1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141
142 #define KVM_X86_OP(func) \
143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
144 *(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 /*
176 * Flags to manipulate forced emulation behavior (any non-zero value will
177 * enable forced emulation).
178 */
179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197
198 /*
199 * Restoring the host value for MSRs that are only consumed when running in
200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201 * returns to userspace, i.e. the kernel can run with the guest's value.
202 */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204
205 struct kvm_user_return_msrs {
206 struct user_return_notifier urn;
207 bool registered;
208 struct kvm_user_return_msr_values {
209 u64 host;
210 u64 curr;
211 } values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218
219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 KVM_GENERIC_VM_STATS(),
232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 STATS_DESC_COUNTER(VM, mmu_pte_write),
234 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 STATS_DESC_COUNTER(VM, mmu_flooded),
236 STATS_DESC_COUNTER(VM, mmu_recycled),
237 STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 STATS_DESC_ICOUNTER(VM, pages_4k),
240 STATS_DESC_ICOUNTER(VM, pages_2m),
241 STATS_DESC_ICOUNTER(VM, pages_1g),
242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 .name_size = KVM_STATS_NAME_SIZE,
249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 .id_offset = sizeof(struct kvm_stats_header),
251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 sizeof(kvm_vm_stats_desc),
254 };
255
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 KVM_GENERIC_VCPU_STATS(),
258 STATS_DESC_COUNTER(VCPU, pf_taken),
259 STATS_DESC_COUNTER(VCPU, pf_fixed),
260 STATS_DESC_COUNTER(VCPU, pf_emulate),
261 STATS_DESC_COUNTER(VCPU, pf_spurious),
262 STATS_DESC_COUNTER(VCPU, pf_fast),
263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 STATS_DESC_COUNTER(VCPU, pf_guest),
265 STATS_DESC_COUNTER(VCPU, tlb_flush),
266 STATS_DESC_COUNTER(VCPU, invlpg),
267 STATS_DESC_COUNTER(VCPU, exits),
268 STATS_DESC_COUNTER(VCPU, io_exits),
269 STATS_DESC_COUNTER(VCPU, mmio_exits),
270 STATS_DESC_COUNTER(VCPU, signal_exits),
271 STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 STATS_DESC_COUNTER(VCPU, l1d_flush),
274 STATS_DESC_COUNTER(VCPU, halt_exits),
275 STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 STATS_DESC_COUNTER(VCPU, irq_exits),
277 STATS_DESC_COUNTER(VCPU, host_state_reload),
278 STATS_DESC_COUNTER(VCPU, fpu_reload),
279 STATS_DESC_COUNTER(VCPU, insn_emulation),
280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 STATS_DESC_COUNTER(VCPU, hypercalls),
282 STATS_DESC_COUNTER(VCPU, irq_injections),
283 STATS_DESC_COUNTER(VCPU, nmi_injections),
284 STATS_DESC_COUNTER(VCPU, req_event),
285 STATS_DESC_COUNTER(VCPU, nested_run),
286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 STATS_DESC_COUNTER(VCPU, preemption_reported),
289 STATS_DESC_COUNTER(VCPU, preemption_other),
290 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 .name_size = KVM_STATS_NAME_SIZE,
296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 .id_offset = sizeof(struct kvm_stats_header),
298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 sizeof(kvm_vcpu_stats_desc),
301 };
302
303 static struct kmem_cache *x86_emulator_cache;
304
305 /*
306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
310 * MSRs that KVM emulates without strictly requiring host support.
311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
313 * msrs_to_save and emulated_msrs.
314 */
315
316 static const u32 msrs_to_save_base[] = {
317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 MSR_STAR,
319 #ifdef CONFIG_X86_64
320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 MSR_IA32_UMWAIT_CONTROL,
332
333 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335
336 static const u32 msrs_to_save_pmu[] = {
337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 MSR_CORE_PERF_GLOBAL_CTRL,
341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342
343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352
353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355
356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361
362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370
371 static const u32 emulated_msrs_all[] = {
372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374
375 #ifdef CONFIG_KVM_HYPERV
376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 HV_X64_MSR_RESET,
382 HV_X64_MSR_VP_INDEX,
383 HV_X64_MSR_VP_RUNTIME,
384 HV_X64_MSR_SCONTROL,
385 HV_X64_MSR_STIMER0_CONFIG,
386 HV_X64_MSR_VP_ASSIST_PAGE,
387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 HV_X64_MSR_SYNDBG_OPTIONS,
390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394
395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397
398 MSR_IA32_TSC_ADJUST,
399 MSR_IA32_TSC_DEADLINE,
400 MSR_IA32_ARCH_CAPABILITIES,
401 MSR_IA32_PERF_CAPABILITIES,
402 MSR_IA32_MISC_ENABLE,
403 MSR_IA32_MCG_STATUS,
404 MSR_IA32_MCG_CTL,
405 MSR_IA32_MCG_EXT_CTL,
406 MSR_IA32_SMBASE,
407 MSR_SMI_COUNT,
408 MSR_PLATFORM_INFO,
409 MSR_MISC_FEATURES_ENABLES,
410 MSR_AMD64_VIRT_SPEC_CTRL,
411 MSR_AMD64_TSC_RATIO,
412 MSR_IA32_POWER_CTL,
413 MSR_IA32_UCODE_REV,
414
415 /*
416 * KVM always supports the "true" VMX control MSRs, even if the host
417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
418 * doesn't strictly require them to exist in the host (ignoring that
419 * KVM would refuse to load in the first place if the core set of MSRs
420 * aren't supported).
421 */
422 MSR_IA32_VMX_BASIC,
423 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 MSR_IA32_VMX_MISC,
428 MSR_IA32_VMX_CR0_FIXED0,
429 MSR_IA32_VMX_CR4_FIXED0,
430 MSR_IA32_VMX_VMCS_ENUM,
431 MSR_IA32_VMX_PROCBASED_CTLS2,
432 MSR_IA32_VMX_EPT_VPID_CAP,
433 MSR_IA32_VMX_VMFUNC,
434
435 MSR_K7_HWCR,
436 MSR_KVM_POLL_CONTROL,
437 };
438
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441
442 /*
443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
445 * feature MSRs, but are handled separately to allow expedited lookups.
446 */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 MSR_AMD64_DE_CFG,
449 MSR_IA32_UCODE_REV,
450 MSR_IA32_ARCH_CAPABILITIES,
451 MSR_IA32_PERF_CAPABILITIES,
452 MSR_PLATFORM_INFO,
453 };
454
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458
459 /*
460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461 * patch, are immutable once the vCPU model is defined.
462 */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 int i;
466
467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 return true;
469
470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 if (msr == msr_based_features_all_except_vmx[i])
472 return msr != MSR_IA32_UCODE_REV;
473 }
474
475 return false;
476 }
477
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 unsigned int i;
481
482 for (i = 0; i < num_msrs_to_save; i++) {
483 if (msrs_to_save[i] == msr_index)
484 return true;
485 }
486
487 for (i = 0; i < num_emulated_msrs; i++) {
488 if (emulated_msrs[i] == msr_index)
489 return true;
490 }
491
492 return false;
493 }
494
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 bool host_initiated);
497
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 u64 *data, bool host_initiated,
500 enum kvm_msr_access rw,
501 msr_access_t msr_access_fn)
502 {
503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 int ret;
505
506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507
508 /*
509 * Zero the data on read failures to avoid leaking stack data to the
510 * guest and/or userspace, e.g. if the failure is ignored below.
511 */
512 ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 if (ret && rw == MSR_TYPE_R)
514 *data = 0;
515
516 if (ret != KVM_MSR_RET_UNSUPPORTED)
517 return ret;
518
519 /*
520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 * advertises to userspace, even if an MSR isn't fully supported.
522 * Simply check that @data is '0', which covers both the write '0' case
523 * and all reads (in which case @data is zeroed on failure; see above).
524 */
525 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 return 0;
527
528 if (!ignore_msrs) {
529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 op, msr, *data);
531 return ret;
532 }
533
534 if (report_ignored_msrs)
535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536
537 return 0;
538 }
539
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 unsigned int size = sizeof(struct x86_emulate_ctxt);
544
545 return kmem_cache_create_usercopy("x86_emulator", size,
546 __alignof__(struct x86_emulate_ctxt),
547 SLAB_ACCOUNT, useroffset,
548 size - useroffset, NULL);
549 }
550
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 int i;
556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 vcpu->arch.apf.gfns[i] = ~0;
558 }
559
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 unsigned slot;
563 struct kvm_user_return_msrs *msrs
564 = container_of(urn, struct kvm_user_return_msrs, urn);
565 struct kvm_user_return_msr_values *values;
566 unsigned long flags;
567
568 /*
569 * Disabling irqs at this point since the following code could be
570 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 */
572 local_irq_save(flags);
573 if (msrs->registered) {
574 msrs->registered = false;
575 user_return_notifier_unregister(urn);
576 }
577 local_irq_restore(flags);
578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 values = &msrs->values[slot];
580 if (values->host != values->curr) {
581 wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 values->curr = values->host;
583 }
584 }
585 }
586
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 u64 val;
590 int ret;
591
592 preempt_disable();
593 ret = rdmsrl_safe(msr, &val);
594 if (ret)
595 goto out;
596 ret = wrmsrl_safe(msr, val);
597 out:
598 preempt_enable();
599 return ret;
600 }
601
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605
606 if (kvm_probe_user_return_msr(msr))
607 return -1;
608
609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 int i;
617
618 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 if (kvm_uret_msrs_list[i] == msr)
620 return i;
621 }
622 return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 u64 value;
630 int i;
631
632 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 msrs->values[i].host = value;
635 msrs->values[i].curr = value;
636 }
637 }
638
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 int err;
643
644 value = (value & mask) | (msrs->values[slot].host & ~mask);
645 if (value == msrs->values[slot].curr)
646 return 0;
647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 if (err)
649 return 1;
650
651 msrs->values[slot].curr = value;
652 if (!msrs->registered) {
653 msrs->urn.on_user_return = kvm_on_user_return;
654 user_return_notifier_register(&msrs->urn);
655 msrs->registered = true;
656 }
657 return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664
665 if (msrs->registered)
666 kvm_on_user_return(&msrs->urn);
667 }
668
669 /*
670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671 *
672 * Hardware virtualization extension instructions may fault if a reboot turns
673 * off virtualization while processes are running. Usually after catching the
674 * fault we just panic; during reboot instead the instruction is ignored.
675 */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 /* Fault while not rebooting. We want the trace. */
679 BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682
683 #define EXCPT_BENIGN 0
684 #define EXCPT_CONTRIBUTORY 1
685 #define EXCPT_PF 2
686
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 switch (vector) {
690 case PF_VECTOR:
691 return EXCPT_PF;
692 case DE_VECTOR:
693 case TS_VECTOR:
694 case NP_VECTOR:
695 case SS_VECTOR:
696 case GP_VECTOR:
697 return EXCPT_CONTRIBUTORY;
698 default:
699 break;
700 }
701 return EXCPT_BENIGN;
702 }
703
704 #define EXCPT_FAULT 0
705 #define EXCPT_TRAP 1
706 #define EXCPT_ABORT 2
707 #define EXCPT_INTERRUPT 3
708 #define EXCPT_DB 4
709
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 unsigned int mask;
713
714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 return EXCPT_INTERRUPT;
716
717 mask = 1 << vector;
718
719 /*
720 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 */
723 if (mask & (1 << DB_VECTOR))
724 return EXCPT_DB;
725
726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 return EXCPT_TRAP;
728
729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 return EXCPT_ABORT;
731
732 /* Reserved exceptions will result in fault */
733 return EXCPT_FAULT;
734 }
735
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 struct kvm_queued_exception *ex)
738 {
739 if (!ex->has_payload)
740 return;
741
742 switch (ex->vector) {
743 case DB_VECTOR:
744 /*
745 * "Certain debug exceptions may clear bit 0-3. The
746 * remaining contents of the DR6 register are never
747 * cleared by the processor".
748 */
749 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 /*
751 * In order to reflect the #DB exception payload in guest
752 * dr6, three components need to be considered: active low
753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 * DR6_BS and DR6_BT)
755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 * In the target guest dr6:
757 * FIXED_1 bits should always be set.
758 * Active low bits should be cleared if 1-setting in payload.
759 * Active high bits should be set if 1-setting in payload.
760 *
761 * Note, the payload is compatible with the pending debug
762 * exceptions/exit qualification under VMX, that active_low bits
763 * are active high in payload.
764 * So they need to be flipped for DR6.
765 */
766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 vcpu->arch.dr6 |= ex->payload;
768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769
770 /*
771 * The #DB payload is defined as compatible with the 'pending
772 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 * defined in the 'pending debug exceptions' field (enabled
774 * breakpoint), it is reserved and must be zero in DR6.
775 */
776 vcpu->arch.dr6 &= ~BIT(12);
777 break;
778 case PF_VECTOR:
779 vcpu->arch.cr2 = ex->payload;
780 break;
781 }
782
783 ex->has_payload = false;
784 ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 bool has_error_code, u32 error_code,
790 bool has_payload, unsigned long payload)
791 {
792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793
794 ex->vector = vector;
795 ex->injected = false;
796 ex->pending = true;
797 ex->has_error_code = has_error_code;
798 ex->error_code = error_code;
799 ex->has_payload = has_payload;
800 ex->payload = payload;
801 }
802
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
804 bool has_error, u32 error_code,
805 bool has_payload, unsigned long payload)
806 {
807 u32 prev_nr;
808 int class1, class2;
809
810 kvm_make_request(KVM_REQ_EVENT, vcpu);
811
812 /*
813 * If the exception is destined for L2, morph it to a VM-Exit if L1
814 * wants to intercept the exception.
815 */
816 if (is_guest_mode(vcpu) &&
817 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
818 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
819 has_payload, payload);
820 return;
821 }
822
823 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
824 queue:
825 vcpu->arch.exception.pending = true;
826 vcpu->arch.exception.injected = false;
827
828 vcpu->arch.exception.has_error_code = has_error;
829 vcpu->arch.exception.vector = nr;
830 vcpu->arch.exception.error_code = error_code;
831 vcpu->arch.exception.has_payload = has_payload;
832 vcpu->arch.exception.payload = payload;
833 if (!is_guest_mode(vcpu))
834 kvm_deliver_exception_payload(vcpu,
835 &vcpu->arch.exception);
836 return;
837 }
838
839 /* to check exception */
840 prev_nr = vcpu->arch.exception.vector;
841 if (prev_nr == DF_VECTOR) {
842 /* triple fault -> shutdown */
843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
844 return;
845 }
846 class1 = exception_class(prev_nr);
847 class2 = exception_class(nr);
848 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
849 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
850 /*
851 * Synthesize #DF. Clear the previously injected or pending
852 * exception so as not to incorrectly trigger shutdown.
853 */
854 vcpu->arch.exception.injected = false;
855 vcpu->arch.exception.pending = false;
856
857 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
858 } else {
859 /* replace previous exception with a new one in a hope
860 that instruction re-execution will regenerate lost
861 exception */
862 goto queue;
863 }
864 }
865
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)866 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
867 {
868 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
869 }
870 EXPORT_SYMBOL_GPL(kvm_queue_exception);
871
872
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)873 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
874 unsigned long payload)
875 {
876 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
877 }
878 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
879
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)880 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
881 u32 error_code, unsigned long payload)
882 {
883 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
884 }
885
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)886 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
887 bool has_error_code, u32 error_code)
888 {
889
890 /*
891 * On VM-Entry, an exception can be pending if and only if event
892 * injection was blocked by nested_run_pending. In that case, however,
893 * vcpu_enter_guest() requests an immediate exit, and the guest
894 * shouldn't proceed far enough to need reinjection.
895 */
896 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
897
898 /*
899 * Do not check for interception when injecting an event for L2, as the
900 * exception was checked for intercept when it was original queued, and
901 * re-checking is incorrect if _L1_ injected the exception, in which
902 * case it's exempt from interception.
903 */
904 kvm_make_request(KVM_REQ_EVENT, vcpu);
905
906 vcpu->arch.exception.injected = true;
907 vcpu->arch.exception.has_error_code = has_error_code;
908 vcpu->arch.exception.vector = nr;
909 vcpu->arch.exception.error_code = error_code;
910 vcpu->arch.exception.has_payload = false;
911 vcpu->arch.exception.payload = 0;
912 }
913 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
914
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)915 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
916 {
917 if (err)
918 kvm_inject_gp(vcpu, 0);
919 else
920 return kvm_skip_emulated_instruction(vcpu);
921
922 return 1;
923 }
924 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
925
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)926 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
927 {
928 if (err) {
929 kvm_inject_gp(vcpu, 0);
930 return 1;
931 }
932
933 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
934 EMULTYPE_COMPLETE_USER_EXIT);
935 }
936
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)937 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
938 {
939 ++vcpu->stat.pf_guest;
940
941 /*
942 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
943 * whether or not L1 wants to intercept "regular" #PF.
944 */
945 if (is_guest_mode(vcpu) && fault->async_page_fault)
946 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
947 true, fault->error_code,
948 true, fault->address);
949 else
950 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
951 fault->address);
952 }
953
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)954 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
955 struct x86_exception *fault)
956 {
957 struct kvm_mmu *fault_mmu;
958 WARN_ON_ONCE(fault->vector != PF_VECTOR);
959
960 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
961 vcpu->arch.walk_mmu;
962
963 /*
964 * Invalidate the TLB entry for the faulting address, if it exists,
965 * else the access will fault indefinitely (and to emulate hardware).
966 */
967 if ((fault->error_code & PFERR_PRESENT_MASK) &&
968 !(fault->error_code & PFERR_RSVD_MASK))
969 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
970 KVM_MMU_ROOT_CURRENT);
971
972 fault_mmu->inject_page_fault(vcpu, fault);
973 }
974 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
975
kvm_inject_nmi(struct kvm_vcpu * vcpu)976 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
977 {
978 atomic_inc(&vcpu->arch.nmi_queued);
979 kvm_make_request(KVM_REQ_NMI, vcpu);
980 }
981
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)982 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
983 {
984 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
985 }
986 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
987
988 /*
989 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
990 * a #GP and return false.
991 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)992 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
993 {
994 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
995 return true;
996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
997 return false;
998 }
999
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1000 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1001 {
1002 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1003 return true;
1004
1005 kvm_queue_exception(vcpu, UD_VECTOR);
1006 return false;
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_require_dr);
1009
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1010 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1011 {
1012 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1013 }
1014
1015 /*
1016 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1017 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1018 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1019 {
1020 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1021 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1022 gpa_t real_gpa;
1023 int i;
1024 int ret;
1025 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1026
1027 /*
1028 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1029 * to an L1 GPA.
1030 */
1031 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1032 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1033 if (real_gpa == INVALID_GPA)
1034 return 0;
1035
1036 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1037 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1038 cr3 & GENMASK(11, 5), sizeof(pdpte));
1039 if (ret < 0)
1040 return 0;
1041
1042 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1043 if ((pdpte[i] & PT_PRESENT_MASK) &&
1044 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1045 return 0;
1046 }
1047 }
1048
1049 /*
1050 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1051 * Shadow page roots need to be reconstructed instead.
1052 */
1053 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1054 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1055
1056 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1057 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1058 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1059 vcpu->arch.pdptrs_from_userspace = false;
1060
1061 return 1;
1062 }
1063 EXPORT_SYMBOL_GPL(load_pdptrs);
1064
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1065 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1066 {
1067 #ifdef CONFIG_X86_64
1068 if (cr0 & 0xffffffff00000000UL)
1069 return false;
1070 #endif
1071
1072 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1073 return false;
1074
1075 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1076 return false;
1077
1078 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1079 }
1080
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1081 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1082 {
1083 /*
1084 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1085 * indirect shadow MMUs. If paging is disabled, no updates are needed
1086 * as there are no permission bits to emulate. If TDP is enabled, the
1087 * MMU's metadata needs to be updated, e.g. so that emulating guest
1088 * translations does the right thing, but there's no need to unload the
1089 * root as CR0.WP doesn't affect SPTEs.
1090 */
1091 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1092 if (!(cr0 & X86_CR0_PG))
1093 return;
1094
1095 if (tdp_enabled) {
1096 kvm_init_mmu(vcpu);
1097 return;
1098 }
1099 }
1100
1101 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1102 kvm_clear_async_pf_completion_queue(vcpu);
1103 kvm_async_pf_hash_reset(vcpu);
1104
1105 /*
1106 * Clearing CR0.PG is defined to flush the TLB from the guest's
1107 * perspective.
1108 */
1109 if (!(cr0 & X86_CR0_PG))
1110 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1111 }
1112
1113 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1114 kvm_mmu_reset_context(vcpu);
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1117
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1118 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1119 {
1120 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1121
1122 if (!kvm_is_valid_cr0(vcpu, cr0))
1123 return 1;
1124
1125 cr0 |= X86_CR0_ET;
1126
1127 /* Write to CR0 reserved bits are ignored, even on Intel. */
1128 cr0 &= ~CR0_RESERVED_BITS;
1129
1130 #ifdef CONFIG_X86_64
1131 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1132 (cr0 & X86_CR0_PG)) {
1133 int cs_db, cs_l;
1134
1135 if (!is_pae(vcpu))
1136 return 1;
1137 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1138 if (cs_l)
1139 return 1;
1140 }
1141 #endif
1142 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1143 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1144 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1145 return 1;
1146
1147 if (!(cr0 & X86_CR0_PG) &&
1148 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1149 return 1;
1150
1151 kvm_x86_call(set_cr0)(vcpu, cr0);
1152
1153 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1154
1155 return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1158
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1159 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1160 {
1161 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_lmsw);
1164
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1165 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1166 {
1167 if (vcpu->arch.guest_state_protected)
1168 return;
1169
1170 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1171
1172 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1173 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1174
1175 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1176 vcpu->arch.ia32_xss != kvm_host.xss)
1177 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1178 }
1179
1180 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1181 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1182 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1183 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1184 wrpkru(vcpu->arch.pkru);
1185 }
1186 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1187
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1188 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1189 {
1190 if (vcpu->arch.guest_state_protected)
1191 return;
1192
1193 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1194 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1195 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1196 vcpu->arch.pkru = rdpkru();
1197 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1198 wrpkru(vcpu->arch.host_pkru);
1199 }
1200
1201 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1202
1203 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1204 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1205
1206 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1207 vcpu->arch.ia32_xss != kvm_host.xss)
1208 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1209 }
1210
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1213
1214 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1215 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1216 {
1217 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1218 }
1219 #endif
1220
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1221 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1222 {
1223 u64 xcr0 = xcr;
1224 u64 old_xcr0 = vcpu->arch.xcr0;
1225 u64 valid_bits;
1226
1227 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1228 if (index != XCR_XFEATURE_ENABLED_MASK)
1229 return 1;
1230 if (!(xcr0 & XFEATURE_MASK_FP))
1231 return 1;
1232 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1233 return 1;
1234
1235 /*
1236 * Do not allow the guest to set bits that we do not support
1237 * saving. However, xcr0 bit 0 is always set, even if the
1238 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1239 */
1240 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1241 if (xcr0 & ~valid_bits)
1242 return 1;
1243
1244 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1245 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1246 return 1;
1247
1248 if (xcr0 & XFEATURE_MASK_AVX512) {
1249 if (!(xcr0 & XFEATURE_MASK_YMM))
1250 return 1;
1251 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1252 return 1;
1253 }
1254
1255 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1256 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1257 return 1;
1258
1259 vcpu->arch.xcr0 = xcr0;
1260
1261 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1262 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1263 return 0;
1264 }
1265
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1266 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1267 {
1268 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1269 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1270 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1271 kvm_inject_gp(vcpu, 0);
1272 return 1;
1273 }
1274
1275 return kvm_skip_emulated_instruction(vcpu);
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1278
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1279 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1280 {
1281 return __kvm_is_valid_cr4(vcpu, cr4) &&
1282 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1283 }
1284
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1285 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1286 {
1287 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1288 kvm_mmu_reset_context(vcpu);
1289
1290 /*
1291 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1292 * according to the SDM; however, stale prev_roots could be reused
1293 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1294 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1295 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1296 * so fall through.
1297 */
1298 if (!tdp_enabled &&
1299 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1300 kvm_mmu_unload(vcpu);
1301
1302 /*
1303 * The TLB has to be flushed for all PCIDs if any of the following
1304 * (architecturally required) changes happen:
1305 * - CR4.PCIDE is changed from 1 to 0
1306 * - CR4.PGE is toggled
1307 *
1308 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1309 */
1310 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1311 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1312 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1313
1314 /*
1315 * The TLB has to be flushed for the current PCID if any of the
1316 * following (architecturally required) changes happen:
1317 * - CR4.SMEP is changed from 0 to 1
1318 * - CR4.PAE is toggled
1319 */
1320 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1321 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1322 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1323
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1326
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1327 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1328 {
1329 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1330
1331 if (!kvm_is_valid_cr4(vcpu, cr4))
1332 return 1;
1333
1334 if (is_long_mode(vcpu)) {
1335 if (!(cr4 & X86_CR4_PAE))
1336 return 1;
1337 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1338 return 1;
1339 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1340 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1341 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1342 return 1;
1343
1344 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1345 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1346 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1347 return 1;
1348 }
1349
1350 kvm_x86_call(set_cr4)(vcpu, cr4);
1351
1352 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1353
1354 return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1357
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1358 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1359 {
1360 struct kvm_mmu *mmu = vcpu->arch.mmu;
1361 unsigned long roots_to_free = 0;
1362 int i;
1363
1364 /*
1365 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1366 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1367 * also via the emulator. KVM's TDP page tables are not in the scope of
1368 * the invalidation, but the guest's TLB entries need to be flushed as
1369 * the CPU may have cached entries in its TLB for the target PCID.
1370 */
1371 if (unlikely(tdp_enabled)) {
1372 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1373 return;
1374 }
1375
1376 /*
1377 * If neither the current CR3 nor any of the prev_roots use the given
1378 * PCID, then nothing needs to be done here because a resync will
1379 * happen anyway before switching to any other CR3.
1380 */
1381 if (kvm_get_active_pcid(vcpu) == pcid) {
1382 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1383 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1384 }
1385
1386 /*
1387 * If PCID is disabled, there is no need to free prev_roots even if the
1388 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1389 * with PCIDE=0.
1390 */
1391 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1392 return;
1393
1394 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1395 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1396 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1397
1398 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1399 }
1400
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1401 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1402 {
1403 bool skip_tlb_flush = false;
1404 unsigned long pcid = 0;
1405 #ifdef CONFIG_X86_64
1406 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1407 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1408 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1409 pcid = cr3 & X86_CR3_PCID_MASK;
1410 }
1411 #endif
1412
1413 /* PDPTRs are always reloaded for PAE paging. */
1414 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1415 goto handle_tlb_flush;
1416
1417 /*
1418 * Do not condition the GPA check on long mode, this helper is used to
1419 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1420 * the current vCPU mode is accurate.
1421 */
1422 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1423 return 1;
1424
1425 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1426 return 1;
1427
1428 if (cr3 != kvm_read_cr3(vcpu))
1429 kvm_mmu_new_pgd(vcpu, cr3);
1430
1431 vcpu->arch.cr3 = cr3;
1432 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1433 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1434
1435 handle_tlb_flush:
1436 /*
1437 * A load of CR3 that flushes the TLB flushes only the current PCID,
1438 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1439 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1440 * and it's impossible to use a non-zero PCID when PCID is disabled,
1441 * i.e. only PCID=0 can be relevant.
1442 */
1443 if (!skip_tlb_flush)
1444 kvm_invalidate_pcid(vcpu, pcid);
1445
1446 return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1449
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1450 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1451 {
1452 if (cr8 & CR8_RESERVED_BITS)
1453 return 1;
1454 if (lapic_in_kernel(vcpu))
1455 kvm_lapic_set_tpr(vcpu, cr8);
1456 else
1457 vcpu->arch.cr8 = cr8;
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1461
kvm_get_cr8(struct kvm_vcpu * vcpu)1462 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1463 {
1464 if (lapic_in_kernel(vcpu))
1465 return kvm_lapic_get_cr8(vcpu);
1466 else
1467 return vcpu->arch.cr8;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1470
kvm_update_dr0123(struct kvm_vcpu * vcpu)1471 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1472 {
1473 int i;
1474
1475 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1476 for (i = 0; i < KVM_NR_DB_REGS; i++)
1477 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1478 }
1479 }
1480
kvm_update_dr7(struct kvm_vcpu * vcpu)1481 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1482 {
1483 unsigned long dr7;
1484
1485 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1486 dr7 = vcpu->arch.guest_debug_dr7;
1487 else
1488 dr7 = vcpu->arch.dr7;
1489 kvm_x86_call(set_dr7)(vcpu, dr7);
1490 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1491 if (dr7 & DR7_BP_EN_MASK)
1492 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1495
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1496 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1497 {
1498 u64 fixed = DR6_FIXED_1;
1499
1500 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1501 fixed |= DR6_RTM;
1502
1503 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1504 fixed |= DR6_BUS_LOCK;
1505 return fixed;
1506 }
1507
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1508 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1509 {
1510 size_t size = ARRAY_SIZE(vcpu->arch.db);
1511
1512 switch (dr) {
1513 case 0 ... 3:
1514 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1515 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1516 vcpu->arch.eff_db[dr] = val;
1517 break;
1518 case 4:
1519 case 6:
1520 if (!kvm_dr6_valid(val))
1521 return 1; /* #GP */
1522 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1523 break;
1524 case 5:
1525 default: /* 7 */
1526 if (!kvm_dr7_valid(val))
1527 return 1; /* #GP */
1528 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1529 kvm_update_dr7(vcpu);
1530 break;
1531 }
1532
1533 return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_set_dr);
1536
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1537 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1538 {
1539 size_t size = ARRAY_SIZE(vcpu->arch.db);
1540
1541 switch (dr) {
1542 case 0 ... 3:
1543 return vcpu->arch.db[array_index_nospec(dr, size)];
1544 case 4:
1545 case 6:
1546 return vcpu->arch.dr6;
1547 case 5:
1548 default: /* 7 */
1549 return vcpu->arch.dr7;
1550 }
1551 }
1552 EXPORT_SYMBOL_GPL(kvm_get_dr);
1553
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1554 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1555 {
1556 u32 ecx = kvm_rcx_read(vcpu);
1557 u64 data;
1558
1559 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1560 kvm_inject_gp(vcpu, 0);
1561 return 1;
1562 }
1563
1564 kvm_rax_write(vcpu, (u32)data);
1565 kvm_rdx_write(vcpu, data >> 32);
1566 return kvm_skip_emulated_instruction(vcpu);
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1569
1570 /*
1571 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1572 * does not yet virtualize. These include:
1573 * 10 - MISC_PACKAGE_CTRLS
1574 * 11 - ENERGY_FILTERING_CTL
1575 * 12 - DOITM
1576 * 18 - FB_CLEAR_CTRL
1577 * 21 - XAPIC_DISABLE_STATUS
1578 * 23 - OVERCLOCKING_STATUS
1579 */
1580
1581 #define KVM_SUPPORTED_ARCH_CAP \
1582 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1583 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1584 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1585 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1586 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1587 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1588
kvm_get_arch_capabilities(void)1589 static u64 kvm_get_arch_capabilities(void)
1590 {
1591 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1592
1593 /*
1594 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1595 * the nested hypervisor runs with NX huge pages. If it is not,
1596 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1597 * L1 guests, so it need not worry about its own (L2) guests.
1598 */
1599 data |= ARCH_CAP_PSCHANGE_MC_NO;
1600
1601 /*
1602 * If we're doing cache flushes (either "always" or "cond")
1603 * we will do one whenever the guest does a vmlaunch/vmresume.
1604 * If an outer hypervisor is doing the cache flush for us
1605 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1606 * capability to the guest too, and if EPT is disabled we're not
1607 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1608 * require a nested hypervisor to do a flush of its own.
1609 */
1610 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1611 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1612
1613 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1614 data |= ARCH_CAP_RDCL_NO;
1615 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1616 data |= ARCH_CAP_SSB_NO;
1617 if (!boot_cpu_has_bug(X86_BUG_MDS))
1618 data |= ARCH_CAP_MDS_NO;
1619 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1620 data |= ARCH_CAP_RFDS_NO;
1621 if (!boot_cpu_has_bug(X86_BUG_ITS))
1622 data |= ARCH_CAP_ITS_NO;
1623
1624 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1625 /*
1626 * If RTM=0 because the kernel has disabled TSX, the host might
1627 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1628 * and therefore knows that there cannot be TAA) but keep
1629 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1630 * and we want to allow migrating those guests to tsx=off hosts.
1631 */
1632 data &= ~ARCH_CAP_TAA_NO;
1633 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1634 data |= ARCH_CAP_TAA_NO;
1635 } else {
1636 /*
1637 * Nothing to do here; we emulate TSX_CTRL if present on the
1638 * host so the guest can choose between disabling TSX or
1639 * using VERW to clear CPU buffers.
1640 */
1641 }
1642
1643 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1644 data |= ARCH_CAP_GDS_NO;
1645
1646 return data;
1647 }
1648
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1649 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1650 bool host_initiated)
1651 {
1652 WARN_ON_ONCE(!host_initiated);
1653
1654 switch (index) {
1655 case MSR_IA32_ARCH_CAPABILITIES:
1656 *data = kvm_get_arch_capabilities();
1657 break;
1658 case MSR_IA32_PERF_CAPABILITIES:
1659 *data = kvm_caps.supported_perf_cap;
1660 break;
1661 case MSR_PLATFORM_INFO:
1662 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1663 break;
1664 case MSR_IA32_UCODE_REV:
1665 rdmsrl_safe(index, data);
1666 break;
1667 default:
1668 return kvm_x86_call(get_feature_msr)(index, data);
1669 }
1670 return 0;
1671 }
1672
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1673 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1674 {
1675 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1676 kvm_get_feature_msr);
1677 }
1678
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1679 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1680 {
1681 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1682 return false;
1683
1684 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1685 return false;
1686
1687 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1688 return false;
1689
1690 if (efer & (EFER_LME | EFER_LMA) &&
1691 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1692 return false;
1693
1694 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1695 return false;
1696
1697 return true;
1698
1699 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1700 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1701 {
1702 if (efer & efer_reserved_bits)
1703 return false;
1704
1705 return __kvm_valid_efer(vcpu, efer);
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1708
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1709 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1710 {
1711 u64 old_efer = vcpu->arch.efer;
1712 u64 efer = msr_info->data;
1713 int r;
1714
1715 if (efer & efer_reserved_bits)
1716 return 1;
1717
1718 if (!msr_info->host_initiated) {
1719 if (!__kvm_valid_efer(vcpu, efer))
1720 return 1;
1721
1722 if (is_paging(vcpu) &&
1723 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1724 return 1;
1725 }
1726
1727 efer &= ~EFER_LMA;
1728 efer |= vcpu->arch.efer & EFER_LMA;
1729
1730 r = kvm_x86_call(set_efer)(vcpu, efer);
1731 if (r) {
1732 WARN_ON(r > 0);
1733 return r;
1734 }
1735
1736 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1737 kvm_mmu_reset_context(vcpu);
1738
1739 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1740 (efer & EFER_SVME))
1741 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1742
1743 return 0;
1744 }
1745
kvm_enable_efer_bits(u64 mask)1746 void kvm_enable_efer_bits(u64 mask)
1747 {
1748 efer_reserved_bits &= ~mask;
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1751
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1753 {
1754 struct kvm_x86_msr_filter *msr_filter;
1755 struct msr_bitmap_range *ranges;
1756 struct kvm *kvm = vcpu->kvm;
1757 bool allowed;
1758 int idx;
1759 u32 i;
1760
1761 /* x2APIC MSRs do not support filtering. */
1762 if (index >= 0x800 && index <= 0x8ff)
1763 return true;
1764
1765 idx = srcu_read_lock(&kvm->srcu);
1766
1767 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1768 if (!msr_filter) {
1769 allowed = true;
1770 goto out;
1771 }
1772
1773 allowed = msr_filter->default_allow;
1774 ranges = msr_filter->ranges;
1775
1776 for (i = 0; i < msr_filter->count; i++) {
1777 u32 start = ranges[i].base;
1778 u32 end = start + ranges[i].nmsrs;
1779 u32 flags = ranges[i].flags;
1780 unsigned long *bitmap = ranges[i].bitmap;
1781
1782 if ((index >= start) && (index < end) && (flags & type)) {
1783 allowed = test_bit(index - start, bitmap);
1784 break;
1785 }
1786 }
1787
1788 out:
1789 srcu_read_unlock(&kvm->srcu, idx);
1790
1791 return allowed;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1794
1795 /*
1796 * Write @data into the MSR specified by @index. Select MSR specific fault
1797 * checks are bypassed if @host_initiated is %true.
1798 * Returns 0 on success, non-0 otherwise.
1799 * Assumes vcpu_load() was already called.
1800 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1802 bool host_initiated)
1803 {
1804 struct msr_data msr;
1805
1806 switch (index) {
1807 case MSR_FS_BASE:
1808 case MSR_GS_BASE:
1809 case MSR_KERNEL_GS_BASE:
1810 case MSR_CSTAR:
1811 case MSR_LSTAR:
1812 if (is_noncanonical_msr_address(data, vcpu))
1813 return 1;
1814 break;
1815 case MSR_IA32_SYSENTER_EIP:
1816 case MSR_IA32_SYSENTER_ESP:
1817 /*
1818 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1819 * non-canonical address is written on Intel but not on
1820 * AMD (which ignores the top 32-bits, because it does
1821 * not implement 64-bit SYSENTER).
1822 *
1823 * 64-bit code should hence be able to write a non-canonical
1824 * value on AMD. Making the address canonical ensures that
1825 * vmentry does not fail on Intel after writing a non-canonical
1826 * value, and that something deterministic happens if the guest
1827 * invokes 64-bit SYSENTER.
1828 */
1829 data = __canonical_address(data, max_host_virt_addr_bits());
1830 break;
1831 case MSR_TSC_AUX:
1832 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1833 return 1;
1834
1835 if (!host_initiated &&
1836 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1837 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1838 return 1;
1839
1840 /*
1841 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1842 * incomplete and conflicting architectural behavior. Current
1843 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1844 * reserved and always read as zeros. Enforce Intel's reserved
1845 * bits check if the guest CPU is Intel compatible, otherwise
1846 * clear the bits. This ensures cross-vendor migration will
1847 * provide consistent behavior for the guest.
1848 */
1849 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1850 return 1;
1851
1852 data = (u32)data;
1853 break;
1854 }
1855
1856 msr.data = data;
1857 msr.index = index;
1858 msr.host_initiated = host_initiated;
1859
1860 return kvm_x86_call(set_msr)(vcpu, &msr);
1861 }
1862
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1863 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1864 bool host_initiated)
1865 {
1866 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1867 }
1868
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1869 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1870 u32 index, u64 data, bool host_initiated)
1871 {
1872 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1873 _kvm_set_msr);
1874 }
1875
1876 /*
1877 * Read the MSR specified by @index into @data. Select MSR specific fault
1878 * checks are bypassed if @host_initiated is %true.
1879 * Returns 0 on success, non-0 otherwise.
1880 * Assumes vcpu_load() was already called.
1881 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1882 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1883 bool host_initiated)
1884 {
1885 struct msr_data msr;
1886 int ret;
1887
1888 switch (index) {
1889 case MSR_TSC_AUX:
1890 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1891 return 1;
1892
1893 if (!host_initiated &&
1894 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1895 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1896 return 1;
1897 break;
1898 }
1899
1900 msr.index = index;
1901 msr.host_initiated = host_initiated;
1902
1903 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1904 if (!ret)
1905 *data = msr.data;
1906 return ret;
1907 }
1908
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1909 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1910 u32 index, u64 *data, bool host_initiated)
1911 {
1912 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1913 __kvm_get_msr);
1914 }
1915
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1916 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1917 {
1918 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1919 return KVM_MSR_RET_FILTERED;
1920 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1923
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1924 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1925 {
1926 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1927 return KVM_MSR_RET_FILTERED;
1928 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1931
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1932 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1933 {
1934 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_get_msr);
1937
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1938 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1939 {
1940 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_set_msr);
1943
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1944 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1945 {
1946 if (!vcpu->run->msr.error) {
1947 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1948 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1949 }
1950 }
1951
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1952 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1953 {
1954 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1955 }
1956
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1957 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1958 {
1959 complete_userspace_rdmsr(vcpu);
1960 return complete_emulated_msr_access(vcpu);
1961 }
1962
complete_fast_msr_access(struct kvm_vcpu * vcpu)1963 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1964 {
1965 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1966 }
1967
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1968 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1969 {
1970 complete_userspace_rdmsr(vcpu);
1971 return complete_fast_msr_access(vcpu);
1972 }
1973
kvm_msr_reason(int r)1974 static u64 kvm_msr_reason(int r)
1975 {
1976 switch (r) {
1977 case KVM_MSR_RET_UNSUPPORTED:
1978 return KVM_MSR_EXIT_REASON_UNKNOWN;
1979 case KVM_MSR_RET_FILTERED:
1980 return KVM_MSR_EXIT_REASON_FILTER;
1981 default:
1982 return KVM_MSR_EXIT_REASON_INVAL;
1983 }
1984 }
1985
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1986 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1987 u32 exit_reason, u64 data,
1988 int (*completion)(struct kvm_vcpu *vcpu),
1989 int r)
1990 {
1991 u64 msr_reason = kvm_msr_reason(r);
1992
1993 /* Check if the user wanted to know about this MSR fault */
1994 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1995 return 0;
1996
1997 vcpu->run->exit_reason = exit_reason;
1998 vcpu->run->msr.error = 0;
1999 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2000 vcpu->run->msr.reason = msr_reason;
2001 vcpu->run->msr.index = index;
2002 vcpu->run->msr.data = data;
2003 vcpu->arch.complete_userspace_io = completion;
2004
2005 return 1;
2006 }
2007
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2008 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2009 {
2010 u32 ecx = kvm_rcx_read(vcpu);
2011 u64 data;
2012 int r;
2013
2014 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2015
2016 if (!r) {
2017 trace_kvm_msr_read(ecx, data);
2018
2019 kvm_rax_write(vcpu, data & -1u);
2020 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2021 } else {
2022 /* MSR read failed? See if we should ask user space */
2023 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2024 complete_fast_rdmsr, r))
2025 return 0;
2026 trace_kvm_msr_read_ex(ecx);
2027 }
2028
2029 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2032
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2033 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2034 {
2035 u32 ecx = kvm_rcx_read(vcpu);
2036 u64 data = kvm_read_edx_eax(vcpu);
2037 int r;
2038
2039 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2040
2041 if (!r) {
2042 trace_kvm_msr_write(ecx, data);
2043 } else {
2044 /* MSR write failed? See if we should ask user space */
2045 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2046 complete_fast_msr_access, r))
2047 return 0;
2048 /* Signal all other negative errors to userspace */
2049 if (r < 0)
2050 return r;
2051 trace_kvm_msr_write_ex(ecx, data);
2052 }
2053
2054 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2057
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2058 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2059 {
2060 return kvm_skip_emulated_instruction(vcpu);
2061 }
2062
kvm_emulate_invd(struct kvm_vcpu * vcpu)2063 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2064 {
2065 /* Treat an INVD instruction as a NOP and just skip it. */
2066 return kvm_emulate_as_nop(vcpu);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2069
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2070 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2071 {
2072 kvm_queue_exception(vcpu, UD_VECTOR);
2073 return 1;
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2076
2077
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2078 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2079 {
2080 bool enabled;
2081
2082 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2083 goto emulate_as_nop;
2084
2085 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2086 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2087 else
2088 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2089
2090 if (!enabled)
2091 return kvm_handle_invalid_op(vcpu);
2092
2093 emulate_as_nop:
2094 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2095 return kvm_emulate_as_nop(vcpu);
2096 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2098 {
2099 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2102
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2104 {
2105 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2108
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2110 {
2111 xfer_to_guest_mode_prepare();
2112
2113 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2114 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2115 }
2116
2117 /*
2118 * The fast path for frequent and performance sensitive wrmsr emulation,
2119 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2120 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2121 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2122 * other cases which must be called after interrupts are enabled on the host.
2123 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2124 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2125 {
2126 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2127 return 1;
2128
2129 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2130 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2131 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2132 ((u32)(data >> 32) != X2APIC_BROADCAST))
2133 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2134
2135 return 1;
2136 }
2137
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2138 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2139 {
2140 if (!kvm_can_use_hv_timer(vcpu))
2141 return 1;
2142
2143 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2144 return 0;
2145 }
2146
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2147 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2148 {
2149 u32 msr = kvm_rcx_read(vcpu);
2150 u64 data;
2151 fastpath_t ret;
2152 bool handled;
2153
2154 kvm_vcpu_srcu_read_lock(vcpu);
2155
2156 switch (msr) {
2157 case APIC_BASE_MSR + (APIC_ICR >> 4):
2158 data = kvm_read_edx_eax(vcpu);
2159 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2160 break;
2161 case MSR_IA32_TSC_DEADLINE:
2162 data = kvm_read_edx_eax(vcpu);
2163 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2164 break;
2165 default:
2166 handled = false;
2167 break;
2168 }
2169
2170 if (handled) {
2171 if (!kvm_skip_emulated_instruction(vcpu))
2172 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2173 else
2174 ret = EXIT_FASTPATH_REENTER_GUEST;
2175 trace_kvm_msr_write(msr, data);
2176 } else {
2177 ret = EXIT_FASTPATH_NONE;
2178 }
2179
2180 kvm_vcpu_srcu_read_unlock(vcpu);
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2185
2186 /*
2187 * Adapt set_msr() to msr_io()'s calling convention
2188 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2189 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2190 {
2191 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2192 }
2193
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2194 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2195 {
2196 u64 val;
2197
2198 /*
2199 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2200 * not support modifying the guest vCPU model on the fly, e.g. changing
2201 * the nVMX capabilities while L2 is running is nonsensical. Allow
2202 * writes of the same value, e.g. to allow userspace to blindly stuff
2203 * all MSRs when emulating RESET.
2204 */
2205 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2206 (do_get_msr(vcpu, index, &val) || *data != val))
2207 return -EINVAL;
2208
2209 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2210 }
2211
2212 #ifdef CONFIG_X86_64
2213 struct pvclock_clock {
2214 int vclock_mode;
2215 u64 cycle_last;
2216 u64 mask;
2217 u32 mult;
2218 u32 shift;
2219 u64 base_cycles;
2220 u64 offset;
2221 };
2222
2223 struct pvclock_gtod_data {
2224 seqcount_t seq;
2225
2226 struct pvclock_clock clock; /* extract of a clocksource struct */
2227 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2228
2229 ktime_t offs_boot;
2230 u64 wall_time_sec;
2231 };
2232
2233 static struct pvclock_gtod_data pvclock_gtod_data;
2234
update_pvclock_gtod(struct timekeeper * tk)2235 static void update_pvclock_gtod(struct timekeeper *tk)
2236 {
2237 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2238
2239 write_seqcount_begin(&vdata->seq);
2240
2241 /* copy pvclock gtod data */
2242 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2243 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2244 vdata->clock.mask = tk->tkr_mono.mask;
2245 vdata->clock.mult = tk->tkr_mono.mult;
2246 vdata->clock.shift = tk->tkr_mono.shift;
2247 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2248 vdata->clock.offset = tk->tkr_mono.base;
2249
2250 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2251 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2252 vdata->raw_clock.mask = tk->tkr_raw.mask;
2253 vdata->raw_clock.mult = tk->tkr_raw.mult;
2254 vdata->raw_clock.shift = tk->tkr_raw.shift;
2255 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2256 vdata->raw_clock.offset = tk->tkr_raw.base;
2257
2258 vdata->wall_time_sec = tk->xtime_sec;
2259
2260 vdata->offs_boot = tk->offs_boot;
2261
2262 write_seqcount_end(&vdata->seq);
2263 }
2264
get_kvmclock_base_ns(void)2265 static s64 get_kvmclock_base_ns(void)
2266 {
2267 /* Count up from boot time, but with the frequency of the raw clock. */
2268 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2269 }
2270 #else
get_kvmclock_base_ns(void)2271 static s64 get_kvmclock_base_ns(void)
2272 {
2273 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2274 return ktime_get_boottime_ns();
2275 }
2276 #endif
2277
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2278 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2279 {
2280 int version;
2281 int r;
2282 struct pvclock_wall_clock wc;
2283 u32 wc_sec_hi;
2284 u64 wall_nsec;
2285
2286 if (!wall_clock)
2287 return;
2288
2289 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2290 if (r)
2291 return;
2292
2293 if (version & 1)
2294 ++version; /* first time write, random junk */
2295
2296 ++version;
2297
2298 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2299 return;
2300
2301 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2302
2303 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2304 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2305 wc.version = version;
2306
2307 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2308
2309 if (sec_hi_ofs) {
2310 wc_sec_hi = wall_nsec >> 32;
2311 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2312 &wc_sec_hi, sizeof(wc_sec_hi));
2313 }
2314
2315 version++;
2316 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2317 }
2318
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2319 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2320 bool old_msr, bool host_initiated)
2321 {
2322 struct kvm_arch *ka = &vcpu->kvm->arch;
2323
2324 if (vcpu->vcpu_id == 0 && !host_initiated) {
2325 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2326 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2327
2328 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2329 }
2330
2331 vcpu->arch.time = system_time;
2332 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2333
2334 /* we verify if the enable bit is set... */
2335 if (system_time & 1)
2336 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2337 sizeof(struct pvclock_vcpu_time_info));
2338 else
2339 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2340
2341 return;
2342 }
2343
div_frac(uint32_t dividend,uint32_t divisor)2344 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2345 {
2346 do_shl32_div32(dividend, divisor);
2347 return dividend;
2348 }
2349
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2350 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2351 s8 *pshift, u32 *pmultiplier)
2352 {
2353 uint64_t scaled64;
2354 int32_t shift = 0;
2355 uint64_t tps64;
2356 uint32_t tps32;
2357
2358 tps64 = base_hz;
2359 scaled64 = scaled_hz;
2360 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2361 tps64 >>= 1;
2362 shift--;
2363 }
2364
2365 tps32 = (uint32_t)tps64;
2366 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2367 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2368 scaled64 >>= 1;
2369 else
2370 tps32 <<= 1;
2371 shift++;
2372 }
2373
2374 *pshift = shift;
2375 *pmultiplier = div_frac(scaled64, tps32);
2376 }
2377
2378 #ifdef CONFIG_X86_64
2379 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2380 #endif
2381
2382 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2383 static unsigned long max_tsc_khz;
2384
adjust_tsc_khz(u32 khz,s32 ppm)2385 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2386 {
2387 u64 v = (u64)khz * (1000000 + ppm);
2388 do_div(v, 1000000);
2389 return v;
2390 }
2391
2392 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2393
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2394 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2395 {
2396 u64 ratio;
2397
2398 /* Guest TSC same frequency as host TSC? */
2399 if (!scale) {
2400 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2401 return 0;
2402 }
2403
2404 /* TSC scaling supported? */
2405 if (!kvm_caps.has_tsc_control) {
2406 if (user_tsc_khz > tsc_khz) {
2407 vcpu->arch.tsc_catchup = 1;
2408 vcpu->arch.tsc_always_catchup = 1;
2409 return 0;
2410 } else {
2411 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2412 return -1;
2413 }
2414 }
2415
2416 /* TSC scaling required - calculate ratio */
2417 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2418 user_tsc_khz, tsc_khz);
2419
2420 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2421 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2422 user_tsc_khz);
2423 return -1;
2424 }
2425
2426 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2427 return 0;
2428 }
2429
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2430 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2431 {
2432 u32 thresh_lo, thresh_hi;
2433 int use_scaling = 0;
2434
2435 /* tsc_khz can be zero if TSC calibration fails */
2436 if (user_tsc_khz == 0) {
2437 /* set tsc_scaling_ratio to a safe value */
2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439 return -1;
2440 }
2441
2442 /* Compute a scale to convert nanoseconds in TSC cycles */
2443 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2444 &vcpu->arch.virtual_tsc_shift,
2445 &vcpu->arch.virtual_tsc_mult);
2446 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2447
2448 /*
2449 * Compute the variation in TSC rate which is acceptable
2450 * within the range of tolerance and decide if the
2451 * rate being applied is within that bounds of the hardware
2452 * rate. If so, no scaling or compensation need be done.
2453 */
2454 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2455 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2456 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2457 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2458 user_tsc_khz, thresh_lo, thresh_hi);
2459 use_scaling = 1;
2460 }
2461 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2462 }
2463
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2464 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2465 {
2466 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2467 vcpu->arch.virtual_tsc_mult,
2468 vcpu->arch.virtual_tsc_shift);
2469 tsc += vcpu->arch.this_tsc_write;
2470 return tsc;
2471 }
2472
2473 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2474 static inline bool gtod_is_based_on_tsc(int mode)
2475 {
2476 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2477 }
2478 #endif
2479
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2480 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2481 {
2482 #ifdef CONFIG_X86_64
2483 struct kvm_arch *ka = &vcpu->kvm->arch;
2484 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2485
2486 /*
2487 * To use the masterclock, the host clocksource must be based on TSC
2488 * and all vCPUs must have matching TSCs. Note, the count for matching
2489 * vCPUs doesn't include the reference vCPU, hence "+1".
2490 */
2491 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2492 atomic_read(&vcpu->kvm->online_vcpus)) &&
2493 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2494
2495 /*
2496 * Request a masterclock update if the masterclock needs to be toggled
2497 * on/off, or when starting a new generation and the masterclock is
2498 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2499 * taken _after_ the new generation is created).
2500 */
2501 if ((ka->use_master_clock && new_generation) ||
2502 (ka->use_master_clock != use_master_clock))
2503 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2504
2505 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2506 atomic_read(&vcpu->kvm->online_vcpus),
2507 ka->use_master_clock, gtod->clock.vclock_mode);
2508 #endif
2509 }
2510
2511 /*
2512 * Multiply tsc by a fixed point number represented by ratio.
2513 *
2514 * The most significant 64-N bits (mult) of ratio represent the
2515 * integral part of the fixed point number; the remaining N bits
2516 * (frac) represent the fractional part, ie. ratio represents a fixed
2517 * point number (mult + frac * 2^(-N)).
2518 *
2519 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2520 */
__scale_tsc(u64 ratio,u64 tsc)2521 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2522 {
2523 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2524 }
2525
kvm_scale_tsc(u64 tsc,u64 ratio)2526 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2527 {
2528 u64 _tsc = tsc;
2529
2530 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2531 _tsc = __scale_tsc(ratio, tsc);
2532
2533 return _tsc;
2534 }
2535
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2536 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2537 {
2538 u64 tsc;
2539
2540 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2541
2542 return target_tsc - tsc;
2543 }
2544
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2545 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2546 {
2547 return vcpu->arch.l1_tsc_offset +
2548 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2551
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2552 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2553 {
2554 u64 nested_offset;
2555
2556 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2557 nested_offset = l1_offset;
2558 else
2559 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2560 kvm_caps.tsc_scaling_ratio_frac_bits);
2561
2562 nested_offset += l2_offset;
2563 return nested_offset;
2564 }
2565 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2566
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2567 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2568 {
2569 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2570 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2571 kvm_caps.tsc_scaling_ratio_frac_bits);
2572
2573 return l1_multiplier;
2574 }
2575 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2576
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2577 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2578 {
2579 if (vcpu->arch.guest_tsc_protected)
2580 return;
2581
2582 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2583 vcpu->arch.l1_tsc_offset,
2584 l1_offset);
2585
2586 vcpu->arch.l1_tsc_offset = l1_offset;
2587
2588 /*
2589 * If we are here because L1 chose not to trap WRMSR to TSC then
2590 * according to the spec this should set L1's TSC (as opposed to
2591 * setting L1's offset for L2).
2592 */
2593 if (is_guest_mode(vcpu))
2594 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2595 l1_offset,
2596 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2597 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2598 else
2599 vcpu->arch.tsc_offset = l1_offset;
2600
2601 kvm_x86_call(write_tsc_offset)(vcpu);
2602 }
2603
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2604 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2605 {
2606 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2607
2608 /* Userspace is changing the multiplier while L2 is active */
2609 if (is_guest_mode(vcpu))
2610 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2611 l1_multiplier,
2612 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2613 else
2614 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2615
2616 if (kvm_caps.has_tsc_control)
2617 kvm_x86_call(write_tsc_multiplier)(vcpu);
2618 }
2619
kvm_check_tsc_unstable(void)2620 static inline bool kvm_check_tsc_unstable(void)
2621 {
2622 #ifdef CONFIG_X86_64
2623 /*
2624 * TSC is marked unstable when we're running on Hyper-V,
2625 * 'TSC page' clocksource is good.
2626 */
2627 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2628 return false;
2629 #endif
2630 return check_tsc_unstable();
2631 }
2632
2633 /*
2634 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2635 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2636 * participates in.
2637 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2638 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2639 u64 ns, bool matched, bool user_set_tsc)
2640 {
2641 struct kvm *kvm = vcpu->kvm;
2642
2643 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2644
2645 if (vcpu->arch.guest_tsc_protected)
2646 return;
2647
2648 if (user_set_tsc)
2649 vcpu->kvm->arch.user_set_tsc = true;
2650
2651 /*
2652 * We also track th most recent recorded KHZ, write and time to
2653 * allow the matching interval to be extended at each write.
2654 */
2655 kvm->arch.last_tsc_nsec = ns;
2656 kvm->arch.last_tsc_write = tsc;
2657 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2658 kvm->arch.last_tsc_offset = offset;
2659
2660 vcpu->arch.last_guest_tsc = tsc;
2661
2662 kvm_vcpu_write_tsc_offset(vcpu, offset);
2663
2664 if (!matched) {
2665 /*
2666 * We split periods of matched TSC writes into generations.
2667 * For each generation, we track the original measured
2668 * nanosecond time, offset, and write, so if TSCs are in
2669 * sync, we can match exact offset, and if not, we can match
2670 * exact software computation in compute_guest_tsc()
2671 *
2672 * These values are tracked in kvm->arch.cur_xxx variables.
2673 */
2674 kvm->arch.cur_tsc_generation++;
2675 kvm->arch.cur_tsc_nsec = ns;
2676 kvm->arch.cur_tsc_write = tsc;
2677 kvm->arch.cur_tsc_offset = offset;
2678 kvm->arch.nr_vcpus_matched_tsc = 0;
2679 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2680 kvm->arch.nr_vcpus_matched_tsc++;
2681 }
2682
2683 /* Keep track of which generation this VCPU has synchronized to */
2684 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2685 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2686 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2687
2688 kvm_track_tsc_matching(vcpu, !matched);
2689 }
2690
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2691 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2692 {
2693 u64 data = user_value ? *user_value : 0;
2694 struct kvm *kvm = vcpu->kvm;
2695 u64 offset, ns, elapsed;
2696 unsigned long flags;
2697 bool matched = false;
2698 bool synchronizing = false;
2699
2700 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2701 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2702 ns = get_kvmclock_base_ns();
2703 elapsed = ns - kvm->arch.last_tsc_nsec;
2704
2705 if (vcpu->arch.virtual_tsc_khz) {
2706 if (data == 0) {
2707 /*
2708 * Force synchronization when creating a vCPU, or when
2709 * userspace explicitly writes a zero value.
2710 */
2711 synchronizing = true;
2712 } else if (kvm->arch.user_set_tsc) {
2713 u64 tsc_exp = kvm->arch.last_tsc_write +
2714 nsec_to_cycles(vcpu, elapsed);
2715 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2716 /*
2717 * Here lies UAPI baggage: when a user-initiated TSC write has
2718 * a small delta (1 second) of virtual cycle time against the
2719 * previously set vCPU, we assume that they were intended to be
2720 * in sync and the delta was only due to the racy nature of the
2721 * legacy API.
2722 *
2723 * This trick falls down when restoring a guest which genuinely
2724 * has been running for less time than the 1 second of imprecision
2725 * which we allow for in the legacy API. In this case, the first
2726 * value written by userspace (on any vCPU) should not be subject
2727 * to this 'correction' to make it sync up with values that only
2728 * come from the kernel's default vCPU creation. Make the 1-second
2729 * slop hack only trigger if the user_set_tsc flag is already set.
2730 */
2731 synchronizing = data < tsc_exp + tsc_hz &&
2732 data + tsc_hz > tsc_exp;
2733 }
2734 }
2735
2736
2737 /*
2738 * For a reliable TSC, we can match TSC offsets, and for an unstable
2739 * TSC, we add elapsed time in this computation. We could let the
2740 * compensation code attempt to catch up if we fall behind, but
2741 * it's better to try to match offsets from the beginning.
2742 */
2743 if (synchronizing &&
2744 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2745 if (!kvm_check_tsc_unstable()) {
2746 offset = kvm->arch.cur_tsc_offset;
2747 } else {
2748 u64 delta = nsec_to_cycles(vcpu, elapsed);
2749 data += delta;
2750 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2751 }
2752 matched = true;
2753 }
2754
2755 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2757 }
2758
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2759 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2760 s64 adjustment)
2761 {
2762 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2763 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2764 }
2765
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2766 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2767 {
2768 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2769 WARN_ON(adjustment < 0);
2770 adjustment = kvm_scale_tsc((u64) adjustment,
2771 vcpu->arch.l1_tsc_scaling_ratio);
2772 adjust_tsc_offset_guest(vcpu, adjustment);
2773 }
2774
2775 #ifdef CONFIG_X86_64
2776
read_tsc(void)2777 static u64 read_tsc(void)
2778 {
2779 u64 ret = (u64)rdtsc_ordered();
2780 u64 last = pvclock_gtod_data.clock.cycle_last;
2781
2782 if (likely(ret >= last))
2783 return ret;
2784
2785 /*
2786 * GCC likes to generate cmov here, but this branch is extremely
2787 * predictable (it's just a function of time and the likely is
2788 * very likely) and there's a data dependence, so force GCC
2789 * to generate a branch instead. I don't barrier() because
2790 * we don't actually need a barrier, and if this function
2791 * ever gets inlined it will generate worse code.
2792 */
2793 asm volatile ("");
2794 return last;
2795 }
2796
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2797 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2798 int *mode)
2799 {
2800 u64 tsc_pg_val;
2801 long v;
2802
2803 switch (clock->vclock_mode) {
2804 case VDSO_CLOCKMODE_HVCLOCK:
2805 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2806 tsc_timestamp, &tsc_pg_val)) {
2807 /* TSC page valid */
2808 *mode = VDSO_CLOCKMODE_HVCLOCK;
2809 v = (tsc_pg_val - clock->cycle_last) &
2810 clock->mask;
2811 } else {
2812 /* TSC page invalid */
2813 *mode = VDSO_CLOCKMODE_NONE;
2814 }
2815 break;
2816 case VDSO_CLOCKMODE_TSC:
2817 *mode = VDSO_CLOCKMODE_TSC;
2818 *tsc_timestamp = read_tsc();
2819 v = (*tsc_timestamp - clock->cycle_last) &
2820 clock->mask;
2821 break;
2822 default:
2823 *mode = VDSO_CLOCKMODE_NONE;
2824 }
2825
2826 if (*mode == VDSO_CLOCKMODE_NONE)
2827 *tsc_timestamp = v = 0;
2828
2829 return v * clock->mult;
2830 }
2831
2832 /*
2833 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2834 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2835 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2836 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2837 {
2838 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2839 unsigned long seq;
2840 int mode;
2841 u64 ns;
2842
2843 do {
2844 seq = read_seqcount_begin(>od->seq);
2845 ns = gtod->raw_clock.base_cycles;
2846 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2847 ns >>= gtod->raw_clock.shift;
2848 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2849 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2850 *t = ns;
2851
2852 return mode;
2853 }
2854
2855 /*
2856 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2857 * no boot time offset.
2858 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2859 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2860 {
2861 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2862 unsigned long seq;
2863 int mode;
2864 u64 ns;
2865
2866 do {
2867 seq = read_seqcount_begin(>od->seq);
2868 ns = gtod->clock.base_cycles;
2869 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2870 ns >>= gtod->clock.shift;
2871 ns += ktime_to_ns(gtod->clock.offset);
2872 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2873 *t = ns;
2874
2875 return mode;
2876 }
2877
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2878 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2879 {
2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2881 unsigned long seq;
2882 int mode;
2883 u64 ns;
2884
2885 do {
2886 seq = read_seqcount_begin(>od->seq);
2887 ts->tv_sec = gtod->wall_time_sec;
2888 ns = gtod->clock.base_cycles;
2889 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2890 ns >>= gtod->clock.shift;
2891 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2892
2893 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2894 ts->tv_nsec = ns;
2895
2896 return mode;
2897 }
2898
2899 /*
2900 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2901 * reports the TSC value from which it do so. Returns true if host is
2902 * using TSC based clocksource.
2903 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 /* checked again under seqlock below */
2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 return false;
2909
2910 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2911 tsc_timestamp));
2912 }
2913
2914 /*
2915 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2916 * so. Returns true if host is using TSC based clocksource.
2917 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2918 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2919 {
2920 /* checked again under seqlock below */
2921 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2922 return false;
2923
2924 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2925 tsc_timestamp));
2926 }
2927
2928 /*
2929 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2930 * so. Returns true if host is using TSC based clocksource.
2931 *
2932 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2933 * for that.
2934 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2936 u64 *tsc_timestamp)
2937 {
2938 /* checked again under seqlock below */
2939 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2940 return false;
2941
2942 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2943 }
2944 #endif
2945
2946 /*
2947 *
2948 * Assuming a stable TSC across physical CPUS, and a stable TSC
2949 * across virtual CPUs, the following condition is possible.
2950 * Each numbered line represents an event visible to both
2951 * CPUs at the next numbered event.
2952 *
2953 * "timespecX" represents host monotonic time. "tscX" represents
2954 * RDTSC value.
2955 *
2956 * VCPU0 on CPU0 | VCPU1 on CPU1
2957 *
2958 * 1. read timespec0,tsc0
2959 * 2. | timespec1 = timespec0 + N
2960 * | tsc1 = tsc0 + M
2961 * 3. transition to guest | transition to guest
2962 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2963 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2964 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2965 *
2966 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2967 *
2968 * - ret0 < ret1
2969 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2970 * ...
2971 * - 0 < N - M => M < N
2972 *
2973 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2974 * always the case (the difference between two distinct xtime instances
2975 * might be smaller then the difference between corresponding TSC reads,
2976 * when updating guest vcpus pvclock areas).
2977 *
2978 * To avoid that problem, do not allow visibility of distinct
2979 * system_timestamp/tsc_timestamp values simultaneously: use a master
2980 * copy of host monotonic time values. Update that master copy
2981 * in lockstep.
2982 *
2983 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2984 *
2985 */
2986
pvclock_update_vm_gtod_copy(struct kvm * kvm)2987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2988 {
2989 #ifdef CONFIG_X86_64
2990 struct kvm_arch *ka = &kvm->arch;
2991 int vclock_mode;
2992 bool host_tsc_clocksource, vcpus_matched;
2993
2994 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2995 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2996 atomic_read(&kvm->online_vcpus));
2997
2998 /*
2999 * If the host uses TSC clock, then passthrough TSC as stable
3000 * to the guest.
3001 */
3002 host_tsc_clocksource = kvm_get_time_and_clockread(
3003 &ka->master_kernel_ns,
3004 &ka->master_cycle_now);
3005
3006 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3007 && !ka->backwards_tsc_observed
3008 && !ka->boot_vcpu_runs_old_kvmclock;
3009
3010 if (ka->use_master_clock)
3011 atomic_set(&kvm_guest_has_master_clock, 1);
3012
3013 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3014 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3015 vcpus_matched);
3016 #endif
3017 }
3018
kvm_make_mclock_inprogress_request(struct kvm * kvm)3019 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3020 {
3021 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3022 }
3023
__kvm_start_pvclock_update(struct kvm * kvm)3024 static void __kvm_start_pvclock_update(struct kvm *kvm)
3025 {
3026 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3027 write_seqcount_begin(&kvm->arch.pvclock_sc);
3028 }
3029
kvm_start_pvclock_update(struct kvm * kvm)3030 static void kvm_start_pvclock_update(struct kvm *kvm)
3031 {
3032 kvm_make_mclock_inprogress_request(kvm);
3033
3034 /* no guest entries from this point */
3035 __kvm_start_pvclock_update(kvm);
3036 }
3037
kvm_end_pvclock_update(struct kvm * kvm)3038 static void kvm_end_pvclock_update(struct kvm *kvm)
3039 {
3040 struct kvm_arch *ka = &kvm->arch;
3041 struct kvm_vcpu *vcpu;
3042 unsigned long i;
3043
3044 write_seqcount_end(&ka->pvclock_sc);
3045 raw_spin_unlock_irq(&ka->tsc_write_lock);
3046 kvm_for_each_vcpu(i, vcpu, kvm)
3047 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3048
3049 /* guest entries allowed */
3050 kvm_for_each_vcpu(i, vcpu, kvm)
3051 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3052 }
3053
kvm_update_masterclock(struct kvm * kvm)3054 static void kvm_update_masterclock(struct kvm *kvm)
3055 {
3056 kvm_hv_request_tsc_page_update(kvm);
3057 kvm_start_pvclock_update(kvm);
3058 pvclock_update_vm_gtod_copy(kvm);
3059 kvm_end_pvclock_update(kvm);
3060 }
3061
3062 /*
3063 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3064 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3065 * can change during boot even if the TSC is constant, as it's possible for KVM
3066 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3067 * notification when calibration completes, but practically speaking calibration
3068 * will complete before userspace is alive enough to create VMs.
3069 */
get_cpu_tsc_khz(void)3070 static unsigned long get_cpu_tsc_khz(void)
3071 {
3072 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3073 return tsc_khz;
3074 else
3075 return __this_cpu_read(cpu_tsc_khz);
3076 }
3077
3078 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3079 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3080 {
3081 struct kvm_arch *ka = &kvm->arch;
3082 struct pvclock_vcpu_time_info hv_clock;
3083
3084 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3085 get_cpu();
3086
3087 data->flags = 0;
3088 if (ka->use_master_clock &&
3089 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3090 #ifdef CONFIG_X86_64
3091 struct timespec64 ts;
3092
3093 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3094 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3095 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3096 } else
3097 #endif
3098 data->host_tsc = rdtsc();
3099
3100 data->flags |= KVM_CLOCK_TSC_STABLE;
3101 hv_clock.tsc_timestamp = ka->master_cycle_now;
3102 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3103 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3104 &hv_clock.tsc_shift,
3105 &hv_clock.tsc_to_system_mul);
3106 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3107 } else {
3108 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3109 }
3110
3111 put_cpu();
3112 }
3113
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3114 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3115 {
3116 struct kvm_arch *ka = &kvm->arch;
3117 unsigned seq;
3118
3119 do {
3120 seq = read_seqcount_begin(&ka->pvclock_sc);
3121 __get_kvmclock(kvm, data);
3122 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3123 }
3124
get_kvmclock_ns(struct kvm * kvm)3125 u64 get_kvmclock_ns(struct kvm *kvm)
3126 {
3127 struct kvm_clock_data data;
3128
3129 get_kvmclock(kvm, &data);
3130 return data.clock;
3131 }
3132
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3133 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3134 struct kvm_vcpu *vcpu,
3135 struct gfn_to_pfn_cache *gpc,
3136 unsigned int offset)
3137 {
3138 struct pvclock_vcpu_time_info *guest_hv_clock;
3139 struct pvclock_vcpu_time_info hv_clock;
3140 unsigned long flags;
3141
3142 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3143
3144 read_lock_irqsave(&gpc->lock, flags);
3145 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3146 read_unlock_irqrestore(&gpc->lock, flags);
3147
3148 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3149 return;
3150
3151 read_lock_irqsave(&gpc->lock, flags);
3152 }
3153
3154 guest_hv_clock = (void *)(gpc->khva + offset);
3155
3156 /*
3157 * This VCPU is paused, but it's legal for a guest to read another
3158 * VCPU's kvmclock, so we really have to follow the specification where
3159 * it says that version is odd if data is being modified, and even after
3160 * it is consistent.
3161 */
3162
3163 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3164 smp_wmb();
3165
3166 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3167 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3168
3169 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3170
3171 smp_wmb();
3172
3173 guest_hv_clock->version = ++hv_clock.version;
3174
3175 kvm_gpc_mark_dirty_in_slot(gpc);
3176 read_unlock_irqrestore(&gpc->lock, flags);
3177
3178 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3179 }
3180
kvm_guest_time_update(struct kvm_vcpu * v)3181 int kvm_guest_time_update(struct kvm_vcpu *v)
3182 {
3183 struct pvclock_vcpu_time_info hv_clock = {};
3184 unsigned long flags, tgt_tsc_khz;
3185 unsigned seq;
3186 struct kvm_vcpu_arch *vcpu = &v->arch;
3187 struct kvm_arch *ka = &v->kvm->arch;
3188 s64 kernel_ns;
3189 u64 tsc_timestamp, host_tsc;
3190 bool use_master_clock;
3191
3192 kernel_ns = 0;
3193 host_tsc = 0;
3194
3195 /*
3196 * If the host uses TSC clock, then passthrough TSC as stable
3197 * to the guest.
3198 */
3199 do {
3200 seq = read_seqcount_begin(&ka->pvclock_sc);
3201 use_master_clock = ka->use_master_clock;
3202 if (use_master_clock) {
3203 host_tsc = ka->master_cycle_now;
3204 kernel_ns = ka->master_kernel_ns;
3205 }
3206 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3207
3208 /* Keep irq disabled to prevent changes to the clock */
3209 local_irq_save(flags);
3210 tgt_tsc_khz = get_cpu_tsc_khz();
3211 if (unlikely(tgt_tsc_khz == 0)) {
3212 local_irq_restore(flags);
3213 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3214 return 1;
3215 }
3216 if (!use_master_clock) {
3217 host_tsc = rdtsc();
3218 kernel_ns = get_kvmclock_base_ns();
3219 }
3220
3221 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3222
3223 /*
3224 * We may have to catch up the TSC to match elapsed wall clock
3225 * time for two reasons, even if kvmclock is used.
3226 * 1) CPU could have been running below the maximum TSC rate
3227 * 2) Broken TSC compensation resets the base at each VCPU
3228 * entry to avoid unknown leaps of TSC even when running
3229 * again on the same CPU. This may cause apparent elapsed
3230 * time to disappear, and the guest to stand still or run
3231 * very slowly.
3232 */
3233 if (vcpu->tsc_catchup) {
3234 u64 tsc = compute_guest_tsc(v, kernel_ns);
3235 if (tsc > tsc_timestamp) {
3236 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3237 tsc_timestamp = tsc;
3238 }
3239 }
3240
3241 local_irq_restore(flags);
3242
3243 /* With all the info we got, fill in the values */
3244
3245 if (kvm_caps.has_tsc_control)
3246 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3247 v->arch.l1_tsc_scaling_ratio);
3248
3249 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3250 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3251 &vcpu->pvclock_tsc_shift,
3252 &vcpu->pvclock_tsc_mul);
3253 vcpu->hw_tsc_khz = tgt_tsc_khz;
3254 }
3255
3256 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3257 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3258 hv_clock.tsc_timestamp = tsc_timestamp;
3259 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3260 vcpu->last_guest_tsc = tsc_timestamp;
3261
3262 /* If the host uses TSC clocksource, then it is stable */
3263 hv_clock.flags = 0;
3264 if (use_master_clock)
3265 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3266
3267 if (vcpu->pv_time.active) {
3268 /*
3269 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3270 * historic behavior is to only process the request if kvmclock
3271 * is active/enabled.
3272 */
3273 if (vcpu->pvclock_set_guest_stopped_request) {
3274 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3275 vcpu->pvclock_set_guest_stopped_request = false;
3276 }
3277 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3278
3279 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3280 }
3281
3282 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3283
3284 #ifdef CONFIG_KVM_XEN
3285 /*
3286 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3287 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3288 * This default behaviour led to bugs in some guest kernels which cause
3289 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3290 *
3291 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3292 */
3293 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3294 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3295
3296 if (vcpu->xen.vcpu_info_cache.active)
3297 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3298 offsetof(struct compat_vcpu_info, time));
3299 if (vcpu->xen.vcpu_time_info_cache.active)
3300 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3301 #endif
3302 return 0;
3303 }
3304
3305 /*
3306 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3307 * which it started (i.e. its epoch, when its kvmclock was zero).
3308 *
3309 * In fact those clocks are subtly different; wall clock frequency is
3310 * adjusted by NTP and has leap seconds, while the kvmclock is a
3311 * simple function of the TSC without any such adjustment.
3312 *
3313 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3314 * that and kvmclock, but even that would be subject to change over
3315 * time.
3316 *
3317 * Attempt to calculate the epoch at a given moment using the *same*
3318 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3319 * wallclock and kvmclock times, and subtracting one from the other.
3320 *
3321 * Fall back to using their values at slightly different moments by
3322 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3323 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3324 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3325 {
3326 #ifdef CONFIG_X86_64
3327 struct pvclock_vcpu_time_info hv_clock;
3328 struct kvm_arch *ka = &kvm->arch;
3329 unsigned long seq, local_tsc_khz;
3330 struct timespec64 ts;
3331 uint64_t host_tsc;
3332
3333 do {
3334 seq = read_seqcount_begin(&ka->pvclock_sc);
3335
3336 local_tsc_khz = 0;
3337 if (!ka->use_master_clock)
3338 break;
3339
3340 /*
3341 * The TSC read and the call to get_cpu_tsc_khz() must happen
3342 * on the same CPU.
3343 */
3344 get_cpu();
3345
3346 local_tsc_khz = get_cpu_tsc_khz();
3347
3348 if (local_tsc_khz &&
3349 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3350 local_tsc_khz = 0; /* Fall back to old method */
3351
3352 put_cpu();
3353
3354 /*
3355 * These values must be snapshotted within the seqcount loop.
3356 * After that, it's just mathematics which can happen on any
3357 * CPU at any time.
3358 */
3359 hv_clock.tsc_timestamp = ka->master_cycle_now;
3360 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3361
3362 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3363
3364 /*
3365 * If the conditions were right, and obtaining the wallclock+TSC was
3366 * successful, calculate the KVM clock at the corresponding time and
3367 * subtract one from the other to get the guest's epoch in nanoseconds
3368 * since 1970-01-01.
3369 */
3370 if (local_tsc_khz) {
3371 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3372 &hv_clock.tsc_shift,
3373 &hv_clock.tsc_to_system_mul);
3374 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3375 __pvclock_read_cycles(&hv_clock, host_tsc);
3376 }
3377 #endif
3378 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3379 }
3380
3381 /*
3382 * kvmclock updates which are isolated to a given vcpu, such as
3383 * vcpu->cpu migration, should not allow system_timestamp from
3384 * the rest of the vcpus to remain static. Otherwise ntp frequency
3385 * correction applies to one vcpu's system_timestamp but not
3386 * the others.
3387 *
3388 * So in those cases, request a kvmclock update for all vcpus.
3389 * We need to rate-limit these requests though, as they can
3390 * considerably slow guests that have a large number of vcpus.
3391 * The time for a remote vcpu to update its kvmclock is bound
3392 * by the delay we use to rate-limit the updates.
3393 */
3394
3395 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3396
kvmclock_update_fn(struct work_struct * work)3397 static void kvmclock_update_fn(struct work_struct *work)
3398 {
3399 unsigned long i;
3400 struct delayed_work *dwork = to_delayed_work(work);
3401 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3402 kvmclock_update_work);
3403 struct kvm *kvm = container_of(ka, struct kvm, arch);
3404 struct kvm_vcpu *vcpu;
3405
3406 kvm_for_each_vcpu(i, vcpu, kvm) {
3407 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3408 kvm_vcpu_kick(vcpu);
3409 }
3410 }
3411
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3412 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3413 {
3414 struct kvm *kvm = v->kvm;
3415
3416 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3417 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3418 KVMCLOCK_UPDATE_DELAY);
3419 }
3420
3421 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3422
kvmclock_sync_fn(struct work_struct * work)3423 static void kvmclock_sync_fn(struct work_struct *work)
3424 {
3425 struct delayed_work *dwork = to_delayed_work(work);
3426 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3427 kvmclock_sync_work);
3428 struct kvm *kvm = container_of(ka, struct kvm, arch);
3429
3430 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3431 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3432 KVMCLOCK_SYNC_PERIOD);
3433 }
3434
3435 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3436 static bool is_mci_control_msr(u32 msr)
3437 {
3438 return (msr & 3) == 0;
3439 }
is_mci_status_msr(u32 msr)3440 static bool is_mci_status_msr(u32 msr)
3441 {
3442 return (msr & 3) == 1;
3443 }
3444
3445 /*
3446 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3447 */
can_set_mci_status(struct kvm_vcpu * vcpu)3448 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3449 {
3450 /* McStatusWrEn enabled? */
3451 if (guest_cpuid_is_amd_compatible(vcpu))
3452 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3453
3454 return false;
3455 }
3456
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3457 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3458 {
3459 u64 mcg_cap = vcpu->arch.mcg_cap;
3460 unsigned bank_num = mcg_cap & 0xff;
3461 u32 msr = msr_info->index;
3462 u64 data = msr_info->data;
3463 u32 offset, last_msr;
3464
3465 switch (msr) {
3466 case MSR_IA32_MCG_STATUS:
3467 vcpu->arch.mcg_status = data;
3468 break;
3469 case MSR_IA32_MCG_CTL:
3470 if (!(mcg_cap & MCG_CTL_P) &&
3471 (data || !msr_info->host_initiated))
3472 return 1;
3473 if (data != 0 && data != ~(u64)0)
3474 return 1;
3475 vcpu->arch.mcg_ctl = data;
3476 break;
3477 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3478 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3479 if (msr > last_msr)
3480 return 1;
3481
3482 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3483 return 1;
3484 /* An attempt to write a 1 to a reserved bit raises #GP */
3485 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3486 return 1;
3487 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3488 last_msr + 1 - MSR_IA32_MC0_CTL2);
3489 vcpu->arch.mci_ctl2_banks[offset] = data;
3490 break;
3491 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3492 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3493 if (msr > last_msr)
3494 return 1;
3495
3496 /*
3497 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3498 * values are architecturally undefined. But, some Linux
3499 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3500 * issue on AMD K8s, allow bit 10 to be clear when setting all
3501 * other bits in order to avoid an uncaught #GP in the guest.
3502 *
3503 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3504 * single-bit ECC data errors.
3505 */
3506 if (is_mci_control_msr(msr) &&
3507 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3508 return 1;
3509
3510 /*
3511 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3512 * AMD-based CPUs allow non-zero values, but if and only if
3513 * HWCR[McStatusWrEn] is set.
3514 */
3515 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3516 data != 0 && !can_set_mci_status(vcpu))
3517 return 1;
3518
3519 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3520 last_msr + 1 - MSR_IA32_MC0_CTL);
3521 vcpu->arch.mce_banks[offset] = data;
3522 break;
3523 default:
3524 return 1;
3525 }
3526 return 0;
3527 }
3528
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3529 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3530 {
3531 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3532
3533 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3534 }
3535
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3536 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3537 {
3538 gpa_t gpa = data & ~0x3f;
3539
3540 /* Bits 4:5 are reserved, Should be zero */
3541 if (data & 0x30)
3542 return 1;
3543
3544 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3545 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3546 return 1;
3547
3548 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3549 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3550 return 1;
3551
3552 if (!lapic_in_kernel(vcpu))
3553 return data ? 1 : 0;
3554
3555 vcpu->arch.apf.msr_en_val = data;
3556
3557 if (!kvm_pv_async_pf_enabled(vcpu)) {
3558 kvm_clear_async_pf_completion_queue(vcpu);
3559 kvm_async_pf_hash_reset(vcpu);
3560 return 0;
3561 }
3562
3563 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3564 sizeof(u64)))
3565 return 1;
3566
3567 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3568 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3569
3570 kvm_async_pf_wakeup_all(vcpu);
3571
3572 return 0;
3573 }
3574
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3575 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3576 {
3577 /* Bits 8-63 are reserved */
3578 if (data >> 8)
3579 return 1;
3580
3581 if (!lapic_in_kernel(vcpu))
3582 return 1;
3583
3584 vcpu->arch.apf.msr_int_val = data;
3585
3586 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3587
3588 return 0;
3589 }
3590
kvmclock_reset(struct kvm_vcpu * vcpu)3591 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3592 {
3593 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3594 vcpu->arch.time = 0;
3595 }
3596
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3597 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3598 {
3599 ++vcpu->stat.tlb_flush;
3600 kvm_x86_call(flush_tlb_all)(vcpu);
3601
3602 /* Flushing all ASIDs flushes the current ASID... */
3603 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3604 }
3605
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3606 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3607 {
3608 ++vcpu->stat.tlb_flush;
3609
3610 if (!tdp_enabled) {
3611 /*
3612 * A TLB flush on behalf of the guest is equivalent to
3613 * INVPCID(all), toggling CR4.PGE, etc., which requires
3614 * a forced sync of the shadow page tables. Ensure all the
3615 * roots are synced and the guest TLB in hardware is clean.
3616 */
3617 kvm_mmu_sync_roots(vcpu);
3618 kvm_mmu_sync_prev_roots(vcpu);
3619 }
3620
3621 kvm_x86_call(flush_tlb_guest)(vcpu);
3622
3623 /*
3624 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3625 * grained flushing.
3626 */
3627 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3628 }
3629
3630
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3631 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3632 {
3633 ++vcpu->stat.tlb_flush;
3634 kvm_x86_call(flush_tlb_current)(vcpu);
3635 }
3636
3637 /*
3638 * Service "local" TLB flush requests, which are specific to the current MMU
3639 * context. In addition to the generic event handling in vcpu_enter_guest(),
3640 * TLB flushes that are targeted at an MMU context also need to be serviced
3641 * prior before nested VM-Enter/VM-Exit.
3642 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3643 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3644 {
3645 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3646 kvm_vcpu_flush_tlb_current(vcpu);
3647
3648 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3649 kvm_vcpu_flush_tlb_guest(vcpu);
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3652
record_steal_time(struct kvm_vcpu * vcpu)3653 static void record_steal_time(struct kvm_vcpu *vcpu)
3654 {
3655 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3656 struct kvm_steal_time __user *st;
3657 struct kvm_memslots *slots;
3658 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3659 u64 steal;
3660 u32 version;
3661
3662 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3663 kvm_xen_runstate_set_running(vcpu);
3664 return;
3665 }
3666
3667 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3668 return;
3669
3670 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3671 return;
3672
3673 slots = kvm_memslots(vcpu->kvm);
3674
3675 if (unlikely(slots->generation != ghc->generation ||
3676 gpa != ghc->gpa ||
3677 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3678 /* We rely on the fact that it fits in a single page. */
3679 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3680
3681 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3682 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3683 return;
3684 }
3685
3686 st = (struct kvm_steal_time __user *)ghc->hva;
3687 /*
3688 * Doing a TLB flush here, on the guest's behalf, can avoid
3689 * expensive IPIs.
3690 */
3691 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3692 u8 st_preempted = 0;
3693 int err = -EFAULT;
3694
3695 if (!user_access_begin(st, sizeof(*st)))
3696 return;
3697
3698 asm volatile("1: xchgb %0, %2\n"
3699 "xor %1, %1\n"
3700 "2:\n"
3701 _ASM_EXTABLE_UA(1b, 2b)
3702 : "+q" (st_preempted),
3703 "+&r" (err),
3704 "+m" (st->preempted));
3705 if (err)
3706 goto out;
3707
3708 user_access_end();
3709
3710 vcpu->arch.st.preempted = 0;
3711
3712 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3713 st_preempted & KVM_VCPU_FLUSH_TLB);
3714 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3715 kvm_vcpu_flush_tlb_guest(vcpu);
3716
3717 if (!user_access_begin(st, sizeof(*st)))
3718 goto dirty;
3719 } else {
3720 if (!user_access_begin(st, sizeof(*st)))
3721 return;
3722
3723 unsafe_put_user(0, &st->preempted, out);
3724 vcpu->arch.st.preempted = 0;
3725 }
3726
3727 unsafe_get_user(version, &st->version, out);
3728 if (version & 1)
3729 version += 1; /* first time write, random junk */
3730
3731 version += 1;
3732 unsafe_put_user(version, &st->version, out);
3733
3734 smp_wmb();
3735
3736 unsafe_get_user(steal, &st->steal, out);
3737 steal += current->sched_info.run_delay -
3738 vcpu->arch.st.last_steal;
3739 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3740 unsafe_put_user(steal, &st->steal, out);
3741
3742 version += 1;
3743 unsafe_put_user(version, &st->version, out);
3744
3745 out:
3746 user_access_end();
3747 dirty:
3748 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3749 }
3750
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3751 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3752 {
3753 u32 msr = msr_info->index;
3754 u64 data = msr_info->data;
3755
3756 /*
3757 * Do not allow host-initiated writes to trigger the Xen hypercall
3758 * page setup; it could incur locking paths which are not expected
3759 * if userspace sets the MSR in an unusual location.
3760 */
3761 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3762 !msr_info->host_initiated)
3763 return kvm_xen_write_hypercall_page(vcpu, data);
3764
3765 switch (msr) {
3766 case MSR_AMD64_NB_CFG:
3767 case MSR_IA32_UCODE_WRITE:
3768 case MSR_VM_HSAVE_PA:
3769 case MSR_AMD64_PATCH_LOADER:
3770 case MSR_AMD64_BU_CFG2:
3771 case MSR_AMD64_DC_CFG:
3772 case MSR_AMD64_TW_CFG:
3773 case MSR_F15H_EX_CFG:
3774 break;
3775
3776 case MSR_IA32_UCODE_REV:
3777 if (msr_info->host_initiated)
3778 vcpu->arch.microcode_version = data;
3779 break;
3780 case MSR_IA32_ARCH_CAPABILITIES:
3781 if (!msr_info->host_initiated ||
3782 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3783 return KVM_MSR_RET_UNSUPPORTED;
3784 vcpu->arch.arch_capabilities = data;
3785 break;
3786 case MSR_IA32_PERF_CAPABILITIES:
3787 if (!msr_info->host_initiated ||
3788 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3789 return KVM_MSR_RET_UNSUPPORTED;
3790
3791 if (data & ~kvm_caps.supported_perf_cap)
3792 return 1;
3793
3794 /*
3795 * Note, this is not just a performance optimization! KVM
3796 * disallows changing feature MSRs after the vCPU has run; PMU
3797 * refresh will bug the VM if called after the vCPU has run.
3798 */
3799 if (vcpu->arch.perf_capabilities == data)
3800 break;
3801
3802 vcpu->arch.perf_capabilities = data;
3803 kvm_pmu_refresh(vcpu);
3804 break;
3805 case MSR_IA32_PRED_CMD: {
3806 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3807
3808 if (!msr_info->host_initiated) {
3809 if ((!guest_has_pred_cmd_msr(vcpu)))
3810 return 1;
3811
3812 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3813 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3814 reserved_bits |= PRED_CMD_IBPB;
3815
3816 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3817 reserved_bits |= PRED_CMD_SBPB;
3818 }
3819
3820 if (!boot_cpu_has(X86_FEATURE_IBPB))
3821 reserved_bits |= PRED_CMD_IBPB;
3822
3823 if (!boot_cpu_has(X86_FEATURE_SBPB))
3824 reserved_bits |= PRED_CMD_SBPB;
3825
3826 if (data & reserved_bits)
3827 return 1;
3828
3829 if (!data)
3830 break;
3831
3832 wrmsrl(MSR_IA32_PRED_CMD, data);
3833 break;
3834 }
3835 case MSR_IA32_FLUSH_CMD:
3836 if (!msr_info->host_initiated &&
3837 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3838 return 1;
3839
3840 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3841 return 1;
3842 if (!data)
3843 break;
3844
3845 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3846 break;
3847 case MSR_EFER:
3848 return set_efer(vcpu, msr_info);
3849 case MSR_K7_HWCR:
3850 data &= ~(u64)0x40; /* ignore flush filter disable */
3851 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3852 data &= ~(u64)0x8; /* ignore TLB cache disable */
3853
3854 /*
3855 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3856 * through at least v6.6 whine if TscFreqSel is clear,
3857 * depending on F/M/S.
3858 */
3859 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3860 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3861 return 1;
3862 }
3863 vcpu->arch.msr_hwcr = data;
3864 break;
3865 case MSR_FAM10H_MMIO_CONF_BASE:
3866 if (data != 0) {
3867 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3868 return 1;
3869 }
3870 break;
3871 case MSR_IA32_CR_PAT:
3872 if (!kvm_pat_valid(data))
3873 return 1;
3874
3875 vcpu->arch.pat = data;
3876 break;
3877 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3878 case MSR_MTRRdefType:
3879 return kvm_mtrr_set_msr(vcpu, msr, data);
3880 case MSR_IA32_APICBASE:
3881 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3882 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3883 return kvm_x2apic_msr_write(vcpu, msr, data);
3884 case MSR_IA32_TSC_DEADLINE:
3885 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3886 break;
3887 case MSR_IA32_TSC_ADJUST:
3888 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3889 if (!msr_info->host_initiated) {
3890 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3891 adjust_tsc_offset_guest(vcpu, adj);
3892 /* Before back to guest, tsc_timestamp must be adjusted
3893 * as well, otherwise guest's percpu pvclock time could jump.
3894 */
3895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3896 }
3897 vcpu->arch.ia32_tsc_adjust_msr = data;
3898 }
3899 break;
3900 case MSR_IA32_MISC_ENABLE: {
3901 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3902
3903 if (!msr_info->host_initiated) {
3904 /* RO bits */
3905 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3906 return 1;
3907
3908 /* R bits, i.e. writes are ignored, but don't fault. */
3909 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3910 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3911 }
3912
3913 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3914 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3915 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3916 return 1;
3917 vcpu->arch.ia32_misc_enable_msr = data;
3918 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3919 } else {
3920 vcpu->arch.ia32_misc_enable_msr = data;
3921 }
3922 break;
3923 }
3924 case MSR_IA32_SMBASE:
3925 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3926 return 1;
3927 vcpu->arch.smbase = data;
3928 break;
3929 case MSR_IA32_POWER_CTL:
3930 vcpu->arch.msr_ia32_power_ctl = data;
3931 break;
3932 case MSR_IA32_TSC:
3933 if (msr_info->host_initiated) {
3934 kvm_synchronize_tsc(vcpu, &data);
3935 } else if (!vcpu->arch.guest_tsc_protected) {
3936 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3937 adjust_tsc_offset_guest(vcpu, adj);
3938 vcpu->arch.ia32_tsc_adjust_msr += adj;
3939 }
3940 break;
3941 case MSR_IA32_XSS:
3942 if (!msr_info->host_initiated &&
3943 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3944 return 1;
3945 /*
3946 * KVM supports exposing PT to the guest, but does not support
3947 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3948 * XSAVES/XRSTORS to save/restore PT MSRs.
3949 */
3950 if (data & ~kvm_caps.supported_xss)
3951 return 1;
3952 vcpu->arch.ia32_xss = data;
3953 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3954 break;
3955 case MSR_SMI_COUNT:
3956 if (!msr_info->host_initiated)
3957 return 1;
3958 vcpu->arch.smi_count = data;
3959 break;
3960 case MSR_KVM_WALL_CLOCK_NEW:
3961 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3962 return 1;
3963
3964 vcpu->kvm->arch.wall_clock = data;
3965 kvm_write_wall_clock(vcpu->kvm, data, 0);
3966 break;
3967 case MSR_KVM_WALL_CLOCK:
3968 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3969 return 1;
3970
3971 vcpu->kvm->arch.wall_clock = data;
3972 kvm_write_wall_clock(vcpu->kvm, data, 0);
3973 break;
3974 case MSR_KVM_SYSTEM_TIME_NEW:
3975 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3976 return 1;
3977
3978 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3979 break;
3980 case MSR_KVM_SYSTEM_TIME:
3981 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3982 return 1;
3983
3984 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3985 break;
3986 case MSR_KVM_ASYNC_PF_EN:
3987 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3988 return 1;
3989
3990 if (kvm_pv_enable_async_pf(vcpu, data))
3991 return 1;
3992 break;
3993 case MSR_KVM_ASYNC_PF_INT:
3994 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3995 return 1;
3996
3997 if (kvm_pv_enable_async_pf_int(vcpu, data))
3998 return 1;
3999 break;
4000 case MSR_KVM_ASYNC_PF_ACK:
4001 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4002 return 1;
4003 if (data & 0x1) {
4004 vcpu->arch.apf.pageready_pending = false;
4005 kvm_check_async_pf_completion(vcpu);
4006 }
4007 break;
4008 case MSR_KVM_STEAL_TIME:
4009 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4010 return 1;
4011
4012 if (unlikely(!sched_info_on()))
4013 return 1;
4014
4015 if (data & KVM_STEAL_RESERVED_MASK)
4016 return 1;
4017
4018 vcpu->arch.st.msr_val = data;
4019
4020 if (!(data & KVM_MSR_ENABLED))
4021 break;
4022
4023 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4024
4025 break;
4026 case MSR_KVM_PV_EOI_EN:
4027 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4028 return 1;
4029
4030 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4031 return 1;
4032 break;
4033
4034 case MSR_KVM_POLL_CONTROL:
4035 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4036 return 1;
4037
4038 /* only enable bit supported */
4039 if (data & (-1ULL << 1))
4040 return 1;
4041
4042 vcpu->arch.msr_kvm_poll_control = data;
4043 break;
4044
4045 case MSR_IA32_MCG_CTL:
4046 case MSR_IA32_MCG_STATUS:
4047 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4048 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4049 return set_msr_mce(vcpu, msr_info);
4050
4051 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4052 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4053 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4054 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4055 if (kvm_pmu_is_valid_msr(vcpu, msr))
4056 return kvm_pmu_set_msr(vcpu, msr_info);
4057
4058 if (data)
4059 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4060 break;
4061 case MSR_K7_CLK_CTL:
4062 /*
4063 * Ignore all writes to this no longer documented MSR.
4064 * Writes are only relevant for old K7 processors,
4065 * all pre-dating SVM, but a recommended workaround from
4066 * AMD for these chips. It is possible to specify the
4067 * affected processor models on the command line, hence
4068 * the need to ignore the workaround.
4069 */
4070 break;
4071 #ifdef CONFIG_KVM_HYPERV
4072 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4073 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4074 case HV_X64_MSR_SYNDBG_OPTIONS:
4075 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4076 case HV_X64_MSR_CRASH_CTL:
4077 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4078 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4079 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4080 case HV_X64_MSR_TSC_EMULATION_STATUS:
4081 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4082 return kvm_hv_set_msr_common(vcpu, msr, data,
4083 msr_info->host_initiated);
4084 #endif
4085 case MSR_IA32_BBL_CR_CTL3:
4086 /* Drop writes to this legacy MSR -- see rdmsr
4087 * counterpart for further detail.
4088 */
4089 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4090 break;
4091 case MSR_AMD64_OSVW_ID_LENGTH:
4092 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4093 return 1;
4094 vcpu->arch.osvw.length = data;
4095 break;
4096 case MSR_AMD64_OSVW_STATUS:
4097 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4098 return 1;
4099 vcpu->arch.osvw.status = data;
4100 break;
4101 case MSR_PLATFORM_INFO:
4102 if (!msr_info->host_initiated)
4103 return 1;
4104 vcpu->arch.msr_platform_info = data;
4105 break;
4106 case MSR_MISC_FEATURES_ENABLES:
4107 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4108 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4109 !supports_cpuid_fault(vcpu)))
4110 return 1;
4111 vcpu->arch.msr_misc_features_enables = data;
4112 break;
4113 #ifdef CONFIG_X86_64
4114 case MSR_IA32_XFD:
4115 if (!msr_info->host_initiated &&
4116 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4117 return 1;
4118
4119 if (data & ~kvm_guest_supported_xfd(vcpu))
4120 return 1;
4121
4122 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4123 break;
4124 case MSR_IA32_XFD_ERR:
4125 if (!msr_info->host_initiated &&
4126 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4127 return 1;
4128
4129 if (data & ~kvm_guest_supported_xfd(vcpu))
4130 return 1;
4131
4132 vcpu->arch.guest_fpu.xfd_err = data;
4133 break;
4134 #endif
4135 default:
4136 if (kvm_pmu_is_valid_msr(vcpu, msr))
4137 return kvm_pmu_set_msr(vcpu, msr_info);
4138
4139 return KVM_MSR_RET_UNSUPPORTED;
4140 }
4141 return 0;
4142 }
4143 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4144
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4145 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4146 {
4147 u64 data;
4148 u64 mcg_cap = vcpu->arch.mcg_cap;
4149 unsigned bank_num = mcg_cap & 0xff;
4150 u32 offset, last_msr;
4151
4152 switch (msr) {
4153 case MSR_IA32_P5_MC_ADDR:
4154 case MSR_IA32_P5_MC_TYPE:
4155 data = 0;
4156 break;
4157 case MSR_IA32_MCG_CAP:
4158 data = vcpu->arch.mcg_cap;
4159 break;
4160 case MSR_IA32_MCG_CTL:
4161 if (!(mcg_cap & MCG_CTL_P) && !host)
4162 return 1;
4163 data = vcpu->arch.mcg_ctl;
4164 break;
4165 case MSR_IA32_MCG_STATUS:
4166 data = vcpu->arch.mcg_status;
4167 break;
4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4169 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4170 if (msr > last_msr)
4171 return 1;
4172
4173 if (!(mcg_cap & MCG_CMCI_P) && !host)
4174 return 1;
4175 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4176 last_msr + 1 - MSR_IA32_MC0_CTL2);
4177 data = vcpu->arch.mci_ctl2_banks[offset];
4178 break;
4179 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4180 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4181 if (msr > last_msr)
4182 return 1;
4183
4184 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4185 last_msr + 1 - MSR_IA32_MC0_CTL);
4186 data = vcpu->arch.mce_banks[offset];
4187 break;
4188 default:
4189 return 1;
4190 }
4191 *pdata = data;
4192 return 0;
4193 }
4194
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4195 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4196 {
4197 switch (msr_info->index) {
4198 case MSR_IA32_PLATFORM_ID:
4199 case MSR_IA32_EBL_CR_POWERON:
4200 case MSR_IA32_LASTBRANCHFROMIP:
4201 case MSR_IA32_LASTBRANCHTOIP:
4202 case MSR_IA32_LASTINTFROMIP:
4203 case MSR_IA32_LASTINTTOIP:
4204 case MSR_AMD64_SYSCFG:
4205 case MSR_K8_TSEG_ADDR:
4206 case MSR_K8_TSEG_MASK:
4207 case MSR_VM_HSAVE_PA:
4208 case MSR_K8_INT_PENDING_MSG:
4209 case MSR_AMD64_NB_CFG:
4210 case MSR_FAM10H_MMIO_CONF_BASE:
4211 case MSR_AMD64_BU_CFG2:
4212 case MSR_IA32_PERF_CTL:
4213 case MSR_AMD64_DC_CFG:
4214 case MSR_AMD64_TW_CFG:
4215 case MSR_F15H_EX_CFG:
4216 /*
4217 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4218 * limit) MSRs. Just return 0, as we do not want to expose the host
4219 * data here. Do not conditionalize this on CPUID, as KVM does not do
4220 * so for existing CPU-specific MSRs.
4221 */
4222 case MSR_RAPL_POWER_UNIT:
4223 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4224 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4225 case MSR_PKG_ENERGY_STATUS: /* Total package */
4226 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4227 msr_info->data = 0;
4228 break;
4229 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4230 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4231 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4232 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4233 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4234 return kvm_pmu_get_msr(vcpu, msr_info);
4235 msr_info->data = 0;
4236 break;
4237 case MSR_IA32_UCODE_REV:
4238 msr_info->data = vcpu->arch.microcode_version;
4239 break;
4240 case MSR_IA32_ARCH_CAPABILITIES:
4241 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4242 return KVM_MSR_RET_UNSUPPORTED;
4243 msr_info->data = vcpu->arch.arch_capabilities;
4244 break;
4245 case MSR_IA32_PERF_CAPABILITIES:
4246 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4247 return KVM_MSR_RET_UNSUPPORTED;
4248 msr_info->data = vcpu->arch.perf_capabilities;
4249 break;
4250 case MSR_IA32_POWER_CTL:
4251 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4252 break;
4253 case MSR_IA32_TSC: {
4254 /*
4255 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4256 * even when not intercepted. AMD manual doesn't explicitly
4257 * state this but appears to behave the same.
4258 *
4259 * On userspace reads and writes, however, we unconditionally
4260 * return L1's TSC value to ensure backwards-compatible
4261 * behavior for migration.
4262 */
4263 u64 offset, ratio;
4264
4265 if (msr_info->host_initiated) {
4266 offset = vcpu->arch.l1_tsc_offset;
4267 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4268 } else {
4269 offset = vcpu->arch.tsc_offset;
4270 ratio = vcpu->arch.tsc_scaling_ratio;
4271 }
4272
4273 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4274 break;
4275 }
4276 case MSR_IA32_CR_PAT:
4277 msr_info->data = vcpu->arch.pat;
4278 break;
4279 case MSR_MTRRcap:
4280 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4281 case MSR_MTRRdefType:
4282 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4283 case 0xcd: /* fsb frequency */
4284 msr_info->data = 3;
4285 break;
4286 /*
4287 * MSR_EBC_FREQUENCY_ID
4288 * Conservative value valid for even the basic CPU models.
4289 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4290 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4291 * and 266MHz for model 3, or 4. Set Core Clock
4292 * Frequency to System Bus Frequency Ratio to 1 (bits
4293 * 31:24) even though these are only valid for CPU
4294 * models > 2, however guests may end up dividing or
4295 * multiplying by zero otherwise.
4296 */
4297 case MSR_EBC_FREQUENCY_ID:
4298 msr_info->data = 1 << 24;
4299 break;
4300 case MSR_IA32_APICBASE:
4301 msr_info->data = vcpu->arch.apic_base;
4302 break;
4303 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4304 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4305 case MSR_IA32_TSC_DEADLINE:
4306 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4307 break;
4308 case MSR_IA32_TSC_ADJUST:
4309 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4310 break;
4311 case MSR_IA32_MISC_ENABLE:
4312 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4313 break;
4314 case MSR_IA32_SMBASE:
4315 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4316 return 1;
4317 msr_info->data = vcpu->arch.smbase;
4318 break;
4319 case MSR_SMI_COUNT:
4320 msr_info->data = vcpu->arch.smi_count;
4321 break;
4322 case MSR_IA32_PERF_STATUS:
4323 /* TSC increment by tick */
4324 msr_info->data = 1000ULL;
4325 /* CPU multiplier */
4326 msr_info->data |= (((uint64_t)4ULL) << 40);
4327 break;
4328 case MSR_EFER:
4329 msr_info->data = vcpu->arch.efer;
4330 break;
4331 case MSR_KVM_WALL_CLOCK:
4332 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4333 return 1;
4334
4335 msr_info->data = vcpu->kvm->arch.wall_clock;
4336 break;
4337 case MSR_KVM_WALL_CLOCK_NEW:
4338 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4339 return 1;
4340
4341 msr_info->data = vcpu->kvm->arch.wall_clock;
4342 break;
4343 case MSR_KVM_SYSTEM_TIME:
4344 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4345 return 1;
4346
4347 msr_info->data = vcpu->arch.time;
4348 break;
4349 case MSR_KVM_SYSTEM_TIME_NEW:
4350 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4351 return 1;
4352
4353 msr_info->data = vcpu->arch.time;
4354 break;
4355 case MSR_KVM_ASYNC_PF_EN:
4356 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4357 return 1;
4358
4359 msr_info->data = vcpu->arch.apf.msr_en_val;
4360 break;
4361 case MSR_KVM_ASYNC_PF_INT:
4362 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4363 return 1;
4364
4365 msr_info->data = vcpu->arch.apf.msr_int_val;
4366 break;
4367 case MSR_KVM_ASYNC_PF_ACK:
4368 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4369 return 1;
4370
4371 msr_info->data = 0;
4372 break;
4373 case MSR_KVM_STEAL_TIME:
4374 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4375 return 1;
4376
4377 msr_info->data = vcpu->arch.st.msr_val;
4378 break;
4379 case MSR_KVM_PV_EOI_EN:
4380 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4381 return 1;
4382
4383 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4384 break;
4385 case MSR_KVM_POLL_CONTROL:
4386 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4387 return 1;
4388
4389 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4390 break;
4391 case MSR_IA32_P5_MC_ADDR:
4392 case MSR_IA32_P5_MC_TYPE:
4393 case MSR_IA32_MCG_CAP:
4394 case MSR_IA32_MCG_CTL:
4395 case MSR_IA32_MCG_STATUS:
4396 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4397 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4398 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4399 msr_info->host_initiated);
4400 case MSR_IA32_XSS:
4401 if (!msr_info->host_initiated &&
4402 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4403 return 1;
4404 msr_info->data = vcpu->arch.ia32_xss;
4405 break;
4406 case MSR_K7_CLK_CTL:
4407 /*
4408 * Provide expected ramp-up count for K7. All other
4409 * are set to zero, indicating minimum divisors for
4410 * every field.
4411 *
4412 * This prevents guest kernels on AMD host with CPU
4413 * type 6, model 8 and higher from exploding due to
4414 * the rdmsr failing.
4415 */
4416 msr_info->data = 0x20000000;
4417 break;
4418 #ifdef CONFIG_KVM_HYPERV
4419 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4420 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4421 case HV_X64_MSR_SYNDBG_OPTIONS:
4422 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4423 case HV_X64_MSR_CRASH_CTL:
4424 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4425 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4426 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4427 case HV_X64_MSR_TSC_EMULATION_STATUS:
4428 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4429 return kvm_hv_get_msr_common(vcpu,
4430 msr_info->index, &msr_info->data,
4431 msr_info->host_initiated);
4432 #endif
4433 case MSR_IA32_BBL_CR_CTL3:
4434 /* This legacy MSR exists but isn't fully documented in current
4435 * silicon. It is however accessed by winxp in very narrow
4436 * scenarios where it sets bit #19, itself documented as
4437 * a "reserved" bit. Best effort attempt to source coherent
4438 * read data here should the balance of the register be
4439 * interpreted by the guest:
4440 *
4441 * L2 cache control register 3: 64GB range, 256KB size,
4442 * enabled, latency 0x1, configured
4443 */
4444 msr_info->data = 0xbe702111;
4445 break;
4446 case MSR_AMD64_OSVW_ID_LENGTH:
4447 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4448 return 1;
4449 msr_info->data = vcpu->arch.osvw.length;
4450 break;
4451 case MSR_AMD64_OSVW_STATUS:
4452 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4453 return 1;
4454 msr_info->data = vcpu->arch.osvw.status;
4455 break;
4456 case MSR_PLATFORM_INFO:
4457 if (!msr_info->host_initiated &&
4458 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4459 return 1;
4460 msr_info->data = vcpu->arch.msr_platform_info;
4461 break;
4462 case MSR_MISC_FEATURES_ENABLES:
4463 msr_info->data = vcpu->arch.msr_misc_features_enables;
4464 break;
4465 case MSR_K7_HWCR:
4466 msr_info->data = vcpu->arch.msr_hwcr;
4467 break;
4468 #ifdef CONFIG_X86_64
4469 case MSR_IA32_XFD:
4470 if (!msr_info->host_initiated &&
4471 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4472 return 1;
4473
4474 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4475 break;
4476 case MSR_IA32_XFD_ERR:
4477 if (!msr_info->host_initiated &&
4478 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4479 return 1;
4480
4481 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4482 break;
4483 #endif
4484 default:
4485 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4486 return kvm_pmu_get_msr(vcpu, msr_info);
4487
4488 return KVM_MSR_RET_UNSUPPORTED;
4489 }
4490 return 0;
4491 }
4492 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4493
4494 /*
4495 * Read or write a bunch of msrs. All parameters are kernel addresses.
4496 *
4497 * @return number of msrs set successfully.
4498 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4499 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4500 struct kvm_msr_entry *entries,
4501 int (*do_msr)(struct kvm_vcpu *vcpu,
4502 unsigned index, u64 *data))
4503 {
4504 int i;
4505
4506 for (i = 0; i < msrs->nmsrs; ++i)
4507 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4508 break;
4509
4510 return i;
4511 }
4512
4513 /*
4514 * Read or write a bunch of msrs. Parameters are user addresses.
4515 *
4516 * @return number of msrs set successfully.
4517 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4518 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4519 int (*do_msr)(struct kvm_vcpu *vcpu,
4520 unsigned index, u64 *data),
4521 int writeback)
4522 {
4523 struct kvm_msrs msrs;
4524 struct kvm_msr_entry *entries;
4525 unsigned size;
4526 int r;
4527
4528 r = -EFAULT;
4529 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4530 goto out;
4531
4532 r = -E2BIG;
4533 if (msrs.nmsrs >= MAX_IO_MSRS)
4534 goto out;
4535
4536 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4537 entries = memdup_user(user_msrs->entries, size);
4538 if (IS_ERR(entries)) {
4539 r = PTR_ERR(entries);
4540 goto out;
4541 }
4542
4543 r = __msr_io(vcpu, &msrs, entries, do_msr);
4544
4545 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4546 r = -EFAULT;
4547
4548 kfree(entries);
4549 out:
4550 return r;
4551 }
4552
kvm_can_mwait_in_guest(void)4553 static inline bool kvm_can_mwait_in_guest(void)
4554 {
4555 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4556 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4557 boot_cpu_has(X86_FEATURE_ARAT);
4558 }
4559
kvm_get_allowed_disable_exits(void)4560 static u64 kvm_get_allowed_disable_exits(void)
4561 {
4562 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4563
4564 if (!mitigate_smt_rsb) {
4565 r |= KVM_X86_DISABLE_EXITS_HLT |
4566 KVM_X86_DISABLE_EXITS_CSTATE;
4567
4568 if (kvm_can_mwait_in_guest())
4569 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4570 }
4571 return r;
4572 }
4573
4574 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4575 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4576 struct kvm_cpuid2 __user *cpuid_arg)
4577 {
4578 struct kvm_cpuid2 cpuid;
4579 int r;
4580
4581 r = -EFAULT;
4582 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4583 return r;
4584
4585 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4586 if (r)
4587 return r;
4588
4589 r = -EFAULT;
4590 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4591 return r;
4592
4593 return 0;
4594 }
4595 #endif
4596
kvm_is_vm_type_supported(unsigned long type)4597 static bool kvm_is_vm_type_supported(unsigned long type)
4598 {
4599 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4600 }
4601
kvm_sync_valid_fields(struct kvm * kvm)4602 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4603 {
4604 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4605 }
4606
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4607 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4608 {
4609 int r = 0;
4610
4611 switch (ext) {
4612 case KVM_CAP_IRQCHIP:
4613 case KVM_CAP_HLT:
4614 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4615 case KVM_CAP_SET_TSS_ADDR:
4616 case KVM_CAP_EXT_CPUID:
4617 case KVM_CAP_EXT_EMUL_CPUID:
4618 case KVM_CAP_CLOCKSOURCE:
4619 case KVM_CAP_PIT:
4620 case KVM_CAP_NOP_IO_DELAY:
4621 case KVM_CAP_MP_STATE:
4622 case KVM_CAP_SYNC_MMU:
4623 case KVM_CAP_USER_NMI:
4624 case KVM_CAP_REINJECT_CONTROL:
4625 case KVM_CAP_IRQ_INJECT_STATUS:
4626 case KVM_CAP_IOEVENTFD:
4627 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4628 case KVM_CAP_PIT2:
4629 case KVM_CAP_PIT_STATE2:
4630 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4631 case KVM_CAP_VCPU_EVENTS:
4632 #ifdef CONFIG_KVM_HYPERV
4633 case KVM_CAP_HYPERV:
4634 case KVM_CAP_HYPERV_VAPIC:
4635 case KVM_CAP_HYPERV_SPIN:
4636 case KVM_CAP_HYPERV_TIME:
4637 case KVM_CAP_HYPERV_SYNIC:
4638 case KVM_CAP_HYPERV_SYNIC2:
4639 case KVM_CAP_HYPERV_VP_INDEX:
4640 case KVM_CAP_HYPERV_EVENTFD:
4641 case KVM_CAP_HYPERV_TLBFLUSH:
4642 case KVM_CAP_HYPERV_SEND_IPI:
4643 case KVM_CAP_HYPERV_CPUID:
4644 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4645 case KVM_CAP_SYS_HYPERV_CPUID:
4646 #endif
4647 case KVM_CAP_PCI_SEGMENT:
4648 case KVM_CAP_DEBUGREGS:
4649 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4650 case KVM_CAP_XSAVE:
4651 case KVM_CAP_ASYNC_PF:
4652 case KVM_CAP_ASYNC_PF_INT:
4653 case KVM_CAP_GET_TSC_KHZ:
4654 case KVM_CAP_KVMCLOCK_CTRL:
4655 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4656 case KVM_CAP_TSC_DEADLINE_TIMER:
4657 case KVM_CAP_DISABLE_QUIRKS:
4658 case KVM_CAP_SET_BOOT_CPU_ID:
4659 case KVM_CAP_SPLIT_IRQCHIP:
4660 case KVM_CAP_IMMEDIATE_EXIT:
4661 case KVM_CAP_PMU_EVENT_FILTER:
4662 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4663 case KVM_CAP_GET_MSR_FEATURES:
4664 case KVM_CAP_MSR_PLATFORM_INFO:
4665 case KVM_CAP_EXCEPTION_PAYLOAD:
4666 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4667 case KVM_CAP_SET_GUEST_DEBUG:
4668 case KVM_CAP_LAST_CPU:
4669 case KVM_CAP_X86_USER_SPACE_MSR:
4670 case KVM_CAP_X86_MSR_FILTER:
4671 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4672 #ifdef CONFIG_X86_SGX_KVM
4673 case KVM_CAP_SGX_ATTRIBUTE:
4674 #endif
4675 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4676 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4677 case KVM_CAP_SREGS2:
4678 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4679 case KVM_CAP_VCPU_ATTRIBUTES:
4680 case KVM_CAP_SYS_ATTRIBUTES:
4681 case KVM_CAP_VAPIC:
4682 case KVM_CAP_ENABLE_CAP:
4683 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4684 case KVM_CAP_IRQFD_RESAMPLE:
4685 case KVM_CAP_MEMORY_FAULT_INFO:
4686 case KVM_CAP_X86_GUEST_MODE:
4687 r = 1;
4688 break;
4689 case KVM_CAP_PRE_FAULT_MEMORY:
4690 r = tdp_enabled;
4691 break;
4692 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4693 r = APIC_BUS_CYCLE_NS_DEFAULT;
4694 break;
4695 case KVM_CAP_EXIT_HYPERCALL:
4696 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4697 break;
4698 case KVM_CAP_SET_GUEST_DEBUG2:
4699 return KVM_GUESTDBG_VALID_MASK;
4700 #ifdef CONFIG_KVM_XEN
4701 case KVM_CAP_XEN_HVM:
4702 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4703 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4704 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4705 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4706 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4707 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4708 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4709 if (sched_info_on())
4710 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4711 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4712 break;
4713 #endif
4714 case KVM_CAP_SYNC_REGS:
4715 r = kvm_sync_valid_fields(kvm);
4716 break;
4717 case KVM_CAP_ADJUST_CLOCK:
4718 r = KVM_CLOCK_VALID_FLAGS;
4719 break;
4720 case KVM_CAP_X86_DISABLE_EXITS:
4721 r = kvm_get_allowed_disable_exits();
4722 break;
4723 case KVM_CAP_X86_SMM:
4724 if (!IS_ENABLED(CONFIG_KVM_SMM))
4725 break;
4726
4727 /* SMBASE is usually relocated above 1M on modern chipsets,
4728 * and SMM handlers might indeed rely on 4G segment limits,
4729 * so do not report SMM to be available if real mode is
4730 * emulated via vm86 mode. Still, do not go to great lengths
4731 * to avoid userspace's usage of the feature, because it is a
4732 * fringe case that is not enabled except via specific settings
4733 * of the module parameters.
4734 */
4735 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4736 break;
4737 case KVM_CAP_NR_VCPUS:
4738 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4739 break;
4740 case KVM_CAP_MAX_VCPUS:
4741 r = KVM_MAX_VCPUS;
4742 break;
4743 case KVM_CAP_MAX_VCPU_ID:
4744 r = KVM_MAX_VCPU_IDS;
4745 break;
4746 case KVM_CAP_PV_MMU: /* obsolete */
4747 r = 0;
4748 break;
4749 case KVM_CAP_MCE:
4750 r = KVM_MAX_MCE_BANKS;
4751 break;
4752 case KVM_CAP_XCRS:
4753 r = boot_cpu_has(X86_FEATURE_XSAVE);
4754 break;
4755 case KVM_CAP_TSC_CONTROL:
4756 case KVM_CAP_VM_TSC_CONTROL:
4757 r = kvm_caps.has_tsc_control;
4758 break;
4759 case KVM_CAP_X2APIC_API:
4760 r = KVM_X2APIC_API_VALID_FLAGS;
4761 break;
4762 case KVM_CAP_NESTED_STATE:
4763 r = kvm_x86_ops.nested_ops->get_state ?
4764 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4765 break;
4766 #ifdef CONFIG_KVM_HYPERV
4767 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4768 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4769 break;
4770 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4771 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4772 break;
4773 #endif
4774 case KVM_CAP_SMALLER_MAXPHYADDR:
4775 r = (int) allow_smaller_maxphyaddr;
4776 break;
4777 case KVM_CAP_STEAL_TIME:
4778 r = sched_info_on();
4779 break;
4780 case KVM_CAP_X86_BUS_LOCK_EXIT:
4781 if (kvm_caps.has_bus_lock_exit)
4782 r = KVM_BUS_LOCK_DETECTION_OFF |
4783 KVM_BUS_LOCK_DETECTION_EXIT;
4784 else
4785 r = 0;
4786 break;
4787 case KVM_CAP_XSAVE2: {
4788 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4789 if (r < sizeof(struct kvm_xsave))
4790 r = sizeof(struct kvm_xsave);
4791 break;
4792 }
4793 case KVM_CAP_PMU_CAPABILITY:
4794 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4795 break;
4796 case KVM_CAP_DISABLE_QUIRKS2:
4797 r = KVM_X86_VALID_QUIRKS;
4798 break;
4799 case KVM_CAP_X86_NOTIFY_VMEXIT:
4800 r = kvm_caps.has_notify_vmexit;
4801 break;
4802 case KVM_CAP_VM_TYPES:
4803 r = kvm_caps.supported_vm_types;
4804 break;
4805 case KVM_CAP_READONLY_MEM:
4806 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4807 break;
4808 default:
4809 break;
4810 }
4811 return r;
4812 }
4813
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4814 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4815 {
4816 if (attr->group) {
4817 if (kvm_x86_ops.dev_get_attr)
4818 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4819 return -ENXIO;
4820 }
4821
4822 switch (attr->attr) {
4823 case KVM_X86_XCOMP_GUEST_SUPP:
4824 *val = kvm_caps.supported_xcr0;
4825 return 0;
4826 default:
4827 return -ENXIO;
4828 }
4829 }
4830
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4831 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4832 {
4833 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4834 int r;
4835 u64 val;
4836
4837 r = __kvm_x86_dev_get_attr(attr, &val);
4838 if (r < 0)
4839 return r;
4840
4841 if (put_user(val, uaddr))
4842 return -EFAULT;
4843
4844 return 0;
4845 }
4846
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4847 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4848 {
4849 u64 val;
4850
4851 return __kvm_x86_dev_get_attr(attr, &val);
4852 }
4853
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4854 long kvm_arch_dev_ioctl(struct file *filp,
4855 unsigned int ioctl, unsigned long arg)
4856 {
4857 void __user *argp = (void __user *)arg;
4858 long r;
4859
4860 switch (ioctl) {
4861 case KVM_GET_MSR_INDEX_LIST: {
4862 struct kvm_msr_list __user *user_msr_list = argp;
4863 struct kvm_msr_list msr_list;
4864 unsigned n;
4865
4866 r = -EFAULT;
4867 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4868 goto out;
4869 n = msr_list.nmsrs;
4870 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4871 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4872 goto out;
4873 r = -E2BIG;
4874 if (n < msr_list.nmsrs)
4875 goto out;
4876 r = -EFAULT;
4877 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4878 num_msrs_to_save * sizeof(u32)))
4879 goto out;
4880 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4881 &emulated_msrs,
4882 num_emulated_msrs * sizeof(u32)))
4883 goto out;
4884 r = 0;
4885 break;
4886 }
4887 case KVM_GET_SUPPORTED_CPUID:
4888 case KVM_GET_EMULATED_CPUID: {
4889 struct kvm_cpuid2 __user *cpuid_arg = argp;
4890 struct kvm_cpuid2 cpuid;
4891
4892 r = -EFAULT;
4893 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4894 goto out;
4895
4896 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4897 ioctl);
4898 if (r)
4899 goto out;
4900
4901 r = -EFAULT;
4902 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4903 goto out;
4904 r = 0;
4905 break;
4906 }
4907 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4908 r = -EFAULT;
4909 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4910 sizeof(kvm_caps.supported_mce_cap)))
4911 goto out;
4912 r = 0;
4913 break;
4914 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4915 struct kvm_msr_list __user *user_msr_list = argp;
4916 struct kvm_msr_list msr_list;
4917 unsigned int n;
4918
4919 r = -EFAULT;
4920 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4921 goto out;
4922 n = msr_list.nmsrs;
4923 msr_list.nmsrs = num_msr_based_features;
4924 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4925 goto out;
4926 r = -E2BIG;
4927 if (n < msr_list.nmsrs)
4928 goto out;
4929 r = -EFAULT;
4930 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4931 num_msr_based_features * sizeof(u32)))
4932 goto out;
4933 r = 0;
4934 break;
4935 }
4936 case KVM_GET_MSRS:
4937 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4938 break;
4939 #ifdef CONFIG_KVM_HYPERV
4940 case KVM_GET_SUPPORTED_HV_CPUID:
4941 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4942 break;
4943 #endif
4944 case KVM_GET_DEVICE_ATTR: {
4945 struct kvm_device_attr attr;
4946 r = -EFAULT;
4947 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4948 break;
4949 r = kvm_x86_dev_get_attr(&attr);
4950 break;
4951 }
4952 case KVM_HAS_DEVICE_ATTR: {
4953 struct kvm_device_attr attr;
4954 r = -EFAULT;
4955 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4956 break;
4957 r = kvm_x86_dev_has_attr(&attr);
4958 break;
4959 }
4960 default:
4961 r = -EINVAL;
4962 break;
4963 }
4964 out:
4965 return r;
4966 }
4967
wbinvd_ipi(void * garbage)4968 static void wbinvd_ipi(void *garbage)
4969 {
4970 wbinvd();
4971 }
4972
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4973 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4974 {
4975 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4976 }
4977
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4978 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4979 {
4980 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4981
4982 vcpu->arch.l1tf_flush_l1d = true;
4983
4984 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4985 pmu->need_cleanup = true;
4986 kvm_make_request(KVM_REQ_PMU, vcpu);
4987 }
4988
4989 /* Address WBINVD may be executed by guest */
4990 if (need_emulate_wbinvd(vcpu)) {
4991 if (kvm_x86_call(has_wbinvd_exit)())
4992 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4993 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4994 smp_call_function_single(vcpu->cpu,
4995 wbinvd_ipi, NULL, 1);
4996 }
4997
4998 kvm_x86_call(vcpu_load)(vcpu, cpu);
4999
5000 /* Save host pkru register if supported */
5001 vcpu->arch.host_pkru = read_pkru();
5002
5003 /* Apply any externally detected TSC adjustments (due to suspend) */
5004 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5005 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5006 vcpu->arch.tsc_offset_adjustment = 0;
5007 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5008 }
5009
5010 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5011 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5012 rdtsc() - vcpu->arch.last_host_tsc;
5013 if (tsc_delta < 0)
5014 mark_tsc_unstable("KVM discovered backwards TSC");
5015
5016 if (kvm_check_tsc_unstable()) {
5017 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5018 vcpu->arch.last_guest_tsc);
5019 kvm_vcpu_write_tsc_offset(vcpu, offset);
5020 if (!vcpu->arch.guest_tsc_protected)
5021 vcpu->arch.tsc_catchup = 1;
5022 }
5023
5024 if (kvm_lapic_hv_timer_in_use(vcpu))
5025 kvm_lapic_restart_hv_timer(vcpu);
5026
5027 /*
5028 * On a host with synchronized TSC, there is no need to update
5029 * kvmclock on vcpu->cpu migration
5030 */
5031 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5032 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5033 if (vcpu->cpu != cpu)
5034 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5035 vcpu->cpu = cpu;
5036 }
5037
5038 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5039 }
5040
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5041 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5042 {
5043 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5044 struct kvm_steal_time __user *st;
5045 struct kvm_memslots *slots;
5046 static const u8 preempted = KVM_VCPU_PREEMPTED;
5047 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5048
5049 /*
5050 * The vCPU can be marked preempted if and only if the VM-Exit was on
5051 * an instruction boundary and will not trigger guest emulation of any
5052 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5053 * when this is true, for example allowing the vCPU to be marked
5054 * preempted if and only if the VM-Exit was due to a host interrupt.
5055 */
5056 if (!vcpu->arch.at_instruction_boundary) {
5057 vcpu->stat.preemption_other++;
5058 return;
5059 }
5060
5061 vcpu->stat.preemption_reported++;
5062 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5063 return;
5064
5065 if (vcpu->arch.st.preempted)
5066 return;
5067
5068 /* This happens on process exit */
5069 if (unlikely(current->mm != vcpu->kvm->mm))
5070 return;
5071
5072 slots = kvm_memslots(vcpu->kvm);
5073
5074 if (unlikely(slots->generation != ghc->generation ||
5075 gpa != ghc->gpa ||
5076 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5077 return;
5078
5079 st = (struct kvm_steal_time __user *)ghc->hva;
5080 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5081
5082 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5083 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5084
5085 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5086 }
5087
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5088 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5089 {
5090 int idx;
5091
5092 if (vcpu->preempted) {
5093 /*
5094 * Assume protected guests are in-kernel. Inefficient yielding
5095 * due to false positives is preferable to never yielding due
5096 * to false negatives.
5097 */
5098 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5099 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5100
5101 /*
5102 * Take the srcu lock as memslots will be accessed to check the gfn
5103 * cache generation against the memslots generation.
5104 */
5105 idx = srcu_read_lock(&vcpu->kvm->srcu);
5106 if (kvm_xen_msr_enabled(vcpu->kvm))
5107 kvm_xen_runstate_set_preempted(vcpu);
5108 else
5109 kvm_steal_time_set_preempted(vcpu);
5110 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5111 }
5112
5113 kvm_x86_call(vcpu_put)(vcpu);
5114 vcpu->arch.last_host_tsc = rdtsc();
5115 }
5116
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5117 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5118 struct kvm_lapic_state *s)
5119 {
5120 kvm_x86_call(sync_pir_to_irr)(vcpu);
5121
5122 return kvm_apic_get_state(vcpu, s);
5123 }
5124
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5125 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5126 struct kvm_lapic_state *s)
5127 {
5128 int r;
5129
5130 r = kvm_apic_set_state(vcpu, s);
5131 if (r)
5132 return r;
5133 update_cr8_intercept(vcpu);
5134
5135 return 0;
5136 }
5137
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5138 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5139 {
5140 /*
5141 * We can accept userspace's request for interrupt injection
5142 * as long as we have a place to store the interrupt number.
5143 * The actual injection will happen when the CPU is able to
5144 * deliver the interrupt.
5145 */
5146 if (kvm_cpu_has_extint(vcpu))
5147 return false;
5148
5149 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5150 return (!lapic_in_kernel(vcpu) ||
5151 kvm_apic_accept_pic_intr(vcpu));
5152 }
5153
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5154 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5155 {
5156 /*
5157 * Do not cause an interrupt window exit if an exception
5158 * is pending or an event needs reinjection; userspace
5159 * might want to inject the interrupt manually using KVM_SET_REGS
5160 * or KVM_SET_SREGS. For that to work, we must be at an
5161 * instruction boundary and with no events half-injected.
5162 */
5163 return (kvm_arch_interrupt_allowed(vcpu) &&
5164 kvm_cpu_accept_dm_intr(vcpu) &&
5165 !kvm_event_needs_reinjection(vcpu) &&
5166 !kvm_is_exception_pending(vcpu));
5167 }
5168
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5169 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5170 struct kvm_interrupt *irq)
5171 {
5172 if (irq->irq >= KVM_NR_INTERRUPTS)
5173 return -EINVAL;
5174
5175 if (!irqchip_in_kernel(vcpu->kvm)) {
5176 kvm_queue_interrupt(vcpu, irq->irq, false);
5177 kvm_make_request(KVM_REQ_EVENT, vcpu);
5178 return 0;
5179 }
5180
5181 /*
5182 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5183 * fail for in-kernel 8259.
5184 */
5185 if (pic_in_kernel(vcpu->kvm))
5186 return -ENXIO;
5187
5188 if (vcpu->arch.pending_external_vector != -1)
5189 return -EEXIST;
5190
5191 vcpu->arch.pending_external_vector = irq->irq;
5192 kvm_make_request(KVM_REQ_EVENT, vcpu);
5193 return 0;
5194 }
5195
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5196 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5197 {
5198 kvm_inject_nmi(vcpu);
5199
5200 return 0;
5201 }
5202
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5203 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5204 struct kvm_tpr_access_ctl *tac)
5205 {
5206 if (tac->flags)
5207 return -EINVAL;
5208 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5209 return 0;
5210 }
5211
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5212 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5213 u64 mcg_cap)
5214 {
5215 int r;
5216 unsigned bank_num = mcg_cap & 0xff, bank;
5217
5218 r = -EINVAL;
5219 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5220 goto out;
5221 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5222 goto out;
5223 r = 0;
5224 vcpu->arch.mcg_cap = mcg_cap;
5225 /* Init IA32_MCG_CTL to all 1s */
5226 if (mcg_cap & MCG_CTL_P)
5227 vcpu->arch.mcg_ctl = ~(u64)0;
5228 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5229 for (bank = 0; bank < bank_num; bank++) {
5230 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5231 if (mcg_cap & MCG_CMCI_P)
5232 vcpu->arch.mci_ctl2_banks[bank] = 0;
5233 }
5234
5235 kvm_apic_after_set_mcg_cap(vcpu);
5236
5237 kvm_x86_call(setup_mce)(vcpu);
5238 out:
5239 return r;
5240 }
5241
5242 /*
5243 * Validate this is an UCNA (uncorrectable no action) error by checking the
5244 * MCG_STATUS and MCi_STATUS registers:
5245 * - none of the bits for Machine Check Exceptions are set
5246 * - both the VAL (valid) and UC (uncorrectable) bits are set
5247 * MCI_STATUS_PCC - Processor Context Corrupted
5248 * MCI_STATUS_S - Signaled as a Machine Check Exception
5249 * MCI_STATUS_AR - Software recoverable Action Required
5250 */
is_ucna(struct kvm_x86_mce * mce)5251 static bool is_ucna(struct kvm_x86_mce *mce)
5252 {
5253 return !mce->mcg_status &&
5254 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5255 (mce->status & MCI_STATUS_VAL) &&
5256 (mce->status & MCI_STATUS_UC);
5257 }
5258
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5259 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5260 {
5261 u64 mcg_cap = vcpu->arch.mcg_cap;
5262
5263 banks[1] = mce->status;
5264 banks[2] = mce->addr;
5265 banks[3] = mce->misc;
5266 vcpu->arch.mcg_status = mce->mcg_status;
5267
5268 if (!(mcg_cap & MCG_CMCI_P) ||
5269 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5270 return 0;
5271
5272 if (lapic_in_kernel(vcpu))
5273 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5274
5275 return 0;
5276 }
5277
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5278 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5279 struct kvm_x86_mce *mce)
5280 {
5281 u64 mcg_cap = vcpu->arch.mcg_cap;
5282 unsigned bank_num = mcg_cap & 0xff;
5283 u64 *banks = vcpu->arch.mce_banks;
5284
5285 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5286 return -EINVAL;
5287
5288 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5289
5290 if (is_ucna(mce))
5291 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5292
5293 /*
5294 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5295 * reporting is disabled
5296 */
5297 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5298 vcpu->arch.mcg_ctl != ~(u64)0)
5299 return 0;
5300 /*
5301 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5302 * reporting is disabled for the bank
5303 */
5304 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5305 return 0;
5306 if (mce->status & MCI_STATUS_UC) {
5307 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5308 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5309 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5310 return 0;
5311 }
5312 if (banks[1] & MCI_STATUS_VAL)
5313 mce->status |= MCI_STATUS_OVER;
5314 banks[2] = mce->addr;
5315 banks[3] = mce->misc;
5316 vcpu->arch.mcg_status = mce->mcg_status;
5317 banks[1] = mce->status;
5318 kvm_queue_exception(vcpu, MC_VECTOR);
5319 } else if (!(banks[1] & MCI_STATUS_VAL)
5320 || !(banks[1] & MCI_STATUS_UC)) {
5321 if (banks[1] & MCI_STATUS_VAL)
5322 mce->status |= MCI_STATUS_OVER;
5323 banks[2] = mce->addr;
5324 banks[3] = mce->misc;
5325 banks[1] = mce->status;
5326 } else
5327 banks[1] |= MCI_STATUS_OVER;
5328 return 0;
5329 }
5330
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5331 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5332 struct kvm_vcpu_events *events)
5333 {
5334 struct kvm_queued_exception *ex;
5335
5336 process_nmi(vcpu);
5337
5338 #ifdef CONFIG_KVM_SMM
5339 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5340 process_smi(vcpu);
5341 #endif
5342
5343 /*
5344 * KVM's ABI only allows for one exception to be migrated. Luckily,
5345 * the only time there can be two queued exceptions is if there's a
5346 * non-exiting _injected_ exception, and a pending exiting exception.
5347 * In that case, ignore the VM-Exiting exception as it's an extension
5348 * of the injected exception.
5349 */
5350 if (vcpu->arch.exception_vmexit.pending &&
5351 !vcpu->arch.exception.pending &&
5352 !vcpu->arch.exception.injected)
5353 ex = &vcpu->arch.exception_vmexit;
5354 else
5355 ex = &vcpu->arch.exception;
5356
5357 /*
5358 * In guest mode, payload delivery should be deferred if the exception
5359 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5360 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5361 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5362 * propagate the payload and so it cannot be safely deferred. Deliver
5363 * the payload if the capability hasn't been requested.
5364 */
5365 if (!vcpu->kvm->arch.exception_payload_enabled &&
5366 ex->pending && ex->has_payload)
5367 kvm_deliver_exception_payload(vcpu, ex);
5368
5369 memset(events, 0, sizeof(*events));
5370
5371 /*
5372 * The API doesn't provide the instruction length for software
5373 * exceptions, so don't report them. As long as the guest RIP
5374 * isn't advanced, we should expect to encounter the exception
5375 * again.
5376 */
5377 if (!kvm_exception_is_soft(ex->vector)) {
5378 events->exception.injected = ex->injected;
5379 events->exception.pending = ex->pending;
5380 /*
5381 * For ABI compatibility, deliberately conflate
5382 * pending and injected exceptions when
5383 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5384 */
5385 if (!vcpu->kvm->arch.exception_payload_enabled)
5386 events->exception.injected |= ex->pending;
5387 }
5388 events->exception.nr = ex->vector;
5389 events->exception.has_error_code = ex->has_error_code;
5390 events->exception.error_code = ex->error_code;
5391 events->exception_has_payload = ex->has_payload;
5392 events->exception_payload = ex->payload;
5393
5394 events->interrupt.injected =
5395 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5396 events->interrupt.nr = vcpu->arch.interrupt.nr;
5397 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5398
5399 events->nmi.injected = vcpu->arch.nmi_injected;
5400 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5401 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5402
5403 /* events->sipi_vector is never valid when reporting to user space */
5404
5405 #ifdef CONFIG_KVM_SMM
5406 events->smi.smm = is_smm(vcpu);
5407 events->smi.pending = vcpu->arch.smi_pending;
5408 events->smi.smm_inside_nmi =
5409 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5410 #endif
5411 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5412
5413 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5414 | KVM_VCPUEVENT_VALID_SHADOW
5415 | KVM_VCPUEVENT_VALID_SMM);
5416 if (vcpu->kvm->arch.exception_payload_enabled)
5417 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5418 if (vcpu->kvm->arch.triple_fault_event) {
5419 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5420 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5421 }
5422 }
5423
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5424 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5425 struct kvm_vcpu_events *events)
5426 {
5427 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5428 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5429 | KVM_VCPUEVENT_VALID_SHADOW
5430 | KVM_VCPUEVENT_VALID_SMM
5431 | KVM_VCPUEVENT_VALID_PAYLOAD
5432 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5433 return -EINVAL;
5434
5435 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5436 if (!vcpu->kvm->arch.exception_payload_enabled)
5437 return -EINVAL;
5438 if (events->exception.pending)
5439 events->exception.injected = 0;
5440 else
5441 events->exception_has_payload = 0;
5442 } else {
5443 events->exception.pending = 0;
5444 events->exception_has_payload = 0;
5445 }
5446
5447 if ((events->exception.injected || events->exception.pending) &&
5448 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5449 return -EINVAL;
5450
5451 /* INITs are latched while in SMM */
5452 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5453 (events->smi.smm || events->smi.pending) &&
5454 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5455 return -EINVAL;
5456
5457 process_nmi(vcpu);
5458
5459 /*
5460 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5461 * morph the exception to a VM-Exit if appropriate. Do this only for
5462 * pending exceptions, already-injected exceptions are not subject to
5463 * intercpetion. Note, userspace that conflates pending and injected
5464 * is hosed, and will incorrectly convert an injected exception into a
5465 * pending exception, which in turn may cause a spurious VM-Exit.
5466 */
5467 vcpu->arch.exception_from_userspace = events->exception.pending;
5468
5469 vcpu->arch.exception_vmexit.pending = false;
5470
5471 vcpu->arch.exception.injected = events->exception.injected;
5472 vcpu->arch.exception.pending = events->exception.pending;
5473 vcpu->arch.exception.vector = events->exception.nr;
5474 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5475 vcpu->arch.exception.error_code = events->exception.error_code;
5476 vcpu->arch.exception.has_payload = events->exception_has_payload;
5477 vcpu->arch.exception.payload = events->exception_payload;
5478
5479 vcpu->arch.interrupt.injected = events->interrupt.injected;
5480 vcpu->arch.interrupt.nr = events->interrupt.nr;
5481 vcpu->arch.interrupt.soft = events->interrupt.soft;
5482 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5483 kvm_x86_call(set_interrupt_shadow)(vcpu,
5484 events->interrupt.shadow);
5485
5486 vcpu->arch.nmi_injected = events->nmi.injected;
5487 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5488 vcpu->arch.nmi_pending = 0;
5489 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5490 if (events->nmi.pending)
5491 kvm_make_request(KVM_REQ_NMI, vcpu);
5492 }
5493 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5494
5495 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5496 lapic_in_kernel(vcpu))
5497 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5498
5499 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5500 #ifdef CONFIG_KVM_SMM
5501 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5502 kvm_leave_nested(vcpu);
5503 kvm_smm_changed(vcpu, events->smi.smm);
5504 }
5505
5506 vcpu->arch.smi_pending = events->smi.pending;
5507
5508 if (events->smi.smm) {
5509 if (events->smi.smm_inside_nmi)
5510 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5511 else
5512 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5513 }
5514
5515 #else
5516 if (events->smi.smm || events->smi.pending ||
5517 events->smi.smm_inside_nmi)
5518 return -EINVAL;
5519 #endif
5520
5521 if (lapic_in_kernel(vcpu)) {
5522 if (events->smi.latched_init)
5523 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5524 else
5525 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5526 }
5527 }
5528
5529 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5530 if (!vcpu->kvm->arch.triple_fault_event)
5531 return -EINVAL;
5532 if (events->triple_fault.pending)
5533 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5534 else
5535 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5536 }
5537
5538 kvm_make_request(KVM_REQ_EVENT, vcpu);
5539
5540 return 0;
5541 }
5542
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5543 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5544 struct kvm_debugregs *dbgregs)
5545 {
5546 unsigned int i;
5547
5548 if (vcpu->kvm->arch.has_protected_state &&
5549 vcpu->arch.guest_state_protected)
5550 return -EINVAL;
5551
5552 memset(dbgregs, 0, sizeof(*dbgregs));
5553
5554 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5555 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5556 dbgregs->db[i] = vcpu->arch.db[i];
5557
5558 dbgregs->dr6 = vcpu->arch.dr6;
5559 dbgregs->dr7 = vcpu->arch.dr7;
5560 return 0;
5561 }
5562
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5563 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5564 struct kvm_debugregs *dbgregs)
5565 {
5566 unsigned int i;
5567
5568 if (vcpu->kvm->arch.has_protected_state &&
5569 vcpu->arch.guest_state_protected)
5570 return -EINVAL;
5571
5572 if (dbgregs->flags)
5573 return -EINVAL;
5574
5575 if (!kvm_dr6_valid(dbgregs->dr6))
5576 return -EINVAL;
5577 if (!kvm_dr7_valid(dbgregs->dr7))
5578 return -EINVAL;
5579
5580 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5581 vcpu->arch.db[i] = dbgregs->db[i];
5582
5583 kvm_update_dr0123(vcpu);
5584 vcpu->arch.dr6 = dbgregs->dr6;
5585 vcpu->arch.dr7 = dbgregs->dr7;
5586 kvm_update_dr7(vcpu);
5587
5588 return 0;
5589 }
5590
5591
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5592 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5593 u8 *state, unsigned int size)
5594 {
5595 /*
5596 * Only copy state for features that are enabled for the guest. The
5597 * state itself isn't problematic, but setting bits in the header for
5598 * features that are supported in *this* host but not exposed to the
5599 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5600 * compatible host without the features that are NOT exposed to the
5601 * guest.
5602 *
5603 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5604 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5605 * supported by the host.
5606 */
5607 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5608 XFEATURE_MASK_FPSSE;
5609
5610 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5611 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5612
5613 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5614 supported_xcr0, vcpu->arch.pkru);
5615 return 0;
5616 }
5617
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5618 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5619 struct kvm_xsave *guest_xsave)
5620 {
5621 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5622 sizeof(guest_xsave->region));
5623 }
5624
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5625 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5626 struct kvm_xsave *guest_xsave)
5627 {
5628 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5629 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5630
5631 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5632 guest_xsave->region,
5633 kvm_caps.supported_xcr0,
5634 &vcpu->arch.pkru);
5635 }
5636
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5637 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5638 struct kvm_xcrs *guest_xcrs)
5639 {
5640 if (vcpu->kvm->arch.has_protected_state &&
5641 vcpu->arch.guest_state_protected)
5642 return -EINVAL;
5643
5644 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5645 guest_xcrs->nr_xcrs = 0;
5646 return 0;
5647 }
5648
5649 guest_xcrs->nr_xcrs = 1;
5650 guest_xcrs->flags = 0;
5651 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5652 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5653 return 0;
5654 }
5655
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5657 struct kvm_xcrs *guest_xcrs)
5658 {
5659 int i, r = 0;
5660
5661 if (vcpu->kvm->arch.has_protected_state &&
5662 vcpu->arch.guest_state_protected)
5663 return -EINVAL;
5664
5665 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5666 return -EINVAL;
5667
5668 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5669 return -EINVAL;
5670
5671 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5672 /* Only support XCR0 currently */
5673 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5674 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5675 guest_xcrs->xcrs[i].value);
5676 break;
5677 }
5678 if (r)
5679 r = -EINVAL;
5680 return r;
5681 }
5682
5683 /*
5684 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5685 * stopped by the hypervisor. This function will be called from the host only.
5686 * EINVAL is returned when the host attempts to set the flag for a guest that
5687 * does not support pv clocks.
5688 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5689 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5690 {
5691 if (!vcpu->arch.pv_time.active)
5692 return -EINVAL;
5693 vcpu->arch.pvclock_set_guest_stopped_request = true;
5694 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5695 return 0;
5696 }
5697
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5698 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5699 struct kvm_device_attr *attr)
5700 {
5701 int r;
5702
5703 switch (attr->attr) {
5704 case KVM_VCPU_TSC_OFFSET:
5705 r = 0;
5706 break;
5707 default:
5708 r = -ENXIO;
5709 }
5710
5711 return r;
5712 }
5713
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5714 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5715 struct kvm_device_attr *attr)
5716 {
5717 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5718 int r;
5719
5720 switch (attr->attr) {
5721 case KVM_VCPU_TSC_OFFSET:
5722 r = -EFAULT;
5723 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5724 break;
5725 r = 0;
5726 break;
5727 default:
5728 r = -ENXIO;
5729 }
5730
5731 return r;
5732 }
5733
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5734 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5735 struct kvm_device_attr *attr)
5736 {
5737 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5738 struct kvm *kvm = vcpu->kvm;
5739 int r;
5740
5741 switch (attr->attr) {
5742 case KVM_VCPU_TSC_OFFSET: {
5743 u64 offset, tsc, ns;
5744 unsigned long flags;
5745 bool matched;
5746
5747 r = -EFAULT;
5748 if (get_user(offset, uaddr))
5749 break;
5750
5751 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5752
5753 matched = (vcpu->arch.virtual_tsc_khz &&
5754 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5755 kvm->arch.last_tsc_offset == offset);
5756
5757 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5758 ns = get_kvmclock_base_ns();
5759
5760 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5761 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5762
5763 r = 0;
5764 break;
5765 }
5766 default:
5767 r = -ENXIO;
5768 }
5769
5770 return r;
5771 }
5772
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5773 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5774 unsigned int ioctl,
5775 void __user *argp)
5776 {
5777 struct kvm_device_attr attr;
5778 int r;
5779
5780 if (copy_from_user(&attr, argp, sizeof(attr)))
5781 return -EFAULT;
5782
5783 if (attr.group != KVM_VCPU_TSC_CTRL)
5784 return -ENXIO;
5785
5786 switch (ioctl) {
5787 case KVM_HAS_DEVICE_ATTR:
5788 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5789 break;
5790 case KVM_GET_DEVICE_ATTR:
5791 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5792 break;
5793 case KVM_SET_DEVICE_ATTR:
5794 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5795 break;
5796 }
5797
5798 return r;
5799 }
5800
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5801 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5802 struct kvm_enable_cap *cap)
5803 {
5804 if (cap->flags)
5805 return -EINVAL;
5806
5807 switch (cap->cap) {
5808 #ifdef CONFIG_KVM_HYPERV
5809 case KVM_CAP_HYPERV_SYNIC2:
5810 if (cap->args[0])
5811 return -EINVAL;
5812 fallthrough;
5813
5814 case KVM_CAP_HYPERV_SYNIC:
5815 if (!irqchip_in_kernel(vcpu->kvm))
5816 return -EINVAL;
5817 return kvm_hv_activate_synic(vcpu, cap->cap ==
5818 KVM_CAP_HYPERV_SYNIC2);
5819 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5820 {
5821 int r;
5822 uint16_t vmcs_version;
5823 void __user *user_ptr;
5824
5825 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5826 return -ENOTTY;
5827 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5828 if (!r) {
5829 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5830 if (copy_to_user(user_ptr, &vmcs_version,
5831 sizeof(vmcs_version)))
5832 r = -EFAULT;
5833 }
5834 return r;
5835 }
5836 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5837 if (!kvm_x86_ops.enable_l2_tlb_flush)
5838 return -ENOTTY;
5839
5840 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5841
5842 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5843 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5844 #endif
5845
5846 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5847 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5848 return 0;
5849 default:
5850 return -EINVAL;
5851 }
5852 }
5853
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5854 long kvm_arch_vcpu_ioctl(struct file *filp,
5855 unsigned int ioctl, unsigned long arg)
5856 {
5857 struct kvm_vcpu *vcpu = filp->private_data;
5858 void __user *argp = (void __user *)arg;
5859 int r;
5860 union {
5861 struct kvm_sregs2 *sregs2;
5862 struct kvm_lapic_state *lapic;
5863 struct kvm_xsave *xsave;
5864 struct kvm_xcrs *xcrs;
5865 void *buffer;
5866 } u;
5867
5868 vcpu_load(vcpu);
5869
5870 u.buffer = NULL;
5871 switch (ioctl) {
5872 case KVM_GET_LAPIC: {
5873 r = -EINVAL;
5874 if (!lapic_in_kernel(vcpu))
5875 goto out;
5876 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5877
5878 r = -ENOMEM;
5879 if (!u.lapic)
5880 goto out;
5881 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5882 if (r)
5883 goto out;
5884 r = -EFAULT;
5885 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5886 goto out;
5887 r = 0;
5888 break;
5889 }
5890 case KVM_SET_LAPIC: {
5891 r = -EINVAL;
5892 if (!lapic_in_kernel(vcpu))
5893 goto out;
5894 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5895 if (IS_ERR(u.lapic)) {
5896 r = PTR_ERR(u.lapic);
5897 goto out_nofree;
5898 }
5899
5900 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5901 break;
5902 }
5903 case KVM_INTERRUPT: {
5904 struct kvm_interrupt irq;
5905
5906 r = -EFAULT;
5907 if (copy_from_user(&irq, argp, sizeof(irq)))
5908 goto out;
5909 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5910 break;
5911 }
5912 case KVM_NMI: {
5913 r = kvm_vcpu_ioctl_nmi(vcpu);
5914 break;
5915 }
5916 case KVM_SMI: {
5917 r = kvm_inject_smi(vcpu);
5918 break;
5919 }
5920 case KVM_SET_CPUID: {
5921 struct kvm_cpuid __user *cpuid_arg = argp;
5922 struct kvm_cpuid cpuid;
5923
5924 r = -EFAULT;
5925 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5926 goto out;
5927 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5928 break;
5929 }
5930 case KVM_SET_CPUID2: {
5931 struct kvm_cpuid2 __user *cpuid_arg = argp;
5932 struct kvm_cpuid2 cpuid;
5933
5934 r = -EFAULT;
5935 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5936 goto out;
5937 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5938 cpuid_arg->entries);
5939 break;
5940 }
5941 case KVM_GET_CPUID2: {
5942 struct kvm_cpuid2 __user *cpuid_arg = argp;
5943 struct kvm_cpuid2 cpuid;
5944
5945 r = -EFAULT;
5946 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5947 goto out;
5948 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5949 cpuid_arg->entries);
5950 if (r)
5951 goto out;
5952 r = -EFAULT;
5953 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5954 goto out;
5955 r = 0;
5956 break;
5957 }
5958 case KVM_GET_MSRS: {
5959 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5960 r = msr_io(vcpu, argp, do_get_msr, 1);
5961 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5962 break;
5963 }
5964 case KVM_SET_MSRS: {
5965 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5966 r = msr_io(vcpu, argp, do_set_msr, 0);
5967 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5968 break;
5969 }
5970 case KVM_TPR_ACCESS_REPORTING: {
5971 struct kvm_tpr_access_ctl tac;
5972
5973 r = -EFAULT;
5974 if (copy_from_user(&tac, argp, sizeof(tac)))
5975 goto out;
5976 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5977 if (r)
5978 goto out;
5979 r = -EFAULT;
5980 if (copy_to_user(argp, &tac, sizeof(tac)))
5981 goto out;
5982 r = 0;
5983 break;
5984 };
5985 case KVM_SET_VAPIC_ADDR: {
5986 struct kvm_vapic_addr va;
5987 int idx;
5988
5989 r = -EINVAL;
5990 if (!lapic_in_kernel(vcpu))
5991 goto out;
5992 r = -EFAULT;
5993 if (copy_from_user(&va, argp, sizeof(va)))
5994 goto out;
5995 idx = srcu_read_lock(&vcpu->kvm->srcu);
5996 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5997 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5998 break;
5999 }
6000 case KVM_X86_SETUP_MCE: {
6001 u64 mcg_cap;
6002
6003 r = -EFAULT;
6004 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6005 goto out;
6006 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6007 break;
6008 }
6009 case KVM_X86_SET_MCE: {
6010 struct kvm_x86_mce mce;
6011
6012 r = -EFAULT;
6013 if (copy_from_user(&mce, argp, sizeof(mce)))
6014 goto out;
6015 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6016 break;
6017 }
6018 case KVM_GET_VCPU_EVENTS: {
6019 struct kvm_vcpu_events events;
6020
6021 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6022
6023 r = -EFAULT;
6024 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6025 break;
6026 r = 0;
6027 break;
6028 }
6029 case KVM_SET_VCPU_EVENTS: {
6030 struct kvm_vcpu_events events;
6031
6032 r = -EFAULT;
6033 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6034 break;
6035
6036 kvm_vcpu_srcu_read_lock(vcpu);
6037 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6038 kvm_vcpu_srcu_read_unlock(vcpu);
6039 break;
6040 }
6041 case KVM_GET_DEBUGREGS: {
6042 struct kvm_debugregs dbgregs;
6043
6044 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6045 if (r < 0)
6046 break;
6047
6048 r = -EFAULT;
6049 if (copy_to_user(argp, &dbgregs,
6050 sizeof(struct kvm_debugregs)))
6051 break;
6052 r = 0;
6053 break;
6054 }
6055 case KVM_SET_DEBUGREGS: {
6056 struct kvm_debugregs dbgregs;
6057
6058 r = -EFAULT;
6059 if (copy_from_user(&dbgregs, argp,
6060 sizeof(struct kvm_debugregs)))
6061 break;
6062
6063 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6064 break;
6065 }
6066 case KVM_GET_XSAVE: {
6067 r = -EINVAL;
6068 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6069 break;
6070
6071 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6072 r = -ENOMEM;
6073 if (!u.xsave)
6074 break;
6075
6076 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6077 if (r < 0)
6078 break;
6079
6080 r = -EFAULT;
6081 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6082 break;
6083 r = 0;
6084 break;
6085 }
6086 case KVM_SET_XSAVE: {
6087 int size = vcpu->arch.guest_fpu.uabi_size;
6088
6089 u.xsave = memdup_user(argp, size);
6090 if (IS_ERR(u.xsave)) {
6091 r = PTR_ERR(u.xsave);
6092 goto out_nofree;
6093 }
6094
6095 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6096 break;
6097 }
6098
6099 case KVM_GET_XSAVE2: {
6100 int size = vcpu->arch.guest_fpu.uabi_size;
6101
6102 u.xsave = kzalloc(size, GFP_KERNEL);
6103 r = -ENOMEM;
6104 if (!u.xsave)
6105 break;
6106
6107 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6108 if (r < 0)
6109 break;
6110
6111 r = -EFAULT;
6112 if (copy_to_user(argp, u.xsave, size))
6113 break;
6114
6115 r = 0;
6116 break;
6117 }
6118
6119 case KVM_GET_XCRS: {
6120 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6121 r = -ENOMEM;
6122 if (!u.xcrs)
6123 break;
6124
6125 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6126 if (r < 0)
6127 break;
6128
6129 r = -EFAULT;
6130 if (copy_to_user(argp, u.xcrs,
6131 sizeof(struct kvm_xcrs)))
6132 break;
6133 r = 0;
6134 break;
6135 }
6136 case KVM_SET_XCRS: {
6137 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6138 if (IS_ERR(u.xcrs)) {
6139 r = PTR_ERR(u.xcrs);
6140 goto out_nofree;
6141 }
6142
6143 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6144 break;
6145 }
6146 case KVM_SET_TSC_KHZ: {
6147 u32 user_tsc_khz;
6148
6149 r = -EINVAL;
6150 user_tsc_khz = (u32)arg;
6151
6152 if (kvm_caps.has_tsc_control &&
6153 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6154 goto out;
6155
6156 if (user_tsc_khz == 0)
6157 user_tsc_khz = tsc_khz;
6158
6159 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6160 r = 0;
6161
6162 goto out;
6163 }
6164 case KVM_GET_TSC_KHZ: {
6165 r = vcpu->arch.virtual_tsc_khz;
6166 goto out;
6167 }
6168 case KVM_KVMCLOCK_CTRL: {
6169 r = kvm_set_guest_paused(vcpu);
6170 goto out;
6171 }
6172 case KVM_ENABLE_CAP: {
6173 struct kvm_enable_cap cap;
6174
6175 r = -EFAULT;
6176 if (copy_from_user(&cap, argp, sizeof(cap)))
6177 goto out;
6178 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6179 break;
6180 }
6181 case KVM_GET_NESTED_STATE: {
6182 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6183 u32 user_data_size;
6184
6185 r = -EINVAL;
6186 if (!kvm_x86_ops.nested_ops->get_state)
6187 break;
6188
6189 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6190 r = -EFAULT;
6191 if (get_user(user_data_size, &user_kvm_nested_state->size))
6192 break;
6193
6194 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6195 user_data_size);
6196 if (r < 0)
6197 break;
6198
6199 if (r > user_data_size) {
6200 if (put_user(r, &user_kvm_nested_state->size))
6201 r = -EFAULT;
6202 else
6203 r = -E2BIG;
6204 break;
6205 }
6206
6207 r = 0;
6208 break;
6209 }
6210 case KVM_SET_NESTED_STATE: {
6211 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6212 struct kvm_nested_state kvm_state;
6213 int idx;
6214
6215 r = -EINVAL;
6216 if (!kvm_x86_ops.nested_ops->set_state)
6217 break;
6218
6219 r = -EFAULT;
6220 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6221 break;
6222
6223 r = -EINVAL;
6224 if (kvm_state.size < sizeof(kvm_state))
6225 break;
6226
6227 if (kvm_state.flags &
6228 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6229 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6230 | KVM_STATE_NESTED_GIF_SET))
6231 break;
6232
6233 /* nested_run_pending implies guest_mode. */
6234 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6235 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6236 break;
6237
6238 idx = srcu_read_lock(&vcpu->kvm->srcu);
6239 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6240 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6241 break;
6242 }
6243 #ifdef CONFIG_KVM_HYPERV
6244 case KVM_GET_SUPPORTED_HV_CPUID:
6245 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6246 break;
6247 #endif
6248 #ifdef CONFIG_KVM_XEN
6249 case KVM_XEN_VCPU_GET_ATTR: {
6250 struct kvm_xen_vcpu_attr xva;
6251
6252 r = -EFAULT;
6253 if (copy_from_user(&xva, argp, sizeof(xva)))
6254 goto out;
6255 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6256 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6257 r = -EFAULT;
6258 break;
6259 }
6260 case KVM_XEN_VCPU_SET_ATTR: {
6261 struct kvm_xen_vcpu_attr xva;
6262
6263 r = -EFAULT;
6264 if (copy_from_user(&xva, argp, sizeof(xva)))
6265 goto out;
6266 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6267 break;
6268 }
6269 #endif
6270 case KVM_GET_SREGS2: {
6271 r = -EINVAL;
6272 if (vcpu->kvm->arch.has_protected_state &&
6273 vcpu->arch.guest_state_protected)
6274 goto out;
6275
6276 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6277 r = -ENOMEM;
6278 if (!u.sregs2)
6279 goto out;
6280 __get_sregs2(vcpu, u.sregs2);
6281 r = -EFAULT;
6282 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6283 goto out;
6284 r = 0;
6285 break;
6286 }
6287 case KVM_SET_SREGS2: {
6288 r = -EINVAL;
6289 if (vcpu->kvm->arch.has_protected_state &&
6290 vcpu->arch.guest_state_protected)
6291 goto out;
6292
6293 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6294 if (IS_ERR(u.sregs2)) {
6295 r = PTR_ERR(u.sregs2);
6296 u.sregs2 = NULL;
6297 goto out;
6298 }
6299 r = __set_sregs2(vcpu, u.sregs2);
6300 break;
6301 }
6302 case KVM_HAS_DEVICE_ATTR:
6303 case KVM_GET_DEVICE_ATTR:
6304 case KVM_SET_DEVICE_ATTR:
6305 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6306 break;
6307 default:
6308 r = -EINVAL;
6309 }
6310 out:
6311 kfree(u.buffer);
6312 out_nofree:
6313 vcpu_put(vcpu);
6314 return r;
6315 }
6316
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6317 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6318 {
6319 return VM_FAULT_SIGBUS;
6320 }
6321
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6322 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6323 {
6324 int ret;
6325
6326 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6327 return -EINVAL;
6328 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6329 return ret;
6330 }
6331
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6332 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6333 u64 ident_addr)
6334 {
6335 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6336 }
6337
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6338 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6339 unsigned long kvm_nr_mmu_pages)
6340 {
6341 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6342 return -EINVAL;
6343
6344 mutex_lock(&kvm->slots_lock);
6345
6346 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6347 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6348
6349 mutex_unlock(&kvm->slots_lock);
6350 return 0;
6351 }
6352
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6353 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6354 {
6355 struct kvm_pic *pic = kvm->arch.vpic;
6356 int r;
6357
6358 r = 0;
6359 switch (chip->chip_id) {
6360 case KVM_IRQCHIP_PIC_MASTER:
6361 memcpy(&chip->chip.pic, &pic->pics[0],
6362 sizeof(struct kvm_pic_state));
6363 break;
6364 case KVM_IRQCHIP_PIC_SLAVE:
6365 memcpy(&chip->chip.pic, &pic->pics[1],
6366 sizeof(struct kvm_pic_state));
6367 break;
6368 case KVM_IRQCHIP_IOAPIC:
6369 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6370 break;
6371 default:
6372 r = -EINVAL;
6373 break;
6374 }
6375 return r;
6376 }
6377
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6378 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6379 {
6380 struct kvm_pic *pic = kvm->arch.vpic;
6381 int r;
6382
6383 r = 0;
6384 switch (chip->chip_id) {
6385 case KVM_IRQCHIP_PIC_MASTER:
6386 spin_lock(&pic->lock);
6387 memcpy(&pic->pics[0], &chip->chip.pic,
6388 sizeof(struct kvm_pic_state));
6389 spin_unlock(&pic->lock);
6390 break;
6391 case KVM_IRQCHIP_PIC_SLAVE:
6392 spin_lock(&pic->lock);
6393 memcpy(&pic->pics[1], &chip->chip.pic,
6394 sizeof(struct kvm_pic_state));
6395 spin_unlock(&pic->lock);
6396 break;
6397 case KVM_IRQCHIP_IOAPIC:
6398 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6399 break;
6400 default:
6401 r = -EINVAL;
6402 break;
6403 }
6404 kvm_pic_update_irq(pic);
6405 return r;
6406 }
6407
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6408 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6409 {
6410 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6411
6412 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6413
6414 mutex_lock(&kps->lock);
6415 memcpy(ps, &kps->channels, sizeof(*ps));
6416 mutex_unlock(&kps->lock);
6417 return 0;
6418 }
6419
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6420 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6421 {
6422 int i;
6423 struct kvm_pit *pit = kvm->arch.vpit;
6424
6425 mutex_lock(&pit->pit_state.lock);
6426 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6427 for (i = 0; i < 3; i++)
6428 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6429 mutex_unlock(&pit->pit_state.lock);
6430 return 0;
6431 }
6432
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6433 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6434 {
6435 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6436 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6437 sizeof(ps->channels));
6438 ps->flags = kvm->arch.vpit->pit_state.flags;
6439 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6440 memset(&ps->reserved, 0, sizeof(ps->reserved));
6441 return 0;
6442 }
6443
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6444 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6445 {
6446 int start = 0;
6447 int i;
6448 u32 prev_legacy, cur_legacy;
6449 struct kvm_pit *pit = kvm->arch.vpit;
6450
6451 mutex_lock(&pit->pit_state.lock);
6452 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6453 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6454 if (!prev_legacy && cur_legacy)
6455 start = 1;
6456 memcpy(&pit->pit_state.channels, &ps->channels,
6457 sizeof(pit->pit_state.channels));
6458 pit->pit_state.flags = ps->flags;
6459 for (i = 0; i < 3; i++)
6460 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6461 start && i == 0);
6462 mutex_unlock(&pit->pit_state.lock);
6463 return 0;
6464 }
6465
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6466 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6467 struct kvm_reinject_control *control)
6468 {
6469 struct kvm_pit *pit = kvm->arch.vpit;
6470
6471 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6472 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6473 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6474 */
6475 mutex_lock(&pit->pit_state.lock);
6476 kvm_pit_set_reinject(pit, control->pit_reinject);
6477 mutex_unlock(&pit->pit_state.lock);
6478
6479 return 0;
6480 }
6481
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6482 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6483 {
6484
6485 /*
6486 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6487 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6488 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6489 * VM-Exit.
6490 */
6491 struct kvm_vcpu *vcpu;
6492 unsigned long i;
6493
6494 if (!kvm_x86_ops.cpu_dirty_log_size)
6495 return;
6496
6497 kvm_for_each_vcpu(i, vcpu, kvm)
6498 kvm_vcpu_kick(vcpu);
6499 }
6500
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6501 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6502 bool line_status)
6503 {
6504 if (!irqchip_in_kernel(kvm))
6505 return -ENXIO;
6506
6507 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6508 irq_event->irq, irq_event->level,
6509 line_status);
6510 return 0;
6511 }
6512
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6513 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6514 struct kvm_enable_cap *cap)
6515 {
6516 int r;
6517
6518 if (cap->flags)
6519 return -EINVAL;
6520
6521 switch (cap->cap) {
6522 case KVM_CAP_DISABLE_QUIRKS2:
6523 r = -EINVAL;
6524 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6525 break;
6526 fallthrough;
6527 case KVM_CAP_DISABLE_QUIRKS:
6528 kvm->arch.disabled_quirks = cap->args[0];
6529 r = 0;
6530 break;
6531 case KVM_CAP_SPLIT_IRQCHIP: {
6532 mutex_lock(&kvm->lock);
6533 r = -EINVAL;
6534 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6535 goto split_irqchip_unlock;
6536 r = -EEXIST;
6537 if (irqchip_in_kernel(kvm))
6538 goto split_irqchip_unlock;
6539 if (kvm->created_vcpus)
6540 goto split_irqchip_unlock;
6541 /* Pairs with irqchip_in_kernel. */
6542 smp_wmb();
6543 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6544 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6545 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6546 r = 0;
6547 split_irqchip_unlock:
6548 mutex_unlock(&kvm->lock);
6549 break;
6550 }
6551 case KVM_CAP_X2APIC_API:
6552 r = -EINVAL;
6553 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6554 break;
6555
6556 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6557 kvm->arch.x2apic_format = true;
6558 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6559 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6560
6561 r = 0;
6562 break;
6563 case KVM_CAP_X86_DISABLE_EXITS:
6564 r = -EINVAL;
6565 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6566 break;
6567
6568 mutex_lock(&kvm->lock);
6569 if (kvm->created_vcpus)
6570 goto disable_exits_unlock;
6571
6572 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6573 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6574
6575 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6576 cpu_smt_possible() &&
6577 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6578 pr_warn_once(SMT_RSB_MSG);
6579
6580 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6581 kvm->arch.pause_in_guest = true;
6582 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6583 kvm->arch.mwait_in_guest = true;
6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6585 kvm->arch.hlt_in_guest = true;
6586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6587 kvm->arch.cstate_in_guest = true;
6588 r = 0;
6589 disable_exits_unlock:
6590 mutex_unlock(&kvm->lock);
6591 break;
6592 case KVM_CAP_MSR_PLATFORM_INFO:
6593 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6594 r = 0;
6595 break;
6596 case KVM_CAP_EXCEPTION_PAYLOAD:
6597 kvm->arch.exception_payload_enabled = cap->args[0];
6598 r = 0;
6599 break;
6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6601 kvm->arch.triple_fault_event = cap->args[0];
6602 r = 0;
6603 break;
6604 case KVM_CAP_X86_USER_SPACE_MSR:
6605 r = -EINVAL;
6606 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6607 break;
6608 kvm->arch.user_space_msr_mask = cap->args[0];
6609 r = 0;
6610 break;
6611 case KVM_CAP_X86_BUS_LOCK_EXIT:
6612 r = -EINVAL;
6613 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6614 break;
6615
6616 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6617 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6618 break;
6619
6620 if (kvm_caps.has_bus_lock_exit &&
6621 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6622 kvm->arch.bus_lock_detection_enabled = true;
6623 r = 0;
6624 break;
6625 #ifdef CONFIG_X86_SGX_KVM
6626 case KVM_CAP_SGX_ATTRIBUTE: {
6627 unsigned long allowed_attributes = 0;
6628
6629 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6630 if (r)
6631 break;
6632
6633 /* KVM only supports the PROVISIONKEY privileged attribute. */
6634 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6635 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6636 kvm->arch.sgx_provisioning_allowed = true;
6637 else
6638 r = -EINVAL;
6639 break;
6640 }
6641 #endif
6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6643 r = -EINVAL;
6644 if (!kvm_x86_ops.vm_copy_enc_context_from)
6645 break;
6646
6647 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6648 break;
6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6650 r = -EINVAL;
6651 if (!kvm_x86_ops.vm_move_enc_context_from)
6652 break;
6653
6654 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6655 break;
6656 case KVM_CAP_EXIT_HYPERCALL:
6657 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6658 r = -EINVAL;
6659 break;
6660 }
6661 kvm->arch.hypercall_exit_enabled = cap->args[0];
6662 r = 0;
6663 break;
6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6665 r = -EINVAL;
6666 if (cap->args[0] & ~1)
6667 break;
6668 kvm->arch.exit_on_emulation_error = cap->args[0];
6669 r = 0;
6670 break;
6671 case KVM_CAP_PMU_CAPABILITY:
6672 r = -EINVAL;
6673 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6674 break;
6675
6676 mutex_lock(&kvm->lock);
6677 if (!kvm->created_vcpus) {
6678 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6679 r = 0;
6680 }
6681 mutex_unlock(&kvm->lock);
6682 break;
6683 case KVM_CAP_MAX_VCPU_ID:
6684 r = -EINVAL;
6685 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6686 break;
6687
6688 mutex_lock(&kvm->lock);
6689 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6690 ;
6691 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6692 r = 0;
6693 } else if (!kvm->arch.max_vcpu_ids) {
6694 kvm->arch.max_vcpu_ids = cap->args[0];
6695 r = 0;
6696 }
6697 mutex_unlock(&kvm->lock);
6698 break;
6699 case KVM_CAP_X86_NOTIFY_VMEXIT:
6700 r = -EINVAL;
6701 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6702 break;
6703 if (!kvm_caps.has_notify_vmexit)
6704 break;
6705 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6706 break;
6707 mutex_lock(&kvm->lock);
6708 if (!kvm->created_vcpus) {
6709 kvm->arch.notify_window = cap->args[0] >> 32;
6710 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6711 r = 0;
6712 }
6713 mutex_unlock(&kvm->lock);
6714 break;
6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6716 r = -EINVAL;
6717
6718 /*
6719 * Since the risk of disabling NX hugepages is a guest crashing
6720 * the system, ensure the userspace process has permission to
6721 * reboot the system.
6722 *
6723 * Note that unlike the reboot() syscall, the process must have
6724 * this capability in the root namespace because exposing
6725 * /dev/kvm into a container does not limit the scope of the
6726 * iTLB multihit bug to that container. In other words,
6727 * this must use capable(), not ns_capable().
6728 */
6729 if (!capable(CAP_SYS_BOOT)) {
6730 r = -EPERM;
6731 break;
6732 }
6733
6734 if (cap->args[0])
6735 break;
6736
6737 mutex_lock(&kvm->lock);
6738 if (!kvm->created_vcpus) {
6739 kvm->arch.disable_nx_huge_pages = true;
6740 r = 0;
6741 }
6742 mutex_unlock(&kvm->lock);
6743 break;
6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6745 u64 bus_cycle_ns = cap->args[0];
6746 u64 unused;
6747
6748 /*
6749 * Guard against overflow in tmict_to_ns(). 128 is the highest
6750 * divide value that can be programmed in APIC_TDCR.
6751 */
6752 r = -EINVAL;
6753 if (!bus_cycle_ns ||
6754 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6755 break;
6756
6757 r = 0;
6758 mutex_lock(&kvm->lock);
6759 if (!irqchip_in_kernel(kvm))
6760 r = -ENXIO;
6761 else if (kvm->created_vcpus)
6762 r = -EINVAL;
6763 else
6764 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6765 mutex_unlock(&kvm->lock);
6766 break;
6767 }
6768 default:
6769 r = -EINVAL;
6770 break;
6771 }
6772 return r;
6773 }
6774
kvm_alloc_msr_filter(bool default_allow)6775 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6776 {
6777 struct kvm_x86_msr_filter *msr_filter;
6778
6779 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6780 if (!msr_filter)
6781 return NULL;
6782
6783 msr_filter->default_allow = default_allow;
6784 return msr_filter;
6785 }
6786
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6788 {
6789 u32 i;
6790
6791 if (!msr_filter)
6792 return;
6793
6794 for (i = 0; i < msr_filter->count; i++)
6795 kfree(msr_filter->ranges[i].bitmap);
6796
6797 kfree(msr_filter);
6798 }
6799
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6801 struct kvm_msr_filter_range *user_range)
6802 {
6803 unsigned long *bitmap;
6804 size_t bitmap_size;
6805
6806 if (!user_range->nmsrs)
6807 return 0;
6808
6809 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6810 return -EINVAL;
6811
6812 if (!user_range->flags)
6813 return -EINVAL;
6814
6815 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6816 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6817 return -EINVAL;
6818
6819 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6820 if (IS_ERR(bitmap))
6821 return PTR_ERR(bitmap);
6822
6823 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6824 .flags = user_range->flags,
6825 .base = user_range->base,
6826 .nmsrs = user_range->nmsrs,
6827 .bitmap = bitmap,
6828 };
6829
6830 msr_filter->count++;
6831 return 0;
6832 }
6833
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6835 struct kvm_msr_filter *filter)
6836 {
6837 struct kvm_x86_msr_filter *new_filter, *old_filter;
6838 bool default_allow;
6839 bool empty = true;
6840 int r;
6841 u32 i;
6842
6843 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6844 return -EINVAL;
6845
6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6847 empty &= !filter->ranges[i].nmsrs;
6848
6849 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6850 if (empty && !default_allow)
6851 return -EINVAL;
6852
6853 new_filter = kvm_alloc_msr_filter(default_allow);
6854 if (!new_filter)
6855 return -ENOMEM;
6856
6857 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6858 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6859 if (r) {
6860 kvm_free_msr_filter(new_filter);
6861 return r;
6862 }
6863 }
6864
6865 mutex_lock(&kvm->lock);
6866 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6867 mutex_is_locked(&kvm->lock));
6868 mutex_unlock(&kvm->lock);
6869 synchronize_srcu(&kvm->srcu);
6870
6871 kvm_free_msr_filter(old_filter);
6872
6873 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6874
6875 return 0;
6876 }
6877
6878 #ifdef CONFIG_KVM_COMPAT
6879 /* for KVM_X86_SET_MSR_FILTER */
6880 struct kvm_msr_filter_range_compat {
6881 __u32 flags;
6882 __u32 nmsrs;
6883 __u32 base;
6884 __u32 bitmap;
6885 };
6886
6887 struct kvm_msr_filter_compat {
6888 __u32 flags;
6889 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6890 };
6891
6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6893
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6894 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6895 unsigned long arg)
6896 {
6897 void __user *argp = (void __user *)arg;
6898 struct kvm *kvm = filp->private_data;
6899 long r = -ENOTTY;
6900
6901 switch (ioctl) {
6902 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6903 struct kvm_msr_filter __user *user_msr_filter = argp;
6904 struct kvm_msr_filter_compat filter_compat;
6905 struct kvm_msr_filter filter;
6906 int i;
6907
6908 if (copy_from_user(&filter_compat, user_msr_filter,
6909 sizeof(filter_compat)))
6910 return -EFAULT;
6911
6912 filter.flags = filter_compat.flags;
6913 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6914 struct kvm_msr_filter_range_compat *cr;
6915
6916 cr = &filter_compat.ranges[i];
6917 filter.ranges[i] = (struct kvm_msr_filter_range) {
6918 .flags = cr->flags,
6919 .nmsrs = cr->nmsrs,
6920 .base = cr->base,
6921 .bitmap = (__u8 *)(ulong)cr->bitmap,
6922 };
6923 }
6924
6925 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6926 break;
6927 }
6928 }
6929
6930 return r;
6931 }
6932 #endif
6933
6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6935 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6936 {
6937 struct kvm_vcpu *vcpu;
6938 unsigned long i;
6939
6940 /*
6941 * Ignore the return, marking the guest paused only "fails" if the vCPU
6942 * isn't using kvmclock; continuing on is correct and desirable.
6943 */
6944 kvm_for_each_vcpu(i, vcpu, kvm)
6945 (void)kvm_set_guest_paused(vcpu);
6946
6947 return NOTIFY_DONE;
6948 }
6949
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6950 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6951 {
6952 switch (state) {
6953 case PM_HIBERNATION_PREPARE:
6954 case PM_SUSPEND_PREPARE:
6955 return kvm_arch_suspend_notifier(kvm);
6956 }
6957
6958 return NOTIFY_DONE;
6959 }
6960 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6961
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6962 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6963 {
6964 struct kvm_clock_data data = { 0 };
6965
6966 get_kvmclock(kvm, &data);
6967 if (copy_to_user(argp, &data, sizeof(data)))
6968 return -EFAULT;
6969
6970 return 0;
6971 }
6972
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6973 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6974 {
6975 struct kvm_arch *ka = &kvm->arch;
6976 struct kvm_clock_data data;
6977 u64 now_raw_ns;
6978
6979 if (copy_from_user(&data, argp, sizeof(data)))
6980 return -EFAULT;
6981
6982 /*
6983 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6984 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6985 */
6986 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6987 return -EINVAL;
6988
6989 kvm_hv_request_tsc_page_update(kvm);
6990 kvm_start_pvclock_update(kvm);
6991 pvclock_update_vm_gtod_copy(kvm);
6992
6993 /*
6994 * This pairs with kvm_guest_time_update(): when masterclock is
6995 * in use, we use master_kernel_ns + kvmclock_offset to set
6996 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6997 * is slightly ahead) here we risk going negative on unsigned
6998 * 'system_time' when 'data.clock' is very small.
6999 */
7000 if (data.flags & KVM_CLOCK_REALTIME) {
7001 u64 now_real_ns = ktime_get_real_ns();
7002
7003 /*
7004 * Avoid stepping the kvmclock backwards.
7005 */
7006 if (now_real_ns > data.realtime)
7007 data.clock += now_real_ns - data.realtime;
7008 }
7009
7010 if (ka->use_master_clock)
7011 now_raw_ns = ka->master_kernel_ns;
7012 else
7013 now_raw_ns = get_kvmclock_base_ns();
7014 ka->kvmclock_offset = data.clock - now_raw_ns;
7015 kvm_end_pvclock_update(kvm);
7016 return 0;
7017 }
7018
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7019 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7020 {
7021 struct kvm *kvm = filp->private_data;
7022 void __user *argp = (void __user *)arg;
7023 int r = -ENOTTY;
7024 /*
7025 * This union makes it completely explicit to gcc-3.x
7026 * that these two variables' stack usage should be
7027 * combined, not added together.
7028 */
7029 union {
7030 struct kvm_pit_state ps;
7031 struct kvm_pit_state2 ps2;
7032 struct kvm_pit_config pit_config;
7033 } u;
7034
7035 switch (ioctl) {
7036 case KVM_SET_TSS_ADDR:
7037 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7038 break;
7039 case KVM_SET_IDENTITY_MAP_ADDR: {
7040 u64 ident_addr;
7041
7042 mutex_lock(&kvm->lock);
7043 r = -EINVAL;
7044 if (kvm->created_vcpus)
7045 goto set_identity_unlock;
7046 r = -EFAULT;
7047 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7048 goto set_identity_unlock;
7049 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7050 set_identity_unlock:
7051 mutex_unlock(&kvm->lock);
7052 break;
7053 }
7054 case KVM_SET_NR_MMU_PAGES:
7055 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7056 break;
7057 case KVM_CREATE_IRQCHIP: {
7058 mutex_lock(&kvm->lock);
7059
7060 r = -EEXIST;
7061 if (irqchip_in_kernel(kvm))
7062 goto create_irqchip_unlock;
7063
7064 r = -EINVAL;
7065 if (kvm->created_vcpus)
7066 goto create_irqchip_unlock;
7067
7068 r = kvm_pic_init(kvm);
7069 if (r)
7070 goto create_irqchip_unlock;
7071
7072 r = kvm_ioapic_init(kvm);
7073 if (r) {
7074 kvm_pic_destroy(kvm);
7075 goto create_irqchip_unlock;
7076 }
7077
7078 r = kvm_setup_default_irq_routing(kvm);
7079 if (r) {
7080 kvm_ioapic_destroy(kvm);
7081 kvm_pic_destroy(kvm);
7082 goto create_irqchip_unlock;
7083 }
7084 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7085 smp_wmb();
7086 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7087 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7088 create_irqchip_unlock:
7089 mutex_unlock(&kvm->lock);
7090 break;
7091 }
7092 case KVM_CREATE_PIT:
7093 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7094 goto create_pit;
7095 case KVM_CREATE_PIT2:
7096 r = -EFAULT;
7097 if (copy_from_user(&u.pit_config, argp,
7098 sizeof(struct kvm_pit_config)))
7099 goto out;
7100 create_pit:
7101 mutex_lock(&kvm->lock);
7102 r = -EEXIST;
7103 if (kvm->arch.vpit)
7104 goto create_pit_unlock;
7105 r = -ENOENT;
7106 if (!pic_in_kernel(kvm))
7107 goto create_pit_unlock;
7108 r = -ENOMEM;
7109 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7110 if (kvm->arch.vpit)
7111 r = 0;
7112 create_pit_unlock:
7113 mutex_unlock(&kvm->lock);
7114 break;
7115 case KVM_GET_IRQCHIP: {
7116 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7117 struct kvm_irqchip *chip;
7118
7119 chip = memdup_user(argp, sizeof(*chip));
7120 if (IS_ERR(chip)) {
7121 r = PTR_ERR(chip);
7122 goto out;
7123 }
7124
7125 r = -ENXIO;
7126 if (!irqchip_kernel(kvm))
7127 goto get_irqchip_out;
7128 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7129 if (r)
7130 goto get_irqchip_out;
7131 r = -EFAULT;
7132 if (copy_to_user(argp, chip, sizeof(*chip)))
7133 goto get_irqchip_out;
7134 r = 0;
7135 get_irqchip_out:
7136 kfree(chip);
7137 break;
7138 }
7139 case KVM_SET_IRQCHIP: {
7140 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7141 struct kvm_irqchip *chip;
7142
7143 chip = memdup_user(argp, sizeof(*chip));
7144 if (IS_ERR(chip)) {
7145 r = PTR_ERR(chip);
7146 goto out;
7147 }
7148
7149 r = -ENXIO;
7150 if (!irqchip_kernel(kvm))
7151 goto set_irqchip_out;
7152 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7153 set_irqchip_out:
7154 kfree(chip);
7155 break;
7156 }
7157 case KVM_GET_PIT: {
7158 r = -EFAULT;
7159 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7160 goto out;
7161 r = -ENXIO;
7162 if (!kvm->arch.vpit)
7163 goto out;
7164 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7165 if (r)
7166 goto out;
7167 r = -EFAULT;
7168 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7169 goto out;
7170 r = 0;
7171 break;
7172 }
7173 case KVM_SET_PIT: {
7174 r = -EFAULT;
7175 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7176 goto out;
7177 mutex_lock(&kvm->lock);
7178 r = -ENXIO;
7179 if (!kvm->arch.vpit)
7180 goto set_pit_out;
7181 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7182 set_pit_out:
7183 mutex_unlock(&kvm->lock);
7184 break;
7185 }
7186 case KVM_GET_PIT2: {
7187 r = -ENXIO;
7188 if (!kvm->arch.vpit)
7189 goto out;
7190 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7191 if (r)
7192 goto out;
7193 r = -EFAULT;
7194 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7195 goto out;
7196 r = 0;
7197 break;
7198 }
7199 case KVM_SET_PIT2: {
7200 r = -EFAULT;
7201 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7202 goto out;
7203 mutex_lock(&kvm->lock);
7204 r = -ENXIO;
7205 if (!kvm->arch.vpit)
7206 goto set_pit2_out;
7207 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7208 set_pit2_out:
7209 mutex_unlock(&kvm->lock);
7210 break;
7211 }
7212 case KVM_REINJECT_CONTROL: {
7213 struct kvm_reinject_control control;
7214 r = -EFAULT;
7215 if (copy_from_user(&control, argp, sizeof(control)))
7216 goto out;
7217 r = -ENXIO;
7218 if (!kvm->arch.vpit)
7219 goto out;
7220 r = kvm_vm_ioctl_reinject(kvm, &control);
7221 break;
7222 }
7223 case KVM_SET_BOOT_CPU_ID:
7224 r = 0;
7225 mutex_lock(&kvm->lock);
7226 if (kvm->created_vcpus)
7227 r = -EBUSY;
7228 else if (arg > KVM_MAX_VCPU_IDS ||
7229 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7230 r = -EINVAL;
7231 else
7232 kvm->arch.bsp_vcpu_id = arg;
7233 mutex_unlock(&kvm->lock);
7234 break;
7235 #ifdef CONFIG_KVM_XEN
7236 case KVM_XEN_HVM_CONFIG: {
7237 struct kvm_xen_hvm_config xhc;
7238 r = -EFAULT;
7239 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7240 goto out;
7241 r = kvm_xen_hvm_config(kvm, &xhc);
7242 break;
7243 }
7244 case KVM_XEN_HVM_GET_ATTR: {
7245 struct kvm_xen_hvm_attr xha;
7246
7247 r = -EFAULT;
7248 if (copy_from_user(&xha, argp, sizeof(xha)))
7249 goto out;
7250 r = kvm_xen_hvm_get_attr(kvm, &xha);
7251 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7252 r = -EFAULT;
7253 break;
7254 }
7255 case KVM_XEN_HVM_SET_ATTR: {
7256 struct kvm_xen_hvm_attr xha;
7257
7258 r = -EFAULT;
7259 if (copy_from_user(&xha, argp, sizeof(xha)))
7260 goto out;
7261 r = kvm_xen_hvm_set_attr(kvm, &xha);
7262 break;
7263 }
7264 case KVM_XEN_HVM_EVTCHN_SEND: {
7265 struct kvm_irq_routing_xen_evtchn uxe;
7266
7267 r = -EFAULT;
7268 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7269 goto out;
7270 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7271 break;
7272 }
7273 #endif
7274 case KVM_SET_CLOCK:
7275 r = kvm_vm_ioctl_set_clock(kvm, argp);
7276 break;
7277 case KVM_GET_CLOCK:
7278 r = kvm_vm_ioctl_get_clock(kvm, argp);
7279 break;
7280 case KVM_SET_TSC_KHZ: {
7281 u32 user_tsc_khz;
7282
7283 r = -EINVAL;
7284 user_tsc_khz = (u32)arg;
7285
7286 if (kvm_caps.has_tsc_control &&
7287 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7288 goto out;
7289
7290 if (user_tsc_khz == 0)
7291 user_tsc_khz = tsc_khz;
7292
7293 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7294 r = 0;
7295
7296 goto out;
7297 }
7298 case KVM_GET_TSC_KHZ: {
7299 r = READ_ONCE(kvm->arch.default_tsc_khz);
7300 goto out;
7301 }
7302 case KVM_MEMORY_ENCRYPT_OP: {
7303 r = -ENOTTY;
7304 if (!kvm_x86_ops.mem_enc_ioctl)
7305 goto out;
7306
7307 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7308 break;
7309 }
7310 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7311 struct kvm_enc_region region;
7312
7313 r = -EFAULT;
7314 if (copy_from_user(®ion, argp, sizeof(region)))
7315 goto out;
7316
7317 r = -ENOTTY;
7318 if (!kvm_x86_ops.mem_enc_register_region)
7319 goto out;
7320
7321 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7322 break;
7323 }
7324 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7325 struct kvm_enc_region region;
7326
7327 r = -EFAULT;
7328 if (copy_from_user(®ion, argp, sizeof(region)))
7329 goto out;
7330
7331 r = -ENOTTY;
7332 if (!kvm_x86_ops.mem_enc_unregister_region)
7333 goto out;
7334
7335 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7336 break;
7337 }
7338 #ifdef CONFIG_KVM_HYPERV
7339 case KVM_HYPERV_EVENTFD: {
7340 struct kvm_hyperv_eventfd hvevfd;
7341
7342 r = -EFAULT;
7343 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7344 goto out;
7345 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7346 break;
7347 }
7348 #endif
7349 case KVM_SET_PMU_EVENT_FILTER:
7350 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7351 break;
7352 case KVM_X86_SET_MSR_FILTER: {
7353 struct kvm_msr_filter __user *user_msr_filter = argp;
7354 struct kvm_msr_filter filter;
7355
7356 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7357 return -EFAULT;
7358
7359 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7360 break;
7361 }
7362 default:
7363 r = -ENOTTY;
7364 }
7365 out:
7366 return r;
7367 }
7368
kvm_probe_feature_msr(u32 msr_index)7369 static void kvm_probe_feature_msr(u32 msr_index)
7370 {
7371 u64 data;
7372
7373 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7374 return;
7375
7376 msr_based_features[num_msr_based_features++] = msr_index;
7377 }
7378
kvm_probe_msr_to_save(u32 msr_index)7379 static void kvm_probe_msr_to_save(u32 msr_index)
7380 {
7381 u32 dummy[2];
7382
7383 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7384 return;
7385
7386 /*
7387 * Even MSRs that are valid in the host may not be exposed to guests in
7388 * some cases.
7389 */
7390 switch (msr_index) {
7391 case MSR_IA32_BNDCFGS:
7392 if (!kvm_mpx_supported())
7393 return;
7394 break;
7395 case MSR_TSC_AUX:
7396 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7397 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7398 return;
7399 break;
7400 case MSR_IA32_UMWAIT_CONTROL:
7401 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7402 return;
7403 break;
7404 case MSR_IA32_RTIT_CTL:
7405 case MSR_IA32_RTIT_STATUS:
7406 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7407 return;
7408 break;
7409 case MSR_IA32_RTIT_CR3_MATCH:
7410 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7411 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7412 return;
7413 break;
7414 case MSR_IA32_RTIT_OUTPUT_BASE:
7415 case MSR_IA32_RTIT_OUTPUT_MASK:
7416 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7417 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7418 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7419 return;
7420 break;
7421 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7422 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7423 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7424 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7425 return;
7426 break;
7427 case MSR_ARCH_PERFMON_PERFCTR0 ...
7428 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7429 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7430 kvm_pmu_cap.num_counters_gp)
7431 return;
7432 break;
7433 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7434 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7435 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7436 kvm_pmu_cap.num_counters_gp)
7437 return;
7438 break;
7439 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7440 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7441 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7442 kvm_pmu_cap.num_counters_fixed)
7443 return;
7444 break;
7445 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7446 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7447 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7448 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7449 return;
7450 break;
7451 case MSR_IA32_XFD:
7452 case MSR_IA32_XFD_ERR:
7453 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7454 return;
7455 break;
7456 case MSR_IA32_TSX_CTRL:
7457 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7458 return;
7459 break;
7460 default:
7461 break;
7462 }
7463
7464 msrs_to_save[num_msrs_to_save++] = msr_index;
7465 }
7466
kvm_init_msr_lists(void)7467 static void kvm_init_msr_lists(void)
7468 {
7469 unsigned i;
7470
7471 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7472 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7473
7474 num_msrs_to_save = 0;
7475 num_emulated_msrs = 0;
7476 num_msr_based_features = 0;
7477
7478 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7479 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7480
7481 if (enable_pmu) {
7482 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7483 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7484 }
7485
7486 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7487 if (!kvm_x86_call(has_emulated_msr)(NULL,
7488 emulated_msrs_all[i]))
7489 continue;
7490
7491 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7492 }
7493
7494 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7495 kvm_probe_feature_msr(i);
7496
7497 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7498 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7499 }
7500
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7501 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7502 const void *v)
7503 {
7504 int handled = 0;
7505 int n;
7506
7507 do {
7508 n = min(len, 8);
7509 if (!(lapic_in_kernel(vcpu) &&
7510 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7511 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7512 break;
7513 handled += n;
7514 addr += n;
7515 len -= n;
7516 v += n;
7517 } while (len);
7518
7519 return handled;
7520 }
7521
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7522 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7523 {
7524 int handled = 0;
7525 int n;
7526
7527 do {
7528 n = min(len, 8);
7529 if (!(lapic_in_kernel(vcpu) &&
7530 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7531 addr, n, v))
7532 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7533 break;
7534 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7535 handled += n;
7536 addr += n;
7537 len -= n;
7538 v += n;
7539 } while (len);
7540
7541 return handled;
7542 }
7543
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7544 void kvm_set_segment(struct kvm_vcpu *vcpu,
7545 struct kvm_segment *var, int seg)
7546 {
7547 kvm_x86_call(set_segment)(vcpu, var, seg);
7548 }
7549
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7550 void kvm_get_segment(struct kvm_vcpu *vcpu,
7551 struct kvm_segment *var, int seg)
7552 {
7553 kvm_x86_call(get_segment)(vcpu, var, seg);
7554 }
7555
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7556 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7557 struct x86_exception *exception)
7558 {
7559 struct kvm_mmu *mmu = vcpu->arch.mmu;
7560 gpa_t t_gpa;
7561
7562 BUG_ON(!mmu_is_nested(vcpu));
7563
7564 /* NPT walks are always user-walks */
7565 access |= PFERR_USER_MASK;
7566 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7567
7568 return t_gpa;
7569 }
7570
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7571 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7572 struct x86_exception *exception)
7573 {
7574 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7575
7576 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7577 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7578 }
7579 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7580
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7581 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7582 struct x86_exception *exception)
7583 {
7584 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7585
7586 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7587 access |= PFERR_WRITE_MASK;
7588 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7589 }
7590 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7591
7592 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7593 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7594 struct x86_exception *exception)
7595 {
7596 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7597
7598 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7599 }
7600
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7601 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7602 struct kvm_vcpu *vcpu, u64 access,
7603 struct x86_exception *exception)
7604 {
7605 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7606 void *data = val;
7607 int r = X86EMUL_CONTINUE;
7608
7609 while (bytes) {
7610 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7611 unsigned offset = addr & (PAGE_SIZE-1);
7612 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7613 int ret;
7614
7615 if (gpa == INVALID_GPA)
7616 return X86EMUL_PROPAGATE_FAULT;
7617 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7618 offset, toread);
7619 if (ret < 0) {
7620 r = X86EMUL_IO_NEEDED;
7621 goto out;
7622 }
7623
7624 bytes -= toread;
7625 data += toread;
7626 addr += toread;
7627 }
7628 out:
7629 return r;
7630 }
7631
7632 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7633 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7634 gva_t addr, void *val, unsigned int bytes,
7635 struct x86_exception *exception)
7636 {
7637 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7638 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7639 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7640 unsigned offset;
7641 int ret;
7642
7643 /* Inline kvm_read_guest_virt_helper for speed. */
7644 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7645 exception);
7646 if (unlikely(gpa == INVALID_GPA))
7647 return X86EMUL_PROPAGATE_FAULT;
7648
7649 offset = addr & (PAGE_SIZE-1);
7650 if (WARN_ON(offset + bytes > PAGE_SIZE))
7651 bytes = (unsigned)PAGE_SIZE - offset;
7652 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7653 offset, bytes);
7654 if (unlikely(ret < 0))
7655 return X86EMUL_IO_NEEDED;
7656
7657 return X86EMUL_CONTINUE;
7658 }
7659
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7660 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7661 gva_t addr, void *val, unsigned int bytes,
7662 struct x86_exception *exception)
7663 {
7664 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7665
7666 /*
7667 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7668 * is returned, but our callers are not ready for that and they blindly
7669 * call kvm_inject_page_fault. Ensure that they at least do not leak
7670 * uninitialized kernel stack memory into cr2 and error code.
7671 */
7672 memset(exception, 0, sizeof(*exception));
7673 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7674 exception);
7675 }
7676 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7677
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7678 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7679 gva_t addr, void *val, unsigned int bytes,
7680 struct x86_exception *exception, bool system)
7681 {
7682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7683 u64 access = 0;
7684
7685 if (system)
7686 access |= PFERR_IMPLICIT_ACCESS;
7687 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7688 access |= PFERR_USER_MASK;
7689
7690 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7691 }
7692
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7693 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7694 struct kvm_vcpu *vcpu, u64 access,
7695 struct x86_exception *exception)
7696 {
7697 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7698 void *data = val;
7699 int r = X86EMUL_CONTINUE;
7700
7701 while (bytes) {
7702 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7703 unsigned offset = addr & (PAGE_SIZE-1);
7704 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7705 int ret;
7706
7707 if (gpa == INVALID_GPA)
7708 return X86EMUL_PROPAGATE_FAULT;
7709 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7710 if (ret < 0) {
7711 r = X86EMUL_IO_NEEDED;
7712 goto out;
7713 }
7714
7715 bytes -= towrite;
7716 data += towrite;
7717 addr += towrite;
7718 }
7719 out:
7720 return r;
7721 }
7722
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7723 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7724 unsigned int bytes, struct x86_exception *exception,
7725 bool system)
7726 {
7727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7728 u64 access = PFERR_WRITE_MASK;
7729
7730 if (system)
7731 access |= PFERR_IMPLICIT_ACCESS;
7732 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7733 access |= PFERR_USER_MASK;
7734
7735 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7736 access, exception);
7737 }
7738
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7739 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7740 unsigned int bytes, struct x86_exception *exception)
7741 {
7742 /* kvm_write_guest_virt_system can pull in tons of pages. */
7743 vcpu->arch.l1tf_flush_l1d = true;
7744
7745 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7746 PFERR_WRITE_MASK, exception);
7747 }
7748 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7749
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7750 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7751 void *insn, int insn_len)
7752 {
7753 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7754 insn, insn_len);
7755 }
7756
handle_ud(struct kvm_vcpu * vcpu)7757 int handle_ud(struct kvm_vcpu *vcpu)
7758 {
7759 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7760 int fep_flags = READ_ONCE(force_emulation_prefix);
7761 int emul_type = EMULTYPE_TRAP_UD;
7762 char sig[5]; /* ud2; .ascii "kvm" */
7763 struct x86_exception e;
7764 int r;
7765
7766 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7767 if (r != X86EMUL_CONTINUE)
7768 return 1;
7769
7770 if (fep_flags &&
7771 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7772 sig, sizeof(sig), &e) == 0 &&
7773 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7774 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7775 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7776 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7777 emul_type = EMULTYPE_TRAP_UD_FORCED;
7778 }
7779
7780 return kvm_emulate_instruction(vcpu, emul_type);
7781 }
7782 EXPORT_SYMBOL_GPL(handle_ud);
7783
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7784 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7785 gpa_t gpa, bool write)
7786 {
7787 /* For APIC access vmexit */
7788 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7789 return 1;
7790
7791 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7792 trace_vcpu_match_mmio(gva, gpa, write, true);
7793 return 1;
7794 }
7795
7796 return 0;
7797 }
7798
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7799 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7800 gpa_t *gpa, struct x86_exception *exception,
7801 bool write)
7802 {
7803 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7804 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7805 | (write ? PFERR_WRITE_MASK : 0);
7806
7807 /*
7808 * currently PKRU is only applied to ept enabled guest so
7809 * there is no pkey in EPT page table for L1 guest or EPT
7810 * shadow page table for L2 guest.
7811 */
7812 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7813 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7814 vcpu->arch.mmio_access, 0, access))) {
7815 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7816 (gva & (PAGE_SIZE - 1));
7817 trace_vcpu_match_mmio(gva, *gpa, write, false);
7818 return 1;
7819 }
7820
7821 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7822
7823 if (*gpa == INVALID_GPA)
7824 return -1;
7825
7826 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7827 }
7828
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7829 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7830 const void *val, int bytes)
7831 {
7832 int ret;
7833
7834 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7835 if (ret < 0)
7836 return 0;
7837 kvm_page_track_write(vcpu, gpa, val, bytes);
7838 return 1;
7839 }
7840
7841 struct read_write_emulator_ops {
7842 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7843 int bytes);
7844 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7845 void *val, int bytes);
7846 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7847 int bytes, void *val);
7848 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7849 void *val, int bytes);
7850 bool write;
7851 };
7852
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7853 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7854 {
7855 if (vcpu->mmio_read_completed) {
7856 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7857 vcpu->mmio_fragments[0].gpa, val);
7858 vcpu->mmio_read_completed = 0;
7859 return 1;
7860 }
7861
7862 return 0;
7863 }
7864
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7865 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7866 void *val, int bytes)
7867 {
7868 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7869 }
7870
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7871 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7872 void *val, int bytes)
7873 {
7874 return emulator_write_phys(vcpu, gpa, val, bytes);
7875 }
7876
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7877 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7878 {
7879 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7880 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7881 }
7882
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7883 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7884 void *val, int bytes)
7885 {
7886 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7887 return X86EMUL_IO_NEEDED;
7888 }
7889
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7890 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7891 void *val, int bytes)
7892 {
7893 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7894
7895 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7896 return X86EMUL_CONTINUE;
7897 }
7898
7899 static const struct read_write_emulator_ops read_emultor = {
7900 .read_write_prepare = read_prepare,
7901 .read_write_emulate = read_emulate,
7902 .read_write_mmio = vcpu_mmio_read,
7903 .read_write_exit_mmio = read_exit_mmio,
7904 };
7905
7906 static const struct read_write_emulator_ops write_emultor = {
7907 .read_write_emulate = write_emulate,
7908 .read_write_mmio = write_mmio,
7909 .read_write_exit_mmio = write_exit_mmio,
7910 .write = true,
7911 };
7912
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7913 static int emulator_read_write_onepage(unsigned long addr, void *val,
7914 unsigned int bytes,
7915 struct x86_exception *exception,
7916 struct kvm_vcpu *vcpu,
7917 const struct read_write_emulator_ops *ops)
7918 {
7919 gpa_t gpa;
7920 int handled, ret;
7921 bool write = ops->write;
7922 struct kvm_mmio_fragment *frag;
7923 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7924
7925 /*
7926 * If the exit was due to a NPF we may already have a GPA.
7927 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7928 * Note, this cannot be used on string operations since string
7929 * operation using rep will only have the initial GPA from the NPF
7930 * occurred.
7931 */
7932 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7933 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7934 gpa = ctxt->gpa_val;
7935 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7936 } else {
7937 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7938 if (ret < 0)
7939 return X86EMUL_PROPAGATE_FAULT;
7940 }
7941
7942 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7943 return X86EMUL_CONTINUE;
7944
7945 /*
7946 * Is this MMIO handled locally?
7947 */
7948 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7949 if (handled == bytes)
7950 return X86EMUL_CONTINUE;
7951
7952 gpa += handled;
7953 bytes -= handled;
7954 val += handled;
7955
7956 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7957 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7958 frag->gpa = gpa;
7959 frag->data = val;
7960 frag->len = bytes;
7961 return X86EMUL_CONTINUE;
7962 }
7963
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7964 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7965 unsigned long addr,
7966 void *val, unsigned int bytes,
7967 struct x86_exception *exception,
7968 const struct read_write_emulator_ops *ops)
7969 {
7970 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7971 gpa_t gpa;
7972 int rc;
7973
7974 if (ops->read_write_prepare &&
7975 ops->read_write_prepare(vcpu, val, bytes))
7976 return X86EMUL_CONTINUE;
7977
7978 vcpu->mmio_nr_fragments = 0;
7979
7980 /* Crossing a page boundary? */
7981 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7982 int now;
7983
7984 now = -addr & ~PAGE_MASK;
7985 rc = emulator_read_write_onepage(addr, val, now, exception,
7986 vcpu, ops);
7987
7988 if (rc != X86EMUL_CONTINUE)
7989 return rc;
7990 addr += now;
7991 if (ctxt->mode != X86EMUL_MODE_PROT64)
7992 addr = (u32)addr;
7993 val += now;
7994 bytes -= now;
7995 }
7996
7997 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7998 vcpu, ops);
7999 if (rc != X86EMUL_CONTINUE)
8000 return rc;
8001
8002 if (!vcpu->mmio_nr_fragments)
8003 return rc;
8004
8005 gpa = vcpu->mmio_fragments[0].gpa;
8006
8007 vcpu->mmio_needed = 1;
8008 vcpu->mmio_cur_fragment = 0;
8009
8010 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8011 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8012 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8013 vcpu->run->mmio.phys_addr = gpa;
8014
8015 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8016 }
8017
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8018 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8019 unsigned long addr,
8020 void *val,
8021 unsigned int bytes,
8022 struct x86_exception *exception)
8023 {
8024 return emulator_read_write(ctxt, addr, val, bytes,
8025 exception, &read_emultor);
8026 }
8027
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8028 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8029 unsigned long addr,
8030 const void *val,
8031 unsigned int bytes,
8032 struct x86_exception *exception)
8033 {
8034 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8035 exception, &write_emultor);
8036 }
8037
8038 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8039 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8040
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8041 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8042 unsigned long addr,
8043 const void *old,
8044 const void *new,
8045 unsigned int bytes,
8046 struct x86_exception *exception)
8047 {
8048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8049 u64 page_line_mask;
8050 unsigned long hva;
8051 gpa_t gpa;
8052 int r;
8053
8054 /* guests cmpxchg8b have to be emulated atomically */
8055 if (bytes > 8 || (bytes & (bytes - 1)))
8056 goto emul_write;
8057
8058 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8059
8060 if (gpa == INVALID_GPA ||
8061 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8062 goto emul_write;
8063
8064 /*
8065 * Emulate the atomic as a straight write to avoid #AC if SLD is
8066 * enabled in the host and the access splits a cache line.
8067 */
8068 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8069 page_line_mask = ~(cache_line_size() - 1);
8070 else
8071 page_line_mask = PAGE_MASK;
8072
8073 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8074 goto emul_write;
8075
8076 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8077 if (kvm_is_error_hva(hva))
8078 goto emul_write;
8079
8080 hva += offset_in_page(gpa);
8081
8082 switch (bytes) {
8083 case 1:
8084 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8085 break;
8086 case 2:
8087 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8088 break;
8089 case 4:
8090 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8091 break;
8092 case 8:
8093 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8094 break;
8095 default:
8096 BUG();
8097 }
8098
8099 if (r < 0)
8100 return X86EMUL_UNHANDLEABLE;
8101
8102 /*
8103 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8104 * successful, as the old value is written back on failure. Note, for
8105 * live migration, this is unnecessarily conservative as CMPXCHG writes
8106 * back the original value and the access is atomic, but KVM's ABI is
8107 * that all writes are dirty logged, regardless of the value written.
8108 */
8109 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8110
8111 if (r)
8112 return X86EMUL_CMPXCHG_FAILED;
8113
8114 kvm_page_track_write(vcpu, gpa, new, bytes);
8115
8116 return X86EMUL_CONTINUE;
8117
8118 emul_write:
8119 pr_warn_once("emulating exchange as write\n");
8120
8121 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8122 }
8123
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8124 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8125 unsigned short port, void *data,
8126 unsigned int count, bool in)
8127 {
8128 unsigned i;
8129 int r;
8130
8131 WARN_ON_ONCE(vcpu->arch.pio.count);
8132 for (i = 0; i < count; i++) {
8133 if (in)
8134 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8135 else
8136 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8137
8138 if (r) {
8139 if (i == 0)
8140 goto userspace_io;
8141
8142 /*
8143 * Userspace must have unregistered the device while PIO
8144 * was running. Drop writes / read as 0.
8145 */
8146 if (in)
8147 memset(data, 0, size * (count - i));
8148 break;
8149 }
8150
8151 data += size;
8152 }
8153 return 1;
8154
8155 userspace_io:
8156 vcpu->arch.pio.port = port;
8157 vcpu->arch.pio.in = in;
8158 vcpu->arch.pio.count = count;
8159 vcpu->arch.pio.size = size;
8160
8161 if (in)
8162 memset(vcpu->arch.pio_data, 0, size * count);
8163 else
8164 memcpy(vcpu->arch.pio_data, data, size * count);
8165
8166 vcpu->run->exit_reason = KVM_EXIT_IO;
8167 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8168 vcpu->run->io.size = size;
8169 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8170 vcpu->run->io.count = count;
8171 vcpu->run->io.port = port;
8172 return 0;
8173 }
8174
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8175 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8176 unsigned short port, void *val, unsigned int count)
8177 {
8178 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8179 if (r)
8180 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8181
8182 return r;
8183 }
8184
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8185 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8186 {
8187 int size = vcpu->arch.pio.size;
8188 unsigned int count = vcpu->arch.pio.count;
8189 memcpy(val, vcpu->arch.pio_data, size * count);
8190 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8191 vcpu->arch.pio.count = 0;
8192 }
8193
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8194 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8195 int size, unsigned short port, void *val,
8196 unsigned int count)
8197 {
8198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8199 if (vcpu->arch.pio.count) {
8200 /*
8201 * Complete a previous iteration that required userspace I/O.
8202 * Note, @count isn't guaranteed to match pio.count as userspace
8203 * can modify ECX before rerunning the vCPU. Ignore any such
8204 * shenanigans as KVM doesn't support modifying the rep count,
8205 * and the emulator ensures @count doesn't overflow the buffer.
8206 */
8207 complete_emulator_pio_in(vcpu, val);
8208 return 1;
8209 }
8210
8211 return emulator_pio_in(vcpu, size, port, val, count);
8212 }
8213
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8214 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8215 unsigned short port, const void *val,
8216 unsigned int count)
8217 {
8218 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8219 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8220 }
8221
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8222 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8223 int size, unsigned short port,
8224 const void *val, unsigned int count)
8225 {
8226 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8227 }
8228
get_segment_base(struct kvm_vcpu * vcpu,int seg)8229 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8230 {
8231 return kvm_x86_call(get_segment_base)(vcpu, seg);
8232 }
8233
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8234 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8235 {
8236 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8237 }
8238
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8239 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8240 {
8241 if (!need_emulate_wbinvd(vcpu))
8242 return X86EMUL_CONTINUE;
8243
8244 if (kvm_x86_call(has_wbinvd_exit)()) {
8245 int cpu = get_cpu();
8246
8247 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8248 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8249 wbinvd_ipi, NULL, 1);
8250 put_cpu();
8251 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8252 } else
8253 wbinvd();
8254 return X86EMUL_CONTINUE;
8255 }
8256
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8257 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8258 {
8259 kvm_emulate_wbinvd_noskip(vcpu);
8260 return kvm_skip_emulated_instruction(vcpu);
8261 }
8262 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8263
8264
8265
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8266 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8267 {
8268 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8269 }
8270
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8271 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8272 {
8273 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8274 }
8275
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8276 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8277 unsigned long value)
8278 {
8279
8280 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8281 }
8282
mk_cr_64(u64 curr_cr,u32 new_val)8283 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8284 {
8285 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8286 }
8287
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8288 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8289 {
8290 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8291 unsigned long value;
8292
8293 switch (cr) {
8294 case 0:
8295 value = kvm_read_cr0(vcpu);
8296 break;
8297 case 2:
8298 value = vcpu->arch.cr2;
8299 break;
8300 case 3:
8301 value = kvm_read_cr3(vcpu);
8302 break;
8303 case 4:
8304 value = kvm_read_cr4(vcpu);
8305 break;
8306 case 8:
8307 value = kvm_get_cr8(vcpu);
8308 break;
8309 default:
8310 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8311 return 0;
8312 }
8313
8314 return value;
8315 }
8316
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8317 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8318 {
8319 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8320 int res = 0;
8321
8322 switch (cr) {
8323 case 0:
8324 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8325 break;
8326 case 2:
8327 vcpu->arch.cr2 = val;
8328 break;
8329 case 3:
8330 res = kvm_set_cr3(vcpu, val);
8331 break;
8332 case 4:
8333 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8334 break;
8335 case 8:
8336 res = kvm_set_cr8(vcpu, val);
8337 break;
8338 default:
8339 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8340 res = -1;
8341 }
8342
8343 return res;
8344 }
8345
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8346 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8347 {
8348 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8349 }
8350
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8351 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8352 {
8353 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8354 }
8355
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8356 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8357 {
8358 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8359 }
8360
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8361 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8362 {
8363 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8364 }
8365
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8366 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8367 {
8368 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8369 }
8370
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8371 static unsigned long emulator_get_cached_segment_base(
8372 struct x86_emulate_ctxt *ctxt, int seg)
8373 {
8374 return get_segment_base(emul_to_vcpu(ctxt), seg);
8375 }
8376
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8377 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8378 struct desc_struct *desc, u32 *base3,
8379 int seg)
8380 {
8381 struct kvm_segment var;
8382
8383 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8384 *selector = var.selector;
8385
8386 if (var.unusable) {
8387 memset(desc, 0, sizeof(*desc));
8388 if (base3)
8389 *base3 = 0;
8390 return false;
8391 }
8392
8393 if (var.g)
8394 var.limit >>= 12;
8395 set_desc_limit(desc, var.limit);
8396 set_desc_base(desc, (unsigned long)var.base);
8397 #ifdef CONFIG_X86_64
8398 if (base3)
8399 *base3 = var.base >> 32;
8400 #endif
8401 desc->type = var.type;
8402 desc->s = var.s;
8403 desc->dpl = var.dpl;
8404 desc->p = var.present;
8405 desc->avl = var.avl;
8406 desc->l = var.l;
8407 desc->d = var.db;
8408 desc->g = var.g;
8409
8410 return true;
8411 }
8412
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8413 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8414 struct desc_struct *desc, u32 base3,
8415 int seg)
8416 {
8417 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8418 struct kvm_segment var;
8419
8420 var.selector = selector;
8421 var.base = get_desc_base(desc);
8422 #ifdef CONFIG_X86_64
8423 var.base |= ((u64)base3) << 32;
8424 #endif
8425 var.limit = get_desc_limit(desc);
8426 if (desc->g)
8427 var.limit = (var.limit << 12) | 0xfff;
8428 var.type = desc->type;
8429 var.dpl = desc->dpl;
8430 var.db = desc->d;
8431 var.s = desc->s;
8432 var.l = desc->l;
8433 var.g = desc->g;
8434 var.avl = desc->avl;
8435 var.present = desc->p;
8436 var.unusable = !var.present;
8437 var.padding = 0;
8438
8439 kvm_set_segment(vcpu, &var, seg);
8440 return;
8441 }
8442
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8443 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8444 u32 msr_index, u64 *pdata)
8445 {
8446 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8447 int r;
8448
8449 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8450 if (r < 0)
8451 return X86EMUL_UNHANDLEABLE;
8452
8453 if (r) {
8454 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8455 complete_emulated_rdmsr, r))
8456 return X86EMUL_IO_NEEDED;
8457
8458 trace_kvm_msr_read_ex(msr_index);
8459 return X86EMUL_PROPAGATE_FAULT;
8460 }
8461
8462 trace_kvm_msr_read(msr_index, *pdata);
8463 return X86EMUL_CONTINUE;
8464 }
8465
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8466 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8467 u32 msr_index, u64 data)
8468 {
8469 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8470 int r;
8471
8472 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8473 if (r < 0)
8474 return X86EMUL_UNHANDLEABLE;
8475
8476 if (r) {
8477 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8478 complete_emulated_msr_access, r))
8479 return X86EMUL_IO_NEEDED;
8480
8481 trace_kvm_msr_write_ex(msr_index, data);
8482 return X86EMUL_PROPAGATE_FAULT;
8483 }
8484
8485 trace_kvm_msr_write(msr_index, data);
8486 return X86EMUL_CONTINUE;
8487 }
8488
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8489 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8490 u32 msr_index, u64 *pdata)
8491 {
8492 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8493 }
8494
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8495 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8496 {
8497 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8498 }
8499
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8500 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8501 u32 pmc, u64 *pdata)
8502 {
8503 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8504 }
8505
emulator_halt(struct x86_emulate_ctxt * ctxt)8506 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8507 {
8508 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8509 }
8510
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8511 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8512 struct x86_instruction_info *info,
8513 enum x86_intercept_stage stage)
8514 {
8515 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8516 &ctxt->exception);
8517 }
8518
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8519 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8520 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8521 bool exact_only)
8522 {
8523 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8524 }
8525
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8526 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8527 {
8528 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8529 }
8530
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8531 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8532 {
8533 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8534 }
8535
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8536 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8537 {
8538 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8539 }
8540
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8541 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8542 {
8543 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8544 }
8545
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8546 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8547 {
8548 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8549 }
8550
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8551 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8552 {
8553 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8554 }
8555
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8556 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8557 {
8558 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8559 }
8560
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8561 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8562 {
8563 return is_smm(emul_to_vcpu(ctxt));
8564 }
8565
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8566 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8567 {
8568 return is_guest_mode(emul_to_vcpu(ctxt));
8569 }
8570
8571 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8572 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8573 {
8574 WARN_ON_ONCE(1);
8575 return X86EMUL_UNHANDLEABLE;
8576 }
8577 #endif
8578
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8579 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8580 {
8581 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8582 }
8583
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8584 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8585 {
8586 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8587 }
8588
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8589 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8590 {
8591 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8592
8593 if (!kvm->vm_bugged)
8594 kvm_vm_bugged(kvm);
8595 }
8596
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8597 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8598 gva_t addr, unsigned int flags)
8599 {
8600 if (!kvm_x86_ops.get_untagged_addr)
8601 return addr;
8602
8603 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8604 addr, flags);
8605 }
8606
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8607 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8608 gva_t addr, unsigned int flags)
8609 {
8610 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8611 }
8612
8613 static const struct x86_emulate_ops emulate_ops = {
8614 .vm_bugged = emulator_vm_bugged,
8615 .read_gpr = emulator_read_gpr,
8616 .write_gpr = emulator_write_gpr,
8617 .read_std = emulator_read_std,
8618 .write_std = emulator_write_std,
8619 .fetch = kvm_fetch_guest_virt,
8620 .read_emulated = emulator_read_emulated,
8621 .write_emulated = emulator_write_emulated,
8622 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8623 .invlpg = emulator_invlpg,
8624 .pio_in_emulated = emulator_pio_in_emulated,
8625 .pio_out_emulated = emulator_pio_out_emulated,
8626 .get_segment = emulator_get_segment,
8627 .set_segment = emulator_set_segment,
8628 .get_cached_segment_base = emulator_get_cached_segment_base,
8629 .get_gdt = emulator_get_gdt,
8630 .get_idt = emulator_get_idt,
8631 .set_gdt = emulator_set_gdt,
8632 .set_idt = emulator_set_idt,
8633 .get_cr = emulator_get_cr,
8634 .set_cr = emulator_set_cr,
8635 .cpl = emulator_get_cpl,
8636 .get_dr = emulator_get_dr,
8637 .set_dr = emulator_set_dr,
8638 .set_msr_with_filter = emulator_set_msr_with_filter,
8639 .get_msr_with_filter = emulator_get_msr_with_filter,
8640 .get_msr = emulator_get_msr,
8641 .check_rdpmc_early = emulator_check_rdpmc_early,
8642 .read_pmc = emulator_read_pmc,
8643 .halt = emulator_halt,
8644 .wbinvd = emulator_wbinvd,
8645 .fix_hypercall = emulator_fix_hypercall,
8646 .intercept = emulator_intercept,
8647 .get_cpuid = emulator_get_cpuid,
8648 .guest_has_movbe = emulator_guest_has_movbe,
8649 .guest_has_fxsr = emulator_guest_has_fxsr,
8650 .guest_has_rdpid = emulator_guest_has_rdpid,
8651 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8652 .set_nmi_mask = emulator_set_nmi_mask,
8653 .is_smm = emulator_is_smm,
8654 .is_guest_mode = emulator_is_guest_mode,
8655 .leave_smm = emulator_leave_smm,
8656 .triple_fault = emulator_triple_fault,
8657 .set_xcr = emulator_set_xcr,
8658 .get_untagged_addr = emulator_get_untagged_addr,
8659 .is_canonical_addr = emulator_is_canonical_addr,
8660 };
8661
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8662 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8663 {
8664 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8665 /*
8666 * an sti; sti; sequence only disable interrupts for the first
8667 * instruction. So, if the last instruction, be it emulated or
8668 * not, left the system with the INT_STI flag enabled, it
8669 * means that the last instruction is an sti. We should not
8670 * leave the flag on in this case. The same goes for mov ss
8671 */
8672 if (int_shadow & mask)
8673 mask = 0;
8674 if (unlikely(int_shadow || mask)) {
8675 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8676 if (!mask)
8677 kvm_make_request(KVM_REQ_EVENT, vcpu);
8678 }
8679 }
8680
inject_emulated_exception(struct kvm_vcpu * vcpu)8681 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8682 {
8683 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8684
8685 if (ctxt->exception.vector == PF_VECTOR)
8686 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8687 else if (ctxt->exception.error_code_valid)
8688 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8689 ctxt->exception.error_code);
8690 else
8691 kvm_queue_exception(vcpu, ctxt->exception.vector);
8692 }
8693
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8694 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8695 {
8696 struct x86_emulate_ctxt *ctxt;
8697
8698 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8699 if (!ctxt) {
8700 pr_err("failed to allocate vcpu's emulator\n");
8701 return NULL;
8702 }
8703
8704 ctxt->vcpu = vcpu;
8705 ctxt->ops = &emulate_ops;
8706 vcpu->arch.emulate_ctxt = ctxt;
8707
8708 return ctxt;
8709 }
8710
init_emulate_ctxt(struct kvm_vcpu * vcpu)8711 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8712 {
8713 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8714 int cs_db, cs_l;
8715
8716 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8717
8718 ctxt->gpa_available = false;
8719 ctxt->eflags = kvm_get_rflags(vcpu);
8720 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8721
8722 ctxt->eip = kvm_rip_read(vcpu);
8723 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8724 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8725 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8726 cs_db ? X86EMUL_MODE_PROT32 :
8727 X86EMUL_MODE_PROT16;
8728 ctxt->interruptibility = 0;
8729 ctxt->have_exception = false;
8730 ctxt->exception.vector = -1;
8731 ctxt->perm_ok = false;
8732
8733 init_decode_cache(ctxt);
8734 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8735 }
8736
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8737 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8738 {
8739 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8740 int ret;
8741
8742 init_emulate_ctxt(vcpu);
8743
8744 ctxt->op_bytes = 2;
8745 ctxt->ad_bytes = 2;
8746 ctxt->_eip = ctxt->eip + inc_eip;
8747 ret = emulate_int_real(ctxt, irq);
8748
8749 if (ret != X86EMUL_CONTINUE) {
8750 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8751 } else {
8752 ctxt->eip = ctxt->_eip;
8753 kvm_rip_write(vcpu, ctxt->eip);
8754 kvm_set_rflags(vcpu, ctxt->eflags);
8755 }
8756 }
8757 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8758
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8759 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8760 u8 ndata, u8 *insn_bytes, u8 insn_size)
8761 {
8762 struct kvm_run *run = vcpu->run;
8763 u64 info[5];
8764 u8 info_start;
8765
8766 /*
8767 * Zero the whole array used to retrieve the exit info, as casting to
8768 * u32 for select entries will leave some chunks uninitialized.
8769 */
8770 memset(&info, 0, sizeof(info));
8771
8772 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8773 (u32 *)&info[3], (u32 *)&info[4]);
8774
8775 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8776 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8777
8778 /*
8779 * There's currently space for 13 entries, but 5 are used for the exit
8780 * reason and info. Restrict to 4 to reduce the maintenance burden
8781 * when expanding kvm_run.emulation_failure in the future.
8782 */
8783 if (WARN_ON_ONCE(ndata > 4))
8784 ndata = 4;
8785
8786 /* Always include the flags as a 'data' entry. */
8787 info_start = 1;
8788 run->emulation_failure.flags = 0;
8789
8790 if (insn_size) {
8791 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8792 sizeof(run->emulation_failure.insn_bytes) != 16));
8793 info_start += 2;
8794 run->emulation_failure.flags |=
8795 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8796 run->emulation_failure.insn_size = insn_size;
8797 memset(run->emulation_failure.insn_bytes, 0x90,
8798 sizeof(run->emulation_failure.insn_bytes));
8799 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8800 }
8801
8802 memcpy(&run->internal.data[info_start], info, sizeof(info));
8803 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8804 ndata * sizeof(data[0]));
8805
8806 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8807 }
8808
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8809 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8810 {
8811 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8812
8813 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8814 ctxt->fetch.end - ctxt->fetch.data);
8815 }
8816
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8817 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8818 u8 ndata)
8819 {
8820 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8821 }
8822 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8823
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8824 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8825 {
8826 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8827 }
8828 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8829
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8830 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8831 {
8832 u32 reason, intr_info, error_code;
8833 struct kvm_run *run = vcpu->run;
8834 u64 info1, info2;
8835 int ndata = 0;
8836
8837 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8838 &intr_info, &error_code);
8839
8840 run->internal.data[ndata++] = info2;
8841 run->internal.data[ndata++] = reason;
8842 run->internal.data[ndata++] = info1;
8843 run->internal.data[ndata++] = gpa;
8844 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8845
8846 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8847 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8848 run->internal.ndata = ndata;
8849 }
8850 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8851
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8852 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8853 {
8854 struct kvm *kvm = vcpu->kvm;
8855
8856 ++vcpu->stat.insn_emulation_fail;
8857 trace_kvm_emulate_insn_failed(vcpu);
8858
8859 if (emulation_type & EMULTYPE_VMWARE_GP) {
8860 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8861 return 1;
8862 }
8863
8864 if (kvm->arch.exit_on_emulation_error ||
8865 (emulation_type & EMULTYPE_SKIP)) {
8866 prepare_emulation_ctxt_failure_exit(vcpu);
8867 return 0;
8868 }
8869
8870 kvm_queue_exception(vcpu, UD_VECTOR);
8871
8872 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8873 prepare_emulation_ctxt_failure_exit(vcpu);
8874 return 0;
8875 }
8876
8877 return 1;
8878 }
8879
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8880 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8881 gpa_t cr2_or_gpa,
8882 int emulation_type)
8883 {
8884 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8885 return false;
8886
8887 /*
8888 * If the failed instruction faulted on an access to page tables that
8889 * are used to translate any part of the instruction, KVM can't resolve
8890 * the issue by unprotecting the gfn, as zapping the shadow page will
8891 * result in the instruction taking a !PRESENT page fault and thus put
8892 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8893 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8894 * then zap the SPTE to unprotect the gfn, and then do it all over
8895 * again. Report the error to userspace.
8896 */
8897 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8898 return false;
8899
8900 /*
8901 * If emulation may have been triggered by a write to a shadowed page
8902 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8903 * guest to let the CPU re-execute the instruction in the hope that the
8904 * CPU can cleanly execute the instruction that KVM failed to emulate.
8905 */
8906 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8907
8908 /*
8909 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8910 * all SPTEs were already zapped by a different task. The alternative
8911 * is to report the error to userspace and likely terminate the guest,
8912 * and the last_retry_{eip,addr} checks will prevent retrying the page
8913 * fault indefinitely, i.e. there's nothing to lose by retrying.
8914 */
8915 return true;
8916 }
8917
8918 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8919 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8920
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8921 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8922 unsigned long *db)
8923 {
8924 u32 dr6 = 0;
8925 int i;
8926 u32 enable, rwlen;
8927
8928 enable = dr7;
8929 rwlen = dr7 >> 16;
8930 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8931 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8932 dr6 |= (1 << i);
8933 return dr6;
8934 }
8935
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8936 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8937 {
8938 struct kvm_run *kvm_run = vcpu->run;
8939
8940 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8941 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8942 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8943 kvm_run->debug.arch.exception = DB_VECTOR;
8944 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8945 return 0;
8946 }
8947 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8948 return 1;
8949 }
8950
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8951 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8952 {
8953 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8954 int r;
8955
8956 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8957 if (unlikely(!r))
8958 return 0;
8959
8960 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8961
8962 /*
8963 * rflags is the old, "raw" value of the flags. The new value has
8964 * not been saved yet.
8965 *
8966 * This is correct even for TF set by the guest, because "the
8967 * processor will not generate this exception after the instruction
8968 * that sets the TF flag".
8969 */
8970 if (unlikely(rflags & X86_EFLAGS_TF))
8971 r = kvm_vcpu_do_singlestep(vcpu);
8972 return r;
8973 }
8974 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8975
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8976 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8977 {
8978 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8979 return true;
8980
8981 /*
8982 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8983 * active, but AMD compatible CPUs do not.
8984 */
8985 if (!guest_cpuid_is_intel_compatible(vcpu))
8986 return false;
8987
8988 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8989 }
8990
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8991 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8992 int emulation_type, int *r)
8993 {
8994 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8995
8996 /*
8997 * Do not check for code breakpoints if hardware has already done the
8998 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8999 * the instruction has passed all exception checks, and all intercepted
9000 * exceptions that trigger emulation have lower priority than code
9001 * breakpoints, i.e. the fact that the intercepted exception occurred
9002 * means any code breakpoints have already been serviced.
9003 *
9004 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9005 * hardware has checked the RIP of the magic prefix, but not the RIP of
9006 * the instruction being emulated. The intent of forced emulation is
9007 * to behave as if KVM intercepted the instruction without an exception
9008 * and without a prefix.
9009 */
9010 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9011 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9012 return false;
9013
9014 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9015 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9016 struct kvm_run *kvm_run = vcpu->run;
9017 unsigned long eip = kvm_get_linear_rip(vcpu);
9018 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9019 vcpu->arch.guest_debug_dr7,
9020 vcpu->arch.eff_db);
9021
9022 if (dr6 != 0) {
9023 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9024 kvm_run->debug.arch.pc = eip;
9025 kvm_run->debug.arch.exception = DB_VECTOR;
9026 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9027 *r = 0;
9028 return true;
9029 }
9030 }
9031
9032 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9033 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9034 unsigned long eip = kvm_get_linear_rip(vcpu);
9035 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9036 vcpu->arch.dr7,
9037 vcpu->arch.db);
9038
9039 if (dr6 != 0) {
9040 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9041 *r = 1;
9042 return true;
9043 }
9044 }
9045
9046 return false;
9047 }
9048
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9049 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9050 {
9051 switch (ctxt->opcode_len) {
9052 case 1:
9053 switch (ctxt->b) {
9054 case 0xe4: /* IN */
9055 case 0xe5:
9056 case 0xec:
9057 case 0xed:
9058 case 0xe6: /* OUT */
9059 case 0xe7:
9060 case 0xee:
9061 case 0xef:
9062 case 0x6c: /* INS */
9063 case 0x6d:
9064 case 0x6e: /* OUTS */
9065 case 0x6f:
9066 return true;
9067 }
9068 break;
9069 case 2:
9070 switch (ctxt->b) {
9071 case 0x33: /* RDPMC */
9072 return true;
9073 }
9074 break;
9075 }
9076
9077 return false;
9078 }
9079
9080 /*
9081 * Decode an instruction for emulation. The caller is responsible for handling
9082 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9083 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9084 * code breakpoints have higher priority and thus have already been done by
9085 * hardware.
9086 *
9087 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9088 * response to a machine check.
9089 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9090 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9091 void *insn, int insn_len)
9092 {
9093 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9094 int r;
9095
9096 init_emulate_ctxt(vcpu);
9097
9098 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9099
9100 trace_kvm_emulate_insn_start(vcpu);
9101 ++vcpu->stat.insn_emulation;
9102
9103 return r;
9104 }
9105 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9106
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9107 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9108 int emulation_type, void *insn, int insn_len)
9109 {
9110 int r;
9111 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9112 bool writeback = true;
9113
9114 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9115 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9116 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9117 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9118
9119 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9120 if (r != X86EMUL_CONTINUE) {
9121 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9122 return 1;
9123
9124 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9125 emulation_type))
9126 return 1;
9127
9128 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9129 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9130 return 0;
9131 }
9132
9133 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9134 return handle_emulation_failure(vcpu, emulation_type);
9135 }
9136
9137 vcpu->arch.l1tf_flush_l1d = true;
9138
9139 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9140 kvm_clear_exception_queue(vcpu);
9141
9142 /*
9143 * Return immediately if RIP hits a code breakpoint, such #DBs
9144 * are fault-like and are higher priority than any faults on
9145 * the code fetch itself.
9146 */
9147 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9148 return r;
9149
9150 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9151 insn, insn_len);
9152 if (r != EMULATION_OK) {
9153 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9154 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9155 kvm_queue_exception(vcpu, UD_VECTOR);
9156 return 1;
9157 }
9158 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9159 emulation_type))
9160 return 1;
9161
9162 if (ctxt->have_exception &&
9163 !(emulation_type & EMULTYPE_SKIP)) {
9164 /*
9165 * #UD should result in just EMULATION_FAILED, and trap-like
9166 * exception should not be encountered during decode.
9167 */
9168 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9169 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9170 inject_emulated_exception(vcpu);
9171 return 1;
9172 }
9173 return handle_emulation_failure(vcpu, emulation_type);
9174 }
9175 }
9176
9177 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9178 !is_vmware_backdoor_opcode(ctxt)) {
9179 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9180 return 1;
9181 }
9182
9183 /*
9184 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9185 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9186 * The caller is responsible for updating interruptibility state and
9187 * injecting single-step #DBs.
9188 */
9189 if (emulation_type & EMULTYPE_SKIP) {
9190 if (ctxt->mode != X86EMUL_MODE_PROT64)
9191 ctxt->eip = (u32)ctxt->_eip;
9192 else
9193 ctxt->eip = ctxt->_eip;
9194
9195 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9196 r = 1;
9197 goto writeback;
9198 }
9199
9200 kvm_rip_write(vcpu, ctxt->eip);
9201 if (ctxt->eflags & X86_EFLAGS_RF)
9202 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9203 return 1;
9204 }
9205
9206 /*
9207 * If emulation was caused by a write-protection #PF on a non-page_table
9208 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9209 * and retry the instruction, as the vCPU is likely no longer using the
9210 * gfn as a page table.
9211 */
9212 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9213 !x86_page_table_writing_insn(ctxt) &&
9214 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9215 return 1;
9216
9217 /* this is needed for vmware backdoor interface to work since it
9218 changes registers values during IO operation */
9219 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9220 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9221 emulator_invalidate_register_cache(ctxt);
9222 }
9223
9224 restart:
9225 if (emulation_type & EMULTYPE_PF) {
9226 /* Save the faulting GPA (cr2) in the address field */
9227 ctxt->exception.address = cr2_or_gpa;
9228
9229 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9230 if (vcpu->arch.mmu->root_role.direct) {
9231 ctxt->gpa_available = true;
9232 ctxt->gpa_val = cr2_or_gpa;
9233 }
9234 } else {
9235 /* Sanitize the address out of an abundance of paranoia. */
9236 ctxt->exception.address = 0;
9237 }
9238
9239 r = x86_emulate_insn(ctxt);
9240
9241 if (r == EMULATION_INTERCEPTED)
9242 return 1;
9243
9244 if (r == EMULATION_FAILED) {
9245 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9246 emulation_type))
9247 return 1;
9248
9249 return handle_emulation_failure(vcpu, emulation_type);
9250 }
9251
9252 if (ctxt->have_exception) {
9253 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9254 vcpu->mmio_needed = false;
9255 r = 1;
9256 inject_emulated_exception(vcpu);
9257 } else if (vcpu->arch.pio.count) {
9258 if (!vcpu->arch.pio.in) {
9259 /* FIXME: return into emulator if single-stepping. */
9260 vcpu->arch.pio.count = 0;
9261 } else {
9262 writeback = false;
9263 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9264 }
9265 r = 0;
9266 } else if (vcpu->mmio_needed) {
9267 ++vcpu->stat.mmio_exits;
9268
9269 if (!vcpu->mmio_is_write)
9270 writeback = false;
9271 r = 0;
9272 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9273 } else if (vcpu->arch.complete_userspace_io) {
9274 writeback = false;
9275 r = 0;
9276 } else if (r == EMULATION_RESTART)
9277 goto restart;
9278 else
9279 r = 1;
9280
9281 writeback:
9282 if (writeback) {
9283 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9284 toggle_interruptibility(vcpu, ctxt->interruptibility);
9285 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9286
9287 /*
9288 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9289 * only supports code breakpoints and general detect #DB, both
9290 * of which are fault-like.
9291 */
9292 if (!ctxt->have_exception ||
9293 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9294 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9295 if (ctxt->is_branch)
9296 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9297 kvm_rip_write(vcpu, ctxt->eip);
9298 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9299 r = kvm_vcpu_do_singlestep(vcpu);
9300 kvm_x86_call(update_emulated_instruction)(vcpu);
9301 __kvm_set_rflags(vcpu, ctxt->eflags);
9302 }
9303
9304 /*
9305 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9306 * do nothing, and it will be requested again as soon as
9307 * the shadow expires. But we still need to check here,
9308 * because POPF has no interrupt shadow.
9309 */
9310 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9311 kvm_make_request(KVM_REQ_EVENT, vcpu);
9312 } else
9313 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9314
9315 return r;
9316 }
9317
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9318 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9319 {
9320 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9321 }
9322 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9323
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9324 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9325 void *insn, int insn_len)
9326 {
9327 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9328 }
9329 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9330
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9331 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9332 {
9333 vcpu->arch.pio.count = 0;
9334 return 1;
9335 }
9336
complete_fast_pio_out(struct kvm_vcpu * vcpu)9337 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9338 {
9339 vcpu->arch.pio.count = 0;
9340
9341 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9342 return 1;
9343
9344 return kvm_skip_emulated_instruction(vcpu);
9345 }
9346
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9347 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9348 unsigned short port)
9349 {
9350 unsigned long val = kvm_rax_read(vcpu);
9351 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9352
9353 if (ret)
9354 return ret;
9355
9356 /*
9357 * Workaround userspace that relies on old KVM behavior of %rip being
9358 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9359 */
9360 if (port == 0x7e &&
9361 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9362 vcpu->arch.complete_userspace_io =
9363 complete_fast_pio_out_port_0x7e;
9364 kvm_skip_emulated_instruction(vcpu);
9365 } else {
9366 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9367 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9368 }
9369 return 0;
9370 }
9371
complete_fast_pio_in(struct kvm_vcpu * vcpu)9372 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9373 {
9374 unsigned long val;
9375
9376 /* We should only ever be called with arch.pio.count equal to 1 */
9377 BUG_ON(vcpu->arch.pio.count != 1);
9378
9379 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9380 vcpu->arch.pio.count = 0;
9381 return 1;
9382 }
9383
9384 /* For size less than 4 we merge, else we zero extend */
9385 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9386
9387 complete_emulator_pio_in(vcpu, &val);
9388 kvm_rax_write(vcpu, val);
9389
9390 return kvm_skip_emulated_instruction(vcpu);
9391 }
9392
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9393 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9394 unsigned short port)
9395 {
9396 unsigned long val;
9397 int ret;
9398
9399 /* For size less than 4 we merge, else we zero extend */
9400 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9401
9402 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9403 if (ret) {
9404 kvm_rax_write(vcpu, val);
9405 return ret;
9406 }
9407
9408 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9409 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9410
9411 return 0;
9412 }
9413
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9414 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9415 {
9416 int ret;
9417
9418 if (in)
9419 ret = kvm_fast_pio_in(vcpu, size, port);
9420 else
9421 ret = kvm_fast_pio_out(vcpu, size, port);
9422 return ret && kvm_skip_emulated_instruction(vcpu);
9423 }
9424 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9425
kvmclock_cpu_down_prep(unsigned int cpu)9426 static int kvmclock_cpu_down_prep(unsigned int cpu)
9427 {
9428 __this_cpu_write(cpu_tsc_khz, 0);
9429 return 0;
9430 }
9431
tsc_khz_changed(void * data)9432 static void tsc_khz_changed(void *data)
9433 {
9434 struct cpufreq_freqs *freq = data;
9435 unsigned long khz;
9436
9437 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9438
9439 if (data)
9440 khz = freq->new;
9441 else
9442 khz = cpufreq_quick_get(raw_smp_processor_id());
9443 if (!khz)
9444 khz = tsc_khz;
9445 __this_cpu_write(cpu_tsc_khz, khz);
9446 }
9447
9448 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9449 static void kvm_hyperv_tsc_notifier(void)
9450 {
9451 struct kvm *kvm;
9452 int cpu;
9453
9454 mutex_lock(&kvm_lock);
9455 list_for_each_entry(kvm, &vm_list, vm_list)
9456 kvm_make_mclock_inprogress_request(kvm);
9457
9458 /* no guest entries from this point */
9459 hyperv_stop_tsc_emulation();
9460
9461 /* TSC frequency always matches when on Hyper-V */
9462 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9463 for_each_present_cpu(cpu)
9464 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9465 }
9466 kvm_caps.max_guest_tsc_khz = tsc_khz;
9467
9468 list_for_each_entry(kvm, &vm_list, vm_list) {
9469 __kvm_start_pvclock_update(kvm);
9470 pvclock_update_vm_gtod_copy(kvm);
9471 kvm_end_pvclock_update(kvm);
9472 }
9473
9474 mutex_unlock(&kvm_lock);
9475 }
9476 #endif
9477
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9478 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9479 {
9480 struct kvm *kvm;
9481 struct kvm_vcpu *vcpu;
9482 int send_ipi = 0;
9483 unsigned long i;
9484
9485 /*
9486 * We allow guests to temporarily run on slowing clocks,
9487 * provided we notify them after, or to run on accelerating
9488 * clocks, provided we notify them before. Thus time never
9489 * goes backwards.
9490 *
9491 * However, we have a problem. We can't atomically update
9492 * the frequency of a given CPU from this function; it is
9493 * merely a notifier, which can be called from any CPU.
9494 * Changing the TSC frequency at arbitrary points in time
9495 * requires a recomputation of local variables related to
9496 * the TSC for each VCPU. We must flag these local variables
9497 * to be updated and be sure the update takes place with the
9498 * new frequency before any guests proceed.
9499 *
9500 * Unfortunately, the combination of hotplug CPU and frequency
9501 * change creates an intractable locking scenario; the order
9502 * of when these callouts happen is undefined with respect to
9503 * CPU hotplug, and they can race with each other. As such,
9504 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9505 * undefined; you can actually have a CPU frequency change take
9506 * place in between the computation of X and the setting of the
9507 * variable. To protect against this problem, all updates of
9508 * the per_cpu tsc_khz variable are done in an interrupt
9509 * protected IPI, and all callers wishing to update the value
9510 * must wait for a synchronous IPI to complete (which is trivial
9511 * if the caller is on the CPU already). This establishes the
9512 * necessary total order on variable updates.
9513 *
9514 * Note that because a guest time update may take place
9515 * anytime after the setting of the VCPU's request bit, the
9516 * correct TSC value must be set before the request. However,
9517 * to ensure the update actually makes it to any guest which
9518 * starts running in hardware virtualization between the set
9519 * and the acquisition of the spinlock, we must also ping the
9520 * CPU after setting the request bit.
9521 *
9522 */
9523
9524 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9525
9526 mutex_lock(&kvm_lock);
9527 list_for_each_entry(kvm, &vm_list, vm_list) {
9528 kvm_for_each_vcpu(i, vcpu, kvm) {
9529 if (vcpu->cpu != cpu)
9530 continue;
9531 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9532 if (vcpu->cpu != raw_smp_processor_id())
9533 send_ipi = 1;
9534 }
9535 }
9536 mutex_unlock(&kvm_lock);
9537
9538 if (freq->old < freq->new && send_ipi) {
9539 /*
9540 * We upscale the frequency. Must make the guest
9541 * doesn't see old kvmclock values while running with
9542 * the new frequency, otherwise we risk the guest sees
9543 * time go backwards.
9544 *
9545 * In case we update the frequency for another cpu
9546 * (which might be in guest context) send an interrupt
9547 * to kick the cpu out of guest context. Next time
9548 * guest context is entered kvmclock will be updated,
9549 * so the guest will not see stale values.
9550 */
9551 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9552 }
9553 }
9554
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9555 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9556 void *data)
9557 {
9558 struct cpufreq_freqs *freq = data;
9559 int cpu;
9560
9561 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9562 return 0;
9563 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9564 return 0;
9565
9566 for_each_cpu(cpu, freq->policy->cpus)
9567 __kvmclock_cpufreq_notifier(freq, cpu);
9568
9569 return 0;
9570 }
9571
9572 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9573 .notifier_call = kvmclock_cpufreq_notifier
9574 };
9575
kvmclock_cpu_online(unsigned int cpu)9576 static int kvmclock_cpu_online(unsigned int cpu)
9577 {
9578 tsc_khz_changed(NULL);
9579 return 0;
9580 }
9581
kvm_timer_init(void)9582 static void kvm_timer_init(void)
9583 {
9584 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9585 max_tsc_khz = tsc_khz;
9586
9587 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9588 struct cpufreq_policy *policy;
9589 int cpu;
9590
9591 cpu = get_cpu();
9592 policy = cpufreq_cpu_get(cpu);
9593 if (policy) {
9594 if (policy->cpuinfo.max_freq)
9595 max_tsc_khz = policy->cpuinfo.max_freq;
9596 cpufreq_cpu_put(policy);
9597 }
9598 put_cpu();
9599 }
9600 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9601 CPUFREQ_TRANSITION_NOTIFIER);
9602
9603 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9604 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9605 }
9606 }
9607
9608 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9609 static void pvclock_gtod_update_fn(struct work_struct *work)
9610 {
9611 struct kvm *kvm;
9612 struct kvm_vcpu *vcpu;
9613 unsigned long i;
9614
9615 mutex_lock(&kvm_lock);
9616 list_for_each_entry(kvm, &vm_list, vm_list)
9617 kvm_for_each_vcpu(i, vcpu, kvm)
9618 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9619 atomic_set(&kvm_guest_has_master_clock, 0);
9620 mutex_unlock(&kvm_lock);
9621 }
9622
9623 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9624
9625 /*
9626 * Indirection to move queue_work() out of the tk_core.seq write held
9627 * region to prevent possible deadlocks against time accessors which
9628 * are invoked with work related locks held.
9629 */
pvclock_irq_work_fn(struct irq_work * w)9630 static void pvclock_irq_work_fn(struct irq_work *w)
9631 {
9632 queue_work(system_long_wq, &pvclock_gtod_work);
9633 }
9634
9635 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9636
9637 /*
9638 * Notification about pvclock gtod data update.
9639 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9640 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9641 void *priv)
9642 {
9643 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9644 struct timekeeper *tk = priv;
9645
9646 update_pvclock_gtod(tk);
9647
9648 /*
9649 * Disable master clock if host does not trust, or does not use,
9650 * TSC based clocksource. Delegate queue_work() to irq_work as
9651 * this is invoked with tk_core.seq write held.
9652 */
9653 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9654 atomic_read(&kvm_guest_has_master_clock) != 0)
9655 irq_work_queue(&pvclock_irq_work);
9656 return 0;
9657 }
9658
9659 static struct notifier_block pvclock_gtod_notifier = {
9660 .notifier_call = pvclock_gtod_notify,
9661 };
9662 #endif
9663
kvm_ops_update(struct kvm_x86_init_ops * ops)9664 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9665 {
9666 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9667
9668 #define __KVM_X86_OP(func) \
9669 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9670 #define KVM_X86_OP(func) \
9671 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9672 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9673 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9674 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9675 (void *)__static_call_return0);
9676 #include <asm/kvm-x86-ops.h>
9677 #undef __KVM_X86_OP
9678
9679 kvm_pmu_ops_update(ops->pmu_ops);
9680 }
9681
kvm_x86_check_processor_compatibility(void)9682 static int kvm_x86_check_processor_compatibility(void)
9683 {
9684 int cpu = smp_processor_id();
9685 struct cpuinfo_x86 *c = &cpu_data(cpu);
9686
9687 /*
9688 * Compatibility checks are done when loading KVM and when enabling
9689 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9690 * compatible, i.e. KVM should never perform a compatibility check on
9691 * an offline CPU.
9692 */
9693 WARN_ON(!cpu_online(cpu));
9694
9695 if (__cr4_reserved_bits(cpu_has, c) !=
9696 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9697 return -EIO;
9698
9699 return kvm_x86_call(check_processor_compatibility)();
9700 }
9701
kvm_x86_check_cpu_compat(void * ret)9702 static void kvm_x86_check_cpu_compat(void *ret)
9703 {
9704 *(int *)ret = kvm_x86_check_processor_compatibility();
9705 }
9706
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9707 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9708 {
9709 u64 host_pat;
9710 int r, cpu;
9711
9712 guard(mutex)(&vendor_module_lock);
9713
9714 if (kvm_x86_ops.enable_virtualization_cpu) {
9715 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9716 return -EEXIST;
9717 }
9718
9719 /*
9720 * KVM explicitly assumes that the guest has an FPU and
9721 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9722 * vCPU's FPU state as a fxregs_state struct.
9723 */
9724 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9725 pr_err("inadequate fpu\n");
9726 return -EOPNOTSUPP;
9727 }
9728
9729 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9730 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9731 return -EOPNOTSUPP;
9732 }
9733
9734 /*
9735 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9736 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9737 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9738 * with an exception. PAT[0] is set to WB on RESET and also by the
9739 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9740 */
9741 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9742 (host_pat & GENMASK(2, 0)) != 6) {
9743 pr_err("host PAT[0] is not WB\n");
9744 return -EIO;
9745 }
9746
9747 memset(&kvm_caps, 0, sizeof(kvm_caps));
9748
9749 x86_emulator_cache = kvm_alloc_emulator_cache();
9750 if (!x86_emulator_cache) {
9751 pr_err("failed to allocate cache for x86 emulator\n");
9752 return -ENOMEM;
9753 }
9754
9755 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9756 if (!user_return_msrs) {
9757 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9758 r = -ENOMEM;
9759 goto out_free_x86_emulator_cache;
9760 }
9761 kvm_nr_uret_msrs = 0;
9762
9763 r = kvm_mmu_vendor_module_init();
9764 if (r)
9765 goto out_free_percpu;
9766
9767 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9768 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9769
9770 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9771 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9772 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9773 }
9774
9775 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9776
9777 if (boot_cpu_has(X86_FEATURE_XSAVES))
9778 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9779
9780 kvm_init_pmu_capability(ops->pmu_ops);
9781
9782 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9783 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9784
9785 r = ops->hardware_setup();
9786 if (r != 0)
9787 goto out_mmu_exit;
9788
9789 kvm_ops_update(ops);
9790
9791 for_each_online_cpu(cpu) {
9792 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9793 if (r < 0)
9794 goto out_unwind_ops;
9795 }
9796
9797 /*
9798 * Point of no return! DO NOT add error paths below this point unless
9799 * absolutely necessary, as most operations from this point forward
9800 * require unwinding.
9801 */
9802 kvm_timer_init();
9803
9804 if (pi_inject_timer == -1)
9805 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9806 #ifdef CONFIG_X86_64
9807 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9808
9809 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9810 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9811 #endif
9812
9813 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9814
9815 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9816 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9817
9818 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9819 kvm_caps.supported_xss = 0;
9820
9821 if (kvm_caps.has_tsc_control) {
9822 /*
9823 * Make sure the user can only configure tsc_khz values that
9824 * fit into a signed integer.
9825 * A min value is not calculated because it will always
9826 * be 1 on all machines.
9827 */
9828 u64 max = min(0x7fffffffULL,
9829 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9830 kvm_caps.max_guest_tsc_khz = max;
9831 }
9832 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9833 kvm_init_msr_lists();
9834 return 0;
9835
9836 out_unwind_ops:
9837 kvm_x86_ops.enable_virtualization_cpu = NULL;
9838 kvm_x86_call(hardware_unsetup)();
9839 out_mmu_exit:
9840 kvm_mmu_vendor_module_exit();
9841 out_free_percpu:
9842 free_percpu(user_return_msrs);
9843 out_free_x86_emulator_cache:
9844 kmem_cache_destroy(x86_emulator_cache);
9845 return r;
9846 }
9847 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9848
kvm_x86_vendor_exit(void)9849 void kvm_x86_vendor_exit(void)
9850 {
9851 kvm_unregister_perf_callbacks();
9852
9853 #ifdef CONFIG_X86_64
9854 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9855 clear_hv_tscchange_cb();
9856 #endif
9857 kvm_lapic_exit();
9858
9859 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9860 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9861 CPUFREQ_TRANSITION_NOTIFIER);
9862 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9863 }
9864 #ifdef CONFIG_X86_64
9865 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9866 irq_work_sync(&pvclock_irq_work);
9867 cancel_work_sync(&pvclock_gtod_work);
9868 #endif
9869 kvm_x86_call(hardware_unsetup)();
9870 kvm_mmu_vendor_module_exit();
9871 free_percpu(user_return_msrs);
9872 kmem_cache_destroy(x86_emulator_cache);
9873 #ifdef CONFIG_KVM_XEN
9874 static_key_deferred_flush(&kvm_xen_enabled);
9875 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9876 #endif
9877 mutex_lock(&vendor_module_lock);
9878 kvm_x86_ops.enable_virtualization_cpu = NULL;
9879 mutex_unlock(&vendor_module_lock);
9880 }
9881 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9882
9883 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9884 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9885 unsigned long clock_type)
9886 {
9887 struct kvm_clock_pairing clock_pairing;
9888 struct timespec64 ts;
9889 u64 cycle;
9890 int ret;
9891
9892 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9893 return -KVM_EOPNOTSUPP;
9894
9895 /*
9896 * When tsc is in permanent catchup mode guests won't be able to use
9897 * pvclock_read_retry loop to get consistent view of pvclock
9898 */
9899 if (vcpu->arch.tsc_always_catchup)
9900 return -KVM_EOPNOTSUPP;
9901
9902 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9903 return -KVM_EOPNOTSUPP;
9904
9905 clock_pairing.sec = ts.tv_sec;
9906 clock_pairing.nsec = ts.tv_nsec;
9907 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9908 clock_pairing.flags = 0;
9909 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9910
9911 ret = 0;
9912 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9913 sizeof(struct kvm_clock_pairing)))
9914 ret = -KVM_EFAULT;
9915
9916 return ret;
9917 }
9918 #endif
9919
9920 /*
9921 * kvm_pv_kick_cpu_op: Kick a vcpu.
9922 *
9923 * @apicid - apicid of vcpu to be kicked.
9924 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9925 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9926 {
9927 /*
9928 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9929 * common code, e.g. for tracing. Defer initialization to the compiler.
9930 */
9931 struct kvm_lapic_irq lapic_irq = {
9932 .delivery_mode = APIC_DM_REMRD,
9933 .dest_mode = APIC_DEST_PHYSICAL,
9934 .shorthand = APIC_DEST_NOSHORT,
9935 .dest_id = apicid,
9936 };
9937
9938 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9939 }
9940
kvm_apicv_activated(struct kvm * kvm)9941 bool kvm_apicv_activated(struct kvm *kvm)
9942 {
9943 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9944 }
9945 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9946
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9947 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9948 {
9949 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9950 ulong vcpu_reasons =
9951 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9952
9953 return (vm_reasons | vcpu_reasons) == 0;
9954 }
9955 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9956
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9957 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9958 enum kvm_apicv_inhibit reason, bool set)
9959 {
9960 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9961
9962 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9963
9964 if (set)
9965 __set_bit(reason, inhibits);
9966 else
9967 __clear_bit(reason, inhibits);
9968
9969 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9970 }
9971
kvm_apicv_init(struct kvm * kvm)9972 static void kvm_apicv_init(struct kvm *kvm)
9973 {
9974 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9975 APICV_INHIBIT_REASON_DISABLED;
9976
9977 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9978
9979 init_rwsem(&kvm->arch.apicv_update_lock);
9980 }
9981
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9982 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9983 {
9984 struct kvm_vcpu *target = NULL;
9985 struct kvm_apic_map *map;
9986
9987 vcpu->stat.directed_yield_attempted++;
9988
9989 if (single_task_running())
9990 goto no_yield;
9991
9992 rcu_read_lock();
9993 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9994
9995 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9996 target = map->phys_map[dest_id]->vcpu;
9997
9998 rcu_read_unlock();
9999
10000 if (!target || !READ_ONCE(target->ready))
10001 goto no_yield;
10002
10003 /* Ignore requests to yield to self */
10004 if (vcpu == target)
10005 goto no_yield;
10006
10007 if (kvm_vcpu_yield_to(target) <= 0)
10008 goto no_yield;
10009
10010 vcpu->stat.directed_yield_successful++;
10011
10012 no_yield:
10013 return;
10014 }
10015
complete_hypercall_exit(struct kvm_vcpu * vcpu)10016 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10017 {
10018 u64 ret = vcpu->run->hypercall.ret;
10019
10020 if (!is_64_bit_hypercall(vcpu))
10021 ret = (u32)ret;
10022 kvm_rax_write(vcpu, ret);
10023 return kvm_skip_emulated_instruction(vcpu);
10024 }
10025
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10026 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10027 unsigned long a0, unsigned long a1,
10028 unsigned long a2, unsigned long a3,
10029 int op_64_bit, int cpl,
10030 int (*complete_hypercall)(struct kvm_vcpu *))
10031 {
10032 unsigned long ret;
10033
10034 ++vcpu->stat.hypercalls;
10035
10036 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10037
10038 if (!op_64_bit) {
10039 nr &= 0xFFFFFFFF;
10040 a0 &= 0xFFFFFFFF;
10041 a1 &= 0xFFFFFFFF;
10042 a2 &= 0xFFFFFFFF;
10043 a3 &= 0xFFFFFFFF;
10044 }
10045
10046 if (cpl) {
10047 ret = -KVM_EPERM;
10048 goto out;
10049 }
10050
10051 ret = -KVM_ENOSYS;
10052
10053 switch (nr) {
10054 case KVM_HC_VAPIC_POLL_IRQ:
10055 ret = 0;
10056 break;
10057 case KVM_HC_KICK_CPU:
10058 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10059 break;
10060
10061 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10062 kvm_sched_yield(vcpu, a1);
10063 ret = 0;
10064 break;
10065 #ifdef CONFIG_X86_64
10066 case KVM_HC_CLOCK_PAIRING:
10067 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10068 break;
10069 #endif
10070 case KVM_HC_SEND_IPI:
10071 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10072 break;
10073
10074 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10075 break;
10076 case KVM_HC_SCHED_YIELD:
10077 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10078 break;
10079
10080 kvm_sched_yield(vcpu, a0);
10081 ret = 0;
10082 break;
10083 case KVM_HC_MAP_GPA_RANGE: {
10084 u64 gpa = a0, npages = a1, attrs = a2;
10085
10086 ret = -KVM_ENOSYS;
10087 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10088 break;
10089
10090 if (!PAGE_ALIGNED(gpa) || !npages ||
10091 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10092 ret = -KVM_EINVAL;
10093 break;
10094 }
10095
10096 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10097 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10098 /*
10099 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10100 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10101 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10102 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10103 */
10104 vcpu->run->hypercall.ret = 0;
10105 vcpu->run->hypercall.args[0] = gpa;
10106 vcpu->run->hypercall.args[1] = npages;
10107 vcpu->run->hypercall.args[2] = attrs;
10108 vcpu->run->hypercall.flags = 0;
10109 if (op_64_bit)
10110 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10111
10112 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10113 vcpu->arch.complete_userspace_io = complete_hypercall;
10114 return 0;
10115 }
10116 default:
10117 ret = -KVM_ENOSYS;
10118 break;
10119 }
10120
10121 out:
10122 vcpu->run->hypercall.ret = ret;
10123 return 1;
10124 }
10125 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10126
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10127 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10128 {
10129 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10130 return kvm_xen_hypercall(vcpu);
10131
10132 if (kvm_hv_hypercall_enabled(vcpu))
10133 return kvm_hv_hypercall(vcpu);
10134
10135 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10136 is_64_bit_hypercall(vcpu),
10137 kvm_x86_call(get_cpl)(vcpu),
10138 complete_hypercall_exit);
10139 }
10140 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10141
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10142 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10143 {
10144 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10145 char instruction[3];
10146 unsigned long rip = kvm_rip_read(vcpu);
10147
10148 /*
10149 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10150 * the pieces.
10151 */
10152 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10153 ctxt->exception.error_code_valid = false;
10154 ctxt->exception.vector = UD_VECTOR;
10155 ctxt->have_exception = true;
10156 return X86EMUL_PROPAGATE_FAULT;
10157 }
10158
10159 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10160
10161 return emulator_write_emulated(ctxt, rip, instruction, 3,
10162 &ctxt->exception);
10163 }
10164
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10165 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10166 {
10167 return vcpu->run->request_interrupt_window &&
10168 likely(!pic_in_kernel(vcpu->kvm));
10169 }
10170
10171 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10172 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10173 {
10174 struct kvm_run *kvm_run = vcpu->run;
10175
10176 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10177 kvm_run->cr8 = kvm_get_cr8(vcpu);
10178 kvm_run->apic_base = vcpu->arch.apic_base;
10179
10180 kvm_run->ready_for_interrupt_injection =
10181 pic_in_kernel(vcpu->kvm) ||
10182 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10183
10184 if (is_smm(vcpu))
10185 kvm_run->flags |= KVM_RUN_X86_SMM;
10186 if (is_guest_mode(vcpu))
10187 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10188 }
10189
update_cr8_intercept(struct kvm_vcpu * vcpu)10190 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10191 {
10192 int max_irr, tpr;
10193
10194 if (!kvm_x86_ops.update_cr8_intercept)
10195 return;
10196
10197 if (!lapic_in_kernel(vcpu))
10198 return;
10199
10200 if (vcpu->arch.apic->apicv_active)
10201 return;
10202
10203 if (!vcpu->arch.apic->vapic_addr)
10204 max_irr = kvm_lapic_find_highest_irr(vcpu);
10205 else
10206 max_irr = -1;
10207
10208 if (max_irr != -1)
10209 max_irr >>= 4;
10210
10211 tpr = kvm_lapic_get_cr8(vcpu);
10212
10213 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10214 }
10215
10216
kvm_check_nested_events(struct kvm_vcpu * vcpu)10217 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10218 {
10219 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10220 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10221 return 1;
10222 }
10223
10224 return kvm_x86_ops.nested_ops->check_events(vcpu);
10225 }
10226
kvm_inject_exception(struct kvm_vcpu * vcpu)10227 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10228 {
10229 /*
10230 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10231 * exceptions don't report error codes. The presence of an error code
10232 * is carried with the exception and only stripped when the exception
10233 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10234 * report an error code despite the CPU being in Real Mode.
10235 */
10236 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10237
10238 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10239 vcpu->arch.exception.has_error_code,
10240 vcpu->arch.exception.error_code,
10241 vcpu->arch.exception.injected);
10242
10243 kvm_x86_call(inject_exception)(vcpu);
10244 }
10245
10246 /*
10247 * Check for any event (interrupt or exception) that is ready to be injected,
10248 * and if there is at least one event, inject the event with the highest
10249 * priority. This handles both "pending" events, i.e. events that have never
10250 * been injected into the guest, and "injected" events, i.e. events that were
10251 * injected as part of a previous VM-Enter, but weren't successfully delivered
10252 * and need to be re-injected.
10253 *
10254 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10255 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10256 * be able to inject exceptions in the "middle" of an instruction, and so must
10257 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10258 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10259 * boundaries is necessary and correct.
10260 *
10261 * For simplicity, KVM uses a single path to inject all events (except events
10262 * that are injected directly from L1 to L2) and doesn't explicitly track
10263 * instruction boundaries for asynchronous events. However, because VM-Exits
10264 * that can occur during instruction execution typically result in KVM skipping
10265 * the instruction or injecting an exception, e.g. instruction and exception
10266 * intercepts, and because pending exceptions have higher priority than pending
10267 * interrupts, KVM still honors instruction boundaries in most scenarios.
10268 *
10269 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10270 * the instruction or inject an exception, then KVM can incorrecty inject a new
10271 * asynchronous event if the event became pending after the CPU fetched the
10272 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10273 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10274 * injected on the restarted instruction instead of being deferred until the
10275 * instruction completes.
10276 *
10277 * In practice, this virtualization hole is unlikely to be observed by the
10278 * guest, and even less likely to cause functional problems. To detect the
10279 * hole, the guest would have to trigger an event on a side effect of an early
10280 * phase of instruction execution, e.g. on the instruction fetch from memory.
10281 * And for it to be a functional problem, the guest would need to depend on the
10282 * ordering between that side effect, the instruction completing, _and_ the
10283 * delivery of the asynchronous event.
10284 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10285 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10286 bool *req_immediate_exit)
10287 {
10288 bool can_inject;
10289 int r;
10290
10291 /*
10292 * Process nested events first, as nested VM-Exit supersedes event
10293 * re-injection. If there's an event queued for re-injection, it will
10294 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10295 */
10296 if (is_guest_mode(vcpu))
10297 r = kvm_check_nested_events(vcpu);
10298 else
10299 r = 0;
10300
10301 /*
10302 * Re-inject exceptions and events *especially* if immediate entry+exit
10303 * to/from L2 is needed, as any event that has already been injected
10304 * into L2 needs to complete its lifecycle before injecting a new event.
10305 *
10306 * Don't re-inject an NMI or interrupt if there is a pending exception.
10307 * This collision arises if an exception occurred while vectoring the
10308 * injected event, KVM intercepted said exception, and KVM ultimately
10309 * determined the fault belongs to the guest and queues the exception
10310 * for injection back into the guest.
10311 *
10312 * "Injected" interrupts can also collide with pending exceptions if
10313 * userspace ignores the "ready for injection" flag and blindly queues
10314 * an interrupt. In that case, prioritizing the exception is correct,
10315 * as the exception "occurred" before the exit to userspace. Trap-like
10316 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10317 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10318 * priority, they're only generated (pended) during instruction
10319 * execution, and interrupts are recognized at instruction boundaries.
10320 * Thus a pending fault-like exception means the fault occurred on the
10321 * *previous* instruction and must be serviced prior to recognizing any
10322 * new events in order to fully complete the previous instruction.
10323 */
10324 if (vcpu->arch.exception.injected)
10325 kvm_inject_exception(vcpu);
10326 else if (kvm_is_exception_pending(vcpu))
10327 ; /* see above */
10328 else if (vcpu->arch.nmi_injected)
10329 kvm_x86_call(inject_nmi)(vcpu);
10330 else if (vcpu->arch.interrupt.injected)
10331 kvm_x86_call(inject_irq)(vcpu, true);
10332
10333 /*
10334 * Exceptions that morph to VM-Exits are handled above, and pending
10335 * exceptions on top of injected exceptions that do not VM-Exit should
10336 * either morph to #DF or, sadly, override the injected exception.
10337 */
10338 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10339 vcpu->arch.exception.pending);
10340
10341 /*
10342 * Bail if immediate entry+exit to/from the guest is needed to complete
10343 * nested VM-Enter or event re-injection so that a different pending
10344 * event can be serviced (or if KVM needs to exit to userspace).
10345 *
10346 * Otherwise, continue processing events even if VM-Exit occurred. The
10347 * VM-Exit will have cleared exceptions that were meant for L2, but
10348 * there may now be events that can be injected into L1.
10349 */
10350 if (r < 0)
10351 goto out;
10352
10353 /*
10354 * A pending exception VM-Exit should either result in nested VM-Exit
10355 * or force an immediate re-entry and exit to/from L2, and exception
10356 * VM-Exits cannot be injected (flag should _never_ be set).
10357 */
10358 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10359 vcpu->arch.exception_vmexit.pending);
10360
10361 /*
10362 * New events, other than exceptions, cannot be injected if KVM needs
10363 * to re-inject a previous event. See above comments on re-injecting
10364 * for why pending exceptions get priority.
10365 */
10366 can_inject = !kvm_event_needs_reinjection(vcpu);
10367
10368 if (vcpu->arch.exception.pending) {
10369 /*
10370 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10371 * value pushed on the stack. Trap-like exception and all #DBs
10372 * leave RF as-is (KVM follows Intel's behavior in this regard;
10373 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10374 *
10375 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10376 * describe the behavior of General Detect #DBs, which are
10377 * fault-like. They do _not_ set RF, a la code breakpoints.
10378 */
10379 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10380 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10381 X86_EFLAGS_RF);
10382
10383 if (vcpu->arch.exception.vector == DB_VECTOR) {
10384 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10385 if (vcpu->arch.dr7 & DR7_GD) {
10386 vcpu->arch.dr7 &= ~DR7_GD;
10387 kvm_update_dr7(vcpu);
10388 }
10389 }
10390
10391 kvm_inject_exception(vcpu);
10392
10393 vcpu->arch.exception.pending = false;
10394 vcpu->arch.exception.injected = true;
10395
10396 can_inject = false;
10397 }
10398
10399 /* Don't inject interrupts if the user asked to avoid doing so */
10400 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10401 return 0;
10402
10403 /*
10404 * Finally, inject interrupt events. If an event cannot be injected
10405 * due to architectural conditions (e.g. IF=0) a window-open exit
10406 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10407 * and can architecturally be injected, but we cannot do it right now:
10408 * an interrupt could have arrived just now and we have to inject it
10409 * as a vmexit, or there could already an event in the queue, which is
10410 * indicated by can_inject. In that case we request an immediate exit
10411 * in order to make progress and get back here for another iteration.
10412 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10413 */
10414 #ifdef CONFIG_KVM_SMM
10415 if (vcpu->arch.smi_pending) {
10416 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10417 -EBUSY;
10418 if (r < 0)
10419 goto out;
10420 if (r) {
10421 vcpu->arch.smi_pending = false;
10422 ++vcpu->arch.smi_count;
10423 enter_smm(vcpu);
10424 can_inject = false;
10425 } else
10426 kvm_x86_call(enable_smi_window)(vcpu);
10427 }
10428 #endif
10429
10430 if (vcpu->arch.nmi_pending) {
10431 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10432 -EBUSY;
10433 if (r < 0)
10434 goto out;
10435 if (r) {
10436 --vcpu->arch.nmi_pending;
10437 vcpu->arch.nmi_injected = true;
10438 kvm_x86_call(inject_nmi)(vcpu);
10439 can_inject = false;
10440 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10441 }
10442 if (vcpu->arch.nmi_pending)
10443 kvm_x86_call(enable_nmi_window)(vcpu);
10444 }
10445
10446 if (kvm_cpu_has_injectable_intr(vcpu)) {
10447 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10448 -EBUSY;
10449 if (r < 0)
10450 goto out;
10451 if (r) {
10452 int irq = kvm_cpu_get_interrupt(vcpu);
10453
10454 if (!WARN_ON_ONCE(irq == -1)) {
10455 kvm_queue_interrupt(vcpu, irq, false);
10456 kvm_x86_call(inject_irq)(vcpu, false);
10457 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10458 }
10459 }
10460 if (kvm_cpu_has_injectable_intr(vcpu))
10461 kvm_x86_call(enable_irq_window)(vcpu);
10462 }
10463
10464 if (is_guest_mode(vcpu) &&
10465 kvm_x86_ops.nested_ops->has_events &&
10466 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10467 *req_immediate_exit = true;
10468
10469 /*
10470 * KVM must never queue a new exception while injecting an event; KVM
10471 * is done emulating and should only propagate the to-be-injected event
10472 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10473 * infinite loop as KVM will bail from VM-Enter to inject the pending
10474 * exception and start the cycle all over.
10475 *
10476 * Exempt triple faults as they have special handling and won't put the
10477 * vCPU into an infinite loop. Triple fault can be queued when running
10478 * VMX without unrestricted guest, as that requires KVM to emulate Real
10479 * Mode events (see kvm_inject_realmode_interrupt()).
10480 */
10481 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10482 vcpu->arch.exception_vmexit.pending);
10483 return 0;
10484
10485 out:
10486 if (r == -EBUSY) {
10487 *req_immediate_exit = true;
10488 r = 0;
10489 }
10490 return r;
10491 }
10492
process_nmi(struct kvm_vcpu * vcpu)10493 static void process_nmi(struct kvm_vcpu *vcpu)
10494 {
10495 unsigned int limit;
10496
10497 /*
10498 * x86 is limited to one NMI pending, but because KVM can't react to
10499 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10500 * scheduled out, KVM needs to play nice with two queued NMIs showing
10501 * up at the same time. To handle this scenario, allow two NMIs to be
10502 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10503 * waiting for a previous NMI injection to complete (which effectively
10504 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10505 * will request an NMI window to handle the second NMI.
10506 */
10507 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10508 limit = 1;
10509 else
10510 limit = 2;
10511
10512 /*
10513 * Adjust the limit to account for pending virtual NMIs, which aren't
10514 * tracked in vcpu->arch.nmi_pending.
10515 */
10516 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10517 limit--;
10518
10519 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10520 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10521
10522 if (vcpu->arch.nmi_pending &&
10523 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10524 vcpu->arch.nmi_pending--;
10525
10526 if (vcpu->arch.nmi_pending)
10527 kvm_make_request(KVM_REQ_EVENT, vcpu);
10528 }
10529
10530 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10531 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10532 {
10533 return vcpu->arch.nmi_pending +
10534 kvm_x86_call(is_vnmi_pending)(vcpu);
10535 }
10536
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10537 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10538 unsigned long *vcpu_bitmap)
10539 {
10540 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10541 }
10542
kvm_make_scan_ioapic_request(struct kvm * kvm)10543 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10544 {
10545 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10546 }
10547
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10548 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10549 {
10550 struct kvm_lapic *apic = vcpu->arch.apic;
10551 bool activate;
10552
10553 if (!lapic_in_kernel(vcpu))
10554 return;
10555
10556 down_read(&vcpu->kvm->arch.apicv_update_lock);
10557 preempt_disable();
10558
10559 /* Do not activate APICV when APIC is disabled */
10560 activate = kvm_vcpu_apicv_activated(vcpu) &&
10561 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10562
10563 if (apic->apicv_active == activate)
10564 goto out;
10565
10566 apic->apicv_active = activate;
10567 kvm_apic_update_apicv(vcpu);
10568 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10569
10570 /*
10571 * When APICv gets disabled, we may still have injected interrupts
10572 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10573 * still active when the interrupt got accepted. Make sure
10574 * kvm_check_and_inject_events() is called to check for that.
10575 */
10576 if (!apic->apicv_active)
10577 kvm_make_request(KVM_REQ_EVENT, vcpu);
10578
10579 out:
10580 preempt_enable();
10581 up_read(&vcpu->kvm->arch.apicv_update_lock);
10582 }
10583 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10584
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10585 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10586 {
10587 if (!lapic_in_kernel(vcpu))
10588 return;
10589
10590 /*
10591 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10592 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10593 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10594 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10595 * this case so that KVM can use the AVIC doorbell to inject interrupts
10596 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10597 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10598 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10599 * access page is sticky.
10600 */
10601 if (apic_x2apic_mode(vcpu->arch.apic) &&
10602 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10603 kvm_inhibit_apic_access_page(vcpu);
10604
10605 __kvm_vcpu_update_apicv(vcpu);
10606 }
10607
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10608 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10609 enum kvm_apicv_inhibit reason, bool set)
10610 {
10611 unsigned long old, new;
10612
10613 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10614
10615 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10616 return;
10617
10618 old = new = kvm->arch.apicv_inhibit_reasons;
10619
10620 set_or_clear_apicv_inhibit(&new, reason, set);
10621
10622 if (!!old != !!new) {
10623 /*
10624 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10625 * false positives in the sanity check WARN in vcpu_enter_guest().
10626 * This task will wait for all vCPUs to ack the kick IRQ before
10627 * updating apicv_inhibit_reasons, and all other vCPUs will
10628 * block on acquiring apicv_update_lock so that vCPUs can't
10629 * redo vcpu_enter_guest() without seeing the new inhibit state.
10630 *
10631 * Note, holding apicv_update_lock and taking it in the read
10632 * side (handling the request) also prevents other vCPUs from
10633 * servicing the request with a stale apicv_inhibit_reasons.
10634 */
10635 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10636 kvm->arch.apicv_inhibit_reasons = new;
10637 if (new) {
10638 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10639 int idx = srcu_read_lock(&kvm->srcu);
10640
10641 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10642 srcu_read_unlock(&kvm->srcu, idx);
10643 }
10644 } else {
10645 kvm->arch.apicv_inhibit_reasons = new;
10646 }
10647 }
10648
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10649 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10650 enum kvm_apicv_inhibit reason, bool set)
10651 {
10652 if (!enable_apicv)
10653 return;
10654
10655 down_write(&kvm->arch.apicv_update_lock);
10656 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10657 up_write(&kvm->arch.apicv_update_lock);
10658 }
10659 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10660
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10661 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10662 {
10663 if (!kvm_apic_present(vcpu))
10664 return;
10665
10666 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10667
10668 kvm_x86_call(sync_pir_to_irr)(vcpu);
10669
10670 if (irqchip_split(vcpu->kvm))
10671 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10672 else if (ioapic_in_kernel(vcpu->kvm))
10673 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10674
10675 if (is_guest_mode(vcpu))
10676 vcpu->arch.load_eoi_exitmap_pending = true;
10677 else
10678 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10679 }
10680
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10681 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10682 {
10683 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10684 return;
10685
10686 #ifdef CONFIG_KVM_HYPERV
10687 if (to_hv_vcpu(vcpu)) {
10688 u64 eoi_exit_bitmap[4];
10689
10690 bitmap_or((ulong *)eoi_exit_bitmap,
10691 vcpu->arch.ioapic_handled_vectors,
10692 to_hv_synic(vcpu)->vec_bitmap, 256);
10693 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10694 return;
10695 }
10696 #endif
10697 kvm_x86_call(load_eoi_exitmap)(
10698 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10699 }
10700
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10701 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10702 {
10703 kvm_x86_call(guest_memory_reclaimed)(kvm);
10704 }
10705
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10706 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10707 {
10708 if (!lapic_in_kernel(vcpu))
10709 return;
10710
10711 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10712 }
10713
10714 /*
10715 * Called within kvm->srcu read side.
10716 * Returns 1 to let vcpu_run() continue the guest execution loop without
10717 * exiting to the userspace. Otherwise, the value will be returned to the
10718 * userspace.
10719 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10720 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10721 {
10722 int r;
10723 bool req_int_win =
10724 dm_request_for_irq_injection(vcpu) &&
10725 kvm_cpu_accept_dm_intr(vcpu);
10726 fastpath_t exit_fastpath;
10727
10728 bool req_immediate_exit = false;
10729
10730 if (kvm_request_pending(vcpu)) {
10731 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10732 r = -EIO;
10733 goto out;
10734 }
10735
10736 if (kvm_dirty_ring_check_request(vcpu)) {
10737 r = 0;
10738 goto out;
10739 }
10740
10741 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10742 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10743 r = 0;
10744 goto out;
10745 }
10746 }
10747 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10748 kvm_mmu_free_obsolete_roots(vcpu);
10749 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10750 __kvm_migrate_timers(vcpu);
10751 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10752 kvm_update_masterclock(vcpu->kvm);
10753 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10754 kvm_gen_kvmclock_update(vcpu);
10755 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10756 r = kvm_guest_time_update(vcpu);
10757 if (unlikely(r))
10758 goto out;
10759 }
10760 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10761 kvm_mmu_sync_roots(vcpu);
10762 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10763 kvm_mmu_load_pgd(vcpu);
10764
10765 /*
10766 * Note, the order matters here, as flushing "all" TLB entries
10767 * also flushes the "current" TLB entries, i.e. servicing the
10768 * flush "all" will clear any request to flush "current".
10769 */
10770 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10771 kvm_vcpu_flush_tlb_all(vcpu);
10772
10773 kvm_service_local_tlb_flush_requests(vcpu);
10774
10775 /*
10776 * Fall back to a "full" guest flush if Hyper-V's precise
10777 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10778 * the flushes are considered "remote" and not "local" because
10779 * the requests can be initiated from other vCPUs.
10780 */
10781 #ifdef CONFIG_KVM_HYPERV
10782 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10783 kvm_hv_vcpu_flush_tlb(vcpu))
10784 kvm_vcpu_flush_tlb_guest(vcpu);
10785 #endif
10786
10787 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10788 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10789 r = 0;
10790 goto out;
10791 }
10792 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10793 if (is_guest_mode(vcpu))
10794 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10795
10796 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10797 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10798 vcpu->mmio_needed = 0;
10799 r = 0;
10800 goto out;
10801 }
10802 }
10803 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10804 /* Page is swapped out. Do synthetic halt */
10805 vcpu->arch.apf.halted = true;
10806 r = 1;
10807 goto out;
10808 }
10809 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10810 record_steal_time(vcpu);
10811 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10812 kvm_pmu_handle_event(vcpu);
10813 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10814 kvm_pmu_deliver_pmi(vcpu);
10815 #ifdef CONFIG_KVM_SMM
10816 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10817 process_smi(vcpu);
10818 #endif
10819 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10820 process_nmi(vcpu);
10821 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10822 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10823 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10824 vcpu->arch.ioapic_handled_vectors)) {
10825 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10826 vcpu->run->eoi.vector =
10827 vcpu->arch.pending_ioapic_eoi;
10828 r = 0;
10829 goto out;
10830 }
10831 }
10832 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10833 vcpu_scan_ioapic(vcpu);
10834 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10835 vcpu_load_eoi_exitmap(vcpu);
10836 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10837 kvm_vcpu_reload_apic_access_page(vcpu);
10838 #ifdef CONFIG_KVM_HYPERV
10839 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10840 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10841 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10842 vcpu->run->system_event.ndata = 0;
10843 r = 0;
10844 goto out;
10845 }
10846 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10847 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10848 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10849 vcpu->run->system_event.ndata = 0;
10850 r = 0;
10851 goto out;
10852 }
10853 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10854 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10855
10856 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10857 vcpu->run->hyperv = hv_vcpu->exit;
10858 r = 0;
10859 goto out;
10860 }
10861
10862 /*
10863 * KVM_REQ_HV_STIMER has to be processed after
10864 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10865 * depend on the guest clock being up-to-date
10866 */
10867 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10868 kvm_hv_process_stimers(vcpu);
10869 #endif
10870 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10871 kvm_vcpu_update_apicv(vcpu);
10872 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10873 kvm_check_async_pf_completion(vcpu);
10874 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10875 kvm_x86_call(msr_filter_changed)(vcpu);
10876
10877 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10878 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10879
10880 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10881 kvm_vcpu_reset(vcpu, true);
10882 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10883 r = 1;
10884 goto out;
10885 }
10886 }
10887 }
10888
10889 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10890 kvm_xen_has_interrupt(vcpu)) {
10891 ++vcpu->stat.req_event;
10892 r = kvm_apic_accept_events(vcpu);
10893 if (r < 0) {
10894 r = 0;
10895 goto out;
10896 }
10897 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10898 r = 1;
10899 goto out;
10900 }
10901
10902 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10903 if (r < 0) {
10904 r = 0;
10905 goto out;
10906 }
10907 if (req_int_win)
10908 kvm_x86_call(enable_irq_window)(vcpu);
10909
10910 if (kvm_lapic_enabled(vcpu)) {
10911 update_cr8_intercept(vcpu);
10912 kvm_lapic_sync_to_vapic(vcpu);
10913 }
10914 }
10915
10916 r = kvm_mmu_reload(vcpu);
10917 if (unlikely(r)) {
10918 goto cancel_injection;
10919 }
10920
10921 preempt_disable();
10922
10923 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10924
10925 /*
10926 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10927 * IPI are then delayed after guest entry, which ensures that they
10928 * result in virtual interrupt delivery.
10929 */
10930 local_irq_disable();
10931
10932 /* Store vcpu->apicv_active before vcpu->mode. */
10933 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10934
10935 kvm_vcpu_srcu_read_unlock(vcpu);
10936
10937 /*
10938 * 1) We should set ->mode before checking ->requests. Please see
10939 * the comment in kvm_vcpu_exiting_guest_mode().
10940 *
10941 * 2) For APICv, we should set ->mode before checking PID.ON. This
10942 * pairs with the memory barrier implicit in pi_test_and_set_on
10943 * (see vmx_deliver_posted_interrupt).
10944 *
10945 * 3) This also orders the write to mode from any reads to the page
10946 * tables done while the VCPU is running. Please see the comment
10947 * in kvm_flush_remote_tlbs.
10948 */
10949 smp_mb__after_srcu_read_unlock();
10950
10951 /*
10952 * Process pending posted interrupts to handle the case where the
10953 * notification IRQ arrived in the host, or was never sent (because the
10954 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10955 * status, KVM doesn't update assigned devices when APICv is inhibited,
10956 * i.e. they can post interrupts even if APICv is temporarily disabled.
10957 */
10958 if (kvm_lapic_enabled(vcpu))
10959 kvm_x86_call(sync_pir_to_irr)(vcpu);
10960
10961 if (kvm_vcpu_exit_request(vcpu)) {
10962 vcpu->mode = OUTSIDE_GUEST_MODE;
10963 smp_wmb();
10964 local_irq_enable();
10965 preempt_enable();
10966 kvm_vcpu_srcu_read_lock(vcpu);
10967 r = 1;
10968 goto cancel_injection;
10969 }
10970
10971 if (req_immediate_exit)
10972 kvm_make_request(KVM_REQ_EVENT, vcpu);
10973
10974 fpregs_assert_state_consistent();
10975 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10976 switch_fpu_return();
10977
10978 if (vcpu->arch.guest_fpu.xfd_err)
10979 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10980
10981 if (unlikely(vcpu->arch.switch_db_regs)) {
10982 set_debugreg(0, 7);
10983 set_debugreg(vcpu->arch.eff_db[0], 0);
10984 set_debugreg(vcpu->arch.eff_db[1], 1);
10985 set_debugreg(vcpu->arch.eff_db[2], 2);
10986 set_debugreg(vcpu->arch.eff_db[3], 3);
10987 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10988 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10989 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10990 } else if (unlikely(hw_breakpoint_active())) {
10991 set_debugreg(0, 7);
10992 }
10993
10994 vcpu->arch.host_debugctl = get_debugctlmsr();
10995
10996 guest_timing_enter_irqoff();
10997
10998 for (;;) {
10999 /*
11000 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11001 * update must kick and wait for all vCPUs before toggling the
11002 * per-VM state, and responding vCPUs must wait for the update
11003 * to complete before servicing KVM_REQ_APICV_UPDATE.
11004 */
11005 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11006 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11007
11008 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11009 req_immediate_exit);
11010 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11011 break;
11012
11013 if (kvm_lapic_enabled(vcpu))
11014 kvm_x86_call(sync_pir_to_irr)(vcpu);
11015
11016 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11017 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11018 break;
11019 }
11020
11021 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11022 ++vcpu->stat.exits;
11023 }
11024
11025 /*
11026 * Do this here before restoring debug registers on the host. And
11027 * since we do this before handling the vmexit, a DR access vmexit
11028 * can (a) read the correct value of the debug registers, (b) set
11029 * KVM_DEBUGREG_WONT_EXIT again.
11030 */
11031 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11032 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11033 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11034 kvm_update_dr0123(vcpu);
11035 kvm_update_dr7(vcpu);
11036 }
11037
11038 /*
11039 * If the guest has used debug registers, at least dr7
11040 * will be disabled while returning to the host.
11041 * If we don't have active breakpoints in the host, we don't
11042 * care about the messed up debug address registers. But if
11043 * we have some of them active, restore the old state.
11044 */
11045 if (hw_breakpoint_active())
11046 hw_breakpoint_restore();
11047
11048 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11049 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11050
11051 vcpu->mode = OUTSIDE_GUEST_MODE;
11052 smp_wmb();
11053
11054 /*
11055 * Sync xfd before calling handle_exit_irqoff() which may
11056 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11057 * in #NM irqoff handler).
11058 */
11059 if (vcpu->arch.xfd_no_write_intercept)
11060 fpu_sync_guest_vmexit_xfd_state();
11061
11062 kvm_x86_call(handle_exit_irqoff)(vcpu);
11063
11064 if (vcpu->arch.guest_fpu.xfd_err)
11065 wrmsrl(MSR_IA32_XFD_ERR, 0);
11066
11067 /*
11068 * Consume any pending interrupts, including the possible source of
11069 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11070 * An instruction is required after local_irq_enable() to fully unblock
11071 * interrupts on processors that implement an interrupt shadow, the
11072 * stat.exits increment will do nicely.
11073 */
11074 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11075 local_irq_enable();
11076 ++vcpu->stat.exits;
11077 local_irq_disable();
11078 kvm_after_interrupt(vcpu);
11079
11080 /*
11081 * Wait until after servicing IRQs to account guest time so that any
11082 * ticks that occurred while running the guest are properly accounted
11083 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11084 * of accounting via context tracking, but the loss of accuracy is
11085 * acceptable for all known use cases.
11086 */
11087 guest_timing_exit_irqoff();
11088
11089 local_irq_enable();
11090 preempt_enable();
11091
11092 kvm_vcpu_srcu_read_lock(vcpu);
11093
11094 /*
11095 * Call this to ensure WC buffers in guest are evicted after each VM
11096 * Exit, so that the evicted WC writes can be snooped across all cpus
11097 */
11098 smp_mb__after_srcu_read_lock();
11099
11100 /*
11101 * Profile KVM exit RIPs:
11102 */
11103 if (unlikely(prof_on == KVM_PROFILING &&
11104 !vcpu->arch.guest_state_protected)) {
11105 unsigned long rip = kvm_rip_read(vcpu);
11106 profile_hit(KVM_PROFILING, (void *)rip);
11107 }
11108
11109 if (unlikely(vcpu->arch.tsc_always_catchup))
11110 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11111
11112 if (vcpu->arch.apic_attention)
11113 kvm_lapic_sync_from_vapic(vcpu);
11114
11115 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11116 return 0;
11117
11118 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11119 return r;
11120
11121 cancel_injection:
11122 if (req_immediate_exit)
11123 kvm_make_request(KVM_REQ_EVENT, vcpu);
11124 kvm_x86_call(cancel_injection)(vcpu);
11125 if (unlikely(vcpu->arch.apic_attention))
11126 kvm_lapic_sync_from_vapic(vcpu);
11127 out:
11128 return r;
11129 }
11130
kvm_vcpu_running(struct kvm_vcpu * vcpu)11131 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11132 {
11133 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11134 !vcpu->arch.apf.halted);
11135 }
11136
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11137 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11138 {
11139 if (!list_empty_careful(&vcpu->async_pf.done))
11140 return true;
11141
11142 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11143 kvm_apic_init_sipi_allowed(vcpu))
11144 return true;
11145
11146 if (vcpu->arch.pv.pv_unhalted)
11147 return true;
11148
11149 if (kvm_is_exception_pending(vcpu))
11150 return true;
11151
11152 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11153 (vcpu->arch.nmi_pending &&
11154 kvm_x86_call(nmi_allowed)(vcpu, false)))
11155 return true;
11156
11157 #ifdef CONFIG_KVM_SMM
11158 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11159 (vcpu->arch.smi_pending &&
11160 kvm_x86_call(smi_allowed)(vcpu, false)))
11161 return true;
11162 #endif
11163
11164 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11165 return true;
11166
11167 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11168 return true;
11169
11170 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11171 return true;
11172
11173 if (kvm_hv_has_stimer_pending(vcpu))
11174 return true;
11175
11176 if (is_guest_mode(vcpu) &&
11177 kvm_x86_ops.nested_ops->has_events &&
11178 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11179 return true;
11180
11181 if (kvm_xen_has_pending_events(vcpu))
11182 return true;
11183
11184 return false;
11185 }
11186
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11187 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11188 {
11189 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11190 }
11191
11192 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11193 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11194 {
11195 bool hv_timer;
11196
11197 if (!kvm_arch_vcpu_runnable(vcpu)) {
11198 /*
11199 * Switch to the software timer before halt-polling/blocking as
11200 * the guest's timer may be a break event for the vCPU, and the
11201 * hypervisor timer runs only when the CPU is in guest mode.
11202 * Switch before halt-polling so that KVM recognizes an expired
11203 * timer before blocking.
11204 */
11205 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11206 if (hv_timer)
11207 kvm_lapic_switch_to_sw_timer(vcpu);
11208
11209 kvm_vcpu_srcu_read_unlock(vcpu);
11210 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11211 kvm_vcpu_halt(vcpu);
11212 else
11213 kvm_vcpu_block(vcpu);
11214 kvm_vcpu_srcu_read_lock(vcpu);
11215
11216 if (hv_timer)
11217 kvm_lapic_switch_to_hv_timer(vcpu);
11218
11219 /*
11220 * If the vCPU is not runnable, a signal or another host event
11221 * of some kind is pending; service it without changing the
11222 * vCPU's activity state.
11223 */
11224 if (!kvm_arch_vcpu_runnable(vcpu))
11225 return 1;
11226 }
11227
11228 /*
11229 * Evaluate nested events before exiting the halted state. This allows
11230 * the halt state to be recorded properly in the VMCS12's activity
11231 * state field (AMD does not have a similar field and a VM-Exit always
11232 * causes a spurious wakeup from HLT).
11233 */
11234 if (is_guest_mode(vcpu)) {
11235 int r = kvm_check_nested_events(vcpu);
11236
11237 WARN_ON_ONCE(r == -EBUSY);
11238 if (r < 0)
11239 return 0;
11240 }
11241
11242 if (kvm_apic_accept_events(vcpu) < 0)
11243 return 0;
11244 switch(vcpu->arch.mp_state) {
11245 case KVM_MP_STATE_HALTED:
11246 case KVM_MP_STATE_AP_RESET_HOLD:
11247 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11248 fallthrough;
11249 case KVM_MP_STATE_RUNNABLE:
11250 vcpu->arch.apf.halted = false;
11251 break;
11252 case KVM_MP_STATE_INIT_RECEIVED:
11253 break;
11254 default:
11255 WARN_ON_ONCE(1);
11256 break;
11257 }
11258 return 1;
11259 }
11260
11261 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11262 static int vcpu_run(struct kvm_vcpu *vcpu)
11263 {
11264 int r;
11265
11266 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11267
11268 for (;;) {
11269 /*
11270 * If another guest vCPU requests a PV TLB flush in the middle
11271 * of instruction emulation, the rest of the emulation could
11272 * use a stale page translation. Assume that any code after
11273 * this point can start executing an instruction.
11274 */
11275 vcpu->arch.at_instruction_boundary = false;
11276 if (kvm_vcpu_running(vcpu)) {
11277 r = vcpu_enter_guest(vcpu);
11278 } else {
11279 r = vcpu_block(vcpu);
11280 }
11281
11282 if (r <= 0)
11283 break;
11284
11285 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11286 if (kvm_xen_has_pending_events(vcpu))
11287 kvm_xen_inject_pending_events(vcpu);
11288
11289 if (kvm_cpu_has_pending_timer(vcpu))
11290 kvm_inject_pending_timer_irqs(vcpu);
11291
11292 if (dm_request_for_irq_injection(vcpu) &&
11293 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11294 r = 0;
11295 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11296 ++vcpu->stat.request_irq_exits;
11297 break;
11298 }
11299
11300 if (__xfer_to_guest_mode_work_pending()) {
11301 kvm_vcpu_srcu_read_unlock(vcpu);
11302 r = xfer_to_guest_mode_handle_work(vcpu);
11303 kvm_vcpu_srcu_read_lock(vcpu);
11304 if (r)
11305 return r;
11306 }
11307 }
11308
11309 return r;
11310 }
11311
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11312 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11313 {
11314 /*
11315 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11316 * local APIC is in-kernel, the run loop will detect the non-runnable
11317 * state and halt the vCPU. Exit to userspace if the local APIC is
11318 * managed by userspace, in which case userspace is responsible for
11319 * handling wake events.
11320 */
11321 ++vcpu->stat.halt_exits;
11322 if (lapic_in_kernel(vcpu)) {
11323 if (kvm_vcpu_has_events(vcpu))
11324 state = KVM_MP_STATE_RUNNABLE;
11325 kvm_set_mp_state(vcpu, state);
11326 return 1;
11327 } else {
11328 vcpu->run->exit_reason = reason;
11329 return 0;
11330 }
11331 }
11332
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11333 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11334 {
11335 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11336 }
11337 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11338
kvm_emulate_halt(struct kvm_vcpu * vcpu)11339 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11340 {
11341 int ret = kvm_skip_emulated_instruction(vcpu);
11342 /*
11343 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11344 * KVM_EXIT_DEBUG here.
11345 */
11346 return kvm_emulate_halt_noskip(vcpu) && ret;
11347 }
11348 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11349
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11350 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11351 {
11352 int ret;
11353
11354 kvm_vcpu_srcu_read_lock(vcpu);
11355 ret = kvm_emulate_halt(vcpu);
11356 kvm_vcpu_srcu_read_unlock(vcpu);
11357
11358 if (!ret)
11359 return EXIT_FASTPATH_EXIT_USERSPACE;
11360
11361 if (kvm_vcpu_running(vcpu))
11362 return EXIT_FASTPATH_REENTER_GUEST;
11363
11364 return EXIT_FASTPATH_EXIT_HANDLED;
11365 }
11366 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11367
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11368 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11369 {
11370 int ret = kvm_skip_emulated_instruction(vcpu);
11371
11372 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11373 KVM_EXIT_AP_RESET_HOLD) && ret;
11374 }
11375 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11376
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11377 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11378 {
11379 return kvm_vcpu_apicv_active(vcpu) &&
11380 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11381 }
11382
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11383 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11384 {
11385 return vcpu->arch.preempted_in_kernel;
11386 }
11387
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11388 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11389 {
11390 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11391 return true;
11392
11393 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11394 #ifdef CONFIG_KVM_SMM
11395 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11396 #endif
11397 kvm_test_request(KVM_REQ_EVENT, vcpu))
11398 return true;
11399
11400 return kvm_arch_dy_has_pending_interrupt(vcpu);
11401 }
11402
complete_emulated_io(struct kvm_vcpu * vcpu)11403 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11404 {
11405 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11406 }
11407
complete_emulated_pio(struct kvm_vcpu * vcpu)11408 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11409 {
11410 BUG_ON(!vcpu->arch.pio.count);
11411
11412 return complete_emulated_io(vcpu);
11413 }
11414
11415 /*
11416 * Implements the following, as a state machine:
11417 *
11418 * read:
11419 * for each fragment
11420 * for each mmio piece in the fragment
11421 * write gpa, len
11422 * exit
11423 * copy data
11424 * execute insn
11425 *
11426 * write:
11427 * for each fragment
11428 * for each mmio piece in the fragment
11429 * write gpa, len
11430 * copy data
11431 * exit
11432 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11433 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11434 {
11435 struct kvm_run *run = vcpu->run;
11436 struct kvm_mmio_fragment *frag;
11437 unsigned len;
11438
11439 BUG_ON(!vcpu->mmio_needed);
11440
11441 /* Complete previous fragment */
11442 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11443 len = min(8u, frag->len);
11444 if (!vcpu->mmio_is_write)
11445 memcpy(frag->data, run->mmio.data, len);
11446
11447 if (frag->len <= 8) {
11448 /* Switch to the next fragment. */
11449 frag++;
11450 vcpu->mmio_cur_fragment++;
11451 } else {
11452 /* Go forward to the next mmio piece. */
11453 frag->data += len;
11454 frag->gpa += len;
11455 frag->len -= len;
11456 }
11457
11458 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11459 vcpu->mmio_needed = 0;
11460
11461 /* FIXME: return into emulator if single-stepping. */
11462 if (vcpu->mmio_is_write)
11463 return 1;
11464 vcpu->mmio_read_completed = 1;
11465 return complete_emulated_io(vcpu);
11466 }
11467
11468 run->exit_reason = KVM_EXIT_MMIO;
11469 run->mmio.phys_addr = frag->gpa;
11470 if (vcpu->mmio_is_write)
11471 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11472 run->mmio.len = min(8u, frag->len);
11473 run->mmio.is_write = vcpu->mmio_is_write;
11474 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11475 return 0;
11476 }
11477
11478 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11479 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11480 {
11481 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11482 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11483 trace_kvm_fpu(1);
11484 }
11485
11486 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11487 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11488 {
11489 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11490 ++vcpu->stat.fpu_reload;
11491 trace_kvm_fpu(0);
11492 }
11493
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11494 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11495 {
11496 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11497 struct kvm_run *kvm_run = vcpu->run;
11498 u64 sync_valid_fields;
11499 int r;
11500
11501 r = kvm_mmu_post_init_vm(vcpu->kvm);
11502 if (r)
11503 return r;
11504
11505 vcpu_load(vcpu);
11506 kvm_sigset_activate(vcpu);
11507 kvm_run->flags = 0;
11508 kvm_load_guest_fpu(vcpu);
11509
11510 kvm_vcpu_srcu_read_lock(vcpu);
11511 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11512 if (!vcpu->wants_to_run) {
11513 r = -EINTR;
11514 goto out;
11515 }
11516
11517 /*
11518 * Don't bother switching APIC timer emulation from the
11519 * hypervisor timer to the software timer, the only way for the
11520 * APIC timer to be active is if userspace stuffed vCPU state,
11521 * i.e. put the vCPU into a nonsensical state. Only an INIT
11522 * will transition the vCPU out of UNINITIALIZED (without more
11523 * state stuffing from userspace), which will reset the local
11524 * APIC and thus cancel the timer or drop the IRQ (if the timer
11525 * already expired).
11526 */
11527 kvm_vcpu_srcu_read_unlock(vcpu);
11528 kvm_vcpu_block(vcpu);
11529 kvm_vcpu_srcu_read_lock(vcpu);
11530
11531 if (kvm_apic_accept_events(vcpu) < 0) {
11532 r = 0;
11533 goto out;
11534 }
11535 r = -EAGAIN;
11536 if (signal_pending(current)) {
11537 r = -EINTR;
11538 kvm_run->exit_reason = KVM_EXIT_INTR;
11539 ++vcpu->stat.signal_exits;
11540 }
11541 goto out;
11542 }
11543
11544 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11545 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11546 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11547 r = -EINVAL;
11548 goto out;
11549 }
11550
11551 if (kvm_run->kvm_dirty_regs) {
11552 r = sync_regs(vcpu);
11553 if (r != 0)
11554 goto out;
11555 }
11556
11557 /* re-sync apic's tpr */
11558 if (!lapic_in_kernel(vcpu)) {
11559 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11560 r = -EINVAL;
11561 goto out;
11562 }
11563 }
11564
11565 /*
11566 * If userspace set a pending exception and L2 is active, convert it to
11567 * a pending VM-Exit if L1 wants to intercept the exception.
11568 */
11569 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11570 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11571 ex->error_code)) {
11572 kvm_queue_exception_vmexit(vcpu, ex->vector,
11573 ex->has_error_code, ex->error_code,
11574 ex->has_payload, ex->payload);
11575 ex->injected = false;
11576 ex->pending = false;
11577 }
11578 vcpu->arch.exception_from_userspace = false;
11579
11580 if (unlikely(vcpu->arch.complete_userspace_io)) {
11581 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11582 vcpu->arch.complete_userspace_io = NULL;
11583 r = cui(vcpu);
11584 if (r <= 0)
11585 goto out;
11586 } else {
11587 WARN_ON_ONCE(vcpu->arch.pio.count);
11588 WARN_ON_ONCE(vcpu->mmio_needed);
11589 }
11590
11591 if (!vcpu->wants_to_run) {
11592 r = -EINTR;
11593 goto out;
11594 }
11595
11596 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11597 if (r <= 0)
11598 goto out;
11599
11600 r = vcpu_run(vcpu);
11601
11602 out:
11603 kvm_put_guest_fpu(vcpu);
11604 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11605 store_regs(vcpu);
11606 post_kvm_run_save(vcpu);
11607 kvm_vcpu_srcu_read_unlock(vcpu);
11608
11609 kvm_sigset_deactivate(vcpu);
11610 vcpu_put(vcpu);
11611 return r;
11612 }
11613
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11614 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11615 {
11616 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11617 /*
11618 * We are here if userspace calls get_regs() in the middle of
11619 * instruction emulation. Registers state needs to be copied
11620 * back from emulation context to vcpu. Userspace shouldn't do
11621 * that usually, but some bad designed PV devices (vmware
11622 * backdoor interface) need this to work
11623 */
11624 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11626 }
11627 regs->rax = kvm_rax_read(vcpu);
11628 regs->rbx = kvm_rbx_read(vcpu);
11629 regs->rcx = kvm_rcx_read(vcpu);
11630 regs->rdx = kvm_rdx_read(vcpu);
11631 regs->rsi = kvm_rsi_read(vcpu);
11632 regs->rdi = kvm_rdi_read(vcpu);
11633 regs->rsp = kvm_rsp_read(vcpu);
11634 regs->rbp = kvm_rbp_read(vcpu);
11635 #ifdef CONFIG_X86_64
11636 regs->r8 = kvm_r8_read(vcpu);
11637 regs->r9 = kvm_r9_read(vcpu);
11638 regs->r10 = kvm_r10_read(vcpu);
11639 regs->r11 = kvm_r11_read(vcpu);
11640 regs->r12 = kvm_r12_read(vcpu);
11641 regs->r13 = kvm_r13_read(vcpu);
11642 regs->r14 = kvm_r14_read(vcpu);
11643 regs->r15 = kvm_r15_read(vcpu);
11644 #endif
11645
11646 regs->rip = kvm_rip_read(vcpu);
11647 regs->rflags = kvm_get_rflags(vcpu);
11648 }
11649
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11650 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11651 {
11652 if (vcpu->kvm->arch.has_protected_state &&
11653 vcpu->arch.guest_state_protected)
11654 return -EINVAL;
11655
11656 vcpu_load(vcpu);
11657 __get_regs(vcpu, regs);
11658 vcpu_put(vcpu);
11659 return 0;
11660 }
11661
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11662 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11663 {
11664 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11665 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11666
11667 kvm_rax_write(vcpu, regs->rax);
11668 kvm_rbx_write(vcpu, regs->rbx);
11669 kvm_rcx_write(vcpu, regs->rcx);
11670 kvm_rdx_write(vcpu, regs->rdx);
11671 kvm_rsi_write(vcpu, regs->rsi);
11672 kvm_rdi_write(vcpu, regs->rdi);
11673 kvm_rsp_write(vcpu, regs->rsp);
11674 kvm_rbp_write(vcpu, regs->rbp);
11675 #ifdef CONFIG_X86_64
11676 kvm_r8_write(vcpu, regs->r8);
11677 kvm_r9_write(vcpu, regs->r9);
11678 kvm_r10_write(vcpu, regs->r10);
11679 kvm_r11_write(vcpu, regs->r11);
11680 kvm_r12_write(vcpu, regs->r12);
11681 kvm_r13_write(vcpu, regs->r13);
11682 kvm_r14_write(vcpu, regs->r14);
11683 kvm_r15_write(vcpu, regs->r15);
11684 #endif
11685
11686 kvm_rip_write(vcpu, regs->rip);
11687 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11688
11689 vcpu->arch.exception.pending = false;
11690 vcpu->arch.exception_vmexit.pending = false;
11691
11692 kvm_make_request(KVM_REQ_EVENT, vcpu);
11693 }
11694
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11695 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11696 {
11697 if (vcpu->kvm->arch.has_protected_state &&
11698 vcpu->arch.guest_state_protected)
11699 return -EINVAL;
11700
11701 vcpu_load(vcpu);
11702 __set_regs(vcpu, regs);
11703 vcpu_put(vcpu);
11704 return 0;
11705 }
11706
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11707 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11708 {
11709 struct desc_ptr dt;
11710
11711 if (vcpu->arch.guest_state_protected)
11712 goto skip_protected_regs;
11713
11714 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11715 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11716 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11717 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11718 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11719 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11720
11721 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11722 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11723
11724 kvm_x86_call(get_idt)(vcpu, &dt);
11725 sregs->idt.limit = dt.size;
11726 sregs->idt.base = dt.address;
11727 kvm_x86_call(get_gdt)(vcpu, &dt);
11728 sregs->gdt.limit = dt.size;
11729 sregs->gdt.base = dt.address;
11730
11731 sregs->cr2 = vcpu->arch.cr2;
11732 sregs->cr3 = kvm_read_cr3(vcpu);
11733
11734 skip_protected_regs:
11735 sregs->cr0 = kvm_read_cr0(vcpu);
11736 sregs->cr4 = kvm_read_cr4(vcpu);
11737 sregs->cr8 = kvm_get_cr8(vcpu);
11738 sregs->efer = vcpu->arch.efer;
11739 sregs->apic_base = vcpu->arch.apic_base;
11740 }
11741
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11742 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11743 {
11744 __get_sregs_common(vcpu, sregs);
11745
11746 if (vcpu->arch.guest_state_protected)
11747 return;
11748
11749 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11750 set_bit(vcpu->arch.interrupt.nr,
11751 (unsigned long *)sregs->interrupt_bitmap);
11752 }
11753
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11754 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11755 {
11756 int i;
11757
11758 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11759
11760 if (vcpu->arch.guest_state_protected)
11761 return;
11762
11763 if (is_pae_paging(vcpu)) {
11764 for (i = 0 ; i < 4 ; i++)
11765 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11766 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11767 }
11768 }
11769
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11771 struct kvm_sregs *sregs)
11772 {
11773 if (vcpu->kvm->arch.has_protected_state &&
11774 vcpu->arch.guest_state_protected)
11775 return -EINVAL;
11776
11777 vcpu_load(vcpu);
11778 __get_sregs(vcpu, sregs);
11779 vcpu_put(vcpu);
11780 return 0;
11781 }
11782
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11783 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11784 struct kvm_mp_state *mp_state)
11785 {
11786 int r;
11787
11788 vcpu_load(vcpu);
11789 if (kvm_mpx_supported())
11790 kvm_load_guest_fpu(vcpu);
11791
11792 kvm_vcpu_srcu_read_lock(vcpu);
11793
11794 r = kvm_apic_accept_events(vcpu);
11795 if (r < 0)
11796 goto out;
11797 r = 0;
11798
11799 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11800 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11801 vcpu->arch.pv.pv_unhalted)
11802 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11803 else
11804 mp_state->mp_state = vcpu->arch.mp_state;
11805
11806 out:
11807 kvm_vcpu_srcu_read_unlock(vcpu);
11808
11809 if (kvm_mpx_supported())
11810 kvm_put_guest_fpu(vcpu);
11811 vcpu_put(vcpu);
11812 return r;
11813 }
11814
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11815 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11816 struct kvm_mp_state *mp_state)
11817 {
11818 int ret = -EINVAL;
11819
11820 vcpu_load(vcpu);
11821
11822 switch (mp_state->mp_state) {
11823 case KVM_MP_STATE_UNINITIALIZED:
11824 case KVM_MP_STATE_HALTED:
11825 case KVM_MP_STATE_AP_RESET_HOLD:
11826 case KVM_MP_STATE_INIT_RECEIVED:
11827 case KVM_MP_STATE_SIPI_RECEIVED:
11828 if (!lapic_in_kernel(vcpu))
11829 goto out;
11830 break;
11831
11832 case KVM_MP_STATE_RUNNABLE:
11833 break;
11834
11835 default:
11836 goto out;
11837 }
11838
11839 /*
11840 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11841 * forcing the guest into INIT/SIPI if those events are supposed to be
11842 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11843 * if an SMI is pending as well.
11844 */
11845 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11846 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11847 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11848 goto out;
11849
11850 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11851 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
11852 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11853 } else
11854 kvm_set_mp_state(vcpu, mp_state->mp_state);
11855 kvm_make_request(KVM_REQ_EVENT, vcpu);
11856
11857 ret = 0;
11858 out:
11859 vcpu_put(vcpu);
11860 return ret;
11861 }
11862
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11863 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11864 int reason, bool has_error_code, u32 error_code)
11865 {
11866 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11867 int ret;
11868
11869 init_emulate_ctxt(vcpu);
11870
11871 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11872 has_error_code, error_code);
11873
11874 /*
11875 * Report an error userspace if MMIO is needed, as KVM doesn't support
11876 * MMIO during a task switch (or any other complex operation).
11877 */
11878 if (ret || vcpu->mmio_needed) {
11879 vcpu->mmio_needed = false;
11880 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11881 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11882 vcpu->run->internal.ndata = 0;
11883 return 0;
11884 }
11885
11886 kvm_rip_write(vcpu, ctxt->eip);
11887 kvm_set_rflags(vcpu, ctxt->eflags);
11888 return 1;
11889 }
11890 EXPORT_SYMBOL_GPL(kvm_task_switch);
11891
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11892 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11893 {
11894 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11895 /*
11896 * When EFER.LME and CR0.PG are set, the processor is in
11897 * 64-bit mode (though maybe in a 32-bit code segment).
11898 * CR4.PAE and EFER.LMA must be set.
11899 */
11900 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11901 return false;
11902 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11903 return false;
11904 } else {
11905 /*
11906 * Not in 64-bit mode: EFER.LMA is clear and the code
11907 * segment cannot be 64-bit.
11908 */
11909 if (sregs->efer & EFER_LMA || sregs->cs.l)
11910 return false;
11911 }
11912
11913 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11914 kvm_is_valid_cr0(vcpu, sregs->cr0);
11915 }
11916
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11917 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11918 int *mmu_reset_needed, bool update_pdptrs)
11919 {
11920 int idx;
11921 struct desc_ptr dt;
11922
11923 if (!kvm_is_valid_sregs(vcpu, sregs))
11924 return -EINVAL;
11925
11926 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11927 return -EINVAL;
11928
11929 if (vcpu->arch.guest_state_protected)
11930 return 0;
11931
11932 dt.size = sregs->idt.limit;
11933 dt.address = sregs->idt.base;
11934 kvm_x86_call(set_idt)(vcpu, &dt);
11935 dt.size = sregs->gdt.limit;
11936 dt.address = sregs->gdt.base;
11937 kvm_x86_call(set_gdt)(vcpu, &dt);
11938
11939 vcpu->arch.cr2 = sregs->cr2;
11940 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11941 vcpu->arch.cr3 = sregs->cr3;
11942 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11943 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11944
11945 kvm_set_cr8(vcpu, sregs->cr8);
11946
11947 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11948 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11949
11950 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11951 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11952
11953 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11954 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11955
11956 if (update_pdptrs) {
11957 idx = srcu_read_lock(&vcpu->kvm->srcu);
11958 if (is_pae_paging(vcpu)) {
11959 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11960 *mmu_reset_needed = 1;
11961 }
11962 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11963 }
11964
11965 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11966 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11967 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11968 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11969 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11970 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11971
11972 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11973 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11974
11975 update_cr8_intercept(vcpu);
11976
11977 /* Older userspace won't unhalt the vcpu on reset. */
11978 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11979 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11980 !is_protmode(vcpu))
11981 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11982
11983 return 0;
11984 }
11985
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11986 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11987 {
11988 int pending_vec, max_bits;
11989 int mmu_reset_needed = 0;
11990 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11991
11992 if (ret)
11993 return ret;
11994
11995 if (mmu_reset_needed) {
11996 kvm_mmu_reset_context(vcpu);
11997 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11998 }
11999
12000 max_bits = KVM_NR_INTERRUPTS;
12001 pending_vec = find_first_bit(
12002 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12003
12004 if (pending_vec < max_bits) {
12005 kvm_queue_interrupt(vcpu, pending_vec, false);
12006 pr_debug("Set back pending irq %d\n", pending_vec);
12007 kvm_make_request(KVM_REQ_EVENT, vcpu);
12008 }
12009 return 0;
12010 }
12011
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12012 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12013 {
12014 int mmu_reset_needed = 0;
12015 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12016 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12017 !(sregs2->efer & EFER_LMA);
12018 int i, ret;
12019
12020 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12021 return -EINVAL;
12022
12023 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12024 return -EINVAL;
12025
12026 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12027 &mmu_reset_needed, !valid_pdptrs);
12028 if (ret)
12029 return ret;
12030
12031 if (valid_pdptrs) {
12032 for (i = 0; i < 4 ; i++)
12033 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12034
12035 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12036 mmu_reset_needed = 1;
12037 vcpu->arch.pdptrs_from_userspace = true;
12038 }
12039 if (mmu_reset_needed) {
12040 kvm_mmu_reset_context(vcpu);
12041 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12042 }
12043 return 0;
12044 }
12045
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12046 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12047 struct kvm_sregs *sregs)
12048 {
12049 int ret;
12050
12051 if (vcpu->kvm->arch.has_protected_state &&
12052 vcpu->arch.guest_state_protected)
12053 return -EINVAL;
12054
12055 vcpu_load(vcpu);
12056 ret = __set_sregs(vcpu, sregs);
12057 vcpu_put(vcpu);
12058 return ret;
12059 }
12060
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12061 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12062 {
12063 bool set = false;
12064 struct kvm_vcpu *vcpu;
12065 unsigned long i;
12066
12067 if (!enable_apicv)
12068 return;
12069
12070 down_write(&kvm->arch.apicv_update_lock);
12071
12072 kvm_for_each_vcpu(i, vcpu, kvm) {
12073 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12074 set = true;
12075 break;
12076 }
12077 }
12078 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12079 up_write(&kvm->arch.apicv_update_lock);
12080 }
12081
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12082 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12083 struct kvm_guest_debug *dbg)
12084 {
12085 unsigned long rflags;
12086 int i, r;
12087
12088 if (vcpu->arch.guest_state_protected)
12089 return -EINVAL;
12090
12091 vcpu_load(vcpu);
12092
12093 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12094 r = -EBUSY;
12095 if (kvm_is_exception_pending(vcpu))
12096 goto out;
12097 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12098 kvm_queue_exception(vcpu, DB_VECTOR);
12099 else
12100 kvm_queue_exception(vcpu, BP_VECTOR);
12101 }
12102
12103 /*
12104 * Read rflags as long as potentially injected trace flags are still
12105 * filtered out.
12106 */
12107 rflags = kvm_get_rflags(vcpu);
12108
12109 vcpu->guest_debug = dbg->control;
12110 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12111 vcpu->guest_debug = 0;
12112
12113 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12114 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12115 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12116 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12117 } else {
12118 for (i = 0; i < KVM_NR_DB_REGS; i++)
12119 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12120 }
12121 kvm_update_dr7(vcpu);
12122
12123 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12124 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12125
12126 /*
12127 * Trigger an rflags update that will inject or remove the trace
12128 * flags.
12129 */
12130 kvm_set_rflags(vcpu, rflags);
12131
12132 kvm_x86_call(update_exception_bitmap)(vcpu);
12133
12134 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12135
12136 r = 0;
12137
12138 out:
12139 vcpu_put(vcpu);
12140 return r;
12141 }
12142
12143 /*
12144 * Translate a guest virtual address to a guest physical address.
12145 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12146 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12147 struct kvm_translation *tr)
12148 {
12149 unsigned long vaddr = tr->linear_address;
12150 gpa_t gpa;
12151 int idx;
12152
12153 vcpu_load(vcpu);
12154
12155 idx = srcu_read_lock(&vcpu->kvm->srcu);
12156 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12157 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12158 tr->physical_address = gpa;
12159 tr->valid = gpa != INVALID_GPA;
12160 tr->writeable = 1;
12161 tr->usermode = 0;
12162
12163 vcpu_put(vcpu);
12164 return 0;
12165 }
12166
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12167 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12168 {
12169 struct fxregs_state *fxsave;
12170
12171 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12172 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12173
12174 vcpu_load(vcpu);
12175
12176 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12177 memcpy(fpu->fpr, fxsave->st_space, 128);
12178 fpu->fcw = fxsave->cwd;
12179 fpu->fsw = fxsave->swd;
12180 fpu->ftwx = fxsave->twd;
12181 fpu->last_opcode = fxsave->fop;
12182 fpu->last_ip = fxsave->rip;
12183 fpu->last_dp = fxsave->rdp;
12184 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12185
12186 vcpu_put(vcpu);
12187 return 0;
12188 }
12189
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12190 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12191 {
12192 struct fxregs_state *fxsave;
12193
12194 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12195 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12196
12197 vcpu_load(vcpu);
12198
12199 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12200
12201 memcpy(fxsave->st_space, fpu->fpr, 128);
12202 fxsave->cwd = fpu->fcw;
12203 fxsave->swd = fpu->fsw;
12204 fxsave->twd = fpu->ftwx;
12205 fxsave->fop = fpu->last_opcode;
12206 fxsave->rip = fpu->last_ip;
12207 fxsave->rdp = fpu->last_dp;
12208 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12209
12210 vcpu_put(vcpu);
12211 return 0;
12212 }
12213
store_regs(struct kvm_vcpu * vcpu)12214 static void store_regs(struct kvm_vcpu *vcpu)
12215 {
12216 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12217
12218 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12219 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12220
12221 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12222 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12223
12224 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12225 kvm_vcpu_ioctl_x86_get_vcpu_events(
12226 vcpu, &vcpu->run->s.regs.events);
12227 }
12228
sync_regs(struct kvm_vcpu * vcpu)12229 static int sync_regs(struct kvm_vcpu *vcpu)
12230 {
12231 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12232 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12233 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12234 }
12235
12236 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12237 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12238
12239 if (__set_sregs(vcpu, &sregs))
12240 return -EINVAL;
12241
12242 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12243 }
12244
12245 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12246 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12247
12248 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12249 return -EINVAL;
12250
12251 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12252 }
12253
12254 return 0;
12255 }
12256
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12257 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12258 {
12259 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12260 pr_warn_once("SMP vm created on host with unstable TSC; "
12261 "guest TSC will not be reliable\n");
12262
12263 if (!kvm->arch.max_vcpu_ids)
12264 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12265
12266 if (id >= kvm->arch.max_vcpu_ids)
12267 return -EINVAL;
12268
12269 return kvm_x86_call(vcpu_precreate)(kvm);
12270 }
12271
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12272 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12273 {
12274 struct page *page;
12275 int r;
12276
12277 vcpu->arch.last_vmentry_cpu = -1;
12278 vcpu->arch.regs_avail = ~0;
12279 vcpu->arch.regs_dirty = ~0;
12280
12281 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12282
12283 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12284 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12285 else
12286 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12287
12288 r = kvm_mmu_create(vcpu);
12289 if (r < 0)
12290 return r;
12291
12292 r = kvm_create_lapic(vcpu);
12293 if (r < 0)
12294 goto fail_mmu_destroy;
12295
12296 r = -ENOMEM;
12297
12298 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12299 if (!page)
12300 goto fail_free_lapic;
12301 vcpu->arch.pio_data = page_address(page);
12302
12303 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12304 GFP_KERNEL_ACCOUNT);
12305 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12306 GFP_KERNEL_ACCOUNT);
12307 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12308 goto fail_free_mce_banks;
12309 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12310
12311 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12312 GFP_KERNEL_ACCOUNT))
12313 goto fail_free_mce_banks;
12314
12315 if (!alloc_emulate_ctxt(vcpu))
12316 goto free_wbinvd_dirty_mask;
12317
12318 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12319 pr_err("failed to allocate vcpu's fpu\n");
12320 goto free_emulate_ctxt;
12321 }
12322
12323 kvm_async_pf_hash_reset(vcpu);
12324
12325 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12326 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12327 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12328 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12329 }
12330 kvm_pmu_init(vcpu);
12331
12332 vcpu->arch.pending_external_vector = -1;
12333 vcpu->arch.preempted_in_kernel = false;
12334
12335 #if IS_ENABLED(CONFIG_HYPERV)
12336 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12337 #endif
12338
12339 r = kvm_x86_call(vcpu_create)(vcpu);
12340 if (r)
12341 goto free_guest_fpu;
12342
12343 kvm_xen_init_vcpu(vcpu);
12344 vcpu_load(vcpu);
12345 kvm_vcpu_after_set_cpuid(vcpu);
12346 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12347 kvm_vcpu_reset(vcpu, false);
12348 kvm_init_mmu(vcpu);
12349 vcpu_put(vcpu);
12350 return 0;
12351
12352 free_guest_fpu:
12353 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12354 free_emulate_ctxt:
12355 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12356 free_wbinvd_dirty_mask:
12357 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12358 fail_free_mce_banks:
12359 kfree(vcpu->arch.mce_banks);
12360 kfree(vcpu->arch.mci_ctl2_banks);
12361 free_page((unsigned long)vcpu->arch.pio_data);
12362 fail_free_lapic:
12363 kvm_free_lapic(vcpu);
12364 fail_mmu_destroy:
12365 kvm_mmu_destroy(vcpu);
12366 return r;
12367 }
12368
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12369 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12370 {
12371 struct kvm *kvm = vcpu->kvm;
12372
12373 if (mutex_lock_killable(&vcpu->mutex))
12374 return;
12375 vcpu_load(vcpu);
12376 kvm_synchronize_tsc(vcpu, NULL);
12377 vcpu_put(vcpu);
12378
12379 /* poll control enabled by default */
12380 vcpu->arch.msr_kvm_poll_control = 1;
12381
12382 mutex_unlock(&vcpu->mutex);
12383
12384 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12385 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12386 KVMCLOCK_SYNC_PERIOD);
12387 }
12388
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12390 {
12391 int idx;
12392
12393 kvm_clear_async_pf_completion_queue(vcpu);
12394 kvm_mmu_unload(vcpu);
12395
12396 kvmclock_reset(vcpu);
12397
12398 kvm_x86_call(vcpu_free)(vcpu);
12399
12400 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12401 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12402 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12403
12404 kvm_xen_destroy_vcpu(vcpu);
12405 kvm_hv_vcpu_uninit(vcpu);
12406 kvm_pmu_destroy(vcpu);
12407 kfree(vcpu->arch.mce_banks);
12408 kfree(vcpu->arch.mci_ctl2_banks);
12409 kvm_free_lapic(vcpu);
12410 idx = srcu_read_lock(&vcpu->kvm->srcu);
12411 kvm_mmu_destroy(vcpu);
12412 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12413 free_page((unsigned long)vcpu->arch.pio_data);
12414 kvfree(vcpu->arch.cpuid_entries);
12415 }
12416
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12417 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12418 {
12419 struct kvm_cpuid_entry2 *cpuid_0x1;
12420 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12421 unsigned long new_cr0;
12422
12423 /*
12424 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12425 * to handle side effects. RESET emulation hits those flows and relies
12426 * on emulated/virtualized registers, including those that are loaded
12427 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12428 * to detect improper or missing initialization.
12429 */
12430 WARN_ON_ONCE(!init_event &&
12431 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12432
12433 /*
12434 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12435 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12436 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12437 * bits), i.e. virtualization is disabled.
12438 */
12439 if (is_guest_mode(vcpu))
12440 kvm_leave_nested(vcpu);
12441
12442 kvm_lapic_reset(vcpu, init_event);
12443
12444 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12445 vcpu->arch.hflags = 0;
12446
12447 vcpu->arch.smi_pending = 0;
12448 vcpu->arch.smi_count = 0;
12449 atomic_set(&vcpu->arch.nmi_queued, 0);
12450 vcpu->arch.nmi_pending = 0;
12451 vcpu->arch.nmi_injected = false;
12452 kvm_clear_interrupt_queue(vcpu);
12453 kvm_clear_exception_queue(vcpu);
12454
12455 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12456 kvm_update_dr0123(vcpu);
12457 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12458 vcpu->arch.dr7 = DR7_FIXED_1;
12459 kvm_update_dr7(vcpu);
12460
12461 vcpu->arch.cr2 = 0;
12462
12463 kvm_make_request(KVM_REQ_EVENT, vcpu);
12464 vcpu->arch.apf.msr_en_val = 0;
12465 vcpu->arch.apf.msr_int_val = 0;
12466 vcpu->arch.st.msr_val = 0;
12467
12468 kvmclock_reset(vcpu);
12469
12470 kvm_clear_async_pf_completion_queue(vcpu);
12471 kvm_async_pf_hash_reset(vcpu);
12472 vcpu->arch.apf.halted = false;
12473
12474 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12475 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12476
12477 /*
12478 * All paths that lead to INIT are required to load the guest's
12479 * FPU state (because most paths are buried in KVM_RUN).
12480 */
12481 if (init_event)
12482 kvm_put_guest_fpu(vcpu);
12483
12484 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12485 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12486
12487 if (init_event)
12488 kvm_load_guest_fpu(vcpu);
12489 }
12490
12491 if (!init_event) {
12492 vcpu->arch.smbase = 0x30000;
12493
12494 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12495
12496 vcpu->arch.msr_misc_features_enables = 0;
12497 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12498 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12499
12500 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12501 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12502 }
12503
12504 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12505 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12506 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12507
12508 /*
12509 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12510 * if no CPUID match is found. Note, it's impossible to get a match at
12511 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12512 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12513 * on RESET. But, go through the motions in case that's ever remedied.
12514 */
12515 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12516 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12517
12518 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12519
12520 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12521 kvm_rip_write(vcpu, 0xfff0);
12522
12523 vcpu->arch.cr3 = 0;
12524 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12525
12526 /*
12527 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12528 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12529 * (or qualify) that with a footnote stating that CD/NW are preserved.
12530 */
12531 new_cr0 = X86_CR0_ET;
12532 if (init_event)
12533 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12534 else
12535 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12536
12537 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12538 kvm_x86_call(set_cr4)(vcpu, 0);
12539 kvm_x86_call(set_efer)(vcpu, 0);
12540 kvm_x86_call(update_exception_bitmap)(vcpu);
12541
12542 /*
12543 * On the standard CR0/CR4/EFER modification paths, there are several
12544 * complex conditions determining whether the MMU has to be reset and/or
12545 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12546 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12547 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12548 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12549 */
12550 if (old_cr0 & X86_CR0_PG) {
12551 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12552 kvm_mmu_reset_context(vcpu);
12553 }
12554
12555 /*
12556 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12557 * APM states the TLBs are untouched by INIT, but it also states that
12558 * the TLBs are flushed on "External initialization of the processor."
12559 * Flush the guest TLB regardless of vendor, there is no meaningful
12560 * benefit in relying on the guest to flush the TLB immediately after
12561 * INIT. A spurious TLB flush is benign and likely negligible from a
12562 * performance perspective.
12563 */
12564 if (init_event)
12565 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12566 }
12567 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12568
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12569 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12570 {
12571 struct kvm_segment cs;
12572
12573 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12574 cs.selector = vector << 8;
12575 cs.base = vector << 12;
12576 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12577 kvm_rip_write(vcpu, 0);
12578 }
12579 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12580
kvm_arch_enable_virtualization(void)12581 void kvm_arch_enable_virtualization(void)
12582 {
12583 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12584 }
12585
kvm_arch_disable_virtualization(void)12586 void kvm_arch_disable_virtualization(void)
12587 {
12588 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12589 }
12590
kvm_arch_enable_virtualization_cpu(void)12591 int kvm_arch_enable_virtualization_cpu(void)
12592 {
12593 struct kvm *kvm;
12594 struct kvm_vcpu *vcpu;
12595 unsigned long i;
12596 int ret;
12597 u64 local_tsc;
12598 u64 max_tsc = 0;
12599 bool stable, backwards_tsc = false;
12600
12601 kvm_user_return_msr_cpu_online();
12602
12603 ret = kvm_x86_check_processor_compatibility();
12604 if (ret)
12605 return ret;
12606
12607 ret = kvm_x86_call(enable_virtualization_cpu)();
12608 if (ret != 0)
12609 return ret;
12610
12611 local_tsc = rdtsc();
12612 stable = !kvm_check_tsc_unstable();
12613 list_for_each_entry(kvm, &vm_list, vm_list) {
12614 kvm_for_each_vcpu(i, vcpu, kvm) {
12615 if (!stable && vcpu->cpu == smp_processor_id())
12616 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12617 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12618 backwards_tsc = true;
12619 if (vcpu->arch.last_host_tsc > max_tsc)
12620 max_tsc = vcpu->arch.last_host_tsc;
12621 }
12622 }
12623 }
12624
12625 /*
12626 * Sometimes, even reliable TSCs go backwards. This happens on
12627 * platforms that reset TSC during suspend or hibernate actions, but
12628 * maintain synchronization. We must compensate. Fortunately, we can
12629 * detect that condition here, which happens early in CPU bringup,
12630 * before any KVM threads can be running. Unfortunately, we can't
12631 * bring the TSCs fully up to date with real time, as we aren't yet far
12632 * enough into CPU bringup that we know how much real time has actually
12633 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12634 * variables that haven't been updated yet.
12635 *
12636 * So we simply find the maximum observed TSC above, then record the
12637 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12638 * the adjustment will be applied. Note that we accumulate
12639 * adjustments, in case multiple suspend cycles happen before some VCPU
12640 * gets a chance to run again. In the event that no KVM threads get a
12641 * chance to run, we will miss the entire elapsed period, as we'll have
12642 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12643 * loose cycle time. This isn't too big a deal, since the loss will be
12644 * uniform across all VCPUs (not to mention the scenario is extremely
12645 * unlikely). It is possible that a second hibernate recovery happens
12646 * much faster than a first, causing the observed TSC here to be
12647 * smaller; this would require additional padding adjustment, which is
12648 * why we set last_host_tsc to the local tsc observed here.
12649 *
12650 * N.B. - this code below runs only on platforms with reliable TSC,
12651 * as that is the only way backwards_tsc is set above. Also note
12652 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12653 * have the same delta_cyc adjustment applied if backwards_tsc
12654 * is detected. Note further, this adjustment is only done once,
12655 * as we reset last_host_tsc on all VCPUs to stop this from being
12656 * called multiple times (one for each physical CPU bringup).
12657 *
12658 * Platforms with unreliable TSCs don't have to deal with this, they
12659 * will be compensated by the logic in vcpu_load, which sets the TSC to
12660 * catchup mode. This will catchup all VCPUs to real time, but cannot
12661 * guarantee that they stay in perfect synchronization.
12662 */
12663 if (backwards_tsc) {
12664 u64 delta_cyc = max_tsc - local_tsc;
12665 list_for_each_entry(kvm, &vm_list, vm_list) {
12666 kvm->arch.backwards_tsc_observed = true;
12667 kvm_for_each_vcpu(i, vcpu, kvm) {
12668 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12669 vcpu->arch.last_host_tsc = local_tsc;
12670 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12671 }
12672
12673 /*
12674 * We have to disable TSC offset matching.. if you were
12675 * booting a VM while issuing an S4 host suspend....
12676 * you may have some problem. Solving this issue is
12677 * left as an exercise to the reader.
12678 */
12679 kvm->arch.last_tsc_nsec = 0;
12680 kvm->arch.last_tsc_write = 0;
12681 }
12682
12683 }
12684 return 0;
12685 }
12686
kvm_arch_disable_virtualization_cpu(void)12687 void kvm_arch_disable_virtualization_cpu(void)
12688 {
12689 kvm_x86_call(disable_virtualization_cpu)();
12690 drop_user_return_notifiers();
12691 }
12692
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12693 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12694 {
12695 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12696 }
12697
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12698 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12699 {
12700 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12701 }
12702
kvm_arch_free_vm(struct kvm * kvm)12703 void kvm_arch_free_vm(struct kvm *kvm)
12704 {
12705 #if IS_ENABLED(CONFIG_HYPERV)
12706 kfree(kvm->arch.hv_pa_pg);
12707 #endif
12708 __kvm_arch_free_vm(kvm);
12709 }
12710
12711
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12712 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12713 {
12714 int ret;
12715 unsigned long flags;
12716
12717 if (!kvm_is_vm_type_supported(type))
12718 return -EINVAL;
12719
12720 kvm->arch.vm_type = type;
12721 kvm->arch.has_private_mem =
12722 (type == KVM_X86_SW_PROTECTED_VM);
12723 /* Decided by the vendor code for other VM types. */
12724 kvm->arch.pre_fault_allowed =
12725 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12726
12727 ret = kvm_page_track_init(kvm);
12728 if (ret)
12729 goto out;
12730
12731 kvm_mmu_init_vm(kvm);
12732
12733 ret = kvm_x86_call(vm_init)(kvm);
12734 if (ret)
12735 goto out_uninit_mmu;
12736
12737 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12738 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12739
12740 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12741 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12742 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12743 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12744 &kvm->arch.irq_sources_bitmap);
12745
12746 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12747 mutex_init(&kvm->arch.apic_map_lock);
12748 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12749 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12750
12751 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12752 pvclock_update_vm_gtod_copy(kvm);
12753 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12754
12755 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12756 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12757 kvm->arch.guest_can_read_msr_platform_info = true;
12758 kvm->arch.enable_pmu = enable_pmu;
12759
12760 #if IS_ENABLED(CONFIG_HYPERV)
12761 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12762 kvm->arch.hv_root_tdp = INVALID_PAGE;
12763 #endif
12764
12765 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12766 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12767
12768 kvm_apicv_init(kvm);
12769 kvm_hv_init_vm(kvm);
12770 kvm_xen_init_vm(kvm);
12771
12772 if (ignore_msrs && !report_ignored_msrs) {
12773 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12774 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12775 "may cause the guest operating system to hang or produce errors. If a guest\n"
12776 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12777 }
12778
12779 once_init(&kvm->arch.nx_once);
12780 return 0;
12781
12782 out_uninit_mmu:
12783 kvm_mmu_uninit_vm(kvm);
12784 kvm_page_track_cleanup(kvm);
12785 out:
12786 return ret;
12787 }
12788
12789 /**
12790 * __x86_set_memory_region: Setup KVM internal memory slot
12791 *
12792 * @kvm: the kvm pointer to the VM.
12793 * @id: the slot ID to setup.
12794 * @gpa: the GPA to install the slot (unused when @size == 0).
12795 * @size: the size of the slot. Set to zero to uninstall a slot.
12796 *
12797 * This function helps to setup a KVM internal memory slot. Specify
12798 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12799 * slot. The return code can be one of the following:
12800 *
12801 * HVA: on success (uninstall will return a bogus HVA)
12802 * -errno: on error
12803 *
12804 * The caller should always use IS_ERR() to check the return value
12805 * before use. Note, the KVM internal memory slots are guaranteed to
12806 * remain valid and unchanged until the VM is destroyed, i.e., the
12807 * GPA->HVA translation will not change. However, the HVA is a user
12808 * address, i.e. its accessibility is not guaranteed, and must be
12809 * accessed via __copy_{to,from}_user().
12810 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12811 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12812 u32 size)
12813 {
12814 int i, r;
12815 unsigned long hva, old_npages;
12816 struct kvm_memslots *slots = kvm_memslots(kvm);
12817 struct kvm_memory_slot *slot;
12818
12819 lockdep_assert_held(&kvm->slots_lock);
12820
12821 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12822 return ERR_PTR_USR(-EINVAL);
12823
12824 slot = id_to_memslot(slots, id);
12825 if (size) {
12826 if (slot && slot->npages)
12827 return ERR_PTR_USR(-EEXIST);
12828
12829 /*
12830 * MAP_SHARED to prevent internal slot pages from being moved
12831 * by fork()/COW.
12832 */
12833 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12834 MAP_SHARED | MAP_ANONYMOUS, 0);
12835 if (IS_ERR_VALUE(hva))
12836 return (void __user *)hva;
12837 } else {
12838 if (!slot || !slot->npages)
12839 return NULL;
12840
12841 old_npages = slot->npages;
12842 hva = slot->userspace_addr;
12843 }
12844
12845 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12846 struct kvm_userspace_memory_region2 m;
12847
12848 m.slot = id | (i << 16);
12849 m.flags = 0;
12850 m.guest_phys_addr = gpa;
12851 m.userspace_addr = hva;
12852 m.memory_size = size;
12853 r = kvm_set_internal_memslot(kvm, &m);
12854 if (r < 0)
12855 return ERR_PTR_USR(r);
12856 }
12857
12858 if (!size)
12859 vm_munmap(hva, old_npages * PAGE_SIZE);
12860
12861 return (void __user *)hva;
12862 }
12863 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12864
kvm_arch_pre_destroy_vm(struct kvm * kvm)12865 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12866 {
12867 /*
12868 * Stop all background workers and kthreads before destroying vCPUs, as
12869 * iterating over vCPUs in a different task while vCPUs are being freed
12870 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
12871 * be stopped before IRQ routing is freed.
12872 */
12873 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12874 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12875
12876 kvm_free_pit(kvm);
12877
12878 kvm_mmu_pre_destroy_vm(kvm);
12879 }
12880
kvm_arch_destroy_vm(struct kvm * kvm)12881 void kvm_arch_destroy_vm(struct kvm *kvm)
12882 {
12883 if (current->mm == kvm->mm) {
12884 /*
12885 * Free memory regions allocated on behalf of userspace,
12886 * unless the memory map has changed due to process exit
12887 * or fd copying.
12888 */
12889 mutex_lock(&kvm->slots_lock);
12890 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12891 0, 0);
12892 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12893 0, 0);
12894 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12895 mutex_unlock(&kvm->slots_lock);
12896 }
12897 kvm_destroy_vcpus(kvm);
12898 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12899 kvm_pic_destroy(kvm);
12900 kvm_ioapic_destroy(kvm);
12901 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12902 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12903 kvm_mmu_uninit_vm(kvm);
12904 kvm_page_track_cleanup(kvm);
12905 kvm_xen_destroy_vm(kvm);
12906 kvm_hv_destroy_vm(kvm);
12907 kvm_x86_call(vm_destroy)(kvm);
12908 }
12909
memslot_rmap_free(struct kvm_memory_slot * slot)12910 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12911 {
12912 int i;
12913
12914 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12915 vfree(slot->arch.rmap[i]);
12916 slot->arch.rmap[i] = NULL;
12917 }
12918 }
12919
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12920 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12921 {
12922 int i;
12923
12924 memslot_rmap_free(slot);
12925
12926 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12927 vfree(slot->arch.lpage_info[i - 1]);
12928 slot->arch.lpage_info[i - 1] = NULL;
12929 }
12930
12931 kvm_page_track_free_memslot(slot);
12932 }
12933
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12934 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12935 {
12936 const int sz = sizeof(*slot->arch.rmap[0]);
12937 int i;
12938
12939 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12940 int level = i + 1;
12941 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12942
12943 if (slot->arch.rmap[i])
12944 continue;
12945
12946 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12947 if (!slot->arch.rmap[i]) {
12948 memslot_rmap_free(slot);
12949 return -ENOMEM;
12950 }
12951 }
12952
12953 return 0;
12954 }
12955
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12956 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12957 struct kvm_memory_slot *slot)
12958 {
12959 unsigned long npages = slot->npages;
12960 int i, r;
12961
12962 /*
12963 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12964 * old arrays will be freed by kvm_set_memory_region() if installing
12965 * the new memslot is successful.
12966 */
12967 memset(&slot->arch, 0, sizeof(slot->arch));
12968
12969 if (kvm_memslots_have_rmaps(kvm)) {
12970 r = memslot_rmap_alloc(slot, npages);
12971 if (r)
12972 return r;
12973 }
12974
12975 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12976 struct kvm_lpage_info *linfo;
12977 unsigned long ugfn;
12978 int lpages;
12979 int level = i + 1;
12980
12981 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12982
12983 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12984 if (!linfo)
12985 goto out_free;
12986
12987 slot->arch.lpage_info[i - 1] = linfo;
12988
12989 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12990 linfo[0].disallow_lpage = 1;
12991 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12992 linfo[lpages - 1].disallow_lpage = 1;
12993 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12994 /*
12995 * If the gfn and userspace address are not aligned wrt each
12996 * other, disable large page support for this slot.
12997 */
12998 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12999 unsigned long j;
13000
13001 for (j = 0; j < lpages; ++j)
13002 linfo[j].disallow_lpage = 1;
13003 }
13004 }
13005
13006 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13007 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13008 #endif
13009
13010 if (kvm_page_track_create_memslot(kvm, slot, npages))
13011 goto out_free;
13012
13013 return 0;
13014
13015 out_free:
13016 memslot_rmap_free(slot);
13017
13018 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13019 vfree(slot->arch.lpage_info[i - 1]);
13020 slot->arch.lpage_info[i - 1] = NULL;
13021 }
13022 return -ENOMEM;
13023 }
13024
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13025 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13026 {
13027 struct kvm_vcpu *vcpu;
13028 unsigned long i;
13029
13030 /*
13031 * memslots->generation has been incremented.
13032 * mmio generation may have reached its maximum value.
13033 */
13034 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13035
13036 /* Force re-initialization of steal_time cache */
13037 kvm_for_each_vcpu(i, vcpu, kvm)
13038 kvm_vcpu_kick(vcpu);
13039 }
13040
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13041 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13042 const struct kvm_memory_slot *old,
13043 struct kvm_memory_slot *new,
13044 enum kvm_mr_change change)
13045 {
13046 /*
13047 * KVM doesn't support moving memslots when there are external page
13048 * trackers attached to the VM, i.e. if KVMGT is in use.
13049 */
13050 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13051 return -EINVAL;
13052
13053 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13054 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13055 return -EINVAL;
13056
13057 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13058 return -EINVAL;
13059
13060 return kvm_alloc_memslot_metadata(kvm, new);
13061 }
13062
13063 if (change == KVM_MR_FLAGS_ONLY)
13064 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13065 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13066 return -EIO;
13067
13068 return 0;
13069 }
13070
13071
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13072 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13073 {
13074 int nr_slots;
13075
13076 if (!kvm_x86_ops.cpu_dirty_log_size)
13077 return;
13078
13079 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13080 if ((enable && nr_slots == 1) || !nr_slots)
13081 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13082 }
13083
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13084 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13085 struct kvm_memory_slot *old,
13086 const struct kvm_memory_slot *new,
13087 enum kvm_mr_change change)
13088 {
13089 u32 old_flags = old ? old->flags : 0;
13090 u32 new_flags = new ? new->flags : 0;
13091 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13092
13093 /*
13094 * Update CPU dirty logging if dirty logging is being toggled. This
13095 * applies to all operations.
13096 */
13097 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13098 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13099
13100 /*
13101 * Nothing more to do for RO slots (which can't be dirtied and can't be
13102 * made writable) or CREATE/MOVE/DELETE of a slot.
13103 *
13104 * For a memslot with dirty logging disabled:
13105 * CREATE: No dirty mappings will already exist.
13106 * MOVE/DELETE: The old mappings will already have been cleaned up by
13107 * kvm_arch_flush_shadow_memslot()
13108 *
13109 * For a memslot with dirty logging enabled:
13110 * CREATE: No shadow pages exist, thus nothing to write-protect
13111 * and no dirty bits to clear.
13112 * MOVE/DELETE: The old mappings will already have been cleaned up by
13113 * kvm_arch_flush_shadow_memslot().
13114 */
13115 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13116 return;
13117
13118 /*
13119 * READONLY and non-flags changes were filtered out above, and the only
13120 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13121 * logging isn't being toggled on or off.
13122 */
13123 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13124 return;
13125
13126 if (!log_dirty_pages) {
13127 /*
13128 * Recover huge page mappings in the slot now that dirty logging
13129 * is disabled, i.e. now that KVM does not have to track guest
13130 * writes at 4KiB granularity.
13131 *
13132 * Dirty logging might be disabled by userspace if an ongoing VM
13133 * live migration is cancelled and the VM must continue running
13134 * on the source.
13135 */
13136 kvm_mmu_recover_huge_pages(kvm, new);
13137 } else {
13138 /*
13139 * Initially-all-set does not require write protecting any page,
13140 * because they're all assumed to be dirty.
13141 */
13142 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13143 return;
13144
13145 if (READ_ONCE(eager_page_split))
13146 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13147
13148 if (kvm_x86_ops.cpu_dirty_log_size) {
13149 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13150 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13151 } else {
13152 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13153 }
13154
13155 /*
13156 * Unconditionally flush the TLBs after enabling dirty logging.
13157 * A flush is almost always going to be necessary (see below),
13158 * and unconditionally flushing allows the helpers to omit
13159 * the subtly complex checks when removing write access.
13160 *
13161 * Do the flush outside of mmu_lock to reduce the amount of
13162 * time mmu_lock is held. Flushing after dropping mmu_lock is
13163 * safe as KVM only needs to guarantee the slot is fully
13164 * write-protected before returning to userspace, i.e. before
13165 * userspace can consume the dirty status.
13166 *
13167 * Flushing outside of mmu_lock requires KVM to be careful when
13168 * making decisions based on writable status of an SPTE, e.g. a
13169 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13170 *
13171 * Specifically, KVM also write-protects guest page tables to
13172 * monitor changes when using shadow paging, and must guarantee
13173 * no CPUs can write to those page before mmu_lock is dropped.
13174 * Because CPUs may have stale TLB entries at this point, a
13175 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13176 *
13177 * KVM also allows making SPTES writable outside of mmu_lock,
13178 * e.g. to allow dirty logging without taking mmu_lock.
13179 *
13180 * To handle these scenarios, KVM uses a separate software-only
13181 * bit (MMU-writable) to track if a SPTE is !writable due to
13182 * a guest page table being write-protected (KVM clears the
13183 * MMU-writable flag when write-protecting for shadow paging).
13184 *
13185 * The use of MMU-writable is also the primary motivation for
13186 * the unconditional flush. Because KVM must guarantee that a
13187 * CPU doesn't contain stale, writable TLB entries for a
13188 * !MMU-writable SPTE, KVM must flush if it encounters any
13189 * MMU-writable SPTE regardless of whether the actual hardware
13190 * writable bit was set. I.e. KVM is almost guaranteed to need
13191 * to flush, while unconditionally flushing allows the "remove
13192 * write access" helpers to ignore MMU-writable entirely.
13193 *
13194 * See is_writable_pte() for more details (the case involving
13195 * access-tracked SPTEs is particularly relevant).
13196 */
13197 kvm_flush_remote_tlbs_memslot(kvm, new);
13198 }
13199 }
13200
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13201 void kvm_arch_commit_memory_region(struct kvm *kvm,
13202 struct kvm_memory_slot *old,
13203 const struct kvm_memory_slot *new,
13204 enum kvm_mr_change change)
13205 {
13206 if (change == KVM_MR_DELETE)
13207 kvm_page_track_delete_slot(kvm, old);
13208
13209 if (!kvm->arch.n_requested_mmu_pages &&
13210 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13211 unsigned long nr_mmu_pages;
13212
13213 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13214 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13215 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13216 }
13217
13218 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13219
13220 /* Free the arrays associated with the old memslot. */
13221 if (change == KVM_MR_MOVE)
13222 kvm_arch_free_memslot(kvm, old);
13223 }
13224
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13225 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13226 {
13227 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13228
13229 if (vcpu->arch.guest_state_protected)
13230 return true;
13231
13232 return kvm_x86_call(get_cpl)(vcpu) == 0;
13233 }
13234
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13235 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13236 {
13237 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13238
13239 if (vcpu->arch.guest_state_protected)
13240 return 0;
13241
13242 return kvm_rip_read(vcpu);
13243 }
13244
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13245 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13246 {
13247 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13248 }
13249
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13250 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13251 {
13252 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13253 }
13254
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13255 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13256 {
13257 /* Can't read the RIP when guest state is protected, just return 0 */
13258 if (vcpu->arch.guest_state_protected)
13259 return 0;
13260
13261 if (is_64_bit_mode(vcpu))
13262 return kvm_rip_read(vcpu);
13263 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13264 kvm_rip_read(vcpu));
13265 }
13266 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13267
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13268 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13269 {
13270 return kvm_get_linear_rip(vcpu) == linear_rip;
13271 }
13272 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13273
kvm_get_rflags(struct kvm_vcpu * vcpu)13274 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13275 {
13276 unsigned long rflags;
13277
13278 rflags = kvm_x86_call(get_rflags)(vcpu);
13279 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13280 rflags &= ~X86_EFLAGS_TF;
13281 return rflags;
13282 }
13283 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13284
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13285 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13286 {
13287 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13288 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13289 rflags |= X86_EFLAGS_TF;
13290 kvm_x86_call(set_rflags)(vcpu, rflags);
13291 }
13292
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13293 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13294 {
13295 __kvm_set_rflags(vcpu, rflags);
13296 kvm_make_request(KVM_REQ_EVENT, vcpu);
13297 }
13298 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13299
kvm_async_pf_hash_fn(gfn_t gfn)13300 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13301 {
13302 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13303
13304 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13305 }
13306
kvm_async_pf_next_probe(u32 key)13307 static inline u32 kvm_async_pf_next_probe(u32 key)
13308 {
13309 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13310 }
13311
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13312 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13313 {
13314 u32 key = kvm_async_pf_hash_fn(gfn);
13315
13316 while (vcpu->arch.apf.gfns[key] != ~0)
13317 key = kvm_async_pf_next_probe(key);
13318
13319 vcpu->arch.apf.gfns[key] = gfn;
13320 }
13321
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13322 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13323 {
13324 int i;
13325 u32 key = kvm_async_pf_hash_fn(gfn);
13326
13327 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13328 (vcpu->arch.apf.gfns[key] != gfn &&
13329 vcpu->arch.apf.gfns[key] != ~0); i++)
13330 key = kvm_async_pf_next_probe(key);
13331
13332 return key;
13333 }
13334
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13335 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13336 {
13337 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13338 }
13339
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13340 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13341 {
13342 u32 i, j, k;
13343
13344 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13345
13346 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13347 return;
13348
13349 while (true) {
13350 vcpu->arch.apf.gfns[i] = ~0;
13351 do {
13352 j = kvm_async_pf_next_probe(j);
13353 if (vcpu->arch.apf.gfns[j] == ~0)
13354 return;
13355 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13356 /*
13357 * k lies cyclically in ]i,j]
13358 * | i.k.j |
13359 * |....j i.k.| or |.k..j i...|
13360 */
13361 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13362 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13363 i = j;
13364 }
13365 }
13366
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13367 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13368 {
13369 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13370
13371 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13372 sizeof(reason));
13373 }
13374
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13375 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13376 {
13377 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13378
13379 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13380 &token, offset, sizeof(token));
13381 }
13382
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13383 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13384 {
13385 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13386 u32 val;
13387
13388 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13389 &val, offset, sizeof(val)))
13390 return false;
13391
13392 return !val;
13393 }
13394
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13395 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13396 {
13397
13398 if (!kvm_pv_async_pf_enabled(vcpu))
13399 return false;
13400
13401 if (!vcpu->arch.apf.send_always &&
13402 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13403 return false;
13404
13405 if (is_guest_mode(vcpu)) {
13406 /*
13407 * L1 needs to opt into the special #PF vmexits that are
13408 * used to deliver async page faults.
13409 */
13410 return vcpu->arch.apf.delivery_as_pf_vmexit;
13411 } else {
13412 /*
13413 * Play it safe in case the guest temporarily disables paging.
13414 * The real mode IDT in particular is unlikely to have a #PF
13415 * exception setup.
13416 */
13417 return is_paging(vcpu);
13418 }
13419 }
13420
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13421 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13422 {
13423 if (unlikely(!lapic_in_kernel(vcpu) ||
13424 kvm_event_needs_reinjection(vcpu) ||
13425 kvm_is_exception_pending(vcpu)))
13426 return false;
13427
13428 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13429 return false;
13430
13431 /*
13432 * If interrupts are off we cannot even use an artificial
13433 * halt state.
13434 */
13435 return kvm_arch_interrupt_allowed(vcpu);
13436 }
13437
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13438 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13439 struct kvm_async_pf *work)
13440 {
13441 struct x86_exception fault;
13442
13443 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13444 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13445
13446 if (kvm_can_deliver_async_pf(vcpu) &&
13447 !apf_put_user_notpresent(vcpu)) {
13448 fault.vector = PF_VECTOR;
13449 fault.error_code_valid = true;
13450 fault.error_code = 0;
13451 fault.nested_page_fault = false;
13452 fault.address = work->arch.token;
13453 fault.async_page_fault = true;
13454 kvm_inject_page_fault(vcpu, &fault);
13455 return true;
13456 } else {
13457 /*
13458 * It is not possible to deliver a paravirtualized asynchronous
13459 * page fault, but putting the guest in an artificial halt state
13460 * can be beneficial nevertheless: if an interrupt arrives, we
13461 * can deliver it timely and perhaps the guest will schedule
13462 * another process. When the instruction that triggered a page
13463 * fault is retried, hopefully the page will be ready in the host.
13464 */
13465 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13466 return false;
13467 }
13468 }
13469
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13470 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13471 struct kvm_async_pf *work)
13472 {
13473 struct kvm_lapic_irq irq = {
13474 .delivery_mode = APIC_DM_FIXED,
13475 .vector = vcpu->arch.apf.vec
13476 };
13477
13478 if (work->wakeup_all)
13479 work->arch.token = ~0; /* broadcast wakeup */
13480 else
13481 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13482 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13483
13484 if ((work->wakeup_all || work->notpresent_injected) &&
13485 kvm_pv_async_pf_enabled(vcpu) &&
13486 !apf_put_user_ready(vcpu, work->arch.token)) {
13487 vcpu->arch.apf.pageready_pending = true;
13488 kvm_apic_set_irq(vcpu, &irq, NULL);
13489 }
13490
13491 vcpu->arch.apf.halted = false;
13492 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13493 }
13494
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13495 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13496 {
13497 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13498 if (!vcpu->arch.apf.pageready_pending)
13499 kvm_vcpu_kick(vcpu);
13500 }
13501
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13502 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13503 {
13504 if (!kvm_pv_async_pf_enabled(vcpu))
13505 return true;
13506 else
13507 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13508 }
13509
kvm_arch_start_assignment(struct kvm * kvm)13510 void kvm_arch_start_assignment(struct kvm *kvm)
13511 {
13512 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13513 kvm_x86_call(pi_start_assignment)(kvm);
13514 }
13515 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13516
kvm_arch_end_assignment(struct kvm * kvm)13517 void kvm_arch_end_assignment(struct kvm *kvm)
13518 {
13519 atomic_dec(&kvm->arch.assigned_device_count);
13520 }
13521 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13522
kvm_arch_has_assigned_device(struct kvm * kvm)13523 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13524 {
13525 return raw_atomic_read(&kvm->arch.assigned_device_count);
13526 }
13527 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13528
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13529 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13530 {
13531 /*
13532 * Non-coherent DMA assignment and de-assignment may affect whether or
13533 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13534 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13535 * (or last) non-coherent device is (un)registered to so that new SPTEs
13536 * with the correct "ignore guest PAT" setting are created.
13537 */
13538 if (kvm_mmu_may_ignore_guest_pat())
13539 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13540 }
13541
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13542 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13543 {
13544 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13545 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13546 }
13547 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13548
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13549 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13550 {
13551 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13552 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13553 }
13554 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13555
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13556 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13557 {
13558 return atomic_read(&kvm->arch.noncoherent_dma_count);
13559 }
13560 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13561
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13562 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13563 struct irq_bypass_producer *prod)
13564 {
13565 struct kvm_kernel_irqfd *irqfd =
13566 container_of(cons, struct kvm_kernel_irqfd, consumer);
13567 struct kvm *kvm = irqfd->kvm;
13568 int ret;
13569
13570 kvm_arch_start_assignment(irqfd->kvm);
13571
13572 spin_lock_irq(&kvm->irqfds.lock);
13573 irqfd->producer = prod;
13574
13575 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13576 prod->irq, irqfd->gsi, 1);
13577 if (ret)
13578 kvm_arch_end_assignment(irqfd->kvm);
13579
13580 spin_unlock_irq(&kvm->irqfds.lock);
13581
13582
13583 return ret;
13584 }
13585
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13586 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13587 struct irq_bypass_producer *prod)
13588 {
13589 int ret;
13590 struct kvm_kernel_irqfd *irqfd =
13591 container_of(cons, struct kvm_kernel_irqfd, consumer);
13592 struct kvm *kvm = irqfd->kvm;
13593
13594 WARN_ON(irqfd->producer != prod);
13595
13596 /*
13597 * When producer of consumer is unregistered, we change back to
13598 * remapped mode, so we can re-use the current implementation
13599 * when the irq is masked/disabled or the consumer side (KVM
13600 * int this case doesn't want to receive the interrupts.
13601 */
13602 spin_lock_irq(&kvm->irqfds.lock);
13603 irqfd->producer = NULL;
13604
13605 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13606 prod->irq, irqfd->gsi, 0);
13607 if (ret)
13608 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13609 " fails: %d\n", irqfd->consumer.token, ret);
13610
13611 spin_unlock_irq(&kvm->irqfds.lock);
13612
13613
13614 kvm_arch_end_assignment(irqfd->kvm);
13615 }
13616
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13617 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13618 uint32_t guest_irq, bool set)
13619 {
13620 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13621 }
13622
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13623 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13624 struct kvm_kernel_irq_routing_entry *new)
13625 {
13626 if (old->type != KVM_IRQ_ROUTING_MSI ||
13627 new->type != KVM_IRQ_ROUTING_MSI)
13628 return true;
13629
13630 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13631 }
13632
kvm_vector_hashing_enabled(void)13633 bool kvm_vector_hashing_enabled(void)
13634 {
13635 return vector_hashing;
13636 }
13637
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13638 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13639 {
13640 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13641 }
13642 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13643
13644 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13645 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13646 {
13647 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13648 }
13649 #endif
13650
13651 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13652 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13653 {
13654 kvm_x86_call(gmem_invalidate)(start, end);
13655 }
13656 #endif
13657
kvm_spec_ctrl_test_value(u64 value)13658 int kvm_spec_ctrl_test_value(u64 value)
13659 {
13660 /*
13661 * test that setting IA32_SPEC_CTRL to given value
13662 * is allowed by the host processor
13663 */
13664
13665 u64 saved_value;
13666 unsigned long flags;
13667 int ret = 0;
13668
13669 local_irq_save(flags);
13670
13671 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13672 ret = 1;
13673 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13674 ret = 1;
13675 else
13676 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13677
13678 local_irq_restore(flags);
13679
13680 return ret;
13681 }
13682 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13683
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13684 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13685 {
13686 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13687 struct x86_exception fault;
13688 u64 access = error_code &
13689 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13690
13691 if (!(error_code & PFERR_PRESENT_MASK) ||
13692 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13693 /*
13694 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13695 * tables probably do not match the TLB. Just proceed
13696 * with the error code that the processor gave.
13697 */
13698 fault.vector = PF_VECTOR;
13699 fault.error_code_valid = true;
13700 fault.error_code = error_code;
13701 fault.nested_page_fault = false;
13702 fault.address = gva;
13703 fault.async_page_fault = false;
13704 }
13705 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13706 }
13707 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13708
13709 /*
13710 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13711 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13712 * indicates whether exit to userspace is needed.
13713 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13714 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13715 struct x86_exception *e)
13716 {
13717 if (r == X86EMUL_PROPAGATE_FAULT) {
13718 if (KVM_BUG_ON(!e, vcpu->kvm))
13719 return -EIO;
13720
13721 kvm_inject_emulated_page_fault(vcpu, e);
13722 return 1;
13723 }
13724
13725 /*
13726 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13727 * while handling a VMX instruction KVM could've handled the request
13728 * correctly by exiting to userspace and performing I/O but there
13729 * doesn't seem to be a real use-case behind such requests, just return
13730 * KVM_EXIT_INTERNAL_ERROR for now.
13731 */
13732 kvm_prepare_emulation_failure_exit(vcpu);
13733
13734 return 0;
13735 }
13736 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13737
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13738 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13739 {
13740 bool pcid_enabled;
13741 struct x86_exception e;
13742 struct {
13743 u64 pcid;
13744 u64 gla;
13745 } operand;
13746 int r;
13747
13748 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13749 if (r != X86EMUL_CONTINUE)
13750 return kvm_handle_memory_failure(vcpu, r, &e);
13751
13752 if (operand.pcid >> 12 != 0) {
13753 kvm_inject_gp(vcpu, 0);
13754 return 1;
13755 }
13756
13757 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13758
13759 switch (type) {
13760 case INVPCID_TYPE_INDIV_ADDR:
13761 /*
13762 * LAM doesn't apply to addresses that are inputs to TLB
13763 * invalidation.
13764 */
13765 if ((!pcid_enabled && (operand.pcid != 0)) ||
13766 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13767 kvm_inject_gp(vcpu, 0);
13768 return 1;
13769 }
13770 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13771 return kvm_skip_emulated_instruction(vcpu);
13772
13773 case INVPCID_TYPE_SINGLE_CTXT:
13774 if (!pcid_enabled && (operand.pcid != 0)) {
13775 kvm_inject_gp(vcpu, 0);
13776 return 1;
13777 }
13778
13779 kvm_invalidate_pcid(vcpu, operand.pcid);
13780 return kvm_skip_emulated_instruction(vcpu);
13781
13782 case INVPCID_TYPE_ALL_NON_GLOBAL:
13783 /*
13784 * Currently, KVM doesn't mark global entries in the shadow
13785 * page tables, so a non-global flush just degenerates to a
13786 * global flush. If needed, we could optimize this later by
13787 * keeping track of global entries in shadow page tables.
13788 */
13789
13790 fallthrough;
13791 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13792 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13793 return kvm_skip_emulated_instruction(vcpu);
13794
13795 default:
13796 kvm_inject_gp(vcpu, 0);
13797 return 1;
13798 }
13799 }
13800 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13801
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13802 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13803 {
13804 struct kvm_run *run = vcpu->run;
13805 struct kvm_mmio_fragment *frag;
13806 unsigned int len;
13807
13808 BUG_ON(!vcpu->mmio_needed);
13809
13810 /* Complete previous fragment */
13811 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13812 len = min(8u, frag->len);
13813 if (!vcpu->mmio_is_write)
13814 memcpy(frag->data, run->mmio.data, len);
13815
13816 if (frag->len <= 8) {
13817 /* Switch to the next fragment. */
13818 frag++;
13819 vcpu->mmio_cur_fragment++;
13820 } else {
13821 /* Go forward to the next mmio piece. */
13822 frag->data += len;
13823 frag->gpa += len;
13824 frag->len -= len;
13825 }
13826
13827 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13828 vcpu->mmio_needed = 0;
13829
13830 // VMG change, at this point, we're always done
13831 // RIP has already been advanced
13832 return 1;
13833 }
13834
13835 // More MMIO is needed
13836 run->mmio.phys_addr = frag->gpa;
13837 run->mmio.len = min(8u, frag->len);
13838 run->mmio.is_write = vcpu->mmio_is_write;
13839 if (run->mmio.is_write)
13840 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13841 run->exit_reason = KVM_EXIT_MMIO;
13842
13843 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13844
13845 return 0;
13846 }
13847
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13848 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13849 void *data)
13850 {
13851 int handled;
13852 struct kvm_mmio_fragment *frag;
13853
13854 if (!data)
13855 return -EINVAL;
13856
13857 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13858 if (handled == bytes)
13859 return 1;
13860
13861 bytes -= handled;
13862 gpa += handled;
13863 data += handled;
13864
13865 /*TODO: Check if need to increment number of frags */
13866 frag = vcpu->mmio_fragments;
13867 vcpu->mmio_nr_fragments = 1;
13868 frag->len = bytes;
13869 frag->gpa = gpa;
13870 frag->data = data;
13871
13872 vcpu->mmio_needed = 1;
13873 vcpu->mmio_cur_fragment = 0;
13874
13875 vcpu->run->mmio.phys_addr = gpa;
13876 vcpu->run->mmio.len = min(8u, frag->len);
13877 vcpu->run->mmio.is_write = 1;
13878 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13879 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13880
13881 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13882
13883 return 0;
13884 }
13885 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13886
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13887 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13888 void *data)
13889 {
13890 int handled;
13891 struct kvm_mmio_fragment *frag;
13892
13893 if (!data)
13894 return -EINVAL;
13895
13896 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13897 if (handled == bytes)
13898 return 1;
13899
13900 bytes -= handled;
13901 gpa += handled;
13902 data += handled;
13903
13904 /*TODO: Check if need to increment number of frags */
13905 frag = vcpu->mmio_fragments;
13906 vcpu->mmio_nr_fragments = 1;
13907 frag->len = bytes;
13908 frag->gpa = gpa;
13909 frag->data = data;
13910
13911 vcpu->mmio_needed = 1;
13912 vcpu->mmio_cur_fragment = 0;
13913
13914 vcpu->run->mmio.phys_addr = gpa;
13915 vcpu->run->mmio.len = min(8u, frag->len);
13916 vcpu->run->mmio.is_write = 0;
13917 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13918
13919 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13920
13921 return 0;
13922 }
13923 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13924
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13925 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13926 {
13927 vcpu->arch.sev_pio_count -= count;
13928 vcpu->arch.sev_pio_data += count * size;
13929 }
13930
13931 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13932 unsigned int port);
13933
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13934 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13935 {
13936 int size = vcpu->arch.pio.size;
13937 int port = vcpu->arch.pio.port;
13938
13939 vcpu->arch.pio.count = 0;
13940 if (vcpu->arch.sev_pio_count)
13941 return kvm_sev_es_outs(vcpu, size, port);
13942 return 1;
13943 }
13944
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13945 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13946 unsigned int port)
13947 {
13948 for (;;) {
13949 unsigned int count =
13950 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13951 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13952
13953 /* memcpy done already by emulator_pio_out. */
13954 advance_sev_es_emulated_pio(vcpu, count, size);
13955 if (!ret)
13956 break;
13957
13958 /* Emulation done by the kernel. */
13959 if (!vcpu->arch.sev_pio_count)
13960 return 1;
13961 }
13962
13963 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13964 return 0;
13965 }
13966
13967 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13968 unsigned int port);
13969
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13970 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13971 {
13972 unsigned count = vcpu->arch.pio.count;
13973 int size = vcpu->arch.pio.size;
13974 int port = vcpu->arch.pio.port;
13975
13976 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13977 advance_sev_es_emulated_pio(vcpu, count, size);
13978 if (vcpu->arch.sev_pio_count)
13979 return kvm_sev_es_ins(vcpu, size, port);
13980 return 1;
13981 }
13982
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13983 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13984 unsigned int port)
13985 {
13986 for (;;) {
13987 unsigned int count =
13988 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13989 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13990 break;
13991
13992 /* Emulation done by the kernel. */
13993 advance_sev_es_emulated_pio(vcpu, count, size);
13994 if (!vcpu->arch.sev_pio_count)
13995 return 1;
13996 }
13997
13998 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13999 return 0;
14000 }
14001
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14002 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14003 unsigned int port, void *data, unsigned int count,
14004 int in)
14005 {
14006 vcpu->arch.sev_pio_data = data;
14007 vcpu->arch.sev_pio_count = count;
14008 return in ? kvm_sev_es_ins(vcpu, size, port)
14009 : kvm_sev_es_outs(vcpu, size, port);
14010 }
14011 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
14012
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14043
kvm_x86_init(void)14044 static int __init kvm_x86_init(void)
14045 {
14046 kvm_init_xstate_sizes();
14047
14048 kvm_mmu_x86_module_init();
14049 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14050 return 0;
14051 }
14052 module_init(kvm_x86_init);
14053
kvm_x86_exit(void)14054 static void __exit kvm_x86_exit(void)
14055 {
14056 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14057 }
14058 module_exit(kvm_x86_exit);
14059