cpu);
97
98 #ifndef CONFIG_PREEMPTION
99 /*
100 * Some hypercalls issued by the toolstack can take many 10s of
101 * seconds. Allow tasks running hypercalls via the privcmd driver to
102 * be voluntarily preempted even if full kernel preemption is
103 * disabled.
104 *
105 * Such preemptible hypercalls are bracketed by
106 * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end()
107 * calls.
108 */
109 DEFINE_PER_CPU(bool, xen_in_preemptible_hcall);
110 EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
111
112 /*
113 * In case of scheduling the flag must be cleared and restored after
114 * returning from schedule as the task might move to a different CPU.
115 */
get_and_clear_inhcall(void)116 static __always_inline bool get_and_clear_inhcall(void)
117 {
118 bool inhcall = __this_cpu_read(xen_in_preemptible_hcall);
119
120 __this_cpu_write(xen_in_preemptible_hcall, false);
121 return inhcall;
122 }
123
restore_inhcall(bool inhcall)124 static __always_inline void restore_inhcall(bool inhcall)
125 {
126 __this_cpu_write(xen_in_preemptible_hcall, inhcall);
127 }
128
129 #else
130
get_and_clear_inhcall(void)131 static __always_inline bool get_and_clear_inhcall(void) { return false; }
restore_inhcall(bool inhcall)132 static __always_inline void restore_inhcall(bool inhcall) { }
133
134 #endif
135
136 struct tls_descs {
137 struct desc_struct desc[3];
138 };
139
140 DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
141
xen_get_lazy_mode(void)142 enum xen_lazy_mode xen_get_lazy_mode(void)
143 {
144 if (in_interrupt())
145 return XEN_LAZY_NONE;
146
147 return this_cpu_read(xen_lazy_mode);
148 }
149
150 /*
151 * Updating the 3 TLS descriptors in the GDT on every task switch is
152 * surprisingly expensive so we avoid updating them if they haven't
153 * changed. Since Xen writes different descriptors than the one
154 * passed in the update_descriptor hypercall we keep shadow copies to
155 * compare against.
156 */
157 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
158
159 static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
160
parse_xen_msr_safe(char * str)161 static int __init parse_xen_msr_safe(char *str)
162 {
163 if (str)
164 return kstrtobool(str, &xen_msr_safe);
165 return -EINVAL;
166 }
167 early_param("xen_msr_safe", parse_xen_msr_safe);
168
169 /* Get MTRR settings from Xen and put them into mtrr_state. */
xen_set_mtrr_data(void)170 static void __init xen_set_mtrr_data(void)
171 {
172 #ifdef CONFIG_MTRR
173 struct xen_platform_op op = {
174 .cmd = XENPF_read_memtype,
175 .interface_version = XENPF_INTERFACE_VERSION,
176 };
177 unsigned int reg;
178 unsigned long mask;
179 uint32_t eax, width;
180 static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
181
182 /* Get physical address width (only 64-bit cpus supported). */
183 width = 36;
184 eax = cpuid_eax(0x80000000);
185 if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
186 eax = cpuid_eax(0x80000008);
187 width = eax & 0xff;
188 }
189
190 for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
191 op.u.read_memtype.reg = reg;
192 if (HYPERVISOR_platform_op(&op))
193 break;
194
195 /*
196 * Only called in dom0, which has all RAM PFNs mapped at
197 * RAM MFNs, and all PCI space etc. is identity mapped.
198 * This means we can treat MFN == PFN regarding MTRR settings.
199 */
200 var[reg].base_lo = op.u.read_memtype.type;
201 var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
202 var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
203 mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
204 mask &= (1UL << width) - 1;
205 if (mask)
206 mask |= MTRR_PHYSMASK_V;
207 var[reg].mask_lo = mask;
208 var[reg].mask_hi = mask >> 32;
209 }
210
211 /* Only overwrite MTRR state if any MTRR could be got from Xen. */
212 if (reg)
213 guest_force_mtrr_state(var, reg, MTRR_TYPE_UNCACHABLE);
214 #endif
215 }
216
xen_pv_init_platform(void)217 static void __init xen_pv_init_platform(void)
218 {
219 /* PV guests can't operate virtio devices without grants. */
220 if (IS_ENABLED(CONFIG_XEN_VIRTIO))
221 virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
222
223 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
224
225 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
226 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
227
228 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
229 xen_vcpu_info_reset(0);
230
231 /* pvclock is in shared info area */
232 xen_init_time_ops();
233
234 if (xen_initial_domain())
235 xen_set_mtrr_data();
236 else
237 guest_force_mtrr_state(NULL, 0, MTRR_TYPE_WRBACK);
238
239 /* Adjust nr_cpu_ids before "enumeration" happens */
240 xen_smp_count_cpus();
241 }
242
xen_pv_guest_late_init(void)243 static void __init xen_pv_guest_late_init(void)
244 {
245 #ifndef CONFIG_SMP
246 /* Setup shared vcpu info for non-smp configurations */
247 xen_setup_vcpu_info_placement();
248 #endif
249 }
250
251 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
252 static __read_mostly unsigned int cpuid_leaf5_edx_val;
253
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)254 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
255 unsigned int *cx, unsigned int *dx)
256 {
257 unsigned int maskebx = ~0;
258 unsigned int or_ebx = 0;
259
260 /*
261 * Mask out inconvenient features, to try and disable as many
262 * unsupported kernel subsystems as possible.
263 */
264 switch (*ax) {
265 case 0x1:
266 /* Replace initial APIC ID in bits 24-31 of EBX. */
267 /* See xen_pv_smp_config() for related topology preparations. */
268 maskebx = 0x00ffffff;
269 or_ebx = smp_processor_id() << 24;
270 break;
271
272 case CPUID_LEAF_MWAIT:
273 /* Synthesize the values.. */
274 *ax = 0;
275 *bx = 0;
276 *cx = cpuid_leaf5_ecx_val;
277 *dx = cpuid_leaf5_edx_val;
278 return;
279
280 case 0xb:
281 /* Suppress extended topology stuff */
282 maskebx = 0;
283 break;
284 }
285
286 asm(XEN_EMULATE_PREFIX "cpuid"
287 : "=a" (*ax),
288 "=b" (*bx),
289 "=c" (*cx),
290 "=d" (*dx)
291 : "0" (*ax), "2" (*cx));
292
293 *bx &= maskebx;
294 *bx |= or_ebx;
295 }
296
xen_check_mwait(void)297 static bool __init xen_check_mwait(void)
298 {
299 #ifdef CONFIG_ACPI
300 struct xen_platform_op op = {
301 .cmd = XENPF_set_processor_pminfo,
302 .u.set_pminfo.id = -1,
303 .u.set_pminfo.type = XEN_PM_PDC,
304 };
305 uint32_t buf[3];
306 unsigned int ax, bx, cx, dx;
307 unsigned int mwait_mask;
308
309 /* We need to determine whether it is OK to expose the MWAIT
310 * capability to the kernel to harvest deeper than C3 states from ACPI
311 * _CST using the processor_harvest_xen.c module. For this to work, we
312 * need to gather the MWAIT_LEAF values (which the cstate.c code
313 * checks against). The hypervisor won't expose the MWAIT flag because
314 * it would break backwards compatibility; so we will find out directly
315 * from the hardware and hypercall.
316 */
317 if (!xen_initial_domain())
318 return false;
319
320 /*
321 * When running under platform earlier than Xen4.2, do not expose
322 * mwait, to avoid the risk of loading native acpi pad driver
323 */
324 if (!xen_running_on_version_or_later(4, 2))
325 return false;
326
327 ax = 1;
328 cx = 0;
329
330 native_cpuid(&ax, &bx, &cx, &dx);
331
332 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
333 (1 << (X86_FEATURE_MWAIT % 32));
334
335 if ((cx & mwait_mask) != mwait_mask)
336 return false;
337
338 /* We need to emulate the MWAIT_LEAF and for that we need both
339 * ecx and edx. The hypercall provides only partial information.
340 */
341
342 ax = CPUID_LEAF_MWAIT;
343 bx = 0;
344 cx = 0;
345 dx = 0;
346
347 native_cpuid(&ax, &bx, &cx, &dx);
348
349 /* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
350 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
351 */
352 buf[0] = ACPI_PDC_REVISION_ID;
353 buf[1] = 1;
354 buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
355
356 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
357
358 if ((HYPERVISOR_platform_op(&op) == 0) &&
359 (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
360 cpuid_leaf5_ecx_val = cx;
361 cpuid_leaf5_edx_val = dx;
362 }
363 return true;
364 #else
365 return false;
366 #endif
367 }
368
xen_check_xsave(void)369 static bool __init xen_check_xsave(void)
370 {
371 unsigned int cx, xsave_mask;
372
373 cx = cpuid_ecx(1);
374
375 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
376 (1 << (X86_FEATURE_OSXSAVE % 32));
377
378 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
379 return (cx & xsave_mask) == xsave_mask;
380 }
381
xen_init_capabilities(void)382 static void __init xen_init_capabilities(void)
383 {
384 setup_force_cpu_cap(X86_FEATURE_XENPV);
385 setup_clear_cpu_cap(X86_FEATURE_DCA);
386 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
387 setup_clear_cpu_cap(X86_FEATURE_MTRR);
388 setup_clear_cpu_cap(X86_FEATURE_ACC);
389 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
390 setup_clear_cpu_cap(X86_FEATURE_SME);
391 setup_clear_cpu_cap(X86_FEATURE_LKGS);
392
393 /*
394 * Xen PV would need some work to support PCID: CR3 handling as well
395 * as xen_flush_tlb_others() would need updating.
396 */
397 setup_clear_cpu_cap(X86_FEATURE_PCID);
398
399 if (!xen_initial_domain())
400 setup_clear_cpu_cap(X86_FEATURE_ACPI);
401
402 if (xen_check_mwait())
403 setup_force_cpu_cap(X86_FEATURE_MWAIT);
404 else
405 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
406
407 if (!xen_check_xsave()) {
408 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
409 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
410 }
411 }
412
xen_set_debugreg(int reg,unsigned long val)413 static noinstr void xen_set_debugreg(int reg, unsigned long val)
414 {
415 HYPERVISOR_set_debugreg(reg, val);
416 }
417
xen_get_debugreg(int reg)418 static noinstr unsigned long xen_get_debugreg(int reg)
419 {
420 return HYPERVISOR_get_debugreg(reg);
421 }
422
xen_start_context_switch(struct task_struct * prev)423 static void xen_start_context_switch(struct task_struct *prev)
424 {
425 BUG_ON(preemptible());
426
427 if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
428 arch_leave_lazy_mmu_mode();
429 set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
430 }
431 enter_lazy(XEN_LAZY_CPU);
432 }
433
xen_end_context_switch(struct task_struct * next)434 static void xen_end_context_switch(struct task_struct *next)
435 {
436 BUG_ON(preemptible());
437
438 xen_mc_flush();
439 leave_lazy(XEN_LAZY_CPU);
440 if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
441 arch_enter_lazy_mmu_mode();
442 }
443
xen_store_tr(void)444 static unsigned long xen_store_tr(void)
445 {
446 return 0;
447 }
448
449 /*
450 * Set the page permissions for a particular virtual address. If the
451 * address is a vmalloc mapping (or other non-linear mapping), then
452 * find the linear mapping of the page and also set its protections to
453 * match.
454 */
set_aliased_prot(void * v,pgprot_t prot)455 static void set_aliased_prot(void *v, pgprot_t prot)
456 {
457 int level;
458 pte_t *ptep;
459 pte_t pte;
460 unsigned long pfn;
461 unsigned char dummy;
462 void *va;
463
464 ptep = lookup_address((unsigned long)v, &level);
465 BUG_ON(ptep == NULL);
466
467 pfn = pte_pfn(*ptep);
468 pte = pfn_pte(pfn, prot);
469
470 /*
471 * Careful: update_va_mapping() will fail if the virtual address
472 * we're poking isn't populated in the page tables. We don't
473 * need to worry about the direct map (that's always in the page
474 * tables), but we need to be careful about vmap space. In
475 * particular, the top level page table can lazily propagate
476 * entries between processes, so if we've switched mms since we
477 * vmapped the target in the first place, we might not have the
478 * top-level page table entry populated.
479 *
480 * We disable preemption because we want the same mm active when
481 * we probe the target and when we issue the hypercall. We'll
482 * have the same nominal mm, but if we're a kernel thread, lazy
483 * mm dropping could change our pgd.
484 *
485 * Out of an abundance of caution, this uses __get_user() to fault
486 * in the target address just in case there's some obscure case
487 * in which the target address isn't readable.
488 */
489
490 preempt_disable();
491
492 copy_from_kernel_nofault(&dummy, v, 1);
493
494 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
495 BUG();
496
497 va = __va(PFN_PHYS(pfn));
498
499 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
500 BUG();
501
502 preempt_enable();
503 }
504
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)505 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
506 {
507 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
508 int i;
509
510 /*
511 * We need to mark the all aliases of the LDT pages RO. We
512 * don't need to call vm_flush_aliases(), though, since that's
513 * only responsible for flushing aliases out the TLBs, not the
514 * page tables, and Xen will flush the TLB for us if needed.
515 *
516 * To avoid confusing future readers: none of this is necessary
517 * to load the LDT. The hypervisor only checks this when the
518 * LDT is faulted in due to subsequent descriptor access.
519 */
520
521 for (i = 0; i < entries; i += entries_per_page)
522 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
523 }
524
xen_free_ldt(struct desc_struct * ldt,unsigned entries)525 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
526 {
527 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
528 int i;
529
530 for (i = 0; i < entries; i += entries_per_page)
531 set_aliased_prot(ldt + i, PAGE_KERNEL);
532 }
533
xen_set_ldt(const void * addr,unsigned entries)534 static void xen_set_ldt(const void *addr, unsigned entries)
535 {
536 struct mmuext_op *op;
537 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
538
539 trace_xen_cpu_set_ldt(addr, entries);
540
541 op = mcs.args;
542 op->cmd = MMUEXT_SET_LDT;
543 op->arg1.linear_addr = (unsigned long)addr;
544 op->arg2.nr_ents = entries;
545
546 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
547
548 xen_mc_issue(XEN_LAZY_CPU);
549 }
550
xen_load_gdt(const struct desc_ptr * dtr)551 static void xen_load_gdt(const struct desc_ptr *dtr)
552 {
553 unsigned long va = dtr->address;
554 unsigned int size = dtr->size + 1;
555 unsigned long pfn, mfn;
556 int level;
557 pte_t *ptep;
558 void *virt;
559
560 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
561 BUG_ON(size > PAGE_SIZE);
562 BUG_ON(va & ~PAGE_MASK);
563
564 /*
565 * The GDT is per-cpu and is in the percpu data area.
566 * That can be virtually mapped, so we need to do a
567 * page-walk to get the underlying MFN for the
568 * hypercall. The page can also be in the kernel's
569 * linear range, so we need to RO that mapping too.
570 */
571 ptep = lookup_address(va, &level);
572 BUG_ON(ptep == NULL);
573
574 pfn = pte_pfn(*ptep);
575 mfn = pfn_to_mfn(pfn);
576 virt = __va(PFN_PHYS(pfn));
577
578 make_lowmem_page_readonly((void *)va);
579 make_lowmem_page_readonly(virt);
580
581 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
582 BUG();
583 }
584
585 /*
586 * load_gdt for early boot, when the gdt is only mapped once
587 */
xen_load_gdt_boot(const struct desc_ptr * dtr)588 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
589 {
590 unsigned long va = dtr->address;
591 unsigned int size = dtr->size + 1;
592 unsigned long pfn, mfn;
593 pte_t pte;
594
595 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
596 BUG_ON(size > PAGE_SIZE);
597 BUG_ON(va & ~PAGE_MASK);
598
599 pfn = virt_to_pfn((void *)va);
600 mfn = pfn_to_mfn(pfn);
601
602 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
603
604 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
605 BUG();
606
607 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
608 BUG();
609 }
610
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)611 static inline bool desc_equal(const struct desc_struct *d1,
612 const struct desc_struct *d2)
613 {
614 return !memcmp(d1, d2, sizeof(*d1));
615 }
616
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)617 static void load_TLS_descriptor(struct thread_struct *t,
618 unsigned int cpu, unsigned int i)
619 {
620 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
621 struct desc_struct *gdt;
622 xmaddr_t maddr;
623 struct multicall_space mc;
624
625 if (desc_equal(shadow, &t->tls_array[i]))
626 return;
627
628 *shadow = t->tls_array[i];
629
630 gdt = get_cpu_gdt_rw(cpu);
631 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
632 mc = __xen_mc_entry(0);
633
634 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
635 }
636
xen_load_tls(struct thread_struct * t,unsigned int cpu)637 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
638 {
639 /*
640 * In lazy mode we need to zero %fs, otherwise we may get an
641 * exception between the new %fs descriptor being loaded and
642 * %fs being effectively cleared at __switch_to().
643 */
644 if (xen_get_lazy_mode() == XEN_LAZY_CPU)
645 loadsegment(fs, 0);
646
647 xen_mc_batch();
648
649 load_TLS_descriptor(t, cpu, 0);
650 load_TLS_descriptor(t, cpu, 1);
651 load_TLS_descriptor(t, cpu, 2);
652
653 xen_mc_issue(XEN_LAZY_CPU);
654 }
655
xen_load_gs_index(unsigned int idx)656 static void xen_load_gs_index(unsigned int idx)
657 {
658 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
659 BUG();
660 }
661
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)662 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
663 const void *ptr)
664 {
665 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
666 u64 entry = *(u64 *)ptr;
667
668 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
669
670 preempt_disable();
671
672 xen_mc_flush();
673 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
674 BUG();
675
676 preempt_enable();
677 }
678
679 void noist_exc_debug(struct pt_regs *regs);
680
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)681 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
682 {
683 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
684 exc_nmi(regs);
685 }
686
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)687 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
688 {
689 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */
690 exc_double_fault(regs, error_code);
691 }
692
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)693 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
694 {
695 /*
696 * There's no IST on Xen PV, but we still need to dispatch
697 * to the correct handler.
698 */
699 if (user_mode(regs))
700 noist_exc_debug(regs);
701 else
702 exc_debug(regs);
703 }
704
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)705 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
706 {
707 /* This should never happen and there is no way to handle it. */
708 instrumentation_begin();
709 pr_err("Unknown trap in Xen PV mode.");
710 BUG();
711 instrumentation_end();
712 }
713
714 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)715 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
716 {
717 /*
718 * There's no IST on Xen PV, but we still need to dispatch
719 * to the correct handler.
720 */
721 if (user_mode(regs))
722 noist_exc_machine_check(regs);
723 else
724 exc_machine_check(regs);
725 }
726 #endif
727
__xen_pv_evtchn_do_upcall(struct pt_regs * regs)728 static void __xen_pv_evtchn_do_upcall(struct pt_regs *regs)
729 {
730 struct pt_regs *old_regs = set_irq_regs(regs);
731
732 inc_irq_stat(irq_hv_callback_count);
733
734 xen_evtchn_do_upcall();
735
736 set_irq_regs(old_regs);
737 }
738
xen_pv_evtchn_do_upcall(struct pt_regs * regs)739 __visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs)
740 {
741 irqentry_state_t state = irqentry_enter(regs);
742 bool inhcall;
743
744 instrumentation_begin();
745 run_sysvec_on_irqstack_cond(__xen_pv_evtchn_do_upcall, regs);
746
747 inhcall = get_and_clear_inhcall();
748 if (inhcall && !WARN_ON_ONCE(state.exit_rcu)) {
749 irqentry_exit_cond_resched();
750 instrumentation_end();
751 restore_inhcall(inhcall);
752 } else {
753 instrumentation_end();
754 irqentry_exit(regs, state);
755 }
756 }
757
758 struct trap_array_entry {
759 void (*orig)(void);
760 void (*xen)(void);
761 bool ist_okay;
762 };
763
764 #define TRAP_ENTRY(func, ist_ok) { \
765 .orig = asm_##func, \
766 .xen = xen_asm_##func, \
767 .ist_okay = ist_ok }
768
769 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
770 .orig = asm_##func, \
771 .xen = xen_asm_xenpv_##func, \
772 .ist_okay = ist_ok }
773
774 static struct trap_array_entry trap_array[] = {
775 TRAP_ENTRY_REDIR(exc_debug, true ),
776 TRAP_ENTRY_REDIR(exc_double_fault, true ),
777 #ifdef CONFIG_X86_MCE
778 TRAP_ENTRY_REDIR(exc_machine_check, true ),
779 #endif
780 TRAP_ENTRY_REDIR(exc_nmi, true ),
781 TRAP_ENTRY(exc_int3, false ),
782 TRAP_ENTRY(exc_overflow, false ),
783 #ifdef CONFIG_IA32_EMULATION
784 TRAP_ENTRY(int80_emulation, false ),
785 #endif
786 TRAP_ENTRY(exc_page_fault, false ),
787 TRAP_ENTRY(exc_divide_error, false ),
788 TRAP_ENTRY(exc_bounds, false ),
789 TRAP_ENTRY(exc_invalid_op, false ),
790 TRAP_ENTRY(exc_device_not_available, false ),
791 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
792 TRAP_ENTRY(exc_invalid_tss, false ),
793 TRAP_ENTRY(exc_segment_not_present, false ),
794 TRAP_ENTRY(exc_stack_segment, false ),
795 TRAP_ENTRY(exc_general_protection, false ),
796 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
797 TRAP_ENTRY(exc_coprocessor_error, false ),
798 TRAP_ENTRY(exc_alignment_check, false ),
799 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
800 #ifdef CONFIG_X86_CET
801 TRAP_ENTRY(exc_control_protection, false ),
802 #endif
803 };
804
get_trap_addr(void ** addr,unsigned int ist)805 static bool __ref get_trap_addr(void **addr, unsigned int ist)
806 {
807 unsigned int nr;
808 bool ist_okay = false;
809 bool found = false;
810
811 /*
812 * Replace trap handler addresses by Xen specific ones.
813 * Check for known traps using IST and whitelist them.
814 * The debugger ones are the only ones we care about.
815 * Xen will handle faults like double_fault, so we should never see
816 * them. Warn if there's an unexpected IST-using fault handler.
817 */
818 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
819 struct trap_array_entry *entry = trap_array + nr;
820
821 if (*addr == entry->orig) {
822 *addr = entry->xen;
823 ist_okay = entry->ist_okay;
824 found = true;
825 break;
826 }
827 }
828
829 if (nr == ARRAY_SIZE(trap_array) &&
830 *addr >= (void *)early_idt_handler_array[0] &&
831 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
832 nr = (*addr - (void *)early_idt_handler_array[0]) /
833 EARLY_IDT_HANDLER_SIZE;
834 *addr = (void *)xen_early_idt_handler_array[nr];
835 found = true;
836 }
837
838 if (!found)
839 *addr = (void *)xen_asm_exc_xen_unknown_trap;
840
841 if (WARN_ON(found && ist != 0 && !ist_okay))
842 return false;
843
844 return true;
845 }
846
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)847 static int cvt_gate_to_trap(int vector, const gate_desc *val,
848 struct trap_info *info)
849 {
850 unsigned long addr;
851
852 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
853 return 0;
854
855 info->vector = vector;
856
857 addr = gate_offset(val);
858 if (!get_trap_addr((void **)&addr, val->bits.ist))
859 return 0;
860 info->address = addr;
861
862 info->cs = gate_segment(val);
863 info->flags = val->bits.dpl;
864 /* interrupt gates clear IF */
865 if (val->bits.type == GATE_INTERRUPT)
866 info->flags |= 1 << 2;
867
868 return 1;
869 }
870
871 /* Locations of each CPU's IDT */
872 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
873
874 /* Set an IDT entry. If the entry is part of the current IDT, then
875 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)876 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
877 {
878 unsigned long p = (unsigned long)&dt[entrynum];
879 unsigned long start, end;
880
881 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
882
883 preempt_disable();
884
885 start = __this_cpu_read(idt_desc.address);
886 end = start + __this_cpu_read(idt_desc.size) + 1;
887
888 xen_mc_flush();
889
890 native_write_idt_entry(dt, entrynum, g);
891
892 if (p >= start && (p + 8) <= end) {
893 struct trap_info info[2];
894
895 info[1].address = 0;
896
897 if (cvt_gate_to_trap(entrynum, g, &info[0]))
898 if (HYPERVISOR_set_trap_table(info))
899 BUG();
900 }
901
902 preempt_enable();
903 }
904
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)905 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
906 struct trap_info *traps, bool full)
907 {
908 unsigned in, out, count;
909
910 count = (desc->size+1) / sizeof(gate_desc);
911 BUG_ON(count > 256);
912
913 for (in = out = 0; in < count; in++) {
914 gate_desc *entry = (gate_desc *)(desc->address) + in;
915
916 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
917 out++;
918 }
919
920 return out;
921 }
922
xen_copy_trap_info(struct trap_info * traps)923 void xen_copy_trap_info(struct trap_info *traps)
924 {
925 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
926
927 xen_convert_trap_info(desc, traps, true);
928 }
929
930 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
931 hold a spinlock to protect the static traps[] array (static because
932 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)933 static void xen_load_idt(const struct desc_ptr *desc)
934 {
935 static DEFINE_SPINLOCK(lock);
936 static struct trap_info traps[257];
937 static const struct trap_info zero = { };
938 unsigned out;
939
940 trace_xen_cpu_load_idt(desc);
941
942 spin_lock(&lock);
943
944 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
945
946 out = xen_convert_trap_info(desc, traps, false);
947 traps[out] = zero;
948
949 xen_mc_flush();
950 if (HYPERVISOR_set_trap_table(traps))
951 BUG();
952
953 spin_unlock(&lock);
954 }
955
956 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
957 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)958 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
959 const void *desc, int type)
960 {
961 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
962
963 preempt_disable();
964
965 switch (type) {
966 case DESC_LDT:
967 case DESC_TSS:
968 /* ignore */
969 break;
970
971 default: {
972 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
973
974 xen_mc_flush();
975 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
976 BUG();
977 }
978
979 }
980
981 preempt_enable();
982 }
983
984 /*
985 * Version of write_gdt_entry for use at early boot-time needed to
986 * update an entry as simply as possible.
987 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)988 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
989 const void *desc, int type)
990 {
991 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
992
993 switch (type) {
994 case DESC_LDT:
995 case DESC_TSS:
996 /* ignore */
997 break;
998
999 default: {
1000 xmaddr_t maddr = virt_to_machine(&dt[entry]);
1001
1002 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
1003 dt[entry] = *(struct desc_struct *)desc;
1004 }
1005
1006 }
1007 }
1008
xen_load_sp0(unsigned long sp0)1009 static void xen_load_sp0(unsigned long sp0)
1010 {
1011 struct multicall_space mcs;
1012
1013 mcs = xen_mc_entry(0);
1014 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
1015 xen_mc_issue(XEN_LAZY_CPU);
1016 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
1017 }
1018
1019 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)1020 static void xen_invalidate_io_bitmap(void)
1021 {
1022 struct physdev_set_iobitmap iobitmap = {
1023 .bitmap = NULL,
1024 .nr_ports = 0,
1025 };
1026
1027 native_tss_invalidate_io_bitmap();
1028 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1029 }
1030
xen_update_io_bitmap(void)1031 static void xen_update_io_bitmap(void)
1032 {
1033 struct physdev_set_iobitmap iobitmap;
1034 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1035
1036 native_tss_update_io_bitmap();
1037
1038 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
1039 tss->x86_tss.io_bitmap_base;
1040 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
1041 iobitmap.nr_ports = 0;
1042 else
1043 iobitmap.nr_ports = IO_BITMAP_BITS;
1044
1045 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
1046 }
1047 #endif
1048
xen_io_delay(void)1049 static void xen_io_delay(void)
1050 {
1051 }
1052
1053 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1054
xen_read_cr0(void)1055 static unsigned long xen_read_cr0(void)
1056 {
1057 unsigned long cr0 = this_cpu_read(xen_cr0_value);
1058
1059 if (unlikely(cr0 == 0)) {
1060 cr0 = native_read_cr0();
1061 this_cpu_write(xen_cr0_value, cr0);
1062 }
1063
1064 return cr0;
1065 }
1066
xen_write_cr0(unsigned long cr0)1067 static void xen_write_cr0(unsigned long cr0)
1068 {
1069 struct multicall_space mcs;
1070
1071 this_cpu_write(xen_cr0_value, cr0);
1072
1073 /* Only pay attention to cr0.TS; everything else is
1074 ignored. */
1075 mcs = xen_mc_entry(0);
1076
1077 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1078
1079 xen_mc_issue(XEN_LAZY_CPU);
1080 }
1081
xen_write_cr4(unsigned long cr4)1082 static void xen_write_cr4(unsigned long cr4)
1083 {
1084 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1085
1086 native_write_cr4(cr4);
1087 }
1088
xen_do_read_msr(unsigned int msr,int * err)1089 static u64 xen_do_read_msr(unsigned int msr, int *err)
1090 {
1091 u64 val = 0; /* Avoid uninitialized value for safe variant. */
1092
1093 if (pmu_msr_read(msr, &val, err))
1094 return val;
1095
1096 if (err)
1097 val = native_read_msr_safe(msr, err);
1098 else
1099 val = native_read_msr(msr);
1100
1101 switch (msr) {
1102 case MSR_IA32_APICBASE:
1103 val &= ~X2APIC_ENABLE;
1104 if (smp_processor_id() == 0)
1105 val |= MSR_IA32_APICBASE_BSP;
1106 else
1107 val &= ~MSR_IA32_APICBASE_BSP;
1108 break;
1109 }
1110 return val;
1111 }
1112
set_seg(unsigned int which,unsigned int low,unsigned int high,int * err)1113 static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1114 int *err)
1115 {
1116 u64 base = ((u64)high << 32) | low;
1117
1118 if (HYPERVISOR_set_segment_base(which, base) == 0)
1119 return;
1120
1121 if (err)
1122 *err = -EIO;
1123 else
1124 WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1125 }
1126
1127 /*
1128 * Support write_msr_safe() and write_msr() semantics.
1129 * With err == NULL write_msr() semantics are selected.
1130 * Supplying an err pointer requires err to be pre-initialized with 0.
1131 */
xen_do_write_msr(unsigned int msr,unsigned int low,unsigned int high,int * err)1132 static void xen_do_write_msr(unsigned int msr, unsigned int low,
1133 unsigned int high, int *err)
1134 {
1135 switch (msr) {
1136 case MSR_FS_BASE:
1137 set_seg(SEGBASE_FS, low, high, err);
1138 break;
1139
1140 case MSR_KERNEL_GS_BASE:
1141 set_seg(SEGBASE_GS_USER, low, high, err);
1142 break;
1143
1144 case MSR_GS_BASE:
1145 set_seg(SEGBASE_GS_KERNEL, low, high, err);
1146 break;
1147
1148 case MSR_STAR:
1149 case MSR_CSTAR:
1150 case MSR_LSTAR:
1151 case MSR_SYSCALL_MASK:
1152 case MSR_IA32_SYSENTER_CS:
1153 case MSR_IA32_SYSENTER_ESP:
1154 case MSR_IA32_SYSENTER_EIP:
1155 /* Fast syscall setup is all done in hypercalls, so
1156 these are all ignored. Stub them out here to stop
1157 Xen console noise. */
1158 break;
1159
1160 default:
1161 if (!pmu_msr_write(msr, low, high, err)) {
1162 if (err)
1163 *err = native_write_msr_safe(msr, low, high);
1164 else
1165 native_write_msr(msr, low, high);
1166 }
1167 }
1168 }
1169
xen_read_msr_safe(unsigned int msr,int * err)1170 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1171 {
1172 return xen_do_read_msr(msr, err);
1173 }
1174
xen_write_msr_safe(unsigned int msr,unsigned int low,unsigned int high)1175 static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1176 unsigned int high)
1177 {
1178 int err = 0;
1179
1180 xen_do_write_msr(msr, low, high, &err);
1181
1182 return err;
1183 }
1184
xen_read_msr(unsigned int msr)1185 static u64 xen_read_msr(unsigned int msr)
1186 {
1187 int err;
1188
1189 return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1190 }
1191
xen_write_msr(unsigned int msr,unsigned low,unsigned high)1192 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1193 {
1194 int err;
1195
1196 xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1197 }
1198
1199 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1200 void __init xen_setup_vcpu_info_placement(void)
1201 {
1202 int cpu;
1203
1204 for_each_possible_cpu(cpu) {
1205 /* Set up direct vCPU id mapping for PV guests. */
1206 per_cpu(xen_vcpu_id, cpu) = cpu;
1207 xen_vcpu_setup(cpu);
1208 }
1209
1210 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1211 pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1212 pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1213 pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1214 }
1215
1216 static const struct pv_info xen_info __initconst = {
1217 .extra_user_64bit_cs = FLAT_USER_CS64,
1218 .name = "Xen",
1219 };
1220
1221 static const typeof(pv_ops) xen_cpu_ops __initconst = {
1222 .cpu = {
1223 .cpuid = xen_cpuid,
1224
1225 .set_debugreg = xen_set_debugreg,
1226 .get_debugreg = xen_get_debugreg,
1227
1228 .read_cr0 = xen_read_cr0,
1229 .write_cr0 = xen_write_cr0,
1230
1231 .write_cr4 = xen_write_cr4,
1232
1233 .read_msr = xen_read_msr,
1234 .write_msr = xen_write_msr,
1235
1236 .read_msr_safe = xen_read_msr_safe,
1237 .write_msr_safe = xen_write_msr_safe,
1238
1239 .read_pmc = xen_read_pmc,
1240
1241 .load_tr_desc = paravirt_nop,
1242 .set_ldt = xen_set_ldt,
1243 .load_gdt = xen_load_gdt,
1244 .load_idt = xen_load_idt,
1245 .load_tls = xen_load_tls,
1246 .load_gs_index = xen_load_gs_index,
1247
1248 .alloc_ldt = xen_alloc_ldt,
1249 .free_ldt = xen_free_ldt,
1250
1251 .store_tr = xen_store_tr,
1252
1253 .write_ldt_entry = xen_write_ldt_entry,
1254 .write_gdt_entry = xen_write_gdt_entry,
1255 .write_idt_entry = xen_write_idt_entry,
1256 .load_sp0 = xen_load_sp0,
1257
1258 #ifdef CONFIG_X86_IOPL_IOPERM
1259 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1260 .update_io_bitmap = xen_update_io_bitmap,
1261 #endif
1262 .io_delay = xen_io_delay,
1263
1264 .start_context_switch = xen_start_context_switch,
1265 .end_context_switch = xen_end_context_switch,
1266 },
1267 };
1268
xen_restart(char * msg)1269 static void xen_restart(char *msg)
1270 {
1271 xen_reboot(SHUTDOWN_reboot);
1272 }
1273
xen_machine_halt(void)1274 static void xen_machine_halt(void)
1275 {
1276 xen_reboot(SHUTDOWN_poweroff);
1277 }
1278
xen_machine_power_off(void)1279 static void xen_machine_power_off(void)
1280 {
1281 do_kernel_power_off();
1282 xen_reboot(SHUTDOWN_poweroff);
1283 }
1284
xen_crash_shutdown(struct pt_regs * regs)1285 static void xen_crash_shutdown(struct pt_regs *regs)
1286 {
1287 xen_reboot(SHUTDOWN_crash);
1288 }
1289
1290 static const struct machine_ops xen_machine_ops __initconst = {
1291 .restart = xen_restart,
1292 .halt = xen_machine_halt,
1293 .power_off = xen_machine_power_off,
1294 .shutdown = xen_machine_halt,
1295 .crash_shutdown = xen_crash_shutdown,
1296 .emergency_restart = xen_emergency_restart,
1297 };
1298
xen_get_nmi_reason(void)1299 static unsigned char xen_get_nmi_reason(void)
1300 {
1301 unsigned char reason = 0;
1302
1303 /* Construct a value which looks like it came from port 0x61. */
1304 if (test_bit(_XEN_NMIREASON_io_error,
1305 &HYPERVISOR_shared_info->arch.nmi_reason))
1306 reason |= NMI_REASON_IOCHK;
1307 if (test_bit(_XEN_NMIREASON_pci_serr,
1308 &HYPERVISOR_shared_info->arch.nmi_reason))
1309 reason |= NMI_REASON_SERR;
1310
1311 return reason;
1312 }
1313
xen_boot_params_init_edd(void)1314 static void __init xen_boot_params_init_edd(void)
1315 {
1316 #if IS_ENABLED(CONFIG_EDD)
1317 struct xen_platform_op op;
1318 struct edd_info *edd_info;
1319 u32 *mbr_signature;
1320 unsigned nr;
1321 int ret;
1322
1323 edd_info = boot_params.eddbuf;
1324 mbr_signature = boot_params.edd_mbr_sig_buffer;
1325
1326 op.cmd = XENPF_firmware_info;
1327
1328 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1329 for (nr = 0; nr < EDDMAXNR; nr++) {
1330 struct edd_info *info = edd_info + nr;
1331
1332 op.u.firmware_info.index = nr;
1333 info->params.length = sizeof(info->params);
1334 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1335 &info->params);
1336 ret = HYPERVISOR_platform_op(&op);
1337 if (ret)
1338 break;
1339
1340 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1341 C(device);
1342 C(version);
1343 C(interface_support);
1344 C(legacy_max_cylinder);
1345 C(legacy_max_head);
1346 C(legacy_sectors_per_track);
1347 #undef C
1348 }
1349 boot_params.eddbuf_entries = nr;
1350
1351 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1352 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1353 op.u.firmware_info.index = nr;
1354 ret = HYPERVISOR_platform_op(&op);
1355 if (ret)
1356 break;
1357 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1358 }
1359 boot_params.edd_mbr_sig_buf_entries = nr;
1360 #endif
1361 }
1362
1363 /*
1364 * Set up the GDT and segment registers for -fstack-protector. Until
1365 * we do this, we have to be careful not to call any stack-protected
1366 * function, which is most of the kernel.
1367 */
xen_setup_gdt(int cpu)1368 static void __init xen_setup_gdt(int cpu)
1369 {
1370 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1371 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1372
1373 switch_gdt_and_percpu_base(cpu);
1374
1375 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1376 pv_ops.cpu.load_gdt = xen_load_gdt;
1377 }
1378
xen_dom0_set_legacy_features(void)1379 static void __init xen_dom0_set_legacy_features(void)
1380 {
1381 x86_platform.legacy.rtc = 1;
1382 }
1383
xen_domu_set_legacy_features(void)1384 static void __init xen_domu_set_legacy_features(void)
1385 {
1386 x86_platform.legacy.rtc = 0;
1387 }
1388
1389 extern void early_xen_iret_patch(void);
1390
1391 /* First C function to be called on Xen boot */
xen_start_kernel(struct start_info * si)1392 asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1393 {
1394 struct physdev_set_iopl set_iopl;
1395 unsigned long initrd_start = 0;
1396 int rc;
1397
1398 if (!si)
1399 return;
1400
1401 clear_bss();
1402
1403 xen_start_info = si;
1404
1405 __text_gen_insn(&early_xen_iret_patch,
1406 JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1407 JMP32_INSN_SIZE);
1408
1409 xen_domain_type = XEN_PV_DOMAIN;
1410 xen_start_flags = xen_start_info->flags;
1411 /* Interrupts are guaranteed to be off initially. */
1412 early_boot_irqs_disabled = true;
1413 static_call_update_early(xen_hypercall, xen_hypercall_pv);
1414
1415 xen_setup_features();
1416
1417 /* Install Xen paravirt ops */
1418 pv_info = xen_info;
1419 pv_ops.cpu = xen_cpu_ops.cpu;
1420 xen_init_irq_ops();
1421
1422 /*
1423 * Setup xen_vcpu early because it is needed for
1424 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1425 *
1426 * Don't do the full vcpu_info placement stuff until we have
1427 * the cpu_possible_mask and a non-dummy shared_info.
1428 */
1429 xen_vcpu_info_reset(0);
1430
1431 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1432 x86_platform.realmode_reserve = x86_init_noop;
1433 x86_platform.realmode_init = x86_init_noop;
1434
1435 x86_init.resources.memory_setup = xen_memory_setup;
1436 x86_init.irqs.intr_mode_select = x86_init_noop;
1437 x86_init.irqs.intr_mode_init = x86_64_probe_apic;
1438 x86_init.oem.arch_setup = xen_arch_setup;
1439 x86_init.oem.banner = xen_banner;
1440 x86_init.hyper.init_platform = xen_pv_init_platform;
1441 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1442
1443 /*
1444 * Set up some pagetable state before starting to set any ptes.
1445 */
1446
1447 xen_setup_machphys_mapping();
1448 xen_init_mmu_ops();
1449
1450 /* Prevent unwanted bits from being set in PTEs. */
1451 __supported_pte_mask &= ~_PAGE_GLOBAL;
1452 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1453
1454 /* Get mfn list */
1455 xen_build_dynamic_phys_to_machine();
1456
1457 /* Work out if we support NX */
1458 get_cpu_cap(&boot_cpu_data);
1459 x86_configure_nx();
1460
1461 /*
1462 * Set up kernel GDT and segment registers, mainly so that
1463 * -fstack-protector code can be executed.
1464 */
1465 xen_setup_gdt(0);
1466
1467 /* Determine virtual and physical address sizes */
1468 get_cpu_address_sizes(&boot_cpu_data);
1469
1470 /* Let's presume PV guests always boot on vCPU with id 0. */
1471 per_cpu(xen_vcpu_id, 0) = 0;
1472
1473 idt_setup_early_handler();
1474
1475 xen_init_capabilities();
1476
1477 /*
1478 * set up the basic apic ops.
1479 */
1480 xen_init_apic();
1481
1482 machine_ops = xen_machine_ops;
1483
1484 /*
1485 * The only reliable way to retain the initial address of the
1486 * percpu gdt_page is to remember it here, so we can go and
1487 * mark it RW later, when the initial percpu area is freed.
1488 */
1489 xen_initial_gdt = &per_cpu(gdt_page, 0);
1490
1491 xen_smp_init();
1492
1493 #ifdef CONFIG_ACPI_NUMA
1494 /*
1495 * The pages we from Xen are not related to machine pages, so
1496 * any NUMA information the kernel tries to get from ACPI will
1497 * be meaningless. Prevent it from trying.
1498 */
1499 disable_srat();
1500 #endif
1501 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1502
1503 local_irq_disable();
1504
1505 xen_raw_console_write("mapping kernel into physical memory\n");
1506 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1507 xen_start_info->nr_pages);
1508 xen_reserve_special_pages();
1509
1510 /*
1511 * We used to do this in xen_arch_setup, but that is too late
1512 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1513 * early_amd_init which pokes 0xcf8 port.
1514 */
1515 set_iopl.iopl = 1;
1516 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1517 if (rc != 0)
1518 xen_raw_printk("physdev_op failed %d\n", rc);
1519
1520
1521 if (xen_start_info->mod_start) {
1522 if (xen_start_info->flags & SIF_MOD_START_PFN)
1523 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1524 else
1525 initrd_start = __pa(xen_start_info->mod_start);
1526 }
1527
1528 /* Poke various useful things into boot_params */
1529 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1530 boot_params.hdr.ramdisk_image = initrd_start;
1531 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1532 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1533 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1534
1535 if (!xen_initial_domain()) {
1536 if (pci_xen)
1537 x86_init.pci.arch_init = pci_xen_init;
1538 x86_platform.set_legacy_features =
1539 xen_domu_set_legacy_features;
1540 } else {
1541 const struct dom0_vga_console_info *info =
1542 (void *)((char *)xen_start_info +
1543 xen_start_info->console.dom0.info_off);
1544 struct xen_platform_op op = {
1545 .cmd = XENPF_firmware_info,
1546 .interface_version = XENPF_INTERFACE_VERSION,
1547 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1548 };
1549
1550 x86_platform.set_legacy_features =
1551 xen_dom0_set_legacy_features;
1552 xen_init_vga(info, xen_start_info->console.dom0.info_size,
1553 &boot_params.screen_info);
1554 xen_start_info->console.domU.mfn = 0;
1555 xen_start_info->console.domU.evtchn = 0;
1556
1557 if (HYPERVISOR_platform_op(&op) == 0)
1558 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1559
1560 /* Make sure ACS will be enabled */
1561 pci_request_acs();
1562
1563 xen_acpi_sleep_register();
1564
1565 xen_boot_params_init_edd();
1566
1567 #ifdef CONFIG_ACPI
1568 /*
1569 * Disable selecting "Firmware First mode" for correctable
1570 * memory errors, as this is the duty of the hypervisor to
1571 * decide.
1572 */
1573 acpi_disable_cmcff = 1;
1574 #endif
1575 }
1576
1577 xen_add_preferred_consoles();
1578
1579 #ifdef CONFIG_PCI
1580 /* PCI BIOS service won't work from a PV guest. */
1581 pci_probe &= ~PCI_PROBE_BIOS;
1582 #endif
1583 xen_raw_console_write("about to get started...\n");
1584
1585 /* We need this for printk timestamps */
1586 xen_setup_runstate_info(0);
1587
1588 xen_efi_init(&boot_params);
1589
1590 /* Start the world */
1591 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1592 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1593 }
1594
xen_cpu_up_prepare_pv(unsigned int cpu)1595 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1596 {
1597 int rc;
1598
1599 if (per_cpu(xen_vcpu, cpu) == NULL)
1600 return -ENODEV;
1601
1602 xen_setup_timer(cpu);
1603
1604 rc = xen_smp_intr_init(cpu);
1605 if (rc) {
1606 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1607 cpu, rc);
1608 return rc;
1609 }
1610
1611 rc = xen_smp_intr_init_pv(cpu);
1612 if (rc) {
1613 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1614 cpu, rc);
1615 return rc;
1616 }
1617
1618 return 0;
1619 }
1620
xen_cpu_dead_pv(unsigned int cpu)1621 static int xen_cpu_dead_pv(unsigned int cpu)
1622 {
1623 xen_smp_intr_free(cpu);
1624 xen_smp_intr_free_pv(cpu);
1625
1626 xen_teardown_timer(cpu);
1627
1628 return 0;
1629 }
1630
xen_platform_pv(void)1631 static uint32_t __init xen_platform_pv(void)
1632 {
1633 if (xen_pv_domain())
1634 return xen_cpuid_base();
1635
1636 return 0;
1637 }
1638
1639 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1640 .name = "Xen PV",
1641 .detect = xen_platform_pv,
1642 .type = X86_HYPER_XEN_PV,
1643 .runtime.pin_vcpu = xen_pin_vcpu,
1644 .ignore_nopv = true,
1645 };
1646