1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/ioremap.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/mmiotrace.h>
18 #include <linux/cc_platform.h>
19 #include <linux/efi.h>
20 #include <linux/pgtable.h>
21 #include <linux/kmsan.h>
22
23 #include <asm/set_memory.h>
24 #include <asm/e820/api.h>
25 #include <asm/efi.h>
26 #include <asm/fixmap.h>
27 #include <asm/tlbflush.h>
28 #include <asm/pgalloc.h>
29 #include <asm/memtype.h>
30 #include <asm/setup.h>
31
32 #include "physaddr.h"
33
34 /*
35 * Descriptor controlling ioremap() behavior.
36 */
37 struct ioremap_desc {
38 unsigned int flags;
39 };
40
41 /*
42 * Fix up the linear direct mapping of the kernel to avoid cache attribute
43 * conflicts.
44 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)45 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
46 enum page_cache_mode pcm)
47 {
48 unsigned long nrpages = size >> PAGE_SHIFT;
49 int err;
50
51 switch (pcm) {
52 case _PAGE_CACHE_MODE_UC:
53 default:
54 err = _set_memory_uc(vaddr, nrpages);
55 break;
56 case _PAGE_CACHE_MODE_WC:
57 err = _set_memory_wc(vaddr, nrpages);
58 break;
59 case _PAGE_CACHE_MODE_WT:
60 err = _set_memory_wt(vaddr, nrpages);
61 break;
62 case _PAGE_CACHE_MODE_WB:
63 err = _set_memory_wb(vaddr, nrpages);
64 break;
65 }
66
67 return err;
68 }
69
70 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)71 static unsigned int __ioremap_check_ram(struct resource *res)
72 {
73 unsigned long start_pfn, stop_pfn;
74 unsigned long i;
75
76 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77 return 0;
78
79 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
80 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
81 if (stop_pfn > start_pfn) {
82 for (i = 0; i < (stop_pfn - start_pfn); ++i)
83 if (pfn_valid(start_pfn + i) &&
84 !PageReserved(pfn_to_page(start_pfn + i)))
85 return IORES_MAP_SYSTEM_RAM;
86 }
87
88 return 0;
89 }
90
91 /*
92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
93 * there the whole memory is already encrypted.
94 */
__ioremap_check_encrypted(struct resource * res)95 static unsigned int __ioremap_check_encrypted(struct resource *res)
96 {
97 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
98 return 0;
99
100 switch (res->desc) {
101 case IORES_DESC_NONE:
102 case IORES_DESC_RESERVED:
103 break;
104 default:
105 return IORES_MAP_ENCRYPTED;
106 }
107
108 return 0;
109 }
110
111 /*
112 * The EFI runtime services data area is not covered by walk_mem_res(), but must
113 * be mapped encrypted when SEV is active.
114 */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)115 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
116 {
117 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118 return;
119
120 if (x86_platform.hyper.is_private_mmio(addr)) {
121 desc->flags |= IORES_MAP_ENCRYPTED;
122 return;
123 }
124
125 if (!IS_ENABLED(CONFIG_EFI))
126 return;
127
128 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
129 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
130 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
131 desc->flags |= IORES_MAP_ENCRYPTED;
132 }
133
__ioremap_collect_map_flags(struct resource * res,void * arg)134 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
135 {
136 struct ioremap_desc *desc = arg;
137
138 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
139 desc->flags |= __ioremap_check_ram(res);
140
141 if (!(desc->flags & IORES_MAP_ENCRYPTED))
142 desc->flags |= __ioremap_check_encrypted(res);
143
144 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
145 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
146 }
147
148 /*
149 * To avoid multiple resource walks, this function walks resources marked as
150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
152 *
153 * After that, deal with misc other ranges in __ioremap_check_other() which do
154 * not fall into the above category.
155 */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)156 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
157 struct ioremap_desc *desc)
158 {
159 u64 start, end;
160
161 start = (u64)addr;
162 end = start + size - 1;
163 memset(desc, 0, sizeof(struct ioremap_desc));
164
165 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
166
167 __ioremap_check_other(addr, desc);
168 }
169
170 /*
171 * Remap an arbitrary physical address space into the kernel virtual
172 * address space. It transparently creates kernel huge I/O mapping when
173 * the physical address is aligned by a huge page size (1GB or 2MB) and
174 * the requested size is at least the huge page size.
175 *
176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
177 * Therefore, the mapping code falls back to use a smaller page toward 4KB
178 * when a mapping range is covered by non-WB type of MTRRs.
179 *
180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
181 * have to convert them into an offset in a page-aligned mapping, but the
182 * caller shouldn't need to know that small detail.
183 */
184 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)185 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
186 enum page_cache_mode pcm, void *caller, bool encrypted)
187 {
188 unsigned long offset, vaddr;
189 resource_size_t last_addr;
190 const resource_size_t unaligned_phys_addr = phys_addr;
191 const unsigned long unaligned_size = size;
192 struct ioremap_desc io_desc;
193 struct vm_struct *area;
194 enum page_cache_mode new_pcm;
195 pgprot_t prot;
196 int retval;
197 void __iomem *ret_addr;
198
199 /* Don't allow wraparound or zero size */
200 last_addr = phys_addr + size - 1;
201 if (!size || last_addr < phys_addr)
202 return NULL;
203
204 if (!phys_addr_valid(phys_addr)) {
205 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
206 (unsigned long long)phys_addr);
207 WARN_ON_ONCE(1);
208 return NULL;
209 }
210
211 __ioremap_check_mem(phys_addr, size, &io_desc);
212
213 /*
214 * Don't allow anybody to remap normal RAM that we're using..
215 */
216 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
217 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
218 &phys_addr, &last_addr);
219 return NULL;
220 }
221
222 /*
223 * Mappings have to be page-aligned
224 */
225 offset = phys_addr & ~PAGE_MASK;
226 phys_addr &= PAGE_MASK;
227 size = PAGE_ALIGN(last_addr+1) - phys_addr;
228
229 /*
230 * Mask out any bits not part of the actual physical
231 * address, like memory encryption bits.
232 */
233 phys_addr &= PHYSICAL_PAGE_MASK;
234
235 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
236 pcm, &new_pcm);
237 if (retval) {
238 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
239 return NULL;
240 }
241
242 if (pcm != new_pcm) {
243 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
244 printk(KERN_ERR
245 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
246 (unsigned long long)phys_addr,
247 (unsigned long long)(phys_addr + size),
248 pcm, new_pcm);
249 goto err_free_memtype;
250 }
251 pcm = new_pcm;
252 }
253
254 /*
255 * If the page being mapped is in memory and SEV is active then
256 * make sure the memory encryption attribute is enabled in the
257 * resulting mapping.
258 * In TDX guests, memory is marked private by default. If encryption
259 * is not requested (using encrypted), explicitly set decrypt
260 * attribute in all IOREMAPPED memory.
261 */
262 prot = PAGE_KERNEL_IO;
263 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
264 prot = pgprot_encrypted(prot);
265 else
266 prot = pgprot_decrypted(prot);
267
268 switch (pcm) {
269 case _PAGE_CACHE_MODE_UC:
270 default:
271 prot = __pgprot(pgprot_val(prot) |
272 cachemode2protval(_PAGE_CACHE_MODE_UC));
273 break;
274 case _PAGE_CACHE_MODE_UC_MINUS:
275 prot = __pgprot(pgprot_val(prot) |
276 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
277 break;
278 case _PAGE_CACHE_MODE_WC:
279 prot = __pgprot(pgprot_val(prot) |
280 cachemode2protval(_PAGE_CACHE_MODE_WC));
281 break;
282 case _PAGE_CACHE_MODE_WT:
283 prot = __pgprot(pgprot_val(prot) |
284 cachemode2protval(_PAGE_CACHE_MODE_WT));
285 break;
286 case _PAGE_CACHE_MODE_WB:
287 break;
288 }
289
290 /*
291 * Ok, go for it..
292 */
293 area = get_vm_area_caller(size, VM_IOREMAP, caller);
294 if (!area)
295 goto err_free_memtype;
296 area->phys_addr = phys_addr;
297 vaddr = (unsigned long) area->addr;
298
299 if (memtype_kernel_map_sync(phys_addr, size, pcm))
300 goto err_free_area;
301
302 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
303 goto err_free_area;
304
305 ret_addr = (void __iomem *) (vaddr + offset);
306 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
307
308 /*
309 * Check if the request spans more than any BAR in the iomem resource
310 * tree.
311 */
312 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
313 pr_warn("caller %pS mapping multiple BARs\n", caller);
314
315 return ret_addr;
316 err_free_area:
317 free_vm_area(area);
318 err_free_memtype:
319 memtype_free(phys_addr, phys_addr + size);
320 return NULL;
321 }
322
323 /**
324 * ioremap - map bus memory into CPU space
325 * @phys_addr: bus address of the memory
326 * @size: size of the resource to map
327 *
328 * ioremap performs a platform specific sequence of operations to
329 * make bus memory CPU accessible via the readb/readw/readl/writeb/
330 * writew/writel functions and the other mmio helpers. The returned
331 * address is not guaranteed to be usable directly as a virtual
332 * address.
333 *
334 * This version of ioremap ensures that the memory is marked uncachable
335 * on the CPU as well as honouring existing caching rules from things like
336 * the PCI bus. Note that there are other caches and buffers on many
337 * busses. In particular driver authors should read up on PCI writes
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
ioremap(resource_size_t phys_addr,unsigned long size)344 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
345 {
346 /*
347 * Ideally, this should be:
348 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
349 *
350 * Till we fix all X drivers to use ioremap_wc(), we will use
351 * UC MINUS. Drivers that are certain they need or can already
352 * be converted over to strong UC can use ioremap_uc().
353 */
354 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
355
356 return __ioremap_caller(phys_addr, size, pcm,
357 __builtin_return_address(0), false);
358 }
359 EXPORT_SYMBOL(ioremap);
360
361 /**
362 * ioremap_uc - map bus memory into CPU space as strongly uncachable
363 * @phys_addr: bus address of the memory
364 * @size: size of the resource to map
365 *
366 * ioremap_uc performs a platform specific sequence of operations to
367 * make bus memory CPU accessible via the readb/readw/readl/writeb/
368 * writew/writel functions and the other mmio helpers. The returned
369 * address is not guaranteed to be usable directly as a virtual
370 * address.
371 *
372 * This version of ioremap ensures that the memory is marked with a strong
373 * preference as completely uncachable on the CPU when possible. For non-PAT
374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
375 * systems this will set the PAT entry for the pages as strong UC. This call
376 * will honor existing caching rules from things like the PCI bus. Note that
377 * there are other caches and buffers on many busses. In particular driver
378 * authors should read up on PCI writes.
379 *
380 * It's useful if some control registers are in such an area and
381 * write combining or read caching is not desirable:
382 *
383 * Must be freed with iounmap.
384 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)385 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
386 {
387 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
388
389 return __ioremap_caller(phys_addr, size, pcm,
390 __builtin_return_address(0), false);
391 }
392 EXPORT_SYMBOL_GPL(ioremap_uc);
393
394 /**
395 * ioremap_wc - map memory into CPU space write combined
396 * @phys_addr: bus address of the memory
397 * @size: size of the resource to map
398 *
399 * This version of ioremap ensures that the memory is marked write combining.
400 * Write combining allows faster writes to some hardware devices.
401 *
402 * Must be freed with iounmap.
403 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)404 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
405 {
406 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
407 __builtin_return_address(0), false);
408 }
409 EXPORT_SYMBOL(ioremap_wc);
410
411 /**
412 * ioremap_wt - map memory into CPU space write through
413 * @phys_addr: bus address of the memory
414 * @size: size of the resource to map
415 *
416 * This version of ioremap ensures that the memory is marked write through.
417 * Write through stores data into memory while keeping the cache up-to-date.
418 *
419 * Must be freed with iounmap.
420 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)421 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
422 {
423 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
424 __builtin_return_address(0), false);
425 }
426 EXPORT_SYMBOL(ioremap_wt);
427
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)428 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
429 {
430 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
431 __builtin_return_address(0), true);
432 }
433 EXPORT_SYMBOL(ioremap_encrypted);
434
ioremap_cache(resource_size_t phys_addr,unsigned long size)435 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
436 {
437 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
438 __builtin_return_address(0), false);
439 }
440 EXPORT_SYMBOL(ioremap_cache);
441
ioremap_prot(resource_size_t phys_addr,unsigned long size,pgprot_t prot)442 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
443 pgprot_t prot)
444 {
445 return __ioremap_caller(phys_addr, size,
446 pgprot2cachemode(prot),
447 __builtin_return_address(0), false);
448 }
449 EXPORT_SYMBOL(ioremap_prot);
450
451 /**
452 * iounmap - Free a IO remapping
453 * @addr: virtual address from ioremap_*
454 *
455 * Caller must ensure there is only one unmapping for the same pointer.
456 */
iounmap(volatile void __iomem * addr)457 void iounmap(volatile void __iomem *addr)
458 {
459 struct vm_struct *p, *o;
460
461 if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
462 return;
463
464 /*
465 * The PCI/ISA range special-casing was removed from __ioremap()
466 * so this check, in theory, can be removed. However, there are
467 * cases where iounmap() is called for addresses not obtained via
468 * ioremap() (vga16fb for example). Add a warning so that these
469 * cases can be caught and fixed.
470 */
471 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
472 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
473 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
474 return;
475 }
476
477 mmiotrace_iounmap(addr);
478
479 addr = (volatile void __iomem *)
480 (PAGE_MASK & (unsigned long __force)addr);
481
482 /* Use the vm area unlocked, assuming the caller
483 ensures there isn't another iounmap for the same address
484 in parallel. Reuse of the virtual address is prevented by
485 leaving it in the global lists until we're done with it.
486 cpa takes care of the direct mappings. */
487 p = find_vm_area((void __force *)addr);
488
489 if (!p) {
490 printk(KERN_ERR "iounmap: bad address %p\n", addr);
491 dump_stack();
492 return;
493 }
494
495 kmsan_iounmap_page_range((unsigned long)addr,
496 (unsigned long)addr + get_vm_area_size(p));
497 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
498
499 /* Finally remove it */
500 o = remove_vm_area((void __force *)addr);
501 BUG_ON(p != o || o == NULL);
502 kfree(p);
503 }
504 EXPORT_SYMBOL(iounmap);
505
arch_memremap_wb(phys_addr_t phys_addr,size_t size,unsigned long flags)506 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags)
507 {
508 if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
509 return (void __force *)ioremap_cache(phys_addr, size);
510
511 return (void __force *)ioremap_encrypted(phys_addr, size);
512 }
513
514 /*
515 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
516 * access
517 */
xlate_dev_mem_ptr(phys_addr_t phys)518 void *xlate_dev_mem_ptr(phys_addr_t phys)
519 {
520 unsigned long start = phys & PAGE_MASK;
521 unsigned long offset = phys & ~PAGE_MASK;
522 void *vaddr;
523
524 /* memremap() maps if RAM, otherwise falls back to ioremap() */
525 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
526
527 /* Only add the offset on success and return NULL if memremap() failed */
528 if (vaddr)
529 vaddr += offset;
530
531 return vaddr;
532 }
533
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)534 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
535 {
536 memunmap((void *)((unsigned long)addr & PAGE_MASK));
537 }
538
539 #ifdef CONFIG_AMD_MEM_ENCRYPT
540 /*
541 * Examine the physical address to determine if it is an area of memory
542 * that should be mapped decrypted. If the memory is not part of the
543 * kernel usable area it was accessed and created decrypted, so these
544 * areas should be mapped decrypted. And since the encryption key can
545 * change across reboots, persistent memory should also be mapped
546 * decrypted.
547 *
548 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
549 * only persistent memory should be mapped decrypted.
550 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)551 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
552 unsigned long size)
553 {
554 int is_pmem;
555
556 /*
557 * Check if the address is part of a persistent memory region.
558 * This check covers areas added by E820, EFI and ACPI.
559 */
560 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
561 IORES_DESC_PERSISTENT_MEMORY);
562 if (is_pmem != REGION_DISJOINT)
563 return true;
564
565 /*
566 * Check if the non-volatile attribute is set for an EFI
567 * reserved area.
568 */
569 if (efi_enabled(EFI_BOOT)) {
570 switch (efi_mem_type(phys_addr)) {
571 case EFI_RESERVED_TYPE:
572 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
573 return true;
574 break;
575 default:
576 break;
577 }
578 }
579
580 /* Check if the address is outside kernel usable area */
581 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
582 case E820_TYPE_RESERVED:
583 case E820_TYPE_ACPI:
584 case E820_TYPE_NVS:
585 case E820_TYPE_UNUSABLE:
586 /* For SEV, these areas are encrypted */
587 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
588 break;
589 fallthrough;
590
591 case E820_TYPE_PRAM:
592 return true;
593 default:
594 break;
595 }
596
597 return false;
598 }
599
600 /*
601 * Examine the physical address to determine if it is EFI data. Check
602 * it against the boot params structure and EFI tables and memory types.
603 */
memremap_is_efi_data(resource_size_t phys_addr)604 static bool memremap_is_efi_data(resource_size_t phys_addr)
605 {
606 u64 paddr;
607
608 /* Check if the address is part of EFI boot/runtime data */
609 if (!efi_enabled(EFI_BOOT))
610 return false;
611
612 paddr = boot_params.efi_info.efi_memmap_hi;
613 paddr <<= 32;
614 paddr |= boot_params.efi_info.efi_memmap;
615 if (phys_addr == paddr)
616 return true;
617
618 paddr = boot_params.efi_info.efi_systab_hi;
619 paddr <<= 32;
620 paddr |= boot_params.efi_info.efi_systab;
621 if (phys_addr == paddr)
622 return true;
623
624 if (efi_is_table_address(phys_addr))
625 return true;
626
627 switch (efi_mem_type(phys_addr)) {
628 case EFI_BOOT_SERVICES_DATA:
629 case EFI_RUNTIME_SERVICES_DATA:
630 return true;
631 default:
632 break;
633 }
634
635 return false;
636 }
637
638 /*
639 * Examine the physical address to determine if it is boot data by checking
640 * it against the boot params setup_data chain.
641 */
__memremap_is_setup_data(resource_size_t phys_addr,bool early)642 static bool __ref __memremap_is_setup_data(resource_size_t phys_addr, bool early)
643 {
644 unsigned int setup_data_sz = sizeof(struct setup_data);
645 struct setup_indirect *indirect;
646 struct setup_data *data;
647 u64 paddr, paddr_next;
648
649 paddr = boot_params.hdr.setup_data;
650 while (paddr) {
651 unsigned int len, size;
652
653 if (phys_addr == paddr)
654 return true;
655
656 if (early)
657 data = early_memremap_decrypted(paddr, setup_data_sz);
658 else
659 data = memremap(paddr, setup_data_sz, MEMREMAP_WB | MEMREMAP_DEC);
660 if (!data) {
661 pr_warn("failed to remap setup_data entry\n");
662 return false;
663 }
664
665 size = setup_data_sz;
666
667 paddr_next = data->next;
668 len = data->len;
669
670 if ((phys_addr > paddr) &&
671 (phys_addr < (paddr + setup_data_sz + len))) {
672 if (early)
673 early_memunmap(data, setup_data_sz);
674 else
675 memunmap(data);
676 return true;
677 }
678
679 if (data->type == SETUP_INDIRECT) {
680 size += len;
681 if (early) {
682 early_memunmap(data, setup_data_sz);
683 data = early_memremap_decrypted(paddr, size);
684 } else {
685 memunmap(data);
686 data = memremap(paddr, size, MEMREMAP_WB | MEMREMAP_DEC);
687 }
688 if (!data) {
689 pr_warn("failed to remap indirect setup_data\n");
690 return false;
691 }
692
693 indirect = (struct setup_indirect *)data->data;
694
695 if (indirect->type != SETUP_INDIRECT) {
696 paddr = indirect->addr;
697 len = indirect->len;
698 }
699 }
700
701 if (early)
702 early_memunmap(data, size);
703 else
704 memunmap(data);
705
706 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
707 return true;
708
709 paddr = paddr_next;
710 }
711
712 return false;
713 }
714
memremap_is_setup_data(resource_size_t phys_addr)715 static bool memremap_is_setup_data(resource_size_t phys_addr)
716 {
717 return __memremap_is_setup_data(phys_addr, false);
718 }
719
early_memremap_is_setup_data(resource_size_t phys_addr)720 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr)
721 {
722 return __memremap_is_setup_data(phys_addr, true);
723 }
724
725 /*
726 * Architecture function to determine if RAM remap is allowed. By default, a
727 * RAM remap will map the data as encrypted. Determine if a RAM remap should
728 * not be done so that the data will be mapped decrypted.
729 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)730 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
731 unsigned long flags)
732 {
733 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
734 return true;
735
736 if (flags & MEMREMAP_ENC)
737 return true;
738
739 if (flags & MEMREMAP_DEC)
740 return false;
741
742 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
743 if (memremap_is_setup_data(phys_addr) ||
744 memremap_is_efi_data(phys_addr))
745 return false;
746 }
747
748 return !memremap_should_map_decrypted(phys_addr, size);
749 }
750
751 /*
752 * Architecture override of __weak function to adjust the protection attributes
753 * used when remapping memory. By default, early_memremap() will map the data
754 * as encrypted. Determine if an encrypted mapping should not be done and set
755 * the appropriate protection attributes.
756 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)757 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
758 unsigned long size,
759 pgprot_t prot)
760 {
761 bool encrypted_prot;
762
763 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
764 return prot;
765
766 encrypted_prot = true;
767
768 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
769 if (early_memremap_is_setup_data(phys_addr) ||
770 memremap_is_efi_data(phys_addr))
771 encrypted_prot = false;
772 }
773
774 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
775 encrypted_prot = false;
776
777 return encrypted_prot ? pgprot_encrypted(prot)
778 : pgprot_decrypted(prot);
779 }
780
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)781 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
782 {
783 return arch_memremap_can_ram_remap(phys_addr, size, 0);
784 }
785
786 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)787 void __init *early_memremap_encrypted(resource_size_t phys_addr,
788 unsigned long size)
789 {
790 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
791 }
792
793 /*
794 * Remap memory with encryption and write-protected - cannot be called
795 * before pat_init() is called
796 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)797 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
798 unsigned long size)
799 {
800 if (!x86_has_pat_wp())
801 return NULL;
802 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
803 }
804
805 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)806 void __init *early_memremap_decrypted(resource_size_t phys_addr,
807 unsigned long size)
808 {
809 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
810 }
811
812 /*
813 * Remap memory without encryption and write-protected - cannot be called
814 * before pat_init() is called
815 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)816 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
817 unsigned long size)
818 {
819 if (!x86_has_pat_wp())
820 return NULL;
821 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
822 }
823 #endif /* CONFIG_AMD_MEM_ENCRYPT */
824
825 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
826
early_ioremap_pmd(unsigned long addr)827 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
828 {
829 /* Don't assume we're using swapper_pg_dir at this point */
830 pgd_t *base = __va(read_cr3_pa());
831 pgd_t *pgd = &base[pgd_index(addr)];
832 p4d_t *p4d = p4d_offset(pgd, addr);
833 pud_t *pud = pud_offset(p4d, addr);
834 pmd_t *pmd = pmd_offset(pud, addr);
835
836 return pmd;
837 }
838
early_ioremap_pte(unsigned long addr)839 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
840 {
841 return &bm_pte[pte_index(addr)];
842 }
843
is_early_ioremap_ptep(pte_t * ptep)844 bool __init is_early_ioremap_ptep(pte_t *ptep)
845 {
846 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
847 }
848
early_ioremap_init(void)849 void __init early_ioremap_init(void)
850 {
851 pmd_t *pmd;
852
853 #ifdef CONFIG_X86_64
854 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
855 #else
856 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
857 #endif
858
859 early_ioremap_setup();
860
861 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
862 memset(bm_pte, 0, sizeof(bm_pte));
863 pmd_populate_kernel(&init_mm, pmd, bm_pte);
864
865 /*
866 * The boot-ioremap range spans multiple pmds, for which
867 * we are not prepared:
868 */
869 #define __FIXADDR_TOP (-PAGE_SIZE)
870 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
871 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
872 #undef __FIXADDR_TOP
873 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
874 WARN_ON(1);
875 printk(KERN_WARNING "pmd %p != %p\n",
876 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
877 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
878 fix_to_virt(FIX_BTMAP_BEGIN));
879 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
880 fix_to_virt(FIX_BTMAP_END));
881
882 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
883 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
884 FIX_BTMAP_BEGIN);
885 }
886 }
887
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)888 void __init __early_set_fixmap(enum fixed_addresses idx,
889 phys_addr_t phys, pgprot_t flags)
890 {
891 unsigned long addr = __fix_to_virt(idx);
892 pte_t *pte;
893
894 if (idx >= __end_of_fixed_addresses) {
895 BUG();
896 return;
897 }
898 pte = early_ioremap_pte(addr);
899
900 /* Sanitize 'prot' against any unsupported bits: */
901 pgprot_val(flags) &= __supported_pte_mask;
902
903 if (pgprot_val(flags))
904 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
905 else
906 pte_clear(&init_mm, addr, pte);
907 flush_tlb_one_kernel(addr);
908 }
909