1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * Local APIC virtualization
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
15 *
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION 0x14UL
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
61
62 /*
63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
65 * before the deadline expires, to account for the delay between taking the
66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67 * the guest, i.e. so that the interrupt arrives in the guest with minimal
68 * latency relative to the deadline programmed by the guest.
69 */
70 static bool lapic_timer_advance __read_mostly = true;
71 module_param(lapic_timer_advance, bool, 0444);
72
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
81
__kvm_lapic_set_reg(char * regs,int reg_off,u32 val)82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
83 {
84 *((u32 *) (regs + reg_off)) = val;
85 }
86
kvm_lapic_set_reg(struct kvm_lapic * apic,int reg_off,u32 val)87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
88 {
89 __kvm_lapic_set_reg(apic->regs, reg_off, val);
90 }
91
__kvm_lapic_get_reg64(char * regs,int reg)92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
93 {
94 BUILD_BUG_ON(reg != APIC_ICR);
95 return *((u64 *) (regs + reg));
96 }
97
kvm_lapic_get_reg64(struct kvm_lapic * apic,int reg)98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
99 {
100 return __kvm_lapic_get_reg64(apic->regs, reg);
101 }
102
__kvm_lapic_set_reg64(char * regs,int reg,u64 val)103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
104 {
105 BUILD_BUG_ON(reg != APIC_ICR);
106 *((u64 *) (regs + reg)) = val;
107 }
108
kvm_lapic_set_reg64(struct kvm_lapic * apic,int reg,u64 val)109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
110 int reg, u64 val)
111 {
112 __kvm_lapic_set_reg64(apic->regs, reg, val);
113 }
114
apic_test_vector(int vec,void * bitmap)115 static inline int apic_test_vector(int vec, void *bitmap)
116 {
117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
118 }
119
kvm_apic_pending_eoi(struct kvm_vcpu * vcpu,int vector)120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
121 {
122 struct kvm_lapic *apic = vcpu->arch.apic;
123
124 return apic_test_vector(vector, apic->regs + APIC_ISR) ||
125 apic_test_vector(vector, apic->regs + APIC_IRR);
126 }
127
__apic_test_and_set_vector(int vec,void * bitmap)128 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
129 {
130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
131 }
132
__apic_test_and_clear_vector(int vec,void * bitmap)133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
134 {
135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
136 }
137
138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
140
141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
143
apic_enabled(struct kvm_lapic * apic)144 static inline int apic_enabled(struct kvm_lapic *apic)
145 {
146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
147 }
148
149 #define LVT_MASK \
150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
151
152 #define LINT_MASK \
153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
155
kvm_x2apic_id(struct kvm_lapic * apic)156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
157 {
158 return apic->vcpu->vcpu_id;
159 }
160
kvm_can_post_timer_interrupt(struct kvm_vcpu * vcpu)161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
165 }
166
kvm_can_use_hv_timer(struct kvm_vcpu * vcpu)167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
168 {
169 return kvm_x86_ops.set_hv_timer
170 && !(kvm_mwait_in_guest(vcpu->kvm) ||
171 kvm_can_post_timer_interrupt(vcpu));
172 }
173
kvm_use_posted_timer_interrupt(struct kvm_vcpu * vcpu)174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
175 {
176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
177 }
178
kvm_apic_calc_x2apic_ldr(u32 id)179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
180 {
181 return ((id >> 4) << 16) | (1 << (id & 0xf));
182 }
183
kvm_apic_map_get_logical_dest(struct kvm_apic_map * map,u32 dest_id,struct kvm_lapic *** cluster,u16 * mask)184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
186 switch (map->logical_mode) {
187 case KVM_APIC_MODE_SW_DISABLED:
188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 *cluster = map->xapic_flat_map;
190 *mask = 0;
191 return true;
192 case KVM_APIC_MODE_X2APIC: {
193 u32 offset = (dest_id >> 16) * 16;
194 u32 max_apic_id = map->max_apic_id;
195
196 if (offset <= max_apic_id) {
197 u8 cluster_size = min(max_apic_id - offset + 1, 16U);
198
199 offset = array_index_nospec(offset, map->max_apic_id + 1);
200 *cluster = &map->phys_map[offset];
201 *mask = dest_id & (0xffff >> (16 - cluster_size));
202 } else {
203 *mask = 0;
204 }
205
206 return true;
207 }
208 case KVM_APIC_MODE_XAPIC_FLAT:
209 *cluster = map->xapic_flat_map;
210 *mask = dest_id & 0xff;
211 return true;
212 case KVM_APIC_MODE_XAPIC_CLUSTER:
213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
214 *mask = dest_id & 0xf;
215 return true;
216 case KVM_APIC_MODE_MAP_DISABLED:
217 return false;
218 default:
219 WARN_ON_ONCE(1);
220 return false;
221 }
222 }
223
kvm_recalculate_phys_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu,bool * xapic_id_mismatch)224 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
225 struct kvm_vcpu *vcpu,
226 bool *xapic_id_mismatch)
227 {
228 struct kvm_lapic *apic = vcpu->arch.apic;
229 u32 x2apic_id = kvm_x2apic_id(apic);
230 u32 xapic_id = kvm_xapic_id(apic);
231 u32 physical_id;
232
233 /*
234 * For simplicity, KVM always allocates enough space for all possible
235 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
236 * without the optimized map.
237 */
238 if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
239 return -EINVAL;
240
241 /*
242 * Bail if a vCPU was added and/or enabled its APIC between allocating
243 * the map and doing the actual calculations for the map. Note, KVM
244 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
245 * the compiler decides to reload x2apic_id after this check.
246 */
247 if (x2apic_id > new->max_apic_id)
248 return -E2BIG;
249
250 /*
251 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
252 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
253 * 32-bit value. Any unwanted aliasing due to truncation results will
254 * be detected below.
255 */
256 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
257 *xapic_id_mismatch = true;
258
259 /*
260 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
261 * Allow sending events to vCPUs by their x2APIC ID even if the target
262 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
263 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
264 * and collide).
265 *
266 * Honor the architectural (and KVM's non-optimized) behavior if
267 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
268 * to process messages independently. If multiple vCPUs have the same
269 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
270 * manually modified its xAPIC IDs, events targeting that ID are
271 * supposed to be recognized by all vCPUs with said ID.
272 */
273 if (vcpu->kvm->arch.x2apic_format) {
274 /* See also kvm_apic_match_physical_addr(). */
275 if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
276 new->phys_map[x2apic_id] = apic;
277
278 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
279 new->phys_map[xapic_id] = apic;
280 } else {
281 /*
282 * Disable the optimized map if the physical APIC ID is already
283 * mapped, i.e. is aliased to multiple vCPUs. The optimized
284 * map requires a strict 1:1 mapping between IDs and vCPUs.
285 */
286 if (apic_x2apic_mode(apic))
287 physical_id = x2apic_id;
288 else
289 physical_id = xapic_id;
290
291 if (new->phys_map[physical_id])
292 return -EINVAL;
293
294 new->phys_map[physical_id] = apic;
295 }
296
297 return 0;
298 }
299
kvm_recalculate_logical_map(struct kvm_apic_map * new,struct kvm_vcpu * vcpu)300 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
301 struct kvm_vcpu *vcpu)
302 {
303 struct kvm_lapic *apic = vcpu->arch.apic;
304 enum kvm_apic_logical_mode logical_mode;
305 struct kvm_lapic **cluster;
306 u16 mask;
307 u32 ldr;
308
309 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
310 return;
311
312 if (!kvm_apic_sw_enabled(apic))
313 return;
314
315 ldr = kvm_lapic_get_reg(apic, APIC_LDR);
316 if (!ldr)
317 return;
318
319 if (apic_x2apic_mode(apic)) {
320 logical_mode = KVM_APIC_MODE_X2APIC;
321 } else {
322 ldr = GET_APIC_LOGICAL_ID(ldr);
323 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
324 logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
325 else
326 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
327 }
328
329 /*
330 * To optimize logical mode delivery, all software-enabled APICs must
331 * be configured for the same mode.
332 */
333 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
334 new->logical_mode = logical_mode;
335 } else if (new->logical_mode != logical_mode) {
336 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
337 return;
338 }
339
340 /*
341 * In x2APIC mode, the LDR is read-only and derived directly from the
342 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
343 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
344 * reversing the LDR calculation to get cluster of APICs, i.e. no
345 * additional work is required.
346 */
347 if (apic_x2apic_mode(apic))
348 return;
349
350 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
351 &cluster, &mask))) {
352 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
353 return;
354 }
355
356 if (!mask)
357 return;
358
359 ldr = ffs(mask) - 1;
360 if (!is_power_of_2(mask) || cluster[ldr])
361 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
362 else
363 cluster[ldr] = apic;
364 }
365
366 /*
367 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
368 *
369 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
370 * apic_map_lock_held.
371 */
372 enum {
373 CLEAN,
374 UPDATE_IN_PROGRESS,
375 DIRTY
376 };
377
kvm_recalculate_apic_map(struct kvm * kvm)378 static void kvm_recalculate_apic_map(struct kvm *kvm)
379 {
380 struct kvm_apic_map *new, *old = NULL;
381 struct kvm_vcpu *vcpu;
382 unsigned long i;
383 u32 max_id = 255; /* enough space for any xAPIC ID */
384 bool xapic_id_mismatch;
385 int r;
386
387 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
388 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
389 return;
390
391 WARN_ONCE(!irqchip_in_kernel(kvm),
392 "Dirty APIC map without an in-kernel local APIC");
393
394 mutex_lock(&kvm->arch.apic_map_lock);
395
396 retry:
397 /*
398 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
399 * or the APIC registers (if dirty). Note, on retry the map may have
400 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
401 * ID, i.e. the map may still show up as in-progress. In that case
402 * this task still needs to retry and complete its calculation.
403 */
404 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
405 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
406 /* Someone else has updated the map. */
407 mutex_unlock(&kvm->arch.apic_map_lock);
408 return;
409 }
410
411 /*
412 * Reset the mismatch flag between attempts so that KVM does the right
413 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
414 * keep max_id strictly increasing. Disallowing max_id from shrinking
415 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
416 * with the highest x2APIC ID is toggling its APIC on and off.
417 */
418 xapic_id_mismatch = false;
419
420 kvm_for_each_vcpu(i, vcpu, kvm)
421 if (kvm_apic_present(vcpu))
422 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
423
424 new = kvzalloc(sizeof(struct kvm_apic_map) +
425 sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
426 GFP_KERNEL_ACCOUNT);
427
428 if (!new)
429 goto out;
430
431 new->max_apic_id = max_id;
432 new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
433
434 kvm_for_each_vcpu(i, vcpu, kvm) {
435 if (!kvm_apic_present(vcpu))
436 continue;
437
438 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
439 if (r) {
440 kvfree(new);
441 new = NULL;
442 if (r == -E2BIG) {
443 cond_resched();
444 goto retry;
445 }
446
447 goto out;
448 }
449
450 kvm_recalculate_logical_map(new, vcpu);
451 }
452 out:
453 /*
454 * The optimized map is effectively KVM's internal version of APICv,
455 * and all unwanted aliasing that results in disabling the optimized
456 * map also applies to APICv.
457 */
458 if (!new)
459 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
460 else
461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
462
463 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
464 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
465 else
466 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
467
468 if (xapic_id_mismatch)
469 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
470 else
471 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
472
473 old = rcu_dereference_protected(kvm->arch.apic_map,
474 lockdep_is_held(&kvm->arch.apic_map_lock));
475 rcu_assign_pointer(kvm->arch.apic_map, new);
476 /*
477 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
478 * If another update has come in, leave it DIRTY.
479 */
480 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
481 UPDATE_IN_PROGRESS, CLEAN);
482 mutex_unlock(&kvm->arch.apic_map_lock);
483
484 if (old)
485 kvfree_rcu(old, rcu);
486
487 kvm_make_scan_ioapic_request(kvm);
488 }
489
apic_set_spiv(struct kvm_lapic * apic,u32 val)490 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
491 {
492 bool enabled = val & APIC_SPIV_APIC_ENABLED;
493
494 kvm_lapic_set_reg(apic, APIC_SPIV, val);
495
496 if (enabled != apic->sw_enabled) {
497 apic->sw_enabled = enabled;
498 if (enabled)
499 static_branch_slow_dec_deferred(&apic_sw_disabled);
500 else
501 static_branch_inc(&apic_sw_disabled.key);
502
503 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
504 }
505
506 /* Check if there are APF page ready requests pending */
507 if (enabled) {
508 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
509 kvm_xen_sw_enable_lapic(apic->vcpu);
510 }
511 }
512
kvm_apic_set_xapic_id(struct kvm_lapic * apic,u8 id)513 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
514 {
515 kvm_lapic_set_reg(apic, APIC_ID, id << 24);
516 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
517 }
518
kvm_apic_set_ldr(struct kvm_lapic * apic,u32 id)519 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
520 {
521 kvm_lapic_set_reg(apic, APIC_LDR, id);
522 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
523 }
524
kvm_apic_set_dfr(struct kvm_lapic * apic,u32 val)525 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
526 {
527 kvm_lapic_set_reg(apic, APIC_DFR, val);
528 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
529 }
530
kvm_apic_set_x2apic_id(struct kvm_lapic * apic,u32 id)531 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
532 {
533 u32 ldr = kvm_apic_calc_x2apic_ldr(id);
534
535 WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
536
537 kvm_lapic_set_reg(apic, APIC_ID, id);
538 kvm_lapic_set_reg(apic, APIC_LDR, ldr);
539 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
540 }
541
apic_lvt_enabled(struct kvm_lapic * apic,int lvt_type)542 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
543 {
544 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
545 }
546
apic_lvtt_oneshot(struct kvm_lapic * apic)547 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
548 {
549 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
550 }
551
apic_lvtt_period(struct kvm_lapic * apic)552 static inline int apic_lvtt_period(struct kvm_lapic *apic)
553 {
554 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
555 }
556
apic_lvtt_tscdeadline(struct kvm_lapic * apic)557 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
558 {
559 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
560 }
561
apic_lvt_nmi_mode(u32 lvt_val)562 static inline int apic_lvt_nmi_mode(u32 lvt_val)
563 {
564 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
565 }
566
kvm_lapic_lvt_supported(struct kvm_lapic * apic,int lvt_index)567 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
568 {
569 return apic->nr_lvt_entries > lvt_index;
570 }
571
kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu * vcpu)572 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
573 {
574 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
575 }
576
kvm_apic_set_version(struct kvm_vcpu * vcpu)577 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
578 {
579 struct kvm_lapic *apic = vcpu->arch.apic;
580 u32 v = 0;
581
582 if (!lapic_in_kernel(vcpu))
583 return;
584
585 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
586
587 /*
588 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
589 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
590 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
591 * version first and level-triggered interrupts never get EOIed in
592 * IOAPIC.
593 */
594 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) &&
595 !ioapic_in_kernel(vcpu->kvm))
596 v |= APIC_LVR_DIRECTED_EOI;
597 kvm_lapic_set_reg(apic, APIC_LVR, v);
598 }
599
kvm_apic_after_set_mcg_cap(struct kvm_vcpu * vcpu)600 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
601 {
602 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
603 struct kvm_lapic *apic = vcpu->arch.apic;
604 int i;
605
606 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
607 return;
608
609 /* Initialize/mask any "new" LVT entries. */
610 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
611 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
612
613 apic->nr_lvt_entries = nr_lvt_entries;
614
615 /* The number of LVT entries is reflected in the version register. */
616 kvm_apic_set_version(vcpu);
617 }
618
619 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
620 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
621 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
622 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
623 [LVT_LINT0] = LINT_MASK,
624 [LVT_LINT1] = LINT_MASK,
625 [LVT_ERROR] = LVT_MASK,
626 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
627 };
628
find_highest_vector(void * bitmap)629 static int find_highest_vector(void *bitmap)
630 {
631 int vec;
632 u32 *reg;
633
634 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
635 vec >= 0; vec -= APIC_VECTORS_PER_REG) {
636 reg = bitmap + REG_POS(vec);
637 if (*reg)
638 return __fls(*reg) + vec;
639 }
640
641 return -1;
642 }
643
count_vectors(void * bitmap)644 static u8 count_vectors(void *bitmap)
645 {
646 int vec;
647 u32 *reg;
648 u8 count = 0;
649
650 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
651 reg = bitmap + REG_POS(vec);
652 count += hweight32(*reg);
653 }
654
655 return count;
656 }
657
__kvm_apic_update_irr(u32 * pir,void * regs,int * max_irr)658 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
659 {
660 u32 i, vec;
661 u32 pir_val, irr_val, prev_irr_val;
662 int max_updated_irr;
663
664 max_updated_irr = -1;
665 *max_irr = -1;
666
667 for (i = vec = 0; i <= 7; i++, vec += 32) {
668 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
669
670 irr_val = *p_irr;
671 pir_val = READ_ONCE(pir[i]);
672
673 if (pir_val) {
674 pir_val = xchg(&pir[i], 0);
675
676 prev_irr_val = irr_val;
677 do {
678 irr_val = prev_irr_val | pir_val;
679 } while (prev_irr_val != irr_val &&
680 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
681
682 if (prev_irr_val != irr_val)
683 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
684 }
685 if (irr_val)
686 *max_irr = __fls(irr_val) + vec;
687 }
688
689 return ((max_updated_irr != -1) &&
690 (max_updated_irr == *max_irr));
691 }
692 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
693
kvm_apic_update_irr(struct kvm_vcpu * vcpu,u32 * pir,int * max_irr)694 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
695 {
696 struct kvm_lapic *apic = vcpu->arch.apic;
697 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
698
699 if (unlikely(!apic->apicv_active && irr_updated))
700 apic->irr_pending = true;
701 return irr_updated;
702 }
703 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
704
apic_search_irr(struct kvm_lapic * apic)705 static inline int apic_search_irr(struct kvm_lapic *apic)
706 {
707 return find_highest_vector(apic->regs + APIC_IRR);
708 }
709
apic_find_highest_irr(struct kvm_lapic * apic)710 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
711 {
712 int result;
713
714 /*
715 * Note that irr_pending is just a hint. It will be always
716 * true with virtual interrupt delivery enabled.
717 */
718 if (!apic->irr_pending)
719 return -1;
720
721 result = apic_search_irr(apic);
722 ASSERT(result == -1 || result >= 16);
723
724 return result;
725 }
726
apic_clear_irr(int vec,struct kvm_lapic * apic)727 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
728 {
729 if (unlikely(apic->apicv_active)) {
730 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
731 } else {
732 apic->irr_pending = false;
733 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
734 if (apic_search_irr(apic) != -1)
735 apic->irr_pending = true;
736 }
737 }
738
kvm_apic_clear_irr(struct kvm_vcpu * vcpu,int vec)739 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
740 {
741 apic_clear_irr(vec, vcpu->arch.apic);
742 }
743 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
744
apic_set_isr(int vec,struct kvm_lapic * apic)745 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
746 {
747 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
748 return;
749
750 /*
751 * With APIC virtualization enabled, all caching is disabled
752 * because the processor can modify ISR under the hood. Instead
753 * just set SVI.
754 */
755 if (unlikely(apic->apicv_active))
756 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec);
757 else {
758 ++apic->isr_count;
759 BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
760 /*
761 * ISR (in service register) bit is set when injecting an interrupt.
762 * The highest vector is injected. Thus the latest bit set matches
763 * the highest bit in ISR.
764 */
765 apic->highest_isr_cache = vec;
766 }
767 }
768
apic_find_highest_isr(struct kvm_lapic * apic)769 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
770 {
771 int result;
772
773 /*
774 * Note that isr_count is always 1, and highest_isr_cache
775 * is always -1, with APIC virtualization enabled.
776 */
777 if (!apic->isr_count)
778 return -1;
779 if (likely(apic->highest_isr_cache != -1))
780 return apic->highest_isr_cache;
781
782 result = find_highest_vector(apic->regs + APIC_ISR);
783 ASSERT(result == -1 || result >= 16);
784
785 return result;
786 }
787
apic_clear_isr(int vec,struct kvm_lapic * apic)788 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
789 {
790 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
791 return;
792
793 /*
794 * We do get here for APIC virtualization enabled if the guest
795 * uses the Hyper-V APIC enlightenment. In this case we may need
796 * to trigger a new interrupt delivery by writing the SVI field;
797 * on the other hand isr_count and highest_isr_cache are unused
798 * and must be left alone.
799 */
800 if (unlikely(apic->apicv_active))
801 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic));
802 else {
803 --apic->isr_count;
804 BUG_ON(apic->isr_count < 0);
805 apic->highest_isr_cache = -1;
806 }
807 }
808
kvm_apic_update_hwapic_isr(struct kvm_vcpu * vcpu)809 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu)
810 {
811 struct kvm_lapic *apic = vcpu->arch.apic;
812
813 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active)
814 return;
815
816 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
817 }
818 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr);
819
kvm_lapic_find_highest_irr(struct kvm_vcpu * vcpu)820 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
821 {
822 /* This may race with setting of irr in __apic_accept_irq() and
823 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
824 * will cause vmexit immediately and the value will be recalculated
825 * on the next vmentry.
826 */
827 return apic_find_highest_irr(vcpu->arch.apic);
828 }
829 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
830
831 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
832 int vector, int level, int trig_mode,
833 struct dest_map *dest_map);
834
kvm_apic_set_irq(struct kvm_vcpu * vcpu,struct kvm_lapic_irq * irq,struct dest_map * dest_map)835 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
836 struct dest_map *dest_map)
837 {
838 struct kvm_lapic *apic = vcpu->arch.apic;
839
840 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
841 irq->level, irq->trig_mode, dest_map);
842 }
843
__pv_send_ipi(unsigned long * ipi_bitmap,struct kvm_apic_map * map,struct kvm_lapic_irq * irq,u32 min)844 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
845 struct kvm_lapic_irq *irq, u32 min)
846 {
847 int i, count = 0;
848 struct kvm_vcpu *vcpu;
849
850 if (min > map->max_apic_id)
851 return 0;
852
853 for_each_set_bit(i, ipi_bitmap,
854 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
855 if (map->phys_map[min + i]) {
856 vcpu = map->phys_map[min + i]->vcpu;
857 count += kvm_apic_set_irq(vcpu, irq, NULL);
858 }
859 }
860
861 return count;
862 }
863
kvm_pv_send_ipi(struct kvm * kvm,unsigned long ipi_bitmap_low,unsigned long ipi_bitmap_high,u32 min,unsigned long icr,int op_64_bit)864 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
865 unsigned long ipi_bitmap_high, u32 min,
866 unsigned long icr, int op_64_bit)
867 {
868 struct kvm_apic_map *map;
869 struct kvm_lapic_irq irq = {0};
870 int cluster_size = op_64_bit ? 64 : 32;
871 int count;
872
873 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
874 return -KVM_EINVAL;
875
876 irq.vector = icr & APIC_VECTOR_MASK;
877 irq.delivery_mode = icr & APIC_MODE_MASK;
878 irq.level = (icr & APIC_INT_ASSERT) != 0;
879 irq.trig_mode = icr & APIC_INT_LEVELTRIG;
880
881 rcu_read_lock();
882 map = rcu_dereference(kvm->arch.apic_map);
883
884 count = -EOPNOTSUPP;
885 if (likely(map)) {
886 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
887 min += cluster_size;
888 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
889 }
890
891 rcu_read_unlock();
892 return count;
893 }
894
pv_eoi_put_user(struct kvm_vcpu * vcpu,u8 val)895 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
896 {
897
898 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
899 sizeof(val));
900 }
901
pv_eoi_get_user(struct kvm_vcpu * vcpu,u8 * val)902 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
903 {
904
905 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
906 sizeof(*val));
907 }
908
pv_eoi_enabled(struct kvm_vcpu * vcpu)909 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
910 {
911 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
912 }
913
pv_eoi_set_pending(struct kvm_vcpu * vcpu)914 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
915 {
916 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
917 return;
918
919 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
920 }
921
pv_eoi_test_and_clr_pending(struct kvm_vcpu * vcpu)922 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
923 {
924 u8 val;
925
926 if (pv_eoi_get_user(vcpu, &val) < 0)
927 return false;
928
929 val &= KVM_PV_EOI_ENABLED;
930
931 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
932 return false;
933
934 /*
935 * Clear pending bit in any case: it will be set again on vmentry.
936 * While this might not be ideal from performance point of view,
937 * this makes sure pv eoi is only enabled when we know it's safe.
938 */
939 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
940
941 return val;
942 }
943
apic_has_interrupt_for_ppr(struct kvm_lapic * apic,u32 ppr)944 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
945 {
946 int highest_irr;
947 if (kvm_x86_ops.sync_pir_to_irr)
948 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu);
949 else
950 highest_irr = apic_find_highest_irr(apic);
951 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
952 return -1;
953 return highest_irr;
954 }
955
__apic_update_ppr(struct kvm_lapic * apic,u32 * new_ppr)956 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
957 {
958 u32 tpr, isrv, ppr, old_ppr;
959 int isr;
960
961 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
962 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
963 isr = apic_find_highest_isr(apic);
964 isrv = (isr != -1) ? isr : 0;
965
966 if ((tpr & 0xf0) >= (isrv & 0xf0))
967 ppr = tpr & 0xff;
968 else
969 ppr = isrv & 0xf0;
970
971 *new_ppr = ppr;
972 if (old_ppr != ppr)
973 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
974
975 return ppr < old_ppr;
976 }
977
apic_update_ppr(struct kvm_lapic * apic)978 static void apic_update_ppr(struct kvm_lapic *apic)
979 {
980 u32 ppr;
981
982 if (__apic_update_ppr(apic, &ppr) &&
983 apic_has_interrupt_for_ppr(apic, ppr) != -1)
984 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
985 }
986
kvm_apic_update_ppr(struct kvm_vcpu * vcpu)987 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
988 {
989 apic_update_ppr(vcpu->arch.apic);
990 }
991 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
992
apic_set_tpr(struct kvm_lapic * apic,u32 tpr)993 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
994 {
995 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
996 apic_update_ppr(apic);
997 }
998
kvm_apic_broadcast(struct kvm_lapic * apic,u32 mda)999 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
1000 {
1001 return mda == (apic_x2apic_mode(apic) ?
1002 X2APIC_BROADCAST : APIC_BROADCAST);
1003 }
1004
kvm_apic_match_physical_addr(struct kvm_lapic * apic,u32 mda)1005 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
1006 {
1007 if (kvm_apic_broadcast(apic, mda))
1008 return true;
1009
1010 /*
1011 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1012 * were in x2APIC mode if the target APIC ID can't be encoded as an
1013 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
1014 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1015 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1016 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1017 * changed its (addressable) xAPIC ID (which is writable).
1018 */
1019 if (apic_x2apic_mode(apic) || mda > 0xff)
1020 return mda == kvm_x2apic_id(apic);
1021
1022 return mda == kvm_xapic_id(apic);
1023 }
1024
kvm_apic_match_logical_addr(struct kvm_lapic * apic,u32 mda)1025 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1026 {
1027 u32 logical_id;
1028
1029 if (kvm_apic_broadcast(apic, mda))
1030 return true;
1031
1032 logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1033
1034 if (apic_x2apic_mode(apic))
1035 return ((logical_id >> 16) == (mda >> 16))
1036 && (logical_id & mda & 0xffff) != 0;
1037
1038 logical_id = GET_APIC_LOGICAL_ID(logical_id);
1039
1040 switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1041 case APIC_DFR_FLAT:
1042 return (logical_id & mda) != 0;
1043 case APIC_DFR_CLUSTER:
1044 return ((logical_id >> 4) == (mda >> 4))
1045 && (logical_id & mda & 0xf) != 0;
1046 default:
1047 return false;
1048 }
1049 }
1050
1051 /* The KVM local APIC implementation has two quirks:
1052 *
1053 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1054 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1055 * KVM doesn't do that aliasing.
1056 *
1057 * - in-kernel IOAPIC messages have to be delivered directly to
1058 * x2APIC, because the kernel does not support interrupt remapping.
1059 * In order to support broadcast without interrupt remapping, x2APIC
1060 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1061 * to X2APIC_BROADCAST.
1062 *
1063 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1064 * important when userspace wants to use x2APIC-format MSIs, because
1065 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1066 */
kvm_apic_mda(struct kvm_vcpu * vcpu,unsigned int dest_id,struct kvm_lapic * source,struct kvm_lapic * target)1067 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1068 struct kvm_lapic *source, struct kvm_lapic *target)
1069 {
1070 bool ipi = source != NULL;
1071
1072 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1073 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1074 return X2APIC_BROADCAST;
1075
1076 return dest_id;
1077 }
1078
kvm_apic_match_dest(struct kvm_vcpu * vcpu,struct kvm_lapic * source,int shorthand,unsigned int dest,int dest_mode)1079 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1080 int shorthand, unsigned int dest, int dest_mode)
1081 {
1082 struct kvm_lapic *target = vcpu->arch.apic;
1083 u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1084
1085 ASSERT(target);
1086 switch (shorthand) {
1087 case APIC_DEST_NOSHORT:
1088 if (dest_mode == APIC_DEST_PHYSICAL)
1089 return kvm_apic_match_physical_addr(target, mda);
1090 else
1091 return kvm_apic_match_logical_addr(target, mda);
1092 case APIC_DEST_SELF:
1093 return target == source;
1094 case APIC_DEST_ALLINC:
1095 return true;
1096 case APIC_DEST_ALLBUT:
1097 return target != source;
1098 default:
1099 return false;
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1103
kvm_vector_to_index(u32 vector,u32 dest_vcpus,const unsigned long * bitmap,u32 bitmap_size)1104 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1105 const unsigned long *bitmap, u32 bitmap_size)
1106 {
1107 u32 mod;
1108 int i, idx = -1;
1109
1110 mod = vector % dest_vcpus;
1111
1112 for (i = 0; i <= mod; i++) {
1113 idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1114 BUG_ON(idx == bitmap_size);
1115 }
1116
1117 return idx;
1118 }
1119
kvm_apic_disabled_lapic_found(struct kvm * kvm)1120 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1121 {
1122 if (!kvm->arch.disabled_lapic_found) {
1123 kvm->arch.disabled_lapic_found = true;
1124 pr_info("Disabled LAPIC found during irq injection\n");
1125 }
1126 }
1127
kvm_apic_is_broadcast_dest(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map)1128 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1129 struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1130 {
1131 if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1132 if ((irq->dest_id == APIC_BROADCAST &&
1133 map->logical_mode != KVM_APIC_MODE_X2APIC))
1134 return true;
1135 if (irq->dest_id == X2APIC_BROADCAST)
1136 return true;
1137 } else {
1138 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1139 if (irq->dest_id == (x2apic_ipi ?
1140 X2APIC_BROADCAST : APIC_BROADCAST))
1141 return true;
1142 }
1143
1144 return false;
1145 }
1146
1147 /* Return true if the interrupt can be handled by using *bitmap as index mask
1148 * for valid destinations in *dst array.
1149 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1150 * Note: we may have zero kvm_lapic destinations when we return true, which
1151 * means that the interrupt should be dropped. In this case, *bitmap would be
1152 * zero and *dst undefined.
1153 */
kvm_apic_map_get_dest_lapic(struct kvm * kvm,struct kvm_lapic ** src,struct kvm_lapic_irq * irq,struct kvm_apic_map * map,struct kvm_lapic *** dst,unsigned long * bitmap)1154 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1155 struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1156 struct kvm_apic_map *map, struct kvm_lapic ***dst,
1157 unsigned long *bitmap)
1158 {
1159 int i, lowest;
1160
1161 if (irq->shorthand == APIC_DEST_SELF && src) {
1162 *dst = src;
1163 *bitmap = 1;
1164 return true;
1165 } else if (irq->shorthand)
1166 return false;
1167
1168 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1169 return false;
1170
1171 if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1172 if (irq->dest_id > map->max_apic_id) {
1173 *bitmap = 0;
1174 } else {
1175 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1176 *dst = &map->phys_map[dest_id];
1177 *bitmap = 1;
1178 }
1179 return true;
1180 }
1181
1182 *bitmap = 0;
1183 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1184 (u16 *)bitmap))
1185 return false;
1186
1187 if (!kvm_lowest_prio_delivery(irq))
1188 return true;
1189
1190 if (!kvm_vector_hashing_enabled()) {
1191 lowest = -1;
1192 for_each_set_bit(i, bitmap, 16) {
1193 if (!(*dst)[i])
1194 continue;
1195 if (lowest < 0)
1196 lowest = i;
1197 else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1198 (*dst)[lowest]->vcpu) < 0)
1199 lowest = i;
1200 }
1201 } else {
1202 if (!*bitmap)
1203 return true;
1204
1205 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1206 bitmap, 16);
1207
1208 if (!(*dst)[lowest]) {
1209 kvm_apic_disabled_lapic_found(kvm);
1210 *bitmap = 0;
1211 return true;
1212 }
1213 }
1214
1215 *bitmap = (lowest >= 0) ? 1 << lowest : 0;
1216
1217 return true;
1218 }
1219
kvm_irq_delivery_to_apic_fast(struct kvm * kvm,struct kvm_lapic * src,struct kvm_lapic_irq * irq,int * r,struct dest_map * dest_map)1220 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1221 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1222 {
1223 struct kvm_apic_map *map;
1224 unsigned long bitmap;
1225 struct kvm_lapic **dst = NULL;
1226 int i;
1227 bool ret;
1228
1229 *r = -1;
1230
1231 if (irq->shorthand == APIC_DEST_SELF) {
1232 if (KVM_BUG_ON(!src, kvm)) {
1233 *r = 0;
1234 return true;
1235 }
1236 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1237 return true;
1238 }
1239
1240 rcu_read_lock();
1241 map = rcu_dereference(kvm->arch.apic_map);
1242
1243 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1244 if (ret) {
1245 *r = 0;
1246 for_each_set_bit(i, &bitmap, 16) {
1247 if (!dst[i])
1248 continue;
1249 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1250 }
1251 }
1252
1253 rcu_read_unlock();
1254 return ret;
1255 }
1256
1257 /*
1258 * This routine tries to handle interrupts in posted mode, here is how
1259 * it deals with different cases:
1260 * - For single-destination interrupts, handle it in posted mode
1261 * - Else if vector hashing is enabled and it is a lowest-priority
1262 * interrupt, handle it in posted mode and use the following mechanism
1263 * to find the destination vCPU.
1264 * 1. For lowest-priority interrupts, store all the possible
1265 * destination vCPUs in an array.
1266 * 2. Use "guest vector % max number of destination vCPUs" to find
1267 * the right destination vCPU in the array for the lowest-priority
1268 * interrupt.
1269 * - Otherwise, use remapped mode to inject the interrupt.
1270 */
kvm_intr_is_single_vcpu_fast(struct kvm * kvm,struct kvm_lapic_irq * irq,struct kvm_vcpu ** dest_vcpu)1271 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1272 struct kvm_vcpu **dest_vcpu)
1273 {
1274 struct kvm_apic_map *map;
1275 unsigned long bitmap;
1276 struct kvm_lapic **dst = NULL;
1277 bool ret = false;
1278
1279 if (irq->shorthand)
1280 return false;
1281
1282 rcu_read_lock();
1283 map = rcu_dereference(kvm->arch.apic_map);
1284
1285 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1286 hweight16(bitmap) == 1) {
1287 unsigned long i = find_first_bit(&bitmap, 16);
1288
1289 if (dst[i]) {
1290 *dest_vcpu = dst[i]->vcpu;
1291 ret = true;
1292 }
1293 }
1294
1295 rcu_read_unlock();
1296 return ret;
1297 }
1298
1299 /*
1300 * Add a pending IRQ into lapic.
1301 * Return 1 if successfully added and 0 if discarded.
1302 */
__apic_accept_irq(struct kvm_lapic * apic,int delivery_mode,int vector,int level,int trig_mode,struct dest_map * dest_map)1303 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1304 int vector, int level, int trig_mode,
1305 struct dest_map *dest_map)
1306 {
1307 int result = 0;
1308 struct kvm_vcpu *vcpu = apic->vcpu;
1309
1310 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1311 trig_mode, vector);
1312 switch (delivery_mode) {
1313 case APIC_DM_LOWEST:
1314 vcpu->arch.apic_arb_prio++;
1315 fallthrough;
1316 case APIC_DM_FIXED:
1317 if (unlikely(trig_mode && !level))
1318 break;
1319
1320 /* FIXME add logic for vcpu on reset */
1321 if (unlikely(!apic_enabled(apic)))
1322 break;
1323
1324 result = 1;
1325
1326 if (dest_map) {
1327 __set_bit(vcpu->vcpu_id, dest_map->map);
1328 dest_map->vectors[vcpu->vcpu_id] = vector;
1329 }
1330
1331 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1332 if (trig_mode)
1333 kvm_lapic_set_vector(vector,
1334 apic->regs + APIC_TMR);
1335 else
1336 kvm_lapic_clear_vector(vector,
1337 apic->regs + APIC_TMR);
1338 }
1339
1340 kvm_x86_call(deliver_interrupt)(apic, delivery_mode,
1341 trig_mode, vector);
1342 break;
1343
1344 case APIC_DM_REMRD:
1345 result = 1;
1346 vcpu->arch.pv.pv_unhalted = 1;
1347 kvm_make_request(KVM_REQ_EVENT, vcpu);
1348 kvm_vcpu_kick(vcpu);
1349 break;
1350
1351 case APIC_DM_SMI:
1352 if (!kvm_inject_smi(vcpu)) {
1353 kvm_vcpu_kick(vcpu);
1354 result = 1;
1355 }
1356 break;
1357
1358 case APIC_DM_NMI:
1359 result = 1;
1360 kvm_inject_nmi(vcpu);
1361 kvm_vcpu_kick(vcpu);
1362 break;
1363
1364 case APIC_DM_INIT:
1365 if (!trig_mode || level) {
1366 result = 1;
1367 /* assumes that there are only KVM_APIC_INIT/SIPI */
1368 apic->pending_events = (1UL << KVM_APIC_INIT);
1369 kvm_make_request(KVM_REQ_EVENT, vcpu);
1370 kvm_vcpu_kick(vcpu);
1371 }
1372 break;
1373
1374 case APIC_DM_STARTUP:
1375 result = 1;
1376 apic->sipi_vector = vector;
1377 /* make sure sipi_vector is visible for the receiver */
1378 smp_wmb();
1379 set_bit(KVM_APIC_SIPI, &apic->pending_events);
1380 kvm_make_request(KVM_REQ_EVENT, vcpu);
1381 kvm_vcpu_kick(vcpu);
1382 break;
1383
1384 case APIC_DM_EXTINT:
1385 /*
1386 * Should only be called by kvm_apic_local_deliver() with LVT0,
1387 * before NMI watchdog was enabled. Already handled by
1388 * kvm_apic_accept_pic_intr().
1389 */
1390 break;
1391
1392 default:
1393 printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1394 delivery_mode);
1395 break;
1396 }
1397 return result;
1398 }
1399
1400 /*
1401 * This routine identifies the destination vcpus mask meant to receive the
1402 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1403 * out the destination vcpus array and set the bitmap or it traverses to
1404 * each available vcpu to identify the same.
1405 */
kvm_bitmap_or_dest_vcpus(struct kvm * kvm,struct kvm_lapic_irq * irq,unsigned long * vcpu_bitmap)1406 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1407 unsigned long *vcpu_bitmap)
1408 {
1409 struct kvm_lapic **dest_vcpu = NULL;
1410 struct kvm_lapic *src = NULL;
1411 struct kvm_apic_map *map;
1412 struct kvm_vcpu *vcpu;
1413 unsigned long bitmap, i;
1414 int vcpu_idx;
1415 bool ret;
1416
1417 rcu_read_lock();
1418 map = rcu_dereference(kvm->arch.apic_map);
1419
1420 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1421 &bitmap);
1422 if (ret) {
1423 for_each_set_bit(i, &bitmap, 16) {
1424 if (!dest_vcpu[i])
1425 continue;
1426 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1427 __set_bit(vcpu_idx, vcpu_bitmap);
1428 }
1429 } else {
1430 kvm_for_each_vcpu(i, vcpu, kvm) {
1431 if (!kvm_apic_present(vcpu))
1432 continue;
1433 if (!kvm_apic_match_dest(vcpu, NULL,
1434 irq->shorthand,
1435 irq->dest_id,
1436 irq->dest_mode))
1437 continue;
1438 __set_bit(i, vcpu_bitmap);
1439 }
1440 }
1441 rcu_read_unlock();
1442 }
1443
kvm_apic_compare_prio(struct kvm_vcpu * vcpu1,struct kvm_vcpu * vcpu2)1444 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1445 {
1446 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1447 }
1448
kvm_ioapic_handles_vector(struct kvm_lapic * apic,int vector)1449 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1450 {
1451 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1452 }
1453
kvm_ioapic_send_eoi(struct kvm_lapic * apic,int vector)1454 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1455 {
1456 int trigger_mode;
1457
1458 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1459 if (!kvm_ioapic_handles_vector(apic, vector))
1460 return;
1461
1462 /* Request a KVM exit to inform the userspace IOAPIC. */
1463 if (irqchip_split(apic->vcpu->kvm)) {
1464 apic->vcpu->arch.pending_ioapic_eoi = vector;
1465 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1466 return;
1467 }
1468
1469 if (apic_test_vector(vector, apic->regs + APIC_TMR))
1470 trigger_mode = IOAPIC_LEVEL_TRIG;
1471 else
1472 trigger_mode = IOAPIC_EDGE_TRIG;
1473
1474 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1475 }
1476
apic_set_eoi(struct kvm_lapic * apic)1477 static int apic_set_eoi(struct kvm_lapic *apic)
1478 {
1479 int vector = apic_find_highest_isr(apic);
1480
1481 trace_kvm_eoi(apic, vector);
1482
1483 /*
1484 * Not every write EOI will has corresponding ISR,
1485 * one example is when Kernel check timer on setup_IO_APIC
1486 */
1487 if (vector == -1)
1488 return vector;
1489
1490 apic_clear_isr(vector, apic);
1491 apic_update_ppr(apic);
1492
1493 if (kvm_hv_synic_has_vector(apic->vcpu, vector))
1494 kvm_hv_synic_send_eoi(apic->vcpu, vector);
1495
1496 kvm_ioapic_send_eoi(apic, vector);
1497 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1498 return vector;
1499 }
1500
1501 /*
1502 * this interface assumes a trap-like exit, which has already finished
1503 * desired side effect including vISR and vPPR update.
1504 */
kvm_apic_set_eoi_accelerated(struct kvm_vcpu * vcpu,int vector)1505 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1506 {
1507 struct kvm_lapic *apic = vcpu->arch.apic;
1508
1509 trace_kvm_eoi(apic, vector);
1510
1511 kvm_ioapic_send_eoi(apic, vector);
1512 kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1515
kvm_apic_send_ipi(struct kvm_lapic * apic,u32 icr_low,u32 icr_high)1516 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1517 {
1518 struct kvm_lapic_irq irq;
1519
1520 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1521 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1522
1523 irq.vector = icr_low & APIC_VECTOR_MASK;
1524 irq.delivery_mode = icr_low & APIC_MODE_MASK;
1525 irq.dest_mode = icr_low & APIC_DEST_MASK;
1526 irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1527 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1528 irq.shorthand = icr_low & APIC_SHORT_MASK;
1529 irq.msi_redir_hint = false;
1530 if (apic_x2apic_mode(apic))
1531 irq.dest_id = icr_high;
1532 else
1533 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1534
1535 trace_kvm_apic_ipi(icr_low, irq.dest_id);
1536
1537 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1540
apic_get_tmcct(struct kvm_lapic * apic)1541 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1542 {
1543 ktime_t remaining, now;
1544 s64 ns;
1545
1546 ASSERT(apic != NULL);
1547
1548 /* if initial count is 0, current count should also be 0 */
1549 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1550 apic->lapic_timer.period == 0)
1551 return 0;
1552
1553 now = ktime_get();
1554 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1555 if (ktime_to_ns(remaining) < 0)
1556 remaining = 0;
1557
1558 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1559 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1560 apic->divide_count));
1561 }
1562
__report_tpr_access(struct kvm_lapic * apic,bool write)1563 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1564 {
1565 struct kvm_vcpu *vcpu = apic->vcpu;
1566 struct kvm_run *run = vcpu->run;
1567
1568 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1569 run->tpr_access.rip = kvm_rip_read(vcpu);
1570 run->tpr_access.is_write = write;
1571 }
1572
report_tpr_access(struct kvm_lapic * apic,bool write)1573 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1574 {
1575 if (apic->vcpu->arch.tpr_access_reporting)
1576 __report_tpr_access(apic, write);
1577 }
1578
__apic_read(struct kvm_lapic * apic,unsigned int offset)1579 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1580 {
1581 u32 val = 0;
1582
1583 if (offset >= LAPIC_MMIO_LENGTH)
1584 return 0;
1585
1586 switch (offset) {
1587 case APIC_ARBPRI:
1588 break;
1589
1590 case APIC_TMCCT: /* Timer CCR */
1591 if (apic_lvtt_tscdeadline(apic))
1592 return 0;
1593
1594 val = apic_get_tmcct(apic);
1595 break;
1596 case APIC_PROCPRI:
1597 apic_update_ppr(apic);
1598 val = kvm_lapic_get_reg(apic, offset);
1599 break;
1600 case APIC_TASKPRI:
1601 report_tpr_access(apic, false);
1602 fallthrough;
1603 default:
1604 val = kvm_lapic_get_reg(apic, offset);
1605 break;
1606 }
1607
1608 return val;
1609 }
1610
to_lapic(struct kvm_io_device * dev)1611 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1612 {
1613 return container_of(dev, struct kvm_lapic, dev);
1614 }
1615
1616 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1617 #define APIC_REGS_MASK(first, count) \
1618 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1619
kvm_lapic_readable_reg_mask(struct kvm_lapic * apic)1620 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1621 {
1622 /* Leave bits '0' for reserved and write-only registers. */
1623 u64 valid_reg_mask =
1624 APIC_REG_MASK(APIC_ID) |
1625 APIC_REG_MASK(APIC_LVR) |
1626 APIC_REG_MASK(APIC_TASKPRI) |
1627 APIC_REG_MASK(APIC_PROCPRI) |
1628 APIC_REG_MASK(APIC_LDR) |
1629 APIC_REG_MASK(APIC_SPIV) |
1630 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1631 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1632 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1633 APIC_REG_MASK(APIC_ESR) |
1634 APIC_REG_MASK(APIC_ICR) |
1635 APIC_REG_MASK(APIC_LVTT) |
1636 APIC_REG_MASK(APIC_LVTTHMR) |
1637 APIC_REG_MASK(APIC_LVTPC) |
1638 APIC_REG_MASK(APIC_LVT0) |
1639 APIC_REG_MASK(APIC_LVT1) |
1640 APIC_REG_MASK(APIC_LVTERR) |
1641 APIC_REG_MASK(APIC_TMICT) |
1642 APIC_REG_MASK(APIC_TMCCT) |
1643 APIC_REG_MASK(APIC_TDCR);
1644
1645 if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1646 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1647
1648 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1649 if (!apic_x2apic_mode(apic))
1650 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1651 APIC_REG_MASK(APIC_DFR) |
1652 APIC_REG_MASK(APIC_ICR2);
1653
1654 return valid_reg_mask;
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1657
kvm_lapic_reg_read(struct kvm_lapic * apic,u32 offset,int len,void * data)1658 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1659 void *data)
1660 {
1661 unsigned char alignment = offset & 0xf;
1662 u32 result;
1663
1664 /*
1665 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1666 * x2APIC and needs to be manually handled by the caller.
1667 */
1668 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1669
1670 if (alignment + len > 4)
1671 return 1;
1672
1673 if (offset > 0x3f0 ||
1674 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1675 return 1;
1676
1677 result = __apic_read(apic, offset & ~0xf);
1678
1679 trace_kvm_apic_read(offset, result);
1680
1681 switch (len) {
1682 case 1:
1683 case 2:
1684 case 4:
1685 memcpy(data, (char *)&result + alignment, len);
1686 break;
1687 default:
1688 printk(KERN_ERR "Local APIC read with len = %x, "
1689 "should be 1,2, or 4 instead\n", len);
1690 break;
1691 }
1692 return 0;
1693 }
1694
apic_mmio_in_range(struct kvm_lapic * apic,gpa_t addr)1695 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1696 {
1697 return addr >= apic->base_address &&
1698 addr < apic->base_address + LAPIC_MMIO_LENGTH;
1699 }
1700
apic_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,void * data)1701 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1702 gpa_t address, int len, void *data)
1703 {
1704 struct kvm_lapic *apic = to_lapic(this);
1705 u32 offset = address - apic->base_address;
1706
1707 if (!apic_mmio_in_range(apic, address))
1708 return -EOPNOTSUPP;
1709
1710 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1711 if (!kvm_check_has_quirk(vcpu->kvm,
1712 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1713 return -EOPNOTSUPP;
1714
1715 memset(data, 0xff, len);
1716 return 0;
1717 }
1718
1719 kvm_lapic_reg_read(apic, offset, len, data);
1720
1721 return 0;
1722 }
1723
update_divide_count(struct kvm_lapic * apic)1724 static void update_divide_count(struct kvm_lapic *apic)
1725 {
1726 u32 tmp1, tmp2, tdcr;
1727
1728 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1729 tmp1 = tdcr & 0xf;
1730 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1731 apic->divide_count = 0x1 << (tmp2 & 0x7);
1732 }
1733
limit_periodic_timer_frequency(struct kvm_lapic * apic)1734 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1735 {
1736 /*
1737 * Do not allow the guest to program periodic timers with small
1738 * interval, since the hrtimers are not throttled by the host
1739 * scheduler.
1740 */
1741 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1742 s64 min_period = min_timer_period_us * 1000LL;
1743
1744 if (apic->lapic_timer.period < min_period) {
1745 pr_info_once(
1746 "vcpu %i: requested %lld ns "
1747 "lapic timer period limited to %lld ns\n",
1748 apic->vcpu->vcpu_id,
1749 apic->lapic_timer.period, min_period);
1750 apic->lapic_timer.period = min_period;
1751 }
1752 }
1753 }
1754
1755 static void cancel_hv_timer(struct kvm_lapic *apic);
1756
cancel_apic_timer(struct kvm_lapic * apic)1757 static void cancel_apic_timer(struct kvm_lapic *apic)
1758 {
1759 hrtimer_cancel(&apic->lapic_timer.timer);
1760 preempt_disable();
1761 if (apic->lapic_timer.hv_timer_in_use)
1762 cancel_hv_timer(apic);
1763 preempt_enable();
1764 atomic_set(&apic->lapic_timer.pending, 0);
1765 }
1766
apic_update_lvtt(struct kvm_lapic * apic)1767 static void apic_update_lvtt(struct kvm_lapic *apic)
1768 {
1769 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1770 apic->lapic_timer.timer_mode_mask;
1771
1772 if (apic->lapic_timer.timer_mode != timer_mode) {
1773 if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1774 APIC_LVT_TIMER_TSCDEADLINE)) {
1775 cancel_apic_timer(apic);
1776 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1777 apic->lapic_timer.period = 0;
1778 apic->lapic_timer.tscdeadline = 0;
1779 }
1780 apic->lapic_timer.timer_mode = timer_mode;
1781 limit_periodic_timer_frequency(apic);
1782 }
1783 }
1784
1785 /*
1786 * On APICv, this test will cause a busy wait
1787 * during a higher-priority task.
1788 */
1789
lapic_timer_int_injected(struct kvm_vcpu * vcpu)1790 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1791 {
1792 struct kvm_lapic *apic = vcpu->arch.apic;
1793 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1794
1795 if (kvm_apic_hw_enabled(apic)) {
1796 int vec = reg & APIC_VECTOR_MASK;
1797 void *bitmap = apic->regs + APIC_ISR;
1798
1799 if (apic->apicv_active)
1800 bitmap = apic->regs + APIC_IRR;
1801
1802 if (apic_test_vector(vec, bitmap))
1803 return true;
1804 }
1805 return false;
1806 }
1807
__wait_lapic_expire(struct kvm_vcpu * vcpu,u64 guest_cycles)1808 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1809 {
1810 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1811
1812 /*
1813 * If the guest TSC is running at a different ratio than the host, then
1814 * convert the delay to nanoseconds to achieve an accurate delay. Note
1815 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1816 * always for VMX enabled hardware.
1817 */
1818 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1819 __delay(min(guest_cycles,
1820 nsec_to_cycles(vcpu, timer_advance_ns)));
1821 } else {
1822 u64 delay_ns = guest_cycles * 1000000ULL;
1823 do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1824 ndelay(min_t(u32, delay_ns, timer_advance_ns));
1825 }
1826 }
1827
adjust_lapic_timer_advance(struct kvm_vcpu * vcpu,s64 advance_expire_delta)1828 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1829 s64 advance_expire_delta)
1830 {
1831 struct kvm_lapic *apic = vcpu->arch.apic;
1832 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1833 u64 ns;
1834
1835 /* Do not adjust for tiny fluctuations or large random spikes. */
1836 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1837 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1838 return;
1839
1840 /* too early */
1841 if (advance_expire_delta < 0) {
1842 ns = -advance_expire_delta * 1000000ULL;
1843 do_div(ns, vcpu->arch.virtual_tsc_khz);
1844 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1845 } else {
1846 /* too late */
1847 ns = advance_expire_delta * 1000000ULL;
1848 do_div(ns, vcpu->arch.virtual_tsc_khz);
1849 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1850 }
1851
1852 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1853 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1854 apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1855 }
1856
__kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1857 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1858 {
1859 struct kvm_lapic *apic = vcpu->arch.apic;
1860 u64 guest_tsc, tsc_deadline;
1861
1862 tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1863 apic->lapic_timer.expired_tscdeadline = 0;
1864 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1865 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1866
1867 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1868
1869 /*
1870 * If the timer fired early, reread the TSC to account for the overhead
1871 * of the above adjustment to avoid waiting longer than is necessary.
1872 */
1873 if (guest_tsc < tsc_deadline)
1874 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1875
1876 if (guest_tsc < tsc_deadline)
1877 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1878 }
1879
kvm_wait_lapic_expire(struct kvm_vcpu * vcpu)1880 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1881 {
1882 if (lapic_in_kernel(vcpu) &&
1883 vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1884 vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1885 lapic_timer_int_injected(vcpu))
1886 __kvm_wait_lapic_expire(vcpu);
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1889
kvm_apic_inject_pending_timer_irqs(struct kvm_lapic * apic)1890 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1891 {
1892 struct kvm_timer *ktimer = &apic->lapic_timer;
1893
1894 kvm_apic_local_deliver(apic, APIC_LVTT);
1895 if (apic_lvtt_tscdeadline(apic)) {
1896 ktimer->tscdeadline = 0;
1897 } else if (apic_lvtt_oneshot(apic)) {
1898 ktimer->tscdeadline = 0;
1899 ktimer->target_expiration = 0;
1900 }
1901 }
1902
apic_timer_expired(struct kvm_lapic * apic,bool from_timer_fn)1903 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1904 {
1905 struct kvm_vcpu *vcpu = apic->vcpu;
1906 struct kvm_timer *ktimer = &apic->lapic_timer;
1907
1908 if (atomic_read(&apic->lapic_timer.pending))
1909 return;
1910
1911 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1912 ktimer->expired_tscdeadline = ktimer->tscdeadline;
1913
1914 if (!from_timer_fn && apic->apicv_active) {
1915 WARN_ON(kvm_get_running_vcpu() != vcpu);
1916 kvm_apic_inject_pending_timer_irqs(apic);
1917 return;
1918 }
1919
1920 if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1921 /*
1922 * Ensure the guest's timer has truly expired before posting an
1923 * interrupt. Open code the relevant checks to avoid querying
1924 * lapic_timer_int_injected(), which will be false since the
1925 * interrupt isn't yet injected. Waiting until after injecting
1926 * is not an option since that won't help a posted interrupt.
1927 */
1928 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1929 vcpu->arch.apic->lapic_timer.timer_advance_ns)
1930 __kvm_wait_lapic_expire(vcpu);
1931 kvm_apic_inject_pending_timer_irqs(apic);
1932 return;
1933 }
1934
1935 atomic_inc(&apic->lapic_timer.pending);
1936 kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1937 if (from_timer_fn)
1938 kvm_vcpu_kick(vcpu);
1939 }
1940
start_sw_tscdeadline(struct kvm_lapic * apic)1941 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1942 {
1943 struct kvm_timer *ktimer = &apic->lapic_timer;
1944 u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1945 u64 ns = 0;
1946 ktime_t expire;
1947 struct kvm_vcpu *vcpu = apic->vcpu;
1948 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1949 unsigned long flags;
1950 ktime_t now;
1951
1952 if (unlikely(!tscdeadline || !this_tsc_khz))
1953 return;
1954
1955 local_irq_save(flags);
1956
1957 now = ktime_get();
1958 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1959
1960 ns = (tscdeadline - guest_tsc) * 1000000ULL;
1961 do_div(ns, this_tsc_khz);
1962
1963 if (likely(tscdeadline > guest_tsc) &&
1964 likely(ns > apic->lapic_timer.timer_advance_ns)) {
1965 expire = ktime_add_ns(now, ns);
1966 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1967 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1968 } else
1969 apic_timer_expired(apic, false);
1970
1971 local_irq_restore(flags);
1972 }
1973
tmict_to_ns(struct kvm_lapic * apic,u32 tmict)1974 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1975 {
1976 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns *
1977 (u64)apic->divide_count;
1978 }
1979
update_target_expiration(struct kvm_lapic * apic,uint32_t old_divisor)1980 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1981 {
1982 ktime_t now, remaining;
1983 u64 ns_remaining_old, ns_remaining_new;
1984
1985 apic->lapic_timer.period =
1986 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1987 limit_periodic_timer_frequency(apic);
1988
1989 now = ktime_get();
1990 remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1991 if (ktime_to_ns(remaining) < 0)
1992 remaining = 0;
1993
1994 ns_remaining_old = ktime_to_ns(remaining);
1995 ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1996 apic->divide_count, old_divisor);
1997
1998 apic->lapic_timer.tscdeadline +=
1999 nsec_to_cycles(apic->vcpu, ns_remaining_new) -
2000 nsec_to_cycles(apic->vcpu, ns_remaining_old);
2001 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
2002 }
2003
set_target_expiration(struct kvm_lapic * apic,u32 count_reg)2004 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
2005 {
2006 ktime_t now;
2007 u64 tscl = rdtsc();
2008 s64 deadline;
2009
2010 now = ktime_get();
2011 apic->lapic_timer.period =
2012 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2013
2014 if (!apic->lapic_timer.period) {
2015 apic->lapic_timer.tscdeadline = 0;
2016 return false;
2017 }
2018
2019 limit_periodic_timer_frequency(apic);
2020 deadline = apic->lapic_timer.period;
2021
2022 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2023 if (unlikely(count_reg != APIC_TMICT)) {
2024 deadline = tmict_to_ns(apic,
2025 kvm_lapic_get_reg(apic, count_reg));
2026 if (unlikely(deadline <= 0)) {
2027 if (apic_lvtt_period(apic))
2028 deadline = apic->lapic_timer.period;
2029 else
2030 deadline = 0;
2031 }
2032 else if (unlikely(deadline > apic->lapic_timer.period)) {
2033 pr_info_ratelimited(
2034 "vcpu %i: requested lapic timer restore with "
2035 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2036 "Using initial count to start timer.\n",
2037 apic->vcpu->vcpu_id,
2038 count_reg,
2039 kvm_lapic_get_reg(apic, count_reg),
2040 deadline, apic->lapic_timer.period);
2041 kvm_lapic_set_reg(apic, count_reg, 0);
2042 deadline = apic->lapic_timer.period;
2043 }
2044 }
2045 }
2046
2047 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2048 nsec_to_cycles(apic->vcpu, deadline);
2049 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2050
2051 return true;
2052 }
2053
advance_periodic_target_expiration(struct kvm_lapic * apic)2054 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2055 {
2056 ktime_t now = ktime_get();
2057 u64 tscl = rdtsc();
2058 ktime_t delta;
2059
2060 /*
2061 * Synchronize both deadlines to the same time source or
2062 * differences in the periods (caused by differences in the
2063 * underlying clocks or numerical approximation errors) will
2064 * cause the two to drift apart over time as the errors
2065 * accumulate.
2066 */
2067 apic->lapic_timer.target_expiration =
2068 ktime_add_ns(apic->lapic_timer.target_expiration,
2069 apic->lapic_timer.period);
2070 delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2071 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2072 nsec_to_cycles(apic->vcpu, delta);
2073 }
2074
start_sw_period(struct kvm_lapic * apic)2075 static void start_sw_period(struct kvm_lapic *apic)
2076 {
2077 if (!apic->lapic_timer.period)
2078 return;
2079
2080 if (ktime_after(ktime_get(),
2081 apic->lapic_timer.target_expiration)) {
2082 apic_timer_expired(apic, false);
2083
2084 if (apic_lvtt_oneshot(apic))
2085 return;
2086
2087 advance_periodic_target_expiration(apic);
2088 }
2089
2090 hrtimer_start(&apic->lapic_timer.timer,
2091 apic->lapic_timer.target_expiration,
2092 HRTIMER_MODE_ABS_HARD);
2093 }
2094
kvm_lapic_hv_timer_in_use(struct kvm_vcpu * vcpu)2095 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2096 {
2097 if (!lapic_in_kernel(vcpu))
2098 return false;
2099
2100 return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2101 }
2102
cancel_hv_timer(struct kvm_lapic * apic)2103 static void cancel_hv_timer(struct kvm_lapic *apic)
2104 {
2105 WARN_ON(preemptible());
2106 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2107 kvm_x86_call(cancel_hv_timer)(apic->vcpu);
2108 apic->lapic_timer.hv_timer_in_use = false;
2109 }
2110
start_hv_timer(struct kvm_lapic * apic)2111 static bool start_hv_timer(struct kvm_lapic *apic)
2112 {
2113 struct kvm_timer *ktimer = &apic->lapic_timer;
2114 struct kvm_vcpu *vcpu = apic->vcpu;
2115 bool expired;
2116
2117 WARN_ON(preemptible());
2118 if (!kvm_can_use_hv_timer(vcpu))
2119 return false;
2120
2121 if (!ktimer->tscdeadline)
2122 return false;
2123
2124 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2125 return false;
2126
2127 ktimer->hv_timer_in_use = true;
2128 hrtimer_cancel(&ktimer->timer);
2129
2130 /*
2131 * To simplify handling the periodic timer, leave the hv timer running
2132 * even if the deadline timer has expired, i.e. rely on the resulting
2133 * VM-Exit to recompute the periodic timer's target expiration.
2134 */
2135 if (!apic_lvtt_period(apic)) {
2136 /*
2137 * Cancel the hv timer if the sw timer fired while the hv timer
2138 * was being programmed, or if the hv timer itself expired.
2139 */
2140 if (atomic_read(&ktimer->pending)) {
2141 cancel_hv_timer(apic);
2142 } else if (expired) {
2143 apic_timer_expired(apic, false);
2144 cancel_hv_timer(apic);
2145 }
2146 }
2147
2148 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2149
2150 return true;
2151 }
2152
start_sw_timer(struct kvm_lapic * apic)2153 static void start_sw_timer(struct kvm_lapic *apic)
2154 {
2155 struct kvm_timer *ktimer = &apic->lapic_timer;
2156
2157 WARN_ON(preemptible());
2158 if (apic->lapic_timer.hv_timer_in_use)
2159 cancel_hv_timer(apic);
2160 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2161 return;
2162
2163 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2164 start_sw_period(apic);
2165 else if (apic_lvtt_tscdeadline(apic))
2166 start_sw_tscdeadline(apic);
2167 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2168 }
2169
restart_apic_timer(struct kvm_lapic * apic)2170 static void restart_apic_timer(struct kvm_lapic *apic)
2171 {
2172 preempt_disable();
2173
2174 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2175 goto out;
2176
2177 if (!start_hv_timer(apic))
2178 start_sw_timer(apic);
2179 out:
2180 preempt_enable();
2181 }
2182
kvm_lapic_expired_hv_timer(struct kvm_vcpu * vcpu)2183 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2184 {
2185 struct kvm_lapic *apic = vcpu->arch.apic;
2186
2187 preempt_disable();
2188 /* If the preempt notifier has already run, it also called apic_timer_expired */
2189 if (!apic->lapic_timer.hv_timer_in_use)
2190 goto out;
2191 WARN_ON(kvm_vcpu_is_blocking(vcpu));
2192 apic_timer_expired(apic, false);
2193 cancel_hv_timer(apic);
2194
2195 if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2196 advance_periodic_target_expiration(apic);
2197 restart_apic_timer(apic);
2198 }
2199 out:
2200 preempt_enable();
2201 }
2202 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2203
kvm_lapic_switch_to_hv_timer(struct kvm_vcpu * vcpu)2204 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2205 {
2206 restart_apic_timer(vcpu->arch.apic);
2207 }
2208
kvm_lapic_switch_to_sw_timer(struct kvm_vcpu * vcpu)2209 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2210 {
2211 struct kvm_lapic *apic = vcpu->arch.apic;
2212
2213 preempt_disable();
2214 /* Possibly the TSC deadline timer is not enabled yet */
2215 if (apic->lapic_timer.hv_timer_in_use)
2216 start_sw_timer(apic);
2217 preempt_enable();
2218 }
2219
kvm_lapic_restart_hv_timer(struct kvm_vcpu * vcpu)2220 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2221 {
2222 struct kvm_lapic *apic = vcpu->arch.apic;
2223
2224 WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2225 restart_apic_timer(apic);
2226 }
2227
__start_apic_timer(struct kvm_lapic * apic,u32 count_reg)2228 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2229 {
2230 atomic_set(&apic->lapic_timer.pending, 0);
2231
2232 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2233 && !set_target_expiration(apic, count_reg))
2234 return;
2235
2236 restart_apic_timer(apic);
2237 }
2238
start_apic_timer(struct kvm_lapic * apic)2239 static void start_apic_timer(struct kvm_lapic *apic)
2240 {
2241 __start_apic_timer(apic, APIC_TMICT);
2242 }
2243
apic_manage_nmi_watchdog(struct kvm_lapic * apic,u32 lvt0_val)2244 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2245 {
2246 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2247
2248 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2249 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2250 if (lvt0_in_nmi_mode) {
2251 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2252 } else
2253 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2254 }
2255 }
2256
get_lvt_index(u32 reg)2257 static int get_lvt_index(u32 reg)
2258 {
2259 if (reg == APIC_LVTCMCI)
2260 return LVT_CMCI;
2261 if (reg < APIC_LVTT || reg > APIC_LVTERR)
2262 return -1;
2263 return array_index_nospec(
2264 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2265 }
2266
kvm_lapic_reg_write(struct kvm_lapic * apic,u32 reg,u32 val)2267 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2268 {
2269 int ret = 0;
2270
2271 trace_kvm_apic_write(reg, val);
2272
2273 switch (reg) {
2274 case APIC_ID: /* Local APIC ID */
2275 if (!apic_x2apic_mode(apic)) {
2276 kvm_apic_set_xapic_id(apic, val >> 24);
2277 } else {
2278 ret = 1;
2279 }
2280 break;
2281
2282 case APIC_TASKPRI:
2283 report_tpr_access(apic, true);
2284 apic_set_tpr(apic, val & 0xff);
2285 break;
2286
2287 case APIC_EOI:
2288 apic_set_eoi(apic);
2289 break;
2290
2291 case APIC_LDR:
2292 if (!apic_x2apic_mode(apic))
2293 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2294 else
2295 ret = 1;
2296 break;
2297
2298 case APIC_DFR:
2299 if (!apic_x2apic_mode(apic))
2300 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2301 else
2302 ret = 1;
2303 break;
2304
2305 case APIC_SPIV: {
2306 u32 mask = 0x3ff;
2307 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2308 mask |= APIC_SPIV_DIRECTED_EOI;
2309 apic_set_spiv(apic, val & mask);
2310 if (!(val & APIC_SPIV_APIC_ENABLED)) {
2311 int i;
2312
2313 for (i = 0; i < apic->nr_lvt_entries; i++) {
2314 kvm_lapic_set_reg(apic, APIC_LVTx(i),
2315 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2316 }
2317 apic_update_lvtt(apic);
2318 atomic_set(&apic->lapic_timer.pending, 0);
2319
2320 }
2321 break;
2322 }
2323 case APIC_ICR:
2324 WARN_ON_ONCE(apic_x2apic_mode(apic));
2325
2326 /* No delay here, so we always clear the pending bit */
2327 val &= ~APIC_ICR_BUSY;
2328 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2329 kvm_lapic_set_reg(apic, APIC_ICR, val);
2330 break;
2331 case APIC_ICR2:
2332 if (apic_x2apic_mode(apic))
2333 ret = 1;
2334 else
2335 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2336 break;
2337
2338 case APIC_LVT0:
2339 apic_manage_nmi_watchdog(apic, val);
2340 fallthrough;
2341 case APIC_LVTTHMR:
2342 case APIC_LVTPC:
2343 case APIC_LVT1:
2344 case APIC_LVTERR:
2345 case APIC_LVTCMCI: {
2346 u32 index = get_lvt_index(reg);
2347 if (!kvm_lapic_lvt_supported(apic, index)) {
2348 ret = 1;
2349 break;
2350 }
2351 if (!kvm_apic_sw_enabled(apic))
2352 val |= APIC_LVT_MASKED;
2353 val &= apic_lvt_mask[index];
2354 kvm_lapic_set_reg(apic, reg, val);
2355 break;
2356 }
2357
2358 case APIC_LVTT:
2359 if (!kvm_apic_sw_enabled(apic))
2360 val |= APIC_LVT_MASKED;
2361 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask);
2362 kvm_lapic_set_reg(apic, APIC_LVTT, val);
2363 apic_update_lvtt(apic);
2364 break;
2365
2366 case APIC_TMICT:
2367 if (apic_lvtt_tscdeadline(apic))
2368 break;
2369
2370 cancel_apic_timer(apic);
2371 kvm_lapic_set_reg(apic, APIC_TMICT, val);
2372 start_apic_timer(apic);
2373 break;
2374
2375 case APIC_TDCR: {
2376 uint32_t old_divisor = apic->divide_count;
2377
2378 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2379 update_divide_count(apic);
2380 if (apic->divide_count != old_divisor &&
2381 apic->lapic_timer.period) {
2382 hrtimer_cancel(&apic->lapic_timer.timer);
2383 update_target_expiration(apic, old_divisor);
2384 restart_apic_timer(apic);
2385 }
2386 break;
2387 }
2388 case APIC_ESR:
2389 if (apic_x2apic_mode(apic) && val != 0)
2390 ret = 1;
2391 break;
2392
2393 case APIC_SELF_IPI:
2394 /*
2395 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2396 * the vector, everything else is reserved.
2397 */
2398 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2399 ret = 1;
2400 else
2401 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2402 break;
2403 default:
2404 ret = 1;
2405 break;
2406 }
2407
2408 /*
2409 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2410 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2411 * on relevant changes, i.e. this is a nop for most writes.
2412 */
2413 kvm_recalculate_apic_map(apic->vcpu->kvm);
2414
2415 return ret;
2416 }
2417
apic_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t address,int len,const void * data)2418 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2419 gpa_t address, int len, const void *data)
2420 {
2421 struct kvm_lapic *apic = to_lapic(this);
2422 unsigned int offset = address - apic->base_address;
2423 u32 val;
2424
2425 if (!apic_mmio_in_range(apic, address))
2426 return -EOPNOTSUPP;
2427
2428 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2429 if (!kvm_check_has_quirk(vcpu->kvm,
2430 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2431 return -EOPNOTSUPP;
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * APIC register must be aligned on 128-bits boundary.
2438 * 32/64/128 bits registers must be accessed thru 32 bits.
2439 * Refer SDM 8.4.1
2440 */
2441 if (len != 4 || (offset & 0xf))
2442 return 0;
2443
2444 val = *(u32*)data;
2445
2446 kvm_lapic_reg_write(apic, offset & 0xff0, val);
2447
2448 return 0;
2449 }
2450
kvm_lapic_set_eoi(struct kvm_vcpu * vcpu)2451 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2452 {
2453 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2456
2457 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2458
kvm_x2apic_icr_write(struct kvm_lapic * apic,u64 data)2459 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2460 {
2461 if (data & X2APIC_ICR_RESERVED_BITS)
2462 return 1;
2463
2464 /*
2465 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2466 * only AMD requires it to be zero, Intel essentially just ignores the
2467 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2468 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2469 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2470 * sane way to provide consistent behavior with respect to hardware.
2471 */
2472 data &= ~APIC_ICR_BUSY;
2473
2474 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2475 if (kvm_x86_ops.x2apic_icr_is_split) {
2476 kvm_lapic_set_reg(apic, APIC_ICR, data);
2477 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32);
2478 } else {
2479 kvm_lapic_set_reg64(apic, APIC_ICR, data);
2480 }
2481 trace_kvm_apic_write(APIC_ICR, data);
2482 return 0;
2483 }
2484
kvm_x2apic_icr_read(struct kvm_lapic * apic)2485 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic)
2486 {
2487 if (kvm_x86_ops.x2apic_icr_is_split)
2488 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) |
2489 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32;
2490
2491 return kvm_lapic_get_reg64(apic, APIC_ICR);
2492 }
2493
2494 /* emulate APIC access in a trap manner */
kvm_apic_write_nodecode(struct kvm_vcpu * vcpu,u32 offset)2495 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2496 {
2497 struct kvm_lapic *apic = vcpu->arch.apic;
2498
2499 /*
2500 * ICR is a single 64-bit register when x2APIC is enabled, all others
2501 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2502 * go down the common path to get the upper half from ICR2.
2503 *
2504 * Note, using the write helpers may incur an unnecessary write to the
2505 * virtual APIC state, but KVM needs to conditionally modify the value
2506 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2507 * conditional branches is likely a wash relative to the cost of the
2508 * maybe-unecessary write, and both are in the noise anyways.
2509 */
2510 if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2511 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic)));
2512 else
2513 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2514 }
2515 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2516
kvm_free_lapic(struct kvm_vcpu * vcpu)2517 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2518 {
2519 struct kvm_lapic *apic = vcpu->arch.apic;
2520
2521 if (!vcpu->arch.apic) {
2522 static_branch_dec(&kvm_has_noapic_vcpu);
2523 return;
2524 }
2525
2526 hrtimer_cancel(&apic->lapic_timer.timer);
2527
2528 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2529 static_branch_slow_dec_deferred(&apic_hw_disabled);
2530
2531 if (!apic->sw_enabled)
2532 static_branch_slow_dec_deferred(&apic_sw_disabled);
2533
2534 if (apic->regs)
2535 free_page((unsigned long)apic->regs);
2536
2537 kfree(apic);
2538 }
2539
2540 /*
2541 *----------------------------------------------------------------------
2542 * LAPIC interface
2543 *----------------------------------------------------------------------
2544 */
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu)2545 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2546 {
2547 struct kvm_lapic *apic = vcpu->arch.apic;
2548
2549 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2550 return 0;
2551
2552 return apic->lapic_timer.tscdeadline;
2553 }
2554
kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu * vcpu,u64 data)2555 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2556 {
2557 struct kvm_lapic *apic = vcpu->arch.apic;
2558
2559 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2560 return;
2561
2562 hrtimer_cancel(&apic->lapic_timer.timer);
2563 apic->lapic_timer.tscdeadline = data;
2564 start_apic_timer(apic);
2565 }
2566
kvm_lapic_set_tpr(struct kvm_vcpu * vcpu,unsigned long cr8)2567 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2568 {
2569 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2570 }
2571
kvm_lapic_get_cr8(struct kvm_vcpu * vcpu)2572 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2573 {
2574 u64 tpr;
2575
2576 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2577
2578 return (tpr & 0xf0) >> 4;
2579 }
2580
__kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value)2581 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value)
2582 {
2583 u64 old_value = vcpu->arch.apic_base;
2584 struct kvm_lapic *apic = vcpu->arch.apic;
2585
2586 vcpu->arch.apic_base = value;
2587
2588 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2589 vcpu->arch.cpuid_dynamic_bits_dirty = true;
2590
2591 if (!apic)
2592 return;
2593
2594 /* update jump label if enable bit changes */
2595 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2596 if (value & MSR_IA32_APICBASE_ENABLE) {
2597 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2598 static_branch_slow_dec_deferred(&apic_hw_disabled);
2599 /* Check if there are APF page ready requests pending */
2600 kvm_make_request(KVM_REQ_APF_READY, vcpu);
2601 } else {
2602 static_branch_inc(&apic_hw_disabled.key);
2603 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2604 }
2605 }
2606
2607 if ((old_value ^ value) & X2APIC_ENABLE) {
2608 if (value & X2APIC_ENABLE)
2609 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2610 else if (value & MSR_IA32_APICBASE_ENABLE)
2611 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2612 }
2613
2614 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2615 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2616 kvm_x86_call(set_virtual_apic_mode)(vcpu);
2617 }
2618
2619 apic->base_address = apic->vcpu->arch.apic_base &
2620 MSR_IA32_APICBASE_BASE;
2621
2622 if ((value & MSR_IA32_APICBASE_ENABLE) &&
2623 apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2624 kvm_set_apicv_inhibit(apic->vcpu->kvm,
2625 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2626 }
2627 }
2628
kvm_apic_set_base(struct kvm_vcpu * vcpu,u64 value,bool host_initiated)2629 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated)
2630 {
2631 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
2632 enum lapic_mode new_mode = kvm_apic_mode(value);
2633
2634 if (vcpu->arch.apic_base == value)
2635 return 0;
2636
2637 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
2638 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
2639
2640 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
2641 return 1;
2642 if (!host_initiated) {
2643 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
2644 return 1;
2645 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
2646 return 1;
2647 }
2648
2649 __kvm_apic_set_base(vcpu, value);
2650 kvm_recalculate_apic_map(vcpu->kvm);
2651 return 0;
2652 }
2653
kvm_apic_update_apicv(struct kvm_vcpu * vcpu)2654 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2655 {
2656 struct kvm_lapic *apic = vcpu->arch.apic;
2657
2658 /*
2659 * When APICv is enabled, KVM must always search the IRR for a pending
2660 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU
2661 * isn't running. If APICv is disabled, KVM _should_ search the IRR
2662 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware,
2663 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching
2664 * the IRR at this time could race with IRQ delivery from hardware that
2665 * still sees APICv as being enabled.
2666 *
2667 * FIXME: Ensure other vCPUs and devices observe the change in APICv
2668 * state prior to updating KVM's metadata caches, so that KVM
2669 * can safely search the IRR and set irr_pending accordingly.
2670 */
2671 apic->irr_pending = true;
2672
2673 if (apic->apicv_active)
2674 apic->isr_count = 1;
2675 else
2676 apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2677
2678 apic->highest_isr_cache = -1;
2679 }
2680
kvm_alloc_apic_access_page(struct kvm * kvm)2681 int kvm_alloc_apic_access_page(struct kvm *kvm)
2682 {
2683 void __user *hva;
2684 int ret = 0;
2685
2686 mutex_lock(&kvm->slots_lock);
2687 if (kvm->arch.apic_access_memslot_enabled ||
2688 kvm->arch.apic_access_memslot_inhibited)
2689 goto out;
2690
2691 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2692 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2693 if (IS_ERR(hva)) {
2694 ret = PTR_ERR(hva);
2695 goto out;
2696 }
2697
2698 kvm->arch.apic_access_memslot_enabled = true;
2699 out:
2700 mutex_unlock(&kvm->slots_lock);
2701 return ret;
2702 }
2703 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2704
kvm_inhibit_apic_access_page(struct kvm_vcpu * vcpu)2705 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2706 {
2707 struct kvm *kvm = vcpu->kvm;
2708
2709 if (!kvm->arch.apic_access_memslot_enabled)
2710 return;
2711
2712 kvm_vcpu_srcu_read_unlock(vcpu);
2713
2714 mutex_lock(&kvm->slots_lock);
2715
2716 if (kvm->arch.apic_access_memslot_enabled) {
2717 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2718 /*
2719 * Clear "enabled" after the memslot is deleted so that a
2720 * different vCPU doesn't get a false negative when checking
2721 * the flag out of slots_lock. No additional memory barrier is
2722 * needed as modifying memslots requires waiting other vCPUs to
2723 * drop SRCU (see above), and false positives are ok as the
2724 * flag is rechecked after acquiring slots_lock.
2725 */
2726 kvm->arch.apic_access_memslot_enabled = false;
2727
2728 /*
2729 * Mark the memslot as inhibited to prevent reallocating the
2730 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2731 */
2732 kvm->arch.apic_access_memslot_inhibited = true;
2733 }
2734
2735 mutex_unlock(&kvm->slots_lock);
2736
2737 kvm_vcpu_srcu_read_lock(vcpu);
2738 }
2739
kvm_lapic_reset(struct kvm_vcpu * vcpu,bool init_event)2740 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2741 {
2742 struct kvm_lapic *apic = vcpu->arch.apic;
2743 u64 msr_val;
2744 int i;
2745
2746 kvm_x86_call(apicv_pre_state_restore)(vcpu);
2747
2748 if (!init_event) {
2749 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2750 if (kvm_vcpu_is_reset_bsp(vcpu))
2751 msr_val |= MSR_IA32_APICBASE_BSP;
2752
2753 /*
2754 * Use the inner helper to avoid an extra recalcuation of the
2755 * optimized APIC map if some other task has dirtied the map.
2756 * The recalculation needed for this vCPU will be done after
2757 * all APIC state has been initialized (see below).
2758 */
2759 __kvm_apic_set_base(vcpu, msr_val);
2760 }
2761
2762 if (!apic)
2763 return;
2764
2765 /* Stop the timer in case it's a reset to an active apic */
2766 hrtimer_cancel(&apic->lapic_timer.timer);
2767
2768 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2769 if (!init_event)
2770 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2771 kvm_apic_set_version(apic->vcpu);
2772
2773 for (i = 0; i < apic->nr_lvt_entries; i++)
2774 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2775 apic_update_lvtt(apic);
2776 if (kvm_vcpu_is_reset_bsp(vcpu) &&
2777 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2778 kvm_lapic_set_reg(apic, APIC_LVT0,
2779 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2780 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2781
2782 kvm_apic_set_dfr(apic, 0xffffffffU);
2783 apic_set_spiv(apic, 0xff);
2784 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2785 if (!apic_x2apic_mode(apic))
2786 kvm_apic_set_ldr(apic, 0);
2787 kvm_lapic_set_reg(apic, APIC_ESR, 0);
2788 if (!apic_x2apic_mode(apic)) {
2789 kvm_lapic_set_reg(apic, APIC_ICR, 0);
2790 kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2791 } else {
2792 kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2793 }
2794 kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2795 kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2796 for (i = 0; i < 8; i++) {
2797 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2798 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2799 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2800 }
2801 kvm_apic_update_apicv(vcpu);
2802 update_divide_count(apic);
2803 atomic_set(&apic->lapic_timer.pending, 0);
2804
2805 vcpu->arch.pv_eoi.msr_val = 0;
2806 apic_update_ppr(apic);
2807 if (apic->apicv_active) {
2808 kvm_x86_call(apicv_post_state_restore)(vcpu);
2809 kvm_x86_call(hwapic_isr_update)(vcpu, -1);
2810 }
2811
2812 vcpu->arch.apic_arb_prio = 0;
2813 vcpu->arch.apic_attention = 0;
2814
2815 kvm_recalculate_apic_map(vcpu->kvm);
2816 }
2817
2818 /*
2819 *----------------------------------------------------------------------
2820 * timer interface
2821 *----------------------------------------------------------------------
2822 */
2823
lapic_is_periodic(struct kvm_lapic * apic)2824 static bool lapic_is_periodic(struct kvm_lapic *apic)
2825 {
2826 return apic_lvtt_period(apic);
2827 }
2828
apic_has_pending_timer(struct kvm_vcpu * vcpu)2829 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2830 {
2831 struct kvm_lapic *apic = vcpu->arch.apic;
2832
2833 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2834 return atomic_read(&apic->lapic_timer.pending);
2835
2836 return 0;
2837 }
2838
kvm_apic_local_deliver(struct kvm_lapic * apic,int lvt_type)2839 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2840 {
2841 u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2842 int vector, mode, trig_mode;
2843 int r;
2844
2845 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2846 vector = reg & APIC_VECTOR_MASK;
2847 mode = reg & APIC_MODE_MASK;
2848 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2849
2850 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2851 if (r && lvt_type == APIC_LVTPC &&
2852 guest_cpuid_is_intel_compatible(apic->vcpu))
2853 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2854 return r;
2855 }
2856 return 0;
2857 }
2858
kvm_apic_nmi_wd_deliver(struct kvm_vcpu * vcpu)2859 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2860 {
2861 struct kvm_lapic *apic = vcpu->arch.apic;
2862
2863 if (apic)
2864 kvm_apic_local_deliver(apic, APIC_LVT0);
2865 }
2866
2867 static const struct kvm_io_device_ops apic_mmio_ops = {
2868 .read = apic_mmio_read,
2869 .write = apic_mmio_write,
2870 };
2871
apic_timer_fn(struct hrtimer * data)2872 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2873 {
2874 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2875 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2876
2877 apic_timer_expired(apic, true);
2878
2879 if (lapic_is_periodic(apic)) {
2880 advance_periodic_target_expiration(apic);
2881 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2882 return HRTIMER_RESTART;
2883 } else
2884 return HRTIMER_NORESTART;
2885 }
2886
kvm_create_lapic(struct kvm_vcpu * vcpu)2887 int kvm_create_lapic(struct kvm_vcpu *vcpu)
2888 {
2889 struct kvm_lapic *apic;
2890
2891 ASSERT(vcpu != NULL);
2892
2893 if (!irqchip_in_kernel(vcpu->kvm)) {
2894 static_branch_inc(&kvm_has_noapic_vcpu);
2895 return 0;
2896 }
2897
2898 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2899 if (!apic)
2900 goto nomem;
2901
2902 vcpu->arch.apic = apic;
2903
2904 if (kvm_x86_ops.alloc_apic_backing_page)
2905 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu);
2906 else
2907 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2908 if (!apic->regs) {
2909 printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2910 vcpu->vcpu_id);
2911 goto nomem_free_apic;
2912 }
2913 apic->vcpu = vcpu;
2914
2915 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2916
2917 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC,
2918 HRTIMER_MODE_ABS_HARD);
2919 if (lapic_timer_advance)
2920 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2921
2922 /*
2923 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2924 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2925 */
2926 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2927 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2928 kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2929
2930 /*
2931 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2932 * will not get notified of any changes until this vCPU is visible to
2933 * other vCPUs (marked online and added to the set of vCPUs).
2934 *
2935 * Opportunistically mark APICv active as VMX in particularly is highly
2936 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2937 * that vCPU creation is guaranteed to run with a deterministic value,
2938 * the request will ensure the vCPU gets the correct state before VM-Entry.
2939 */
2940 if (enable_apicv) {
2941 apic->apicv_active = true;
2942 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2943 }
2944
2945 return 0;
2946 nomem_free_apic:
2947 kfree(apic);
2948 vcpu->arch.apic = NULL;
2949 nomem:
2950 return -ENOMEM;
2951 }
2952
kvm_apic_has_interrupt(struct kvm_vcpu * vcpu)2953 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2954 {
2955 struct kvm_lapic *apic = vcpu->arch.apic;
2956 u32 ppr;
2957
2958 if (!kvm_apic_present(vcpu))
2959 return -1;
2960
2961 __apic_update_ppr(apic, &ppr);
2962 return apic_has_interrupt_for_ppr(apic, ppr);
2963 }
2964 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2965
kvm_apic_accept_pic_intr(struct kvm_vcpu * vcpu)2966 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2967 {
2968 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2969
2970 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2971 return 1;
2972 if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2973 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2974 return 1;
2975 return 0;
2976 }
2977
kvm_inject_apic_timer_irqs(struct kvm_vcpu * vcpu)2978 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2979 {
2980 struct kvm_lapic *apic = vcpu->arch.apic;
2981
2982 if (atomic_read(&apic->lapic_timer.pending) > 0) {
2983 kvm_apic_inject_pending_timer_irqs(apic);
2984 atomic_set(&apic->lapic_timer.pending, 0);
2985 }
2986 }
2987
kvm_apic_ack_interrupt(struct kvm_vcpu * vcpu,int vector)2988 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector)
2989 {
2990 struct kvm_lapic *apic = vcpu->arch.apic;
2991 u32 ppr;
2992
2993 if (WARN_ON_ONCE(vector < 0 || !apic))
2994 return;
2995
2996 /*
2997 * We get here even with APIC virtualization enabled, if doing
2998 * nested virtualization and L1 runs with the "acknowledge interrupt
2999 * on exit" mode. Then we cannot inject the interrupt via RVI,
3000 * because the process would deliver it through the IDT.
3001 */
3002
3003 apic_clear_irr(vector, apic);
3004 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
3005 /*
3006 * For auto-EOI interrupts, there might be another pending
3007 * interrupt above PPR, so check whether to raise another
3008 * KVM_REQ_EVENT.
3009 */
3010 apic_update_ppr(apic);
3011 } else {
3012 /*
3013 * For normal interrupts, PPR has been raised and there cannot
3014 * be a higher-priority pending interrupt---except if there was
3015 * a concurrent interrupt injection, but that would have
3016 * triggered KVM_REQ_EVENT already.
3017 */
3018 apic_set_isr(vector, apic);
3019 __apic_update_ppr(apic, &ppr);
3020 }
3021
3022 }
3023 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt);
3024
kvm_apic_state_fixup(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s,bool set)3025 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
3026 struct kvm_lapic_state *s, bool set)
3027 {
3028 if (apic_x2apic_mode(vcpu->arch.apic)) {
3029 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic);
3030 u32 *id = (u32 *)(s->regs + APIC_ID);
3031 u32 *ldr = (u32 *)(s->regs + APIC_LDR);
3032 u64 icr;
3033
3034 if (vcpu->kvm->arch.x2apic_format) {
3035 if (*id != x2apic_id)
3036 return -EINVAL;
3037 } else {
3038 /*
3039 * Ignore the userspace value when setting APIC state.
3040 * KVM's model is that the x2APIC ID is readonly, e.g.
3041 * KVM only supports delivering interrupts to KVM's
3042 * version of the x2APIC ID. However, for backwards
3043 * compatibility, don't reject attempts to set a
3044 * mismatched ID for userspace that hasn't opted into
3045 * x2apic_format.
3046 */
3047 if (set)
3048 *id = x2apic_id;
3049 else
3050 *id = x2apic_id << 24;
3051 }
3052
3053 /*
3054 * In x2APIC mode, the LDR is fixed and based on the id. And
3055 * if the ICR is _not_ split, ICR is internally a single 64-bit
3056 * register, but needs to be split to ICR+ICR2 in userspace for
3057 * backwards compatibility.
3058 */
3059 if (set)
3060 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id);
3061
3062 if (!kvm_x86_ops.x2apic_icr_is_split) {
3063 if (set) {
3064 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
3065 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
3066 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
3067 } else {
3068 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
3069 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
3070 }
3071 }
3072 }
3073
3074 return 0;
3075 }
3076
kvm_apic_get_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3077 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3078 {
3079 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
3080
3081 /*
3082 * Get calculated timer current count for remaining timer period (if
3083 * any) and store it in the returned register set.
3084 */
3085 __kvm_lapic_set_reg(s->regs, APIC_TMCCT,
3086 __apic_read(vcpu->arch.apic, APIC_TMCCT));
3087
3088 return kvm_apic_state_fixup(vcpu, s, false);
3089 }
3090
kvm_apic_set_state(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3091 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
3092 {
3093 struct kvm_lapic *apic = vcpu->arch.apic;
3094 int r;
3095
3096 kvm_x86_call(apicv_pre_state_restore)(vcpu);
3097
3098 /* set SPIV separately to get count of SW disabled APICs right */
3099 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
3100
3101 r = kvm_apic_state_fixup(vcpu, s, true);
3102 if (r) {
3103 kvm_recalculate_apic_map(vcpu->kvm);
3104 return r;
3105 }
3106 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3107
3108 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3109 kvm_recalculate_apic_map(vcpu->kvm);
3110 kvm_apic_set_version(vcpu);
3111
3112 apic_update_ppr(apic);
3113 cancel_apic_timer(apic);
3114 apic->lapic_timer.expired_tscdeadline = 0;
3115 apic_update_lvtt(apic);
3116 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3117 update_divide_count(apic);
3118 __start_apic_timer(apic, APIC_TMCCT);
3119 kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3120 kvm_apic_update_apicv(vcpu);
3121 if (apic->apicv_active) {
3122 kvm_x86_call(apicv_post_state_restore)(vcpu);
3123 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
3124 }
3125 kvm_make_request(KVM_REQ_EVENT, vcpu);
3126 if (ioapic_in_kernel(vcpu->kvm))
3127 kvm_rtc_eoi_tracking_restore_one(vcpu);
3128
3129 vcpu->arch.apic_arb_prio = 0;
3130
3131 return 0;
3132 }
3133
__kvm_migrate_apic_timer(struct kvm_vcpu * vcpu)3134 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3135 {
3136 struct hrtimer *timer;
3137
3138 if (!lapic_in_kernel(vcpu) ||
3139 kvm_can_post_timer_interrupt(vcpu))
3140 return;
3141
3142 timer = &vcpu->arch.apic->lapic_timer.timer;
3143 if (hrtimer_cancel(timer))
3144 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3145 }
3146
3147 /*
3148 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3149 *
3150 * Detect whether guest triggered PV EOI since the
3151 * last entry. If yes, set EOI on guests's behalf.
3152 * Clear PV EOI in guest memory in any case.
3153 */
apic_sync_pv_eoi_from_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3154 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3155 struct kvm_lapic *apic)
3156 {
3157 int vector;
3158 /*
3159 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3160 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3161 *
3162 * KVM_APIC_PV_EOI_PENDING is unset:
3163 * -> host disabled PV EOI.
3164 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3165 * -> host enabled PV EOI, guest did not execute EOI yet.
3166 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3167 * -> host enabled PV EOI, guest executed EOI.
3168 */
3169 BUG_ON(!pv_eoi_enabled(vcpu));
3170
3171 if (pv_eoi_test_and_clr_pending(vcpu))
3172 return;
3173 vector = apic_set_eoi(apic);
3174 trace_kvm_pv_eoi(apic, vector);
3175 }
3176
kvm_lapic_sync_from_vapic(struct kvm_vcpu * vcpu)3177 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3178 {
3179 u32 data;
3180
3181 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3182 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3183
3184 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3185 return;
3186
3187 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3188 sizeof(u32)))
3189 return;
3190
3191 apic_set_tpr(vcpu->arch.apic, data & 0xff);
3192 }
3193
3194 /*
3195 * apic_sync_pv_eoi_to_guest - called before vmentry
3196 *
3197 * Detect whether it's safe to enable PV EOI and
3198 * if yes do so.
3199 */
apic_sync_pv_eoi_to_guest(struct kvm_vcpu * vcpu,struct kvm_lapic * apic)3200 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3201 struct kvm_lapic *apic)
3202 {
3203 if (!pv_eoi_enabled(vcpu) ||
3204 /* IRR set or many bits in ISR: could be nested. */
3205 apic->irr_pending ||
3206 /* Cache not set: could be safe but we don't bother. */
3207 apic->highest_isr_cache == -1 ||
3208 /* Need EOI to update ioapic. */
3209 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3210 /*
3211 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3212 * so we need not do anything here.
3213 */
3214 return;
3215 }
3216
3217 pv_eoi_set_pending(apic->vcpu);
3218 }
3219
kvm_lapic_sync_to_vapic(struct kvm_vcpu * vcpu)3220 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3221 {
3222 u32 data, tpr;
3223 int max_irr, max_isr;
3224 struct kvm_lapic *apic = vcpu->arch.apic;
3225
3226 apic_sync_pv_eoi_to_guest(vcpu, apic);
3227
3228 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3229 return;
3230
3231 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3232 max_irr = apic_find_highest_irr(apic);
3233 if (max_irr < 0)
3234 max_irr = 0;
3235 max_isr = apic_find_highest_isr(apic);
3236 if (max_isr < 0)
3237 max_isr = 0;
3238 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3239
3240 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3241 sizeof(u32));
3242 }
3243
kvm_lapic_set_vapic_addr(struct kvm_vcpu * vcpu,gpa_t vapic_addr)3244 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3245 {
3246 if (vapic_addr) {
3247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3248 &vcpu->arch.apic->vapic_cache,
3249 vapic_addr, sizeof(u32)))
3250 return -EINVAL;
3251 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3252 } else {
3253 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3254 }
3255
3256 vcpu->arch.apic->vapic_addr = vapic_addr;
3257 return 0;
3258 }
3259
kvm_lapic_msr_read(struct kvm_lapic * apic,u32 reg,u64 * data)3260 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3261 {
3262 u32 low;
3263
3264 if (reg == APIC_ICR) {
3265 *data = kvm_x2apic_icr_read(apic);
3266 return 0;
3267 }
3268
3269 if (kvm_lapic_reg_read(apic, reg, 4, &low))
3270 return 1;
3271
3272 *data = low;
3273
3274 return 0;
3275 }
3276
kvm_lapic_msr_write(struct kvm_lapic * apic,u32 reg,u64 data)3277 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3278 {
3279 /*
3280 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3281 * can be written as such, all other registers remain accessible only
3282 * through 32-bit reads/writes.
3283 */
3284 if (reg == APIC_ICR)
3285 return kvm_x2apic_icr_write(apic, data);
3286
3287 /* Bits 63:32 are reserved in all other registers. */
3288 if (data >> 32)
3289 return 1;
3290
3291 return kvm_lapic_reg_write(apic, reg, (u32)data);
3292 }
3293
kvm_x2apic_msr_write(struct kvm_vcpu * vcpu,u32 msr,u64 data)3294 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3295 {
3296 struct kvm_lapic *apic = vcpu->arch.apic;
3297 u32 reg = (msr - APIC_BASE_MSR) << 4;
3298
3299 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3300 return 1;
3301
3302 return kvm_lapic_msr_write(apic, reg, data);
3303 }
3304
kvm_x2apic_msr_read(struct kvm_vcpu * vcpu,u32 msr,u64 * data)3305 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3306 {
3307 struct kvm_lapic *apic = vcpu->arch.apic;
3308 u32 reg = (msr - APIC_BASE_MSR) << 4;
3309
3310 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3311 return 1;
3312
3313 return kvm_lapic_msr_read(apic, reg, data);
3314 }
3315
kvm_hv_vapic_msr_write(struct kvm_vcpu * vcpu,u32 reg,u64 data)3316 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3317 {
3318 if (!lapic_in_kernel(vcpu))
3319 return 1;
3320
3321 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3322 }
3323
kvm_hv_vapic_msr_read(struct kvm_vcpu * vcpu,u32 reg,u64 * data)3324 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3325 {
3326 if (!lapic_in_kernel(vcpu))
3327 return 1;
3328
3329 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3330 }
3331
kvm_lapic_set_pv_eoi(struct kvm_vcpu * vcpu,u64 data,unsigned long len)3332 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3333 {
3334 u64 addr = data & ~KVM_MSR_ENABLED;
3335 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3336 unsigned long new_len;
3337 int ret;
3338
3339 if (!IS_ALIGNED(addr, 4))
3340 return 1;
3341
3342 if (data & KVM_MSR_ENABLED) {
3343 if (addr == ghc->gpa && len <= ghc->len)
3344 new_len = ghc->len;
3345 else
3346 new_len = len;
3347
3348 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3349 if (ret)
3350 return ret;
3351 }
3352
3353 vcpu->arch.pv_eoi.msr_val = data;
3354
3355 return 0;
3356 }
3357
kvm_apic_accept_events(struct kvm_vcpu * vcpu)3358 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3359 {
3360 struct kvm_lapic *apic = vcpu->arch.apic;
3361 u8 sipi_vector;
3362 int r;
3363
3364 if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3365 return 0;
3366
3367 if (is_guest_mode(vcpu)) {
3368 r = kvm_check_nested_events(vcpu);
3369 if (r < 0)
3370 return r == -EBUSY ? 0 : r;
3371 /*
3372 * Continue processing INIT/SIPI even if a nested VM-Exit
3373 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3374 * are blocked as a result of transitioning to VMX root mode.
3375 */
3376 }
3377
3378 /*
3379 * INITs are blocked while CPU is in specific states (SMM, VMX root
3380 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3381 * wait-for-SIPI (WFS).
3382 */
3383 if (!kvm_apic_init_sipi_allowed(vcpu)) {
3384 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3385 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3386 return 0;
3387 }
3388
3389 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3390 kvm_vcpu_reset(vcpu, true);
3391 if (kvm_vcpu_is_bsp(apic->vcpu))
3392 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3393 else
3394 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3395 }
3396 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3397 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3398 /* evaluate pending_events before reading the vector */
3399 smp_rmb();
3400 sipi_vector = apic->sipi_vector;
3401 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu,
3402 sipi_vector);
3403 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
3404 }
3405 }
3406 return 0;
3407 }
3408
kvm_lapic_exit(void)3409 void kvm_lapic_exit(void)
3410 {
3411 static_key_deferred_flush(&apic_hw_disabled);
3412 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3413 static_key_deferred_flush(&apic_sw_disabled);
3414 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3415 }
3416