1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kvm_host.h>
5
6 #include <asm/irq_remapping.h>
7 #include <asm/cpu.h>
8
9 #include "lapic.h"
10 #include "irq.h"
11 #include "posted_intr.h"
12 #include "trace.h"
13 #include "vmx.h"
14
15 /*
16 * Maintain a per-CPU list of vCPUs that need to be awakened by wakeup_handler()
17 * when a WAKEUP_VECTOR interrupted is posted. vCPUs are added to the list when
18 * the vCPU is scheduled out and is blocking (e.g. in HLT) with IRQs enabled.
19 * The vCPUs posted interrupt descriptor is updated at the same time to set its
20 * notification vector to WAKEUP_VECTOR, so that posted interrupt from devices
21 * wake the target vCPUs. vCPUs are removed from the list and the notification
22 * vector is reset when the vCPU is scheduled in.
23 */
24 static DEFINE_PER_CPU(struct list_head, wakeup_vcpus_on_cpu);
25 /*
26 * Protect the per-CPU list with a per-CPU spinlock to handle task migration.
27 * When a blocking vCPU is awakened _and_ migrated to a different pCPU, the
28 * ->sched_in() path will need to take the vCPU off the list of the _previous_
29 * CPU. IRQs must be disabled when taking this lock, otherwise deadlock will
30 * occur if a wakeup IRQ arrives and attempts to acquire the lock.
31 */
32 static DEFINE_PER_CPU(raw_spinlock_t, wakeup_vcpus_on_cpu_lock);
33
34 #define PI_LOCK_SCHED_OUT SINGLE_DEPTH_NESTING
35
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)36 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
37 {
38 return &(to_vmx(vcpu)->pi_desc);
39 }
40
pi_try_set_control(struct pi_desc * pi_desc,u64 * pold,u64 new)41 static int pi_try_set_control(struct pi_desc *pi_desc, u64 *pold, u64 new)
42 {
43 /*
44 * PID.ON can be set at any time by a different vCPU or by hardware,
45 * e.g. a device. PID.control must be written atomically, and the
46 * update must be retried with a fresh snapshot an ON change causes
47 * the cmpxchg to fail.
48 */
49 if (!try_cmpxchg64(&pi_desc->control, pold, new))
50 return -EBUSY;
51
52 return 0;
53 }
54
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)55 void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
56 {
57 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
58 struct vcpu_vmx *vmx = to_vmx(vcpu);
59 struct pi_desc old, new;
60 unsigned long flags;
61 unsigned int dest;
62
63 /*
64 * To simplify hot-plug and dynamic toggling of APICv, keep PI.NDST and
65 * PI.SN up-to-date even if there is no assigned device or if APICv is
66 * deactivated due to a dynamic inhibit bit, e.g. for Hyper-V's SyncIC.
67 */
68 if (!enable_apicv || !lapic_in_kernel(vcpu))
69 return;
70
71 /*
72 * If the vCPU wasn't on the wakeup list and wasn't migrated, then the
73 * full update can be skipped as neither the vector nor the destination
74 * needs to be changed.
75 */
76 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR && vcpu->cpu == cpu) {
77 /*
78 * Clear SN if it was set due to being preempted. Again, do
79 * this even if there is no assigned device for simplicity.
80 */
81 if (pi_test_and_clear_sn(pi_desc))
82 goto after_clear_sn;
83 return;
84 }
85
86 local_irq_save(flags);
87
88 /*
89 * If the vCPU was waiting for wakeup, remove the vCPU from the wakeup
90 * list of the _previous_ pCPU, which will not be the same as the
91 * current pCPU if the task was migrated.
92 */
93 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR) {
94 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu);
95
96 /*
97 * In addition to taking the wakeup lock for the regular/IRQ
98 * context, tell lockdep it is being taken for the "sched out"
99 * context as well. vCPU loads happens in task context, and
100 * this is taking the lock of the *previous* CPU, i.e. can race
101 * with both the scheduler and the wakeup handler.
102 */
103 raw_spin_lock(spinlock);
104 spin_acquire(&spinlock->dep_map, PI_LOCK_SCHED_OUT, 0, _RET_IP_);
105 list_del(&vmx->pi_wakeup_list);
106 spin_release(&spinlock->dep_map, _RET_IP_);
107 raw_spin_unlock(spinlock);
108 }
109
110 dest = cpu_physical_id(cpu);
111 if (!x2apic_mode)
112 dest = (dest << 8) & 0xFF00;
113
114 old.control = READ_ONCE(pi_desc->control);
115 do {
116 new.control = old.control;
117
118 /*
119 * Clear SN (as above) and refresh the destination APIC ID to
120 * handle task migration (@cpu != vcpu->cpu).
121 */
122 new.ndst = dest;
123 __pi_clear_sn(&new);
124
125 /*
126 * Restore the notification vector; in the blocking case, the
127 * descriptor was modified on "put" to use the wakeup vector.
128 */
129 new.nv = POSTED_INTR_VECTOR;
130 } while (pi_try_set_control(pi_desc, &old.control, new.control));
131
132 local_irq_restore(flags);
133
134 after_clear_sn:
135
136 /*
137 * Clear SN before reading the bitmap. The VT-d firmware
138 * writes the bitmap and reads SN atomically (5.2.3 in the
139 * spec), so it doesn't really have a memory barrier that
140 * pairs with this, but we cannot do that and we need one.
141 */
142 smp_mb__after_atomic();
143
144 if (!pi_is_pir_empty(pi_desc))
145 pi_set_on(pi_desc);
146 }
147
vmx_can_use_vtd_pi(struct kvm * kvm)148 static bool vmx_can_use_vtd_pi(struct kvm *kvm)
149 {
150 return irqchip_in_kernel(kvm) && enable_apicv &&
151 kvm_arch_has_assigned_device(kvm) &&
152 irq_remapping_cap(IRQ_POSTING_CAP);
153 }
154
155 /*
156 * Put the vCPU on this pCPU's list of vCPUs that needs to be awakened and set
157 * WAKEUP as the notification vector in the PI descriptor.
158 */
pi_enable_wakeup_handler(struct kvm_vcpu * vcpu)159 static void pi_enable_wakeup_handler(struct kvm_vcpu *vcpu)
160 {
161 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
162 struct vcpu_vmx *vmx = to_vmx(vcpu);
163 struct pi_desc old, new;
164
165 lockdep_assert_irqs_disabled();
166
167 /*
168 * Acquire the wakeup lock using the "sched out" context to workaround
169 * a lockdep false positive. When this is called, schedule() holds
170 * various per-CPU scheduler locks. When the wakeup handler runs, it
171 * holds this CPU's wakeup lock while calling try_to_wake_up(), which
172 * can eventually take the aforementioned scheduler locks, which causes
173 * lockdep to assume there is deadlock.
174 *
175 * Deadlock can't actually occur because IRQs are disabled for the
176 * entirety of the sched_out critical section, i.e. the wakeup handler
177 * can't run while the scheduler locks are held.
178 */
179 raw_spin_lock_nested(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu),
180 PI_LOCK_SCHED_OUT);
181 list_add_tail(&vmx->pi_wakeup_list,
182 &per_cpu(wakeup_vcpus_on_cpu, vcpu->cpu));
183 raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
184
185 WARN(pi_test_sn(pi_desc), "PI descriptor SN field set before blocking");
186
187 old.control = READ_ONCE(pi_desc->control);
188 do {
189 /* set 'NV' to 'wakeup vector' */
190 new.control = old.control;
191 new.nv = POSTED_INTR_WAKEUP_VECTOR;
192 } while (pi_try_set_control(pi_desc, &old.control, new.control));
193
194 /*
195 * Send a wakeup IPI to this CPU if an interrupt may have been posted
196 * before the notification vector was updated, in which case the IRQ
197 * will arrive on the non-wakeup vector. An IPI is needed as calling
198 * try_to_wake_up() from ->sched_out() isn't allowed (IRQs are not
199 * enabled until it is safe to call try_to_wake_up() on the task being
200 * scheduled out).
201 */
202 if (pi_test_on(&new))
203 __apic_send_IPI_self(POSTED_INTR_WAKEUP_VECTOR);
204 }
205
vmx_needs_pi_wakeup(struct kvm_vcpu * vcpu)206 static bool vmx_needs_pi_wakeup(struct kvm_vcpu *vcpu)
207 {
208 /*
209 * The default posted interrupt vector does nothing when
210 * invoked outside guest mode. Return whether a blocked vCPU
211 * can be the target of posted interrupts, as is the case when
212 * using either IPI virtualization or VT-d PI, so that the
213 * notification vector is switched to the one that calls
214 * back to the pi_wakeup_handler() function.
215 */
216 return vmx_can_use_ipiv(vcpu) || vmx_can_use_vtd_pi(vcpu->kvm);
217 }
218
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)219 void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
220 {
221 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
222
223 if (!vmx_needs_pi_wakeup(vcpu))
224 return;
225
226 if (kvm_vcpu_is_blocking(vcpu) && !vmx_interrupt_blocked(vcpu))
227 pi_enable_wakeup_handler(vcpu);
228
229 /*
230 * Set SN when the vCPU is preempted. Note, the vCPU can both be seen
231 * as blocking and preempted, e.g. if it's preempted between setting
232 * its wait state and manually scheduling out.
233 */
234 if (vcpu->preempted)
235 pi_set_sn(pi_desc);
236 }
237
238 /*
239 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
240 */
pi_wakeup_handler(void)241 void pi_wakeup_handler(void)
242 {
243 int cpu = smp_processor_id();
244 struct list_head *wakeup_list = &per_cpu(wakeup_vcpus_on_cpu, cpu);
245 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, cpu);
246 struct vcpu_vmx *vmx;
247
248 raw_spin_lock(spinlock);
249 list_for_each_entry(vmx, wakeup_list, pi_wakeup_list) {
250
251 if (pi_test_on(&vmx->pi_desc))
252 kvm_vcpu_wake_up(&vmx->vcpu);
253 }
254 raw_spin_unlock(spinlock);
255 }
256
pi_init_cpu(int cpu)257 void __init pi_init_cpu(int cpu)
258 {
259 INIT_LIST_HEAD(&per_cpu(wakeup_vcpus_on_cpu, cpu));
260 raw_spin_lock_init(&per_cpu(wakeup_vcpus_on_cpu_lock, cpu));
261 }
262
pi_has_pending_interrupt(struct kvm_vcpu * vcpu)263 bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu)
264 {
265 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
266
267 return pi_test_on(pi_desc) ||
268 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
269 }
270
271
272 /*
273 * Bail out of the block loop if the VM has an assigned
274 * device, but the blocking vCPU didn't reconfigure the
275 * PI.NV to the wakeup vector, i.e. the assigned device
276 * came along after the initial check in vmx_vcpu_pi_put().
277 */
vmx_pi_start_assignment(struct kvm * kvm)278 void vmx_pi_start_assignment(struct kvm *kvm)
279 {
280 if (!irq_remapping_cap(IRQ_POSTING_CAP))
281 return;
282
283 kvm_make_all_cpus_request(kvm, KVM_REQ_UNBLOCK);
284 }
285
286 /*
287 * vmx_pi_update_irte - set IRTE for Posted-Interrupts
288 *
289 * @kvm: kvm
290 * @host_irq: host irq of the interrupt
291 * @guest_irq: gsi of the interrupt
292 * @set: set or unset PI
293 * returns 0 on success, < 0 on failure
294 */
vmx_pi_update_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)295 int vmx_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
296 uint32_t guest_irq, bool set)
297 {
298 struct kvm_kernel_irq_routing_entry *e;
299 struct kvm_irq_routing_table *irq_rt;
300 bool enable_remapped_mode = true;
301 struct kvm_lapic_irq irq;
302 struct kvm_vcpu *vcpu;
303 struct vcpu_data vcpu_info;
304 int idx, ret = 0;
305
306 if (!vmx_can_use_vtd_pi(kvm))
307 return 0;
308
309 idx = srcu_read_lock(&kvm->irq_srcu);
310 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
311 if (guest_irq >= irq_rt->nr_rt_entries ||
312 hlist_empty(&irq_rt->map[guest_irq])) {
313 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
314 guest_irq, irq_rt->nr_rt_entries);
315 goto out;
316 }
317
318 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
319 if (e->type != KVM_IRQ_ROUTING_MSI)
320 continue;
321 /*
322 * VT-d PI cannot support posting multicast/broadcast
323 * interrupts to a vCPU, we still use interrupt remapping
324 * for these kind of interrupts.
325 *
326 * For lowest-priority interrupts, we only support
327 * those with single CPU as the destination, e.g. user
328 * configures the interrupts via /proc/irq or uses
329 * irqbalance to make the interrupts single-CPU.
330 *
331 * We will support full lowest-priority interrupt later.
332 *
333 * In addition, we can only inject generic interrupts using
334 * the PI mechanism, refuse to route others through it.
335 */
336
337 kvm_set_msi_irq(kvm, e, &irq);
338 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
339 !kvm_irq_is_postable(&irq))
340 continue;
341
342 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
343 vcpu_info.vector = irq.vector;
344
345 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
346 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
347
348 if (!set)
349 continue;
350
351 enable_remapped_mode = false;
352
353 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
354 if (ret < 0) {
355 printk(KERN_INFO "%s: failed to update PI IRTE\n",
356 __func__);
357 goto out;
358 }
359 }
360
361 if (enable_remapped_mode)
362 ret = irq_set_vcpu_affinity(host_irq, NULL);
363
364 ret = 0;
365 out:
366 srcu_read_unlock(&kvm->irq_srcu, idx);
367 return ret;
368 }
369