1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/cacheinfo.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/microcode.h>
30 #include <asm/fred.h>
31
32 #ifdef CONFIG_X86_32
33 __visible unsigned long saved_context_ebx;
34 __visible unsigned long saved_context_esp, saved_context_ebp;
35 __visible unsigned long saved_context_esi, saved_context_edi;
36 __visible unsigned long saved_context_eflags;
37 #endif
38 struct saved_context saved_context;
39
msr_save_context(struct saved_context * ctxt)40 static void msr_save_context(struct saved_context *ctxt)
41 {
42 struct saved_msr *msr = ctxt->saved_msrs.array;
43 struct saved_msr *end = msr + ctxt->saved_msrs.num;
44
45 while (msr < end) {
46 if (msr->valid)
47 rdmsrl(msr->info.msr_no, msr->info.reg.q);
48 msr++;
49 }
50 }
51
msr_restore_context(struct saved_context * ctxt)52 static void msr_restore_context(struct saved_context *ctxt)
53 {
54 struct saved_msr *msr = ctxt->saved_msrs.array;
55 struct saved_msr *end = msr + ctxt->saved_msrs.num;
56
57 while (msr < end) {
58 if (msr->valid)
59 wrmsrl(msr->info.msr_no, msr->info.reg.q);
60 msr++;
61 }
62 }
63
64 /**
65 * __save_processor_state() - Save CPU registers before creating a
66 * hibernation image and before restoring
67 * the memory state from it
68 * @ctxt: Structure to store the registers contents in.
69 *
70 * NOTE: If there is a CPU register the modification of which by the
71 * boot kernel (ie. the kernel used for loading the hibernation image)
72 * might affect the operations of the restored target kernel (ie. the one
73 * saved in the hibernation image), then its contents must be saved by this
74 * function. In other words, if kernel A is hibernated and different
75 * kernel B is used for loading the hibernation image into memory, the
76 * kernel A's __save_processor_state() function must save all registers
77 * needed by kernel A, so that it can operate correctly after the resume
78 * regardless of what kernel B does in the meantime.
79 */
__save_processor_state(struct saved_context * ctxt)80 static void __save_processor_state(struct saved_context *ctxt)
81 {
82 #ifdef CONFIG_X86_32
83 mtrr_save_fixed_ranges(NULL);
84 #endif
85 kernel_fpu_begin();
86
87 /*
88 * descriptor tables
89 */
90 store_idt(&ctxt->idt);
91
92 /*
93 * We save it here, but restore it only in the hibernate case.
94 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
95 * mode in "secondary_startup_64". In 32-bit mode it is done via
96 * 'pmode_gdt' in wakeup_start.
97 */
98 ctxt->gdt_desc.size = GDT_SIZE - 1;
99 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
100
101 store_tr(ctxt->tr);
102
103 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
104 /*
105 * segment registers
106 */
107 savesegment(gs, ctxt->gs);
108 #ifdef CONFIG_X86_64
109 savesegment(fs, ctxt->fs);
110 savesegment(ds, ctxt->ds);
111 savesegment(es, ctxt->es);
112
113 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
114 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
115 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
116 mtrr_save_fixed_ranges(NULL);
117
118 rdmsrl(MSR_EFER, ctxt->efer);
119 #endif
120
121 /*
122 * control registers
123 */
124 ctxt->cr0 = read_cr0();
125 ctxt->cr2 = read_cr2();
126 ctxt->cr3 = __read_cr3();
127 ctxt->cr4 = __read_cr4();
128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
129 &ctxt->misc_enable);
130 msr_save_context(ctxt);
131 }
132
133 /* Needed by apm.c */
save_processor_state(void)134 void save_processor_state(void)
135 {
136 __save_processor_state(&saved_context);
137 x86_platform.save_sched_clock_state();
138 }
139 #ifdef CONFIG_X86_32
140 EXPORT_SYMBOL(save_processor_state);
141 #endif
142
do_fpu_end(void)143 static void do_fpu_end(void)
144 {
145 /*
146 * Restore FPU regs if necessary.
147 */
148 kernel_fpu_end();
149 }
150
fix_processor_context(void)151 static void fix_processor_context(void)
152 {
153 int cpu = smp_processor_id();
154 #ifdef CONFIG_X86_64
155 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
156 tss_desc tss;
157 #endif
158
159 /*
160 * We need to reload TR, which requires that we change the
161 * GDT entry to indicate "available" first.
162 *
163 * XXX: This could probably all be replaced by a call to
164 * force_reload_TR().
165 */
166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
167
168 #ifdef CONFIG_X86_64
169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
172
173 syscall_init(); /* This sets MSR_*STAR and related */
174 #else
175 if (boot_cpu_has(X86_FEATURE_SEP))
176 enable_sep_cpu();
177 #endif
178 load_TR_desc(); /* This does ltr */
179 load_mm_ldt(current->active_mm); /* This does lldt */
180 initialize_tlbstate_and_flush();
181
182 fpu__resume_cpu();
183
184 /* The processor is back on the direct GDT, load back the fixmap */
185 load_fixmap_gdt(cpu);
186 }
187
188 /**
189 * __restore_processor_state() - Restore the contents of CPU registers saved
190 * by __save_processor_state()
191 * @ctxt: Structure to load the registers contents from.
192 *
193 * The asm code that gets us here will have restored a usable GDT, although
194 * it will be pointing to the wrong alias.
195 */
__restore_processor_state(struct saved_context * ctxt)196 static void notrace __restore_processor_state(struct saved_context *ctxt)
197 {
198 struct cpuinfo_x86 *c;
199
200 if (ctxt->misc_enable_saved)
201 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
202 /*
203 * control registers
204 */
205 /* cr4 was introduced in the Pentium CPU */
206 #ifdef CONFIG_X86_32
207 if (ctxt->cr4)
208 __write_cr4(ctxt->cr4);
209 #else
210 /* CONFIG X86_64 */
211 wrmsrl(MSR_EFER, ctxt->efer);
212 __write_cr4(ctxt->cr4);
213 #endif
214 write_cr3(ctxt->cr3);
215 write_cr2(ctxt->cr2);
216 write_cr0(ctxt->cr0);
217
218 /* Restore the IDT. */
219 load_idt(&ctxt->idt);
220
221 /*
222 * Just in case the asm code got us here with the SS, DS, or ES
223 * out of sync with the GDT, update them.
224 */
225 loadsegment(ss, __KERNEL_DS);
226 loadsegment(ds, __USER_DS);
227 loadsegment(es, __USER_DS);
228
229 /*
230 * Restore percpu access. Percpu access can happen in exception
231 * handlers or in complicated helpers like load_gs_index().
232 */
233 #ifdef CONFIG_X86_64
234 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
235
236 /*
237 * Reinitialize FRED to ensure the FRED MSRs contain the same values
238 * as before hibernation.
239 *
240 * Note, the setup of FRED RSPs requires access to percpu data
241 * structures. Therefore, FRED reinitialization can only occur after
242 * the percpu access pointer (i.e., MSR_GS_BASE) is restored.
243 */
244 if (ctxt->cr4 & X86_CR4_FRED) {
245 cpu_init_fred_exceptions();
246 cpu_init_fred_rsps();
247 }
248 #else
249 loadsegment(fs, __KERNEL_PERCPU);
250 #endif
251
252 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
253 fix_processor_context();
254
255 /*
256 * Now that we have descriptor tables fully restored and working
257 * exception handling, restore the usermode segments.
258 */
259 #ifdef CONFIG_X86_64
260 loadsegment(ds, ctxt->es);
261 loadsegment(es, ctxt->es);
262 loadsegment(fs, ctxt->fs);
263 load_gs_index(ctxt->gs);
264
265 /*
266 * Restore FSBASE and GSBASE after restoring the selectors, since
267 * restoring the selectors clobbers the bases. Keep in mind
268 * that MSR_KERNEL_GS_BASE is horribly misnamed.
269 */
270 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
271 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
272 #else
273 loadsegment(gs, ctxt->gs);
274 #endif
275
276 do_fpu_end();
277 tsc_verify_tsc_adjust(true);
278 x86_platform.restore_sched_clock_state();
279 cache_bp_restore();
280 perf_restore_debug_store();
281
282 c = &cpu_data(smp_processor_id());
283 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
284 init_ia32_feat_ctl(c);
285
286 microcode_bsp_resume();
287
288 /*
289 * This needs to happen after the microcode has been updated upon resume
290 * because some of the MSRs are "emulated" in microcode.
291 */
292 msr_restore_context(ctxt);
293 }
294
295 /* Needed by apm.c */
restore_processor_state(void)296 void notrace restore_processor_state(void)
297 {
298 __restore_processor_state(&saved_context);
299 }
300 #ifdef CONFIG_X86_32
301 EXPORT_SYMBOL(restore_processor_state);
302 #endif
303
304 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
resume_play_dead(void)305 static void __noreturn resume_play_dead(void)
306 {
307 play_dead_common();
308 tboot_shutdown(TB_SHUTDOWN_WFS);
309 hlt_play_dead();
310 }
311
hibernate_resume_nonboot_cpu_disable(void)312 int hibernate_resume_nonboot_cpu_disable(void)
313 {
314 void (*play_dead)(void) = smp_ops.play_dead;
315 int ret;
316
317 /*
318 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
319 * during hibernate image restoration, because it is likely that the
320 * monitored address will be actually written to at that time and then
321 * the "dead" CPU will attempt to execute instructions again, but the
322 * address in its instruction pointer may not be possible to resolve
323 * any more at that point (the page tables used by it previously may
324 * have been overwritten by hibernate image data).
325 *
326 * First, make sure that we wake up all the potentially disabled SMT
327 * threads which have been initially brought up and then put into
328 * mwait/cpuidle sleep.
329 * Those will be put to proper (not interfering with hibernation
330 * resume) sleep afterwards, and the resumed kernel will decide itself
331 * what to do with them.
332 */
333 ret = cpuhp_smt_enable();
334 if (ret)
335 return ret;
336 smp_ops.play_dead = resume_play_dead;
337 ret = freeze_secondary_cpus(0);
338 smp_ops.play_dead = play_dead;
339 return ret;
340 }
341 #endif
342
343 /*
344 * When bsp_check() is called in hibernate and suspend, cpu hotplug
345 * is disabled already. So it's unnecessary to handle race condition between
346 * cpumask query and cpu hotplug.
347 */
bsp_check(void)348 static int bsp_check(void)
349 {
350 if (cpumask_first(cpu_online_mask) != 0) {
351 pr_warn("CPU0 is offline.\n");
352 return -ENODEV;
353 }
354
355 return 0;
356 }
357
bsp_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)358 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
359 void *ptr)
360 {
361 int ret = 0;
362
363 switch (action) {
364 case PM_SUSPEND_PREPARE:
365 case PM_HIBERNATION_PREPARE:
366 ret = bsp_check();
367 break;
368 default:
369 break;
370 }
371 return notifier_from_errno(ret);
372 }
373
bsp_pm_check_init(void)374 static int __init bsp_pm_check_init(void)
375 {
376 /*
377 * Set this bsp_pm_callback as lower priority than
378 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
379 * earlier to disable cpu hotplug before bsp online check.
380 */
381 pm_notifier(bsp_pm_callback, -INT_MAX);
382 return 0;
383 }
384
385 core_initcall(bsp_pm_check_init);
386
msr_build_context(const u32 * msr_id,const int num)387 static int msr_build_context(const u32 *msr_id, const int num)
388 {
389 struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
390 struct saved_msr *msr_array;
391 int total_num;
392 int i, j;
393
394 total_num = saved_msrs->num + num;
395
396 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
397 if (!msr_array) {
398 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
399 return -ENOMEM;
400 }
401
402 if (saved_msrs->array) {
403 /*
404 * Multiple callbacks can invoke this function, so copy any
405 * MSR save requests from previous invocations.
406 */
407 memcpy(msr_array, saved_msrs->array,
408 sizeof(struct saved_msr) * saved_msrs->num);
409
410 kfree(saved_msrs->array);
411 }
412
413 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
414 u64 dummy;
415
416 msr_array[i].info.msr_no = msr_id[j];
417 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy);
418 msr_array[i].info.reg.q = 0;
419 }
420 saved_msrs->num = total_num;
421 saved_msrs->array = msr_array;
422
423 return 0;
424 }
425
426 /*
427 * The following sections are a quirk framework for problematic BIOSen:
428 * Sometimes MSRs are modified by the BIOSen after suspended to
429 * RAM, this might cause unexpected behavior after wakeup.
430 * Thus we save/restore these specified MSRs across suspend/resume
431 * in order to work around it.
432 *
433 * For any further problematic BIOSen/platforms,
434 * please add your own function similar to msr_initialize_bdw.
435 */
msr_initialize_bdw(const struct dmi_system_id * d)436 static int msr_initialize_bdw(const struct dmi_system_id *d)
437 {
438 /* Add any extra MSR ids into this array. */
439 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
440
441 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
442 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
443 }
444
445 static const struct dmi_system_id msr_save_dmi_table[] = {
446 {
447 .callback = msr_initialize_bdw,
448 .ident = "BROADWELL BDX_EP",
449 .matches = {
450 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
451 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
452 },
453 },
454 {}
455 };
456
msr_save_cpuid_features(const struct x86_cpu_id * c)457 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
458 {
459 u32 cpuid_msr_id[] = {
460 MSR_AMD64_CPUID_FN_1,
461 };
462
463 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
464 c->family);
465
466 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
467 }
468
469 static const struct x86_cpu_id msr_save_cpu_table[] = {
470 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
471 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
472 {}
473 };
474
475 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
pm_cpu_check(const struct x86_cpu_id * c)476 static int pm_cpu_check(const struct x86_cpu_id *c)
477 {
478 const struct x86_cpu_id *m;
479 int ret = 0;
480
481 m = x86_match_cpu(msr_save_cpu_table);
482 if (m) {
483 pm_cpu_match_t fn;
484
485 fn = (pm_cpu_match_t)m->driver_data;
486 ret = fn(m);
487 }
488
489 return ret;
490 }
491
pm_save_spec_msr(void)492 static void pm_save_spec_msr(void)
493 {
494 struct msr_enumeration {
495 u32 msr_no;
496 u32 feature;
497 } msr_enum[] = {
498 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL },
499 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL },
500 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT },
501 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
502 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD },
503 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC },
504 };
505 int i;
506
507 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
508 if (boot_cpu_has(msr_enum[i].feature))
509 msr_build_context(&msr_enum[i].msr_no, 1);
510 }
511 }
512
pm_check_save_msr(void)513 static int pm_check_save_msr(void)
514 {
515 dmi_check_system(msr_save_dmi_table);
516 pm_cpu_check(msr_save_cpu_table);
517 pm_save_spec_msr();
518
519 return 0;
520 }
521
522 device_initcall(pm_check_save_msr);
523