1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/cpuid.h>
33 #include <asm/perf_event.h>
34 #include <asm/mmu_context.h>
35 #include <asm/doublefault.h>
36 #include <asm/archrandom.h>
37 #include <asm/hypervisor.h>
38 #include <asm/processor.h>
39 #include <asm/tlbflush.h>
40 #include <asm/debugreg.h>
41 #include <asm/sections.h>
42 #include <asm/vsyscall.h>
43 #include <linux/topology.h>
44 #include <linux/cpumask.h>
45 #include <linux/atomic.h>
46 #include <asm/proto.h>
47 #include <asm/setup.h>
48 #include <asm/apic.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/hwcap2.h>
53 #include <linux/numa.h>
54 #include <asm/numa.h>
55 #include <asm/asm.h>
56 #include <asm/bugs.h>
57 #include <asm/cpu.h>
58 #include <asm/mce.h>
59 #include <asm/msr.h>
60 #include <asm/cacheinfo.h>
61 #include <asm/memtype.h>
62 #include <asm/microcode.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/fred.h>
66 #include <asm/uv/uv.h>
67 #include <asm/ia32.h>
68 #include <asm/set_memory.h>
69 #include <asm/traps.h>
70 #include <asm/sev.h>
71 #include <asm/tdx.h>
72 #include <asm/posted_intr.h>
73 #include <asm/runtime-const.h>
74
75 #include "cpu.h"
76
77 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
78 EXPORT_PER_CPU_SYMBOL(cpu_info);
79
80 u32 elf_hwcap2 __read_mostly;
81
82 /* Number of siblings per CPU package */
83 unsigned int __max_threads_per_core __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_threads_per_core);
85
86 unsigned int __max_dies_per_package __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_dies_per_package);
88
89 unsigned int __max_logical_packages __ro_after_init = 1;
90 EXPORT_SYMBOL(__max_logical_packages);
91
92 unsigned int __num_cores_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_cores_per_package);
94
95 unsigned int __num_threads_per_package __ro_after_init = 1;
96 EXPORT_SYMBOL(__num_threads_per_package);
97
98 static struct ppin_info {
99 int feature;
100 int msr_ppin_ctl;
101 int msr_ppin;
102 } ppin_info[] = {
103 [X86_VENDOR_INTEL] = {
104 .feature = X86_FEATURE_INTEL_PPIN,
105 .msr_ppin_ctl = MSR_PPIN_CTL,
106 .msr_ppin = MSR_PPIN
107 },
108 [X86_VENDOR_AMD] = {
109 .feature = X86_FEATURE_AMD_PPIN,
110 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
111 .msr_ppin = MSR_AMD_PPIN
112 },
113 };
114
115 static const struct x86_cpu_id ppin_cpuids[] = {
116 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
117 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
118
119 /* Legacy models without CPUID enumeration */
120 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
126 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
127 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
129 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
130 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
131
132 {}
133 };
134
ppin_init(struct cpuinfo_x86 * c)135 static void ppin_init(struct cpuinfo_x86 *c)
136 {
137 const struct x86_cpu_id *id;
138 unsigned long long val;
139 struct ppin_info *info;
140
141 id = x86_match_cpu(ppin_cpuids);
142 if (!id)
143 return;
144
145 /*
146 * Testing the presence of the MSR is not enough. Need to check
147 * that the PPIN_CTL allows reading of the PPIN.
148 */
149 info = (struct ppin_info *)id->driver_data;
150
151 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
152 goto clear_ppin;
153
154 if ((val & 3UL) == 1UL) {
155 /* PPIN locked in disabled mode */
156 goto clear_ppin;
157 }
158
159 /* If PPIN is disabled, try to enable */
160 if (!(val & 2UL)) {
161 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
162 rdmsrl_safe(info->msr_ppin_ctl, &val);
163 }
164
165 /* Is the enable bit set? */
166 if (val & 2UL) {
167 c->ppin = __rdmsr(info->msr_ppin);
168 set_cpu_cap(c, info->feature);
169 return;
170 }
171
172 clear_ppin:
173 setup_clear_cpu_cap(info->feature);
174 }
175
default_init(struct cpuinfo_x86 * c)176 static void default_init(struct cpuinfo_x86 *c)
177 {
178 #ifdef CONFIG_X86_64
179 cpu_detect_cache_sizes(c);
180 #else
181 /* Not much we can do here... */
182 /* Check if at least it has cpuid */
183 if (c->cpuid_level == -1) {
184 /* No cpuid. It must be an ancient CPU */
185 if (c->x86 == 4)
186 strcpy(c->x86_model_id, "486");
187 else if (c->x86 == 3)
188 strcpy(c->x86_model_id, "386");
189 }
190 #endif
191 }
192
193 static const struct cpu_dev default_cpu = {
194 .c_init = default_init,
195 .c_vendor = "Unknown",
196 .c_x86_vendor = X86_VENDOR_UNKNOWN,
197 };
198
199 static const struct cpu_dev *this_cpu = &default_cpu;
200
201 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
202 #ifdef CONFIG_X86_64
203 /*
204 * We need valid kernel segments for data and code in long mode too
205 * IRET will check the segment types kkeil 2000/10/28
206 * Also sysret mandates a special GDT layout
207 *
208 * TLS descriptors are currently at a different place compared to i386.
209 * Hopefully nobody expects them at a fixed place (Wine?)
210 */
211 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
212 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
213 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
214 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
215 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
216 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
217 #else
218 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
219 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
221 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
222 /*
223 * Segments used for calling PnP BIOS have byte granularity.
224 * They code segments and data segments have fixed 64k limits,
225 * the transfer segment sizes are set at run time.
226 */
227 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
228 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
229 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
230 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
232 /*
233 * The APM segments have byte granularity and their bases
234 * are set at run time. All have 64k limits.
235 */
236 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
237 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
238 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
239
240 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245
246 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)247 static int __init x86_nopcid_setup(char *s)
248 {
249 /* nopcid doesn't accept parameters */
250 if (s)
251 return -EINVAL;
252
253 /* do not emit a message if the feature is not present */
254 if (!boot_cpu_has(X86_FEATURE_PCID))
255 return 0;
256
257 setup_clear_cpu_cap(X86_FEATURE_PCID);
258 pr_info("nopcid: PCID feature disabled\n");
259 return 0;
260 }
261 early_param("nopcid", x86_nopcid_setup);
262 #endif
263
x86_noinvpcid_setup(char * s)264 static int __init x86_noinvpcid_setup(char *s)
265 {
266 /* noinvpcid doesn't accept parameters */
267 if (s)
268 return -EINVAL;
269
270 /* do not emit a message if the feature is not present */
271 if (!boot_cpu_has(X86_FEATURE_INVPCID))
272 return 0;
273
274 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
275 pr_info("noinvpcid: INVPCID feature disabled\n");
276 return 0;
277 }
278 early_param("noinvpcid", x86_noinvpcid_setup);
279
280 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)281 static inline bool flag_is_changeable_p(unsigned long flag)
282 {
283 unsigned long f1, f2;
284
285 if (!IS_ENABLED(CONFIG_X86_32))
286 return true;
287
288 /*
289 * Cyrix and IDT cpus allow disabling of CPUID
290 * so the code below may return different results
291 * when it is executed before and after enabling
292 * the CPUID. Add "volatile" to not allow gcc to
293 * optimize the subsequent calls to this function.
294 */
295 asm volatile ("pushfl \n\t"
296 "pushfl \n\t"
297 "popl %0 \n\t"
298 "movl %0, %1 \n\t"
299 "xorl %2, %0 \n\t"
300 "pushl %0 \n\t"
301 "popfl \n\t"
302 "pushfl \n\t"
303 "popl %0 \n\t"
304 "popfl \n\t"
305
306 : "=&r" (f1), "=&r" (f2)
307 : "ir" (flag));
308
309 return (f1 ^ f2) & flag;
310 }
311
312 #ifdef CONFIG_X86_32
313 static int cachesize_override = -1;
314 static int disable_x86_serial_nr = 1;
315
cachesize_setup(char * str)316 static int __init cachesize_setup(char *str)
317 {
318 get_option(&str, &cachesize_override);
319 return 1;
320 }
321 __setup("cachesize=", cachesize_setup);
322
323 /* Probe for the CPUID instruction */
have_cpuid_p(void)324 bool have_cpuid_p(void)
325 {
326 return flag_is_changeable_p(X86_EFLAGS_ID);
327 }
328
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)329 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
330 {
331 unsigned long lo, hi;
332
333 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
334 return;
335
336 /* Disable processor serial number: */
337
338 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
339 lo |= 0x200000;
340 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
341
342 pr_notice("CPU serial number disabled.\n");
343 clear_cpu_cap(c, X86_FEATURE_PN);
344
345 /* Disabling the serial number may affect the cpuid level */
346 c->cpuid_level = cpuid_eax(0);
347 }
348
x86_serial_nr_setup(char * s)349 static int __init x86_serial_nr_setup(char *s)
350 {
351 disable_x86_serial_nr = 0;
352 return 1;
353 }
354 __setup("serialnumber", x86_serial_nr_setup);
355 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)356 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
357 {
358 }
359 #endif
360
setup_smep(struct cpuinfo_x86 * c)361 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
362 {
363 if (cpu_has(c, X86_FEATURE_SMEP))
364 cr4_set_bits(X86_CR4_SMEP);
365 }
366
setup_smap(struct cpuinfo_x86 * c)367 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
368 {
369 unsigned long eflags = native_save_fl();
370
371 /* This should have been cleared long ago */
372 BUG_ON(eflags & X86_EFLAGS_AC);
373
374 if (cpu_has(c, X86_FEATURE_SMAP))
375 cr4_set_bits(X86_CR4_SMAP);
376 }
377
setup_umip(struct cpuinfo_x86 * c)378 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
379 {
380 /* Check the boot processor, plus build option for UMIP. */
381 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
382 goto out;
383
384 /* Check the current processor's cpuid bits. */
385 if (!cpu_has(c, X86_FEATURE_UMIP))
386 goto out;
387
388 cr4_set_bits(X86_CR4_UMIP);
389
390 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
391
392 return;
393
394 out:
395 /*
396 * Make sure UMIP is disabled in case it was enabled in a
397 * previous boot (e.g., via kexec).
398 */
399 cr4_clear_bits(X86_CR4_UMIP);
400 }
401
402 /* These bits should not change their value after CPU init is finished. */
403 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
404 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
405 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
406 static unsigned long cr4_pinned_bits __ro_after_init;
407
native_write_cr0(unsigned long val)408 void native_write_cr0(unsigned long val)
409 {
410 unsigned long bits_missing = 0;
411
412 set_register:
413 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
414
415 if (static_branch_likely(&cr_pinning)) {
416 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
417 bits_missing = X86_CR0_WP;
418 val |= bits_missing;
419 goto set_register;
420 }
421 /* Warn after we've set the missing bits. */
422 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
423 }
424 }
425 EXPORT_SYMBOL(native_write_cr0);
426
native_write_cr4(unsigned long val)427 void __no_profile native_write_cr4(unsigned long val)
428 {
429 unsigned long bits_changed = 0;
430
431 set_register:
432 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
433
434 if (static_branch_likely(&cr_pinning)) {
435 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
436 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
437 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
438 goto set_register;
439 }
440 /* Warn after we've corrected the changed bits. */
441 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
442 bits_changed);
443 }
444 }
445 #if IS_MODULE(CONFIG_LKDTM)
446 EXPORT_SYMBOL_GPL(native_write_cr4);
447 #endif
448
cr4_update_irqsoff(unsigned long set,unsigned long clear)449 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
450 {
451 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
452
453 lockdep_assert_irqs_disabled();
454
455 newval = (cr4 & ~clear) | set;
456 if (newval != cr4) {
457 this_cpu_write(cpu_tlbstate.cr4, newval);
458 __write_cr4(newval);
459 }
460 }
461 EXPORT_SYMBOL(cr4_update_irqsoff);
462
463 /* Read the CR4 shadow. */
cr4_read_shadow(void)464 unsigned long cr4_read_shadow(void)
465 {
466 return this_cpu_read(cpu_tlbstate.cr4);
467 }
468 EXPORT_SYMBOL_GPL(cr4_read_shadow);
469
cr4_init(void)470 void cr4_init(void)
471 {
472 unsigned long cr4 = __read_cr4();
473
474 if (boot_cpu_has(X86_FEATURE_PCID))
475 cr4 |= X86_CR4_PCIDE;
476 if (static_branch_likely(&cr_pinning))
477 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
478
479 __write_cr4(cr4);
480
481 /* Initialize cr4 shadow for this CPU. */
482 this_cpu_write(cpu_tlbstate.cr4, cr4);
483 }
484
485 /*
486 * Once CPU feature detection is finished (and boot params have been
487 * parsed), record any of the sensitive CR bits that are set, and
488 * enable CR pinning.
489 */
setup_cr_pinning(void)490 static void __init setup_cr_pinning(void)
491 {
492 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
493 static_key_enable(&cr_pinning.key);
494 }
495
x86_nofsgsbase_setup(char * arg)496 static __init int x86_nofsgsbase_setup(char *arg)
497 {
498 /* Require an exact match without trailing characters. */
499 if (strlen(arg))
500 return 0;
501
502 /* Do not emit a message if the feature is not present. */
503 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
504 return 1;
505
506 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
507 pr_info("FSGSBASE disabled via kernel command line\n");
508 return 1;
509 }
510 __setup("nofsgsbase", x86_nofsgsbase_setup);
511
512 /*
513 * Protection Keys are not available in 32-bit mode.
514 */
515 static bool pku_disabled;
516
setup_pku(struct cpuinfo_x86 * c)517 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
518 {
519 if (c == &boot_cpu_data) {
520 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
521 return;
522 /*
523 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
524 * bit to be set. Enforce it.
525 */
526 setup_force_cpu_cap(X86_FEATURE_OSPKE);
527
528 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
529 return;
530 }
531
532 cr4_set_bits(X86_CR4_PKE);
533 /* Load the default PKRU value */
534 pkru_write_default();
535 }
536
537 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)538 static __init int setup_disable_pku(char *arg)
539 {
540 /*
541 * Do not clear the X86_FEATURE_PKU bit. All of the
542 * runtime checks are against OSPKE so clearing the
543 * bit does nothing.
544 *
545 * This way, we will see "pku" in cpuinfo, but not
546 * "ospke", which is exactly what we want. It shows
547 * that the CPU has PKU, but the OS has not enabled it.
548 * This happens to be exactly how a system would look
549 * if we disabled the config option.
550 */
551 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
552 pku_disabled = true;
553 return 1;
554 }
555 __setup("nopku", setup_disable_pku);
556 #endif
557
558 #ifdef CONFIG_X86_KERNEL_IBT
559
ibt_save(bool disable)560 __noendbr u64 ibt_save(bool disable)
561 {
562 u64 msr = 0;
563
564 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
565 rdmsrl(MSR_IA32_S_CET, msr);
566 if (disable)
567 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
568 }
569
570 return msr;
571 }
572
ibt_restore(u64 save)573 __noendbr void ibt_restore(u64 save)
574 {
575 u64 msr;
576
577 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
578 rdmsrl(MSR_IA32_S_CET, msr);
579 msr &= ~CET_ENDBR_EN;
580 msr |= (save & CET_ENDBR_EN);
581 wrmsrl(MSR_IA32_S_CET, msr);
582 }
583 }
584
585 #endif
586
setup_cet(struct cpuinfo_x86 * c)587 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
588 {
589 bool user_shstk, kernel_ibt;
590
591 if (!IS_ENABLED(CONFIG_X86_CET))
592 return;
593
594 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
595 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
596 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
597
598 if (!kernel_ibt && !user_shstk)
599 return;
600
601 if (user_shstk)
602 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
603
604 if (kernel_ibt)
605 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
606 else
607 wrmsrl(MSR_IA32_S_CET, 0);
608
609 cr4_set_bits(X86_CR4_CET);
610
611 if (kernel_ibt && ibt_selftest()) {
612 pr_err("IBT selftest: Failed!\n");
613 wrmsrl(MSR_IA32_S_CET, 0);
614 setup_clear_cpu_cap(X86_FEATURE_IBT);
615 }
616 }
617
cet_disable(void)618 __noendbr void cet_disable(void)
619 {
620 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
621 cpu_feature_enabled(X86_FEATURE_SHSTK)))
622 return;
623
624 wrmsrl(MSR_IA32_S_CET, 0);
625 wrmsrl(MSR_IA32_U_CET, 0);
626 }
627
628 /*
629 * Some CPU features depend on higher CPUID levels, which may not always
630 * be available due to CPUID level capping or broken virtualization
631 * software. Add those features to this table to auto-disable them.
632 */
633 struct cpuid_dependent_feature {
634 u32 feature;
635 u32 level;
636 };
637
638 static const struct cpuid_dependent_feature
639 cpuid_dependent_features[] = {
640 { X86_FEATURE_MWAIT, CPUID_LEAF_MWAIT },
641 { X86_FEATURE_DCA, CPUID_LEAF_DCA },
642 { X86_FEATURE_XSAVE, CPUID_LEAF_XSTATE },
643 { 0, 0 }
644 };
645
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)646 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
647 {
648 const struct cpuid_dependent_feature *df;
649
650 for (df = cpuid_dependent_features; df->feature; df++) {
651
652 if (!cpu_has(c, df->feature))
653 continue;
654 /*
655 * Note: cpuid_level is set to -1 if unavailable, but
656 * extended_extended_level is set to 0 if unavailable
657 * and the legitimate extended levels are all negative
658 * when signed; hence the weird messing around with
659 * signs here...
660 */
661 if (!((s32)df->level < 0 ?
662 (u32)df->level > (u32)c->extended_cpuid_level :
663 (s32)df->level > (s32)c->cpuid_level))
664 continue;
665
666 clear_cpu_cap(c, df->feature);
667 if (!warn)
668 continue;
669
670 pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
671 x86_cap_flags[df->feature], df->level);
672 }
673 }
674
675 /*
676 * Naming convention should be: <Name> [(<Codename>)]
677 * This table only is used unless init_<vendor>() below doesn't set it;
678 * in particular, if CPUID levels 0x80000002..4 are supported, this
679 * isn't used
680 */
681
682 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)683 static const char *table_lookup_model(struct cpuinfo_x86 *c)
684 {
685 #ifdef CONFIG_X86_32
686 const struct legacy_cpu_model_info *info;
687
688 if (c->x86_model >= 16)
689 return NULL; /* Range check */
690
691 if (!this_cpu)
692 return NULL;
693
694 info = this_cpu->legacy_models;
695
696 while (info->family) {
697 if (info->family == c->x86)
698 return info->model_names[c->x86_model];
699 info++;
700 }
701 #endif
702 return NULL; /* Not found */
703 }
704
705 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
706 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708
709 #ifdef CONFIG_X86_32
710 /* The 32-bit entry code needs to find cpu_entry_area. */
711 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
712 #endif
713
714 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)715 void load_direct_gdt(int cpu)
716 {
717 struct desc_ptr gdt_descr;
718
719 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
720 gdt_descr.size = GDT_SIZE - 1;
721 load_gdt(&gdt_descr);
722 }
723 EXPORT_SYMBOL_GPL(load_direct_gdt);
724
725 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)726 void load_fixmap_gdt(int cpu)
727 {
728 struct desc_ptr gdt_descr;
729
730 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
731 gdt_descr.size = GDT_SIZE - 1;
732 load_gdt(&gdt_descr);
733 }
734 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
735
736 /**
737 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
738 * @cpu: The CPU number for which this is invoked
739 *
740 * Invoked during early boot to switch from early GDT and early per CPU to
741 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
742 * switch is implicit by loading the direct GDT. On 64bit this requires
743 * to update GSBASE.
744 */
switch_gdt_and_percpu_base(int cpu)745 void __init switch_gdt_and_percpu_base(int cpu)
746 {
747 load_direct_gdt(cpu);
748
749 #ifdef CONFIG_X86_64
750 /*
751 * No need to load %gs. It is already correct.
752 *
753 * Writing %gs on 64bit would zero GSBASE which would make any per
754 * CPU operation up to the point of the wrmsrl() fault.
755 *
756 * Set GSBASE to the new offset. Until the wrmsrl() happens the
757 * early mapping is still valid. That means the GSBASE update will
758 * lose any prior per CPU data which was not copied over in
759 * setup_per_cpu_areas().
760 *
761 * This works even with stackprotector enabled because the
762 * per CPU stack canary is 0 in both per CPU areas.
763 */
764 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
765 #else
766 /*
767 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
768 * it is required to load FS again so that the 'hidden' part is
769 * updated from the new GDT. Up to this point the early per CPU
770 * translation is active. Any content of the early per CPU data
771 * which was not copied over in setup_per_cpu_areas() is lost.
772 */
773 loadsegment(fs, __KERNEL_PERCPU);
774 #endif
775 }
776
777 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
778
get_model_name(struct cpuinfo_x86 * c)779 static void get_model_name(struct cpuinfo_x86 *c)
780 {
781 unsigned int *v;
782 char *p, *q, *s;
783
784 if (c->extended_cpuid_level < 0x80000004)
785 return;
786
787 v = (unsigned int *)c->x86_model_id;
788 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
789 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
790 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
791 c->x86_model_id[48] = 0;
792
793 /* Trim whitespace */
794 p = q = s = &c->x86_model_id[0];
795
796 while (*p == ' ')
797 p++;
798
799 while (*p) {
800 /* Note the last non-whitespace index */
801 if (!isspace(*p))
802 s = q;
803
804 *q++ = *p++;
805 }
806
807 *(s + 1) = '\0';
808 }
809
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)810 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
811 {
812 unsigned int n, dummy, ebx, ecx, edx, l2size;
813
814 n = c->extended_cpuid_level;
815
816 if (n >= 0x80000005) {
817 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
818 c->x86_cache_size = (ecx>>24) + (edx>>24);
819 #ifdef CONFIG_X86_64
820 /* On K8 L1 TLB is inclusive, so don't count it */
821 c->x86_tlbsize = 0;
822 #endif
823 }
824
825 if (n < 0x80000006) /* Some chips just has a large L1. */
826 return;
827
828 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
829 l2size = ecx >> 16;
830
831 #ifdef CONFIG_X86_64
832 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
833 #else
834 /* do processor-specific cache resizing */
835 if (this_cpu->legacy_cache_size)
836 l2size = this_cpu->legacy_cache_size(c, l2size);
837
838 /* Allow user to override all this if necessary. */
839 if (cachesize_override != -1)
840 l2size = cachesize_override;
841
842 if (l2size == 0)
843 return; /* Again, no L2 cache is possible */
844 #endif
845
846 c->x86_cache_size = l2size;
847 }
848
849 u16 __read_mostly tlb_lli_4k;
850 u16 __read_mostly tlb_lli_2m;
851 u16 __read_mostly tlb_lli_4m;
852 u16 __read_mostly tlb_lld_4k;
853 u16 __read_mostly tlb_lld_2m;
854 u16 __read_mostly tlb_lld_4m;
855 u16 __read_mostly tlb_lld_1g;
856
cpu_detect_tlb(struct cpuinfo_x86 * c)857 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
858 {
859 if (this_cpu->c_detect_tlb)
860 this_cpu->c_detect_tlb(c);
861
862 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
863 tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
864
865 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866 tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
867 }
868
get_cpu_vendor(struct cpuinfo_x86 * c)869 void get_cpu_vendor(struct cpuinfo_x86 *c)
870 {
871 char *v = c->x86_vendor_id;
872 int i;
873
874 for (i = 0; i < X86_VENDOR_NUM; i++) {
875 if (!cpu_devs[i])
876 break;
877
878 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
879 (cpu_devs[i]->c_ident[1] &&
880 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
881
882 this_cpu = cpu_devs[i];
883 c->x86_vendor = this_cpu->c_x86_vendor;
884 return;
885 }
886 }
887
888 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
889 "CPU: Your system may be unstable.\n", v);
890
891 c->x86_vendor = X86_VENDOR_UNKNOWN;
892 this_cpu = &default_cpu;
893 }
894
cpu_detect(struct cpuinfo_x86 * c)895 void cpu_detect(struct cpuinfo_x86 *c)
896 {
897 /* Get vendor name */
898 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
899 (unsigned int *)&c->x86_vendor_id[0],
900 (unsigned int *)&c->x86_vendor_id[8],
901 (unsigned int *)&c->x86_vendor_id[4]);
902
903 c->x86 = 4;
904 /* Intel-defined flags: level 0x00000001 */
905 if (c->cpuid_level >= 0x00000001) {
906 u32 junk, tfms, cap0, misc;
907
908 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
909 c->x86 = x86_family(tfms);
910 c->x86_model = x86_model(tfms);
911 c->x86_stepping = x86_stepping(tfms);
912
913 if (cap0 & (1<<19)) {
914 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
915 c->x86_cache_alignment = c->x86_clflush_size;
916 }
917 }
918 }
919
apply_forced_caps(struct cpuinfo_x86 * c)920 static void apply_forced_caps(struct cpuinfo_x86 *c)
921 {
922 int i;
923
924 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
925 c->x86_capability[i] &= ~cpu_caps_cleared[i];
926 c->x86_capability[i] |= cpu_caps_set[i];
927 }
928 }
929
init_speculation_control(struct cpuinfo_x86 * c)930 static void init_speculation_control(struct cpuinfo_x86 *c)
931 {
932 /*
933 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
934 * and they also have a different bit for STIBP support. Also,
935 * a hypervisor might have set the individual AMD bits even on
936 * Intel CPUs, for finer-grained selection of what's available.
937 */
938 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
939 set_cpu_cap(c, X86_FEATURE_IBRS);
940 set_cpu_cap(c, X86_FEATURE_IBPB);
941 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
942 }
943
944 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
945 set_cpu_cap(c, X86_FEATURE_STIBP);
946
947 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
948 cpu_has(c, X86_FEATURE_VIRT_SSBD))
949 set_cpu_cap(c, X86_FEATURE_SSBD);
950
951 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
952 set_cpu_cap(c, X86_FEATURE_IBRS);
953 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
954 }
955
956 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
957 set_cpu_cap(c, X86_FEATURE_IBPB);
958
959 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
960 set_cpu_cap(c, X86_FEATURE_STIBP);
961 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
962 }
963
964 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
965 set_cpu_cap(c, X86_FEATURE_SSBD);
966 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
967 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
968 }
969 }
970
get_cpu_cap(struct cpuinfo_x86 * c)971 void get_cpu_cap(struct cpuinfo_x86 *c)
972 {
973 u32 eax, ebx, ecx, edx;
974
975 /* Intel-defined flags: level 0x00000001 */
976 if (c->cpuid_level >= 0x00000001) {
977 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
978
979 c->x86_capability[CPUID_1_ECX] = ecx;
980 c->x86_capability[CPUID_1_EDX] = edx;
981 }
982
983 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
984 if (c->cpuid_level >= 0x00000006)
985 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
986
987 /* Additional Intel-defined flags: level 0x00000007 */
988 if (c->cpuid_level >= 0x00000007) {
989 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
990 c->x86_capability[CPUID_7_0_EBX] = ebx;
991 c->x86_capability[CPUID_7_ECX] = ecx;
992 c->x86_capability[CPUID_7_EDX] = edx;
993
994 /* Check valid sub-leaf index before accessing it */
995 if (eax >= 1) {
996 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
997 c->x86_capability[CPUID_7_1_EAX] = eax;
998 }
999 }
1000
1001 /* Extended state features: level 0x0000000d */
1002 if (c->cpuid_level >= 0x0000000d) {
1003 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1004
1005 c->x86_capability[CPUID_D_1_EAX] = eax;
1006 }
1007
1008 /* AMD-defined flags: level 0x80000001 */
1009 eax = cpuid_eax(0x80000000);
1010 c->extended_cpuid_level = eax;
1011
1012 if ((eax & 0xffff0000) == 0x80000000) {
1013 if (eax >= 0x80000001) {
1014 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1015
1016 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1017 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1018 }
1019 }
1020
1021 if (c->extended_cpuid_level >= 0x80000007) {
1022 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1023
1024 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1025 c->x86_power = edx;
1026 }
1027
1028 if (c->extended_cpuid_level >= 0x80000008) {
1029 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1030 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1031 }
1032
1033 if (c->extended_cpuid_level >= 0x8000000a)
1034 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1035
1036 if (c->extended_cpuid_level >= 0x8000001f)
1037 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1038
1039 if (c->extended_cpuid_level >= 0x80000021)
1040 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1041
1042 init_scattered_cpuid_features(c);
1043 init_speculation_control(c);
1044
1045 /*
1046 * Clear/Set all flags overridden by options, after probe.
1047 * This needs to happen each time we re-probe, which may happen
1048 * several times during CPU initialization.
1049 */
1050 apply_forced_caps(c);
1051 }
1052
get_cpu_address_sizes(struct cpuinfo_x86 * c)1053 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1054 {
1055 u32 eax, ebx, ecx, edx;
1056
1057 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1058 (c->extended_cpuid_level < 0x80000008)) {
1059 if (IS_ENABLED(CONFIG_X86_64)) {
1060 c->x86_clflush_size = 64;
1061 c->x86_phys_bits = 36;
1062 c->x86_virt_bits = 48;
1063 } else {
1064 c->x86_clflush_size = 32;
1065 c->x86_virt_bits = 32;
1066 c->x86_phys_bits = 32;
1067
1068 if (cpu_has(c, X86_FEATURE_PAE) ||
1069 cpu_has(c, X86_FEATURE_PSE36))
1070 c->x86_phys_bits = 36;
1071 }
1072 } else {
1073 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1074
1075 c->x86_virt_bits = (eax >> 8) & 0xff;
1076 c->x86_phys_bits = eax & 0xff;
1077
1078 /* Provide a sane default if not enumerated: */
1079 if (!c->x86_clflush_size)
1080 c->x86_clflush_size = 32;
1081 }
1082
1083 c->x86_cache_bits = c->x86_phys_bits;
1084 c->x86_cache_alignment = c->x86_clflush_size;
1085 }
1086
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1087 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1088 {
1089 int i;
1090
1091 /*
1092 * First of all, decide if this is a 486 or higher
1093 * It's a 486 if we can modify the AC flag
1094 */
1095 if (flag_is_changeable_p(X86_EFLAGS_AC))
1096 c->x86 = 4;
1097 else
1098 c->x86 = 3;
1099
1100 for (i = 0; i < X86_VENDOR_NUM; i++)
1101 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1102 c->x86_vendor_id[0] = 0;
1103 cpu_devs[i]->c_identify(c);
1104 if (c->x86_vendor_id[0]) {
1105 get_cpu_vendor(c);
1106 break;
1107 }
1108 }
1109 }
1110
1111 #define NO_SPECULATION BIT(0)
1112 #define NO_MELTDOWN BIT(1)
1113 #define NO_SSB BIT(2)
1114 #define NO_L1TF BIT(3)
1115 #define NO_MDS BIT(4)
1116 #define MSBDS_ONLY BIT(5)
1117 #define NO_SWAPGS BIT(6)
1118 #define NO_ITLB_MULTIHIT BIT(7)
1119 #define NO_SPECTRE_V2 BIT(8)
1120 #define NO_MMIO BIT(9)
1121 #define NO_EIBRS_PBRSB BIT(10)
1122 #define NO_BHI BIT(11)
1123
1124 #define VULNWL(vendor, family, model, whitelist) \
1125 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1126
1127 #define VULNWL_INTEL(vfm, whitelist) \
1128 X86_MATCH_VFM(vfm, whitelist)
1129
1130 #define VULNWL_AMD(family, whitelist) \
1131 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1132
1133 #define VULNWL_HYGON(family, whitelist) \
1134 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1135
1136 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1137 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1138 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1139 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1140 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1141 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1142 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1143
1144 /* Intel Family 6 */
1145 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
1146 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
1147 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
1148 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
1149
1150 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1151 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1152 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155
1156 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1157 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1158 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162
1163 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
1164
1165 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1166 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1167
1168 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1169 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1170 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1171
1172 /*
1173 * Technically, swapgs isn't serializing on AMD (despite it previously
1174 * being documented as such in the APM). But according to AMD, %gs is
1175 * updated non-speculatively, and the issuing of %gs-relative memory
1176 * operands will be blocked until the %gs update completes, which is
1177 * good enough for our purposes.
1178 */
1179
1180 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
1181 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1182 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1183
1184 /* AMD Family 0xf - 0x12 */
1185 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1186 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1187 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189
1190 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1191 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1192 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1193
1194 /* Zhaoxin Family 7 */
1195 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1196 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1197 {}
1198 };
1199
1200 #define VULNBL(vendor, family, model, blacklist) \
1201 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1202
1203 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues) \
1204 X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1205
1206 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues) \
1207 X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1208
1209 #define VULNBL_AMD(family, blacklist) \
1210 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211
1212 #define VULNBL_HYGON(family, blacklist) \
1213 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214
1215 #define SRBDS BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217 #define MMIO BIT(1)
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB BIT(4)
1224 /* CPU is affected by SRSO */
1225 #define SRSO BIT(5)
1226 /* CPU is affected by GDS */
1227 #define GDS BIT(6)
1228 /* CPU is affected by Register File Data Sampling */
1229 #define RFDS BIT(7)
1230 /* CPU is affected by Indirect Target Selection */
1231 #define ITS BIT(8)
1232 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1233 #define ITS_NATIVE_ONLY BIT(9)
1234
1235 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1236 VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE, X86_STEP_MAX, SRBDS),
1237 VULNBL_INTEL_STEPS(INTEL_HASWELL, X86_STEP_MAX, SRBDS),
1238 VULNBL_INTEL_STEPS(INTEL_HASWELL_L, X86_STEP_MAX, SRBDS),
1239 VULNBL_INTEL_STEPS(INTEL_HASWELL_G, X86_STEP_MAX, SRBDS),
1240 VULNBL_INTEL_STEPS(INTEL_HASWELL_X, X86_STEP_MAX, MMIO),
1241 VULNBL_INTEL_STEPS(INTEL_BROADWELL_D, X86_STEP_MAX, MMIO),
1242 VULNBL_INTEL_STEPS(INTEL_BROADWELL_G, X86_STEP_MAX, SRBDS),
1243 VULNBL_INTEL_STEPS(INTEL_BROADWELL_X, X86_STEP_MAX, MMIO),
1244 VULNBL_INTEL_STEPS(INTEL_BROADWELL, X86_STEP_MAX, SRBDS),
1245 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, 0x5, MMIO | RETBLEED | GDS),
1246 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS),
1247 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1248 VULNBL_INTEL_STEPS(INTEL_SKYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1249 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, 0xb, MMIO | RETBLEED | GDS | SRBDS),
1250 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1251 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, 0xc, MMIO | RETBLEED | GDS | SRBDS),
1252 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1253 VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L, X86_STEP_MAX, RETBLEED),
1254 VULNBL_INTEL_STEPS(INTEL_ICELAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1255 VULNBL_INTEL_STEPS(INTEL_ICELAKE_D, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1256 VULNBL_INTEL_STEPS(INTEL_ICELAKE_X, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1257 VULNBL_INTEL_STEPS(INTEL_COMETLAKE, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1258 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, 0x0, MMIO | RETBLEED | ITS),
1259 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1260 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1261 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1262 VULNBL_INTEL_STEPS(INTEL_LAKEFIELD, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED),
1263 VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1264 VULNBL_INTEL_TYPE(INTEL_ALDERLAKE, ATOM, RFDS),
1265 VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L, X86_STEP_MAX, RFDS),
1266 VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE, ATOM, RFDS),
1267 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P, X86_STEP_MAX, RFDS),
1268 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S, X86_STEP_MAX, RFDS),
1269 VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT, X86_STEP_MAX, RFDS),
1270 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1271 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MAX, MMIO | RFDS),
1272 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1273 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT, X86_STEP_MAX, RFDS),
1274 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D, X86_STEP_MAX, RFDS),
1275 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX, RFDS),
1276
1277 VULNBL_AMD(0x15, RETBLEED),
1278 VULNBL_AMD(0x16, RETBLEED),
1279 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1280 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1281 VULNBL_AMD(0x19, SRSO),
1282 VULNBL_AMD(0x1a, SRSO),
1283 {}
1284 };
1285
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1286 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1287 {
1288 const struct x86_cpu_id *m = x86_match_cpu(table);
1289
1290 return m && !!(m->driver_data & which);
1291 }
1292
x86_read_arch_cap_msr(void)1293 u64 x86_read_arch_cap_msr(void)
1294 {
1295 u64 x86_arch_cap_msr = 0;
1296
1297 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1298 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1299
1300 return x86_arch_cap_msr;
1301 }
1302
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1303 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1304 {
1305 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1306 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1307 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1308 }
1309
vulnerable_to_rfds(u64 x86_arch_cap_msr)1310 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1311 {
1312 /* The "immunity" bit trumps everything else: */
1313 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1314 return false;
1315
1316 /*
1317 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1318 * indicate that mitigation is needed because guest is running on a
1319 * vulnerable hardware or may migrate to such hardware:
1320 */
1321 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1322 return true;
1323
1324 /* Only consult the blacklist when there is no enumeration: */
1325 return cpu_matches(cpu_vuln_blacklist, RFDS);
1326 }
1327
vulnerable_to_its(u64 x86_arch_cap_msr)1328 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1329 {
1330 /* The "immunity" bit trumps everything else: */
1331 if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1332 return false;
1333 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1334 return false;
1335
1336 /* None of the affected CPUs have BHI_CTRL */
1337 if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1338 return false;
1339
1340 /*
1341 * If a VMM did not expose ITS_NO, assume that a guest could
1342 * be running on a vulnerable hardware or may migrate to such
1343 * hardware.
1344 */
1345 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1346 return true;
1347
1348 if (cpu_matches(cpu_vuln_blacklist, ITS))
1349 return true;
1350
1351 return false;
1352 }
1353
cpu_set_bug_bits(struct cpuinfo_x86 * c)1354 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1355 {
1356 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1357
1358 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1359 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1360 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1361 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1362
1363 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1364 return;
1365
1366 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1367
1368 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1369 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1370 setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1371 }
1372
1373 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1374 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1375 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1376 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1377
1378 /*
1379 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1380 * flag and protect from vendor-specific bugs via the whitelist.
1381 *
1382 * Don't use AutoIBRS when SNP is enabled because it degrades host
1383 * userspace indirect branch performance.
1384 */
1385 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1386 (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1387 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1388 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1389 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1390 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1391 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1392 }
1393
1394 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1395 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1396 setup_force_cpu_bug(X86_BUG_MDS);
1397 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1398 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1399 }
1400
1401 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1402 setup_force_cpu_bug(X86_BUG_SWAPGS);
1403
1404 /*
1405 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1406 * - TSX is supported or
1407 * - TSX_CTRL is present
1408 *
1409 * TSX_CTRL check is needed for cases when TSX could be disabled before
1410 * the kernel boot e.g. kexec.
1411 * TSX_CTRL check alone is not sufficient for cases when the microcode
1412 * update is not present or running as guest that don't get TSX_CTRL.
1413 */
1414 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1415 (cpu_has(c, X86_FEATURE_RTM) ||
1416 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1417 setup_force_cpu_bug(X86_BUG_TAA);
1418
1419 /*
1420 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1421 * in the vulnerability blacklist.
1422 *
1423 * Some of the implications and mitigation of Shared Buffers Data
1424 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1425 * SRBDS.
1426 */
1427 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1428 cpu_has(c, X86_FEATURE_RDSEED)) &&
1429 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1430 setup_force_cpu_bug(X86_BUG_SRBDS);
1431
1432 /*
1433 * Processor MMIO Stale Data bug enumeration
1434 *
1435 * Affected CPU list is generally enough to enumerate the vulnerability,
1436 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1437 * not want the guest to enumerate the bug.
1438 *
1439 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1440 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1441 */
1442 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1443 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1444 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1445 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1446 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1447 }
1448
1449 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1450 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1451 setup_force_cpu_bug(X86_BUG_RETBLEED);
1452 }
1453
1454 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1455 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1456
1457 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1458 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1459 setup_force_cpu_bug(X86_BUG_SRSO);
1460 }
1461
1462 /*
1463 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1464 * an affected processor, the VMM may have disabled the use of GATHER by
1465 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1466 * which means that AVX will be disabled.
1467 */
1468 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1469 boot_cpu_has(X86_FEATURE_AVX))
1470 setup_force_cpu_bug(X86_BUG_GDS);
1471
1472 if (vulnerable_to_rfds(x86_arch_cap_msr))
1473 setup_force_cpu_bug(X86_BUG_RFDS);
1474
1475 /*
1476 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1477 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1478 * attacks. When virtualized, eIBRS could be hidden, assume vulnerable.
1479 */
1480 if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1481 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1482 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1483 setup_force_cpu_bug(X86_BUG_BHI);
1484
1485 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1486 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1487
1488 if (vulnerable_to_its(x86_arch_cap_msr)) {
1489 setup_force_cpu_bug(X86_BUG_ITS);
1490 if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1491 setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1492 }
1493
1494 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1495 return;
1496
1497 /* Rogue Data Cache Load? No! */
1498 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1499 return;
1500
1501 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1502
1503 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1504 return;
1505
1506 setup_force_cpu_bug(X86_BUG_L1TF);
1507 }
1508
1509 /*
1510 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1511 * unfortunately, that's not true in practice because of early VIA
1512 * chips and (more importantly) broken virtualizers that are not easy
1513 * to detect. In the latter case it doesn't even *fail* reliably, so
1514 * probing for it doesn't even work. Disable it completely on 32-bit
1515 * unless we can find a reliable way to detect all the broken cases.
1516 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1517 */
detect_nopl(void)1518 static void detect_nopl(void)
1519 {
1520 #ifdef CONFIG_X86_32
1521 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1522 #else
1523 setup_force_cpu_cap(X86_FEATURE_NOPL);
1524 #endif
1525 }
1526
parse_set_clear_cpuid(char * arg,bool set)1527 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1528 {
1529 char *opt;
1530 int taint = 0;
1531
1532 while (arg) {
1533 bool found __maybe_unused = false;
1534 unsigned int bit;
1535
1536 opt = strsep(&arg, ",");
1537
1538 /*
1539 * Handle naked numbers first for feature flags which don't
1540 * have names. It doesn't make sense for a bug not to have a
1541 * name so don't handle bug flags here.
1542 */
1543 if (!kstrtouint(opt, 10, &bit)) {
1544 if (bit < NCAPINTS * 32) {
1545
1546 if (set) {
1547 pr_warn("setcpuid: force-enabling CPU feature flag:");
1548 setup_force_cpu_cap(bit);
1549 } else {
1550 pr_warn("clearcpuid: force-disabling CPU feature flag:");
1551 setup_clear_cpu_cap(bit);
1552 }
1553 /* empty-string, i.e., ""-defined feature flags */
1554 if (!x86_cap_flags[bit])
1555 pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1556 else
1557 pr_cont(" %s\n", x86_cap_flags[bit]);
1558
1559 taint++;
1560 }
1561 /*
1562 * The assumption is that there are no feature names with only
1563 * numbers in the name thus go to the next argument.
1564 */
1565 continue;
1566 }
1567
1568 for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1569 const char *flag;
1570 const char *kind;
1571
1572 if (bit < 32 * NCAPINTS) {
1573 flag = x86_cap_flags[bit];
1574 kind = "feature";
1575 } else {
1576 kind = "bug";
1577 flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1578 }
1579
1580 if (!flag)
1581 continue;
1582
1583 if (strcmp(flag, opt))
1584 continue;
1585
1586 if (set) {
1587 pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1588 kind, flag);
1589 setup_force_cpu_cap(bit);
1590 } else {
1591 pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1592 kind, flag);
1593 setup_clear_cpu_cap(bit);
1594 }
1595 taint++;
1596 found = true;
1597 break;
1598 }
1599
1600 if (!found)
1601 pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1602 }
1603
1604 return taint;
1605 }
1606
1607
1608 /*
1609 * We parse cpu parameters early because fpu__init_system() is executed
1610 * before parse_early_param().
1611 */
cpu_parse_early_param(void)1612 static void __init cpu_parse_early_param(void)
1613 {
1614 bool cpuid_taint = false;
1615 char arg[128];
1616 int arglen;
1617
1618 #ifdef CONFIG_X86_32
1619 if (cmdline_find_option_bool(boot_command_line, "no387"))
1620 #ifdef CONFIG_MATH_EMULATION
1621 setup_clear_cpu_cap(X86_FEATURE_FPU);
1622 #else
1623 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1624 #endif
1625
1626 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1627 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1628 #endif
1629
1630 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1631 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1632
1633 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1634 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1635
1636 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1637 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1638
1639 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1640 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1641
1642 /* Minimize the gap between FRED is available and available but disabled. */
1643 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1644 if (arglen != 2 || strncmp(arg, "on", 2))
1645 setup_clear_cpu_cap(X86_FEATURE_FRED);
1646
1647 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1648 if (arglen > 0)
1649 cpuid_taint |= parse_set_clear_cpuid(arg, false);
1650
1651 arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1652 if (arglen > 0)
1653 cpuid_taint |= parse_set_clear_cpuid(arg, true);
1654
1655 if (cpuid_taint) {
1656 pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1657 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1658 }
1659 }
1660
1661 /*
1662 * Do minimum CPU detection early.
1663 * Fields really needed: vendor, cpuid_level, family, model, mask,
1664 * cache alignment.
1665 * The others are not touched to avoid unwanted side effects.
1666 *
1667 * WARNING: this function is only called on the boot CPU. Don't add code
1668 * here that is supposed to run on all CPUs.
1669 */
early_identify_cpu(struct cpuinfo_x86 * c)1670 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1671 {
1672 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1673 c->extended_cpuid_level = 0;
1674
1675 if (!have_cpuid_p())
1676 identify_cpu_without_cpuid(c);
1677
1678 /* cyrix could have cpuid enabled via c_identify()*/
1679 if (have_cpuid_p()) {
1680 cpu_detect(c);
1681 get_cpu_vendor(c);
1682 intel_unlock_cpuid_leafs(c);
1683 get_cpu_cap(c);
1684 setup_force_cpu_cap(X86_FEATURE_CPUID);
1685 get_cpu_address_sizes(c);
1686 cpu_parse_early_param();
1687
1688 cpu_init_topology(c);
1689
1690 if (this_cpu->c_early_init)
1691 this_cpu->c_early_init(c);
1692
1693 c->cpu_index = 0;
1694 filter_cpuid_features(c, false);
1695 check_cpufeature_deps(c);
1696
1697 if (this_cpu->c_bsp_init)
1698 this_cpu->c_bsp_init(c);
1699 } else {
1700 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1701 get_cpu_address_sizes(c);
1702 cpu_init_topology(c);
1703 }
1704
1705 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1706
1707 cpu_set_bug_bits(c);
1708
1709 sld_setup(c);
1710
1711 #ifdef CONFIG_X86_32
1712 /*
1713 * Regardless of whether PCID is enumerated, the SDM says
1714 * that it can't be enabled in 32-bit mode.
1715 */
1716 setup_clear_cpu_cap(X86_FEATURE_PCID);
1717 #endif
1718
1719 /*
1720 * Later in the boot process pgtable_l5_enabled() relies on
1721 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1722 * enabled by this point we need to clear the feature bit to avoid
1723 * false-positives at the later stage.
1724 *
1725 * pgtable_l5_enabled() can be false here for several reasons:
1726 * - 5-level paging is disabled compile-time;
1727 * - it's 32-bit kernel;
1728 * - machine doesn't support 5-level paging;
1729 * - user specified 'no5lvl' in kernel command line.
1730 */
1731 if (!pgtable_l5_enabled())
1732 setup_clear_cpu_cap(X86_FEATURE_LA57);
1733
1734 detect_nopl();
1735 }
1736
init_cpu_devs(void)1737 void __init init_cpu_devs(void)
1738 {
1739 const struct cpu_dev *const *cdev;
1740 int count = 0;
1741
1742 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1743 const struct cpu_dev *cpudev = *cdev;
1744
1745 if (count >= X86_VENDOR_NUM)
1746 break;
1747 cpu_devs[count] = cpudev;
1748 count++;
1749 }
1750 }
1751
early_cpu_init(void)1752 void __init early_cpu_init(void)
1753 {
1754 #ifdef CONFIG_PROCESSOR_SELECT
1755 unsigned int i, j;
1756
1757 pr_info("KERNEL supported cpus:\n");
1758 #endif
1759
1760 init_cpu_devs();
1761
1762 #ifdef CONFIG_PROCESSOR_SELECT
1763 for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1764 for (j = 0; j < 2; j++) {
1765 if (!cpu_devs[i]->c_ident[j])
1766 continue;
1767 pr_info(" %s %s\n", cpu_devs[i]->c_vendor,
1768 cpu_devs[i]->c_ident[j]);
1769 }
1770 }
1771 #endif
1772
1773 early_identify_cpu(&boot_cpu_data);
1774 }
1775
detect_null_seg_behavior(void)1776 static bool detect_null_seg_behavior(void)
1777 {
1778 /*
1779 * Empirically, writing zero to a segment selector on AMD does
1780 * not clear the base, whereas writing zero to a segment
1781 * selector on Intel does clear the base. Intel's behavior
1782 * allows slightly faster context switches in the common case
1783 * where GS is unused by the prev and next threads.
1784 *
1785 * Since neither vendor documents this anywhere that I can see,
1786 * detect it directly instead of hard-coding the choice by
1787 * vendor.
1788 *
1789 * I've designated AMD's behavior as the "bug" because it's
1790 * counterintuitive and less friendly.
1791 */
1792
1793 unsigned long old_base, tmp;
1794 rdmsrl(MSR_FS_BASE, old_base);
1795 wrmsrl(MSR_FS_BASE, 1);
1796 loadsegment(fs, 0);
1797 rdmsrl(MSR_FS_BASE, tmp);
1798 wrmsrl(MSR_FS_BASE, old_base);
1799 return tmp == 0;
1800 }
1801
check_null_seg_clears_base(struct cpuinfo_x86 * c)1802 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1803 {
1804 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1805 if (!IS_ENABLED(CONFIG_X86_64))
1806 return;
1807
1808 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1809 return;
1810
1811 /*
1812 * CPUID bit above wasn't set. If this kernel is still running
1813 * as a HV guest, then the HV has decided not to advertize
1814 * that CPUID bit for whatever reason. For example, one
1815 * member of the migration pool might be vulnerable. Which
1816 * means, the bug is present: set the BUG flag and return.
1817 */
1818 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1819 set_cpu_bug(c, X86_BUG_NULL_SEG);
1820 return;
1821 }
1822
1823 /*
1824 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1825 * 0x18 is the respective family for Hygon.
1826 */
1827 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1828 detect_null_seg_behavior())
1829 return;
1830
1831 /* All the remaining ones are affected */
1832 set_cpu_bug(c, X86_BUG_NULL_SEG);
1833 }
1834
generic_identify(struct cpuinfo_x86 * c)1835 static void generic_identify(struct cpuinfo_x86 *c)
1836 {
1837 c->extended_cpuid_level = 0;
1838
1839 if (!have_cpuid_p())
1840 identify_cpu_without_cpuid(c);
1841
1842 /* cyrix could have cpuid enabled via c_identify()*/
1843 if (!have_cpuid_p())
1844 return;
1845
1846 cpu_detect(c);
1847
1848 get_cpu_vendor(c);
1849 intel_unlock_cpuid_leafs(c);
1850 get_cpu_cap(c);
1851
1852 get_cpu_address_sizes(c);
1853
1854 get_model_name(c); /* Default name */
1855
1856 /*
1857 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1858 * systems that run Linux at CPL > 0 may or may not have the
1859 * issue, but, even if they have the issue, there's absolutely
1860 * nothing we can do about it because we can't use the real IRET
1861 * instruction.
1862 *
1863 * NB: For the time being, only 32-bit kernels support
1864 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1865 * whether to apply espfix using paravirt hooks. If any
1866 * non-paravirt system ever shows up that does *not* have the
1867 * ESPFIX issue, we can change this.
1868 */
1869 #ifdef CONFIG_X86_32
1870 set_cpu_bug(c, X86_BUG_ESPFIX);
1871 #endif
1872 }
1873
1874 /*
1875 * This does the hard work of actually picking apart the CPU stuff...
1876 */
identify_cpu(struct cpuinfo_x86 * c)1877 static void identify_cpu(struct cpuinfo_x86 *c)
1878 {
1879 int i;
1880
1881 c->loops_per_jiffy = loops_per_jiffy;
1882 c->x86_cache_size = 0;
1883 c->x86_vendor = X86_VENDOR_UNKNOWN;
1884 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1885 c->x86_vendor_id[0] = '\0'; /* Unset */
1886 c->x86_model_id[0] = '\0'; /* Unset */
1887 #ifdef CONFIG_X86_64
1888 c->x86_clflush_size = 64;
1889 c->x86_phys_bits = 36;
1890 c->x86_virt_bits = 48;
1891 #else
1892 c->cpuid_level = -1; /* CPUID not detected */
1893 c->x86_clflush_size = 32;
1894 c->x86_phys_bits = 32;
1895 c->x86_virt_bits = 32;
1896 #endif
1897 c->x86_cache_alignment = c->x86_clflush_size;
1898 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1899 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1900 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1901 #endif
1902
1903 generic_identify(c);
1904
1905 cpu_parse_topology(c);
1906
1907 if (this_cpu->c_identify)
1908 this_cpu->c_identify(c);
1909
1910 /* Clear/Set all flags overridden by options, after probe */
1911 apply_forced_caps(c);
1912
1913 /*
1914 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1915 * Hygon will clear it in ->c_init() below.
1916 */
1917 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1918
1919 /*
1920 * Vendor-specific initialization. In this section we
1921 * canonicalize the feature flags, meaning if there are
1922 * features a certain CPU supports which CPUID doesn't
1923 * tell us, CPUID claiming incorrect flags, or other bugs,
1924 * we handle them here.
1925 *
1926 * At the end of this section, c->x86_capability better
1927 * indicate the features this CPU genuinely supports!
1928 */
1929 if (this_cpu->c_init)
1930 this_cpu->c_init(c);
1931
1932 bus_lock_init();
1933
1934 /* Disable the PN if appropriate */
1935 squash_the_stupid_serial_number(c);
1936
1937 /* Set up SMEP/SMAP/UMIP */
1938 setup_smep(c);
1939 setup_smap(c);
1940 setup_umip(c);
1941
1942 /* Enable FSGSBASE instructions if available. */
1943 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1944 cr4_set_bits(X86_CR4_FSGSBASE);
1945 elf_hwcap2 |= HWCAP2_FSGSBASE;
1946 }
1947
1948 /*
1949 * The vendor-specific functions might have changed features.
1950 * Now we do "generic changes."
1951 */
1952
1953 /* Filter out anything that depends on CPUID levels we don't have */
1954 filter_cpuid_features(c, true);
1955
1956 /* Check for unmet dependencies based on the CPUID dependency table */
1957 check_cpufeature_deps(c);
1958
1959 /* If the model name is still unset, do table lookup. */
1960 if (!c->x86_model_id[0]) {
1961 const char *p;
1962 p = table_lookup_model(c);
1963 if (p)
1964 strcpy(c->x86_model_id, p);
1965 else
1966 /* Last resort... */
1967 sprintf(c->x86_model_id, "%02x/%02x",
1968 c->x86, c->x86_model);
1969 }
1970
1971 x86_init_rdrand(c);
1972 setup_pku(c);
1973 setup_cet(c);
1974
1975 /*
1976 * Clear/Set all flags overridden by options, need do it
1977 * before following smp all cpus cap AND.
1978 */
1979 apply_forced_caps(c);
1980
1981 /*
1982 * On SMP, boot_cpu_data holds the common feature set between
1983 * all CPUs; so make sure that we indicate which features are
1984 * common between the CPUs. The first time this routine gets
1985 * executed, c == &boot_cpu_data.
1986 */
1987 if (c != &boot_cpu_data) {
1988 /* AND the already accumulated flags with these */
1989 for (i = 0; i < NCAPINTS; i++)
1990 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1991
1992 /* OR, i.e. replicate the bug flags */
1993 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1994 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1995 }
1996
1997 ppin_init(c);
1998
1999 /* Init Machine Check Exception if available. */
2000 mcheck_cpu_init(c);
2001
2002 numa_add_cpu(smp_processor_id());
2003 }
2004
2005 /*
2006 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2007 * on 32-bit kernels:
2008 */
2009 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2010 void enable_sep_cpu(void)
2011 {
2012 struct tss_struct *tss;
2013 int cpu;
2014
2015 if (!boot_cpu_has(X86_FEATURE_SEP))
2016 return;
2017
2018 cpu = get_cpu();
2019 tss = &per_cpu(cpu_tss_rw, cpu);
2020
2021 /*
2022 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2023 * see the big comment in struct x86_hw_tss's definition.
2024 */
2025
2026 tss->x86_tss.ss1 = __KERNEL_CS;
2027 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
2028 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
2029 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
2030
2031 put_cpu();
2032 }
2033 #endif
2034
identify_boot_cpu(void)2035 static __init void identify_boot_cpu(void)
2036 {
2037 identify_cpu(&boot_cpu_data);
2038 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2039 pr_info("CET detected: Indirect Branch Tracking enabled\n");
2040 #ifdef CONFIG_X86_32
2041 enable_sep_cpu();
2042 #endif
2043 cpu_detect_tlb(&boot_cpu_data);
2044 setup_cr_pinning();
2045
2046 tsx_init();
2047 tdx_init();
2048 lkgs_init();
2049 }
2050
identify_secondary_cpu(unsigned int cpu)2051 void identify_secondary_cpu(unsigned int cpu)
2052 {
2053 struct cpuinfo_x86 *c = &cpu_data(cpu);
2054
2055 /* Copy boot_cpu_data only on the first bringup */
2056 if (!c->initialized)
2057 *c = boot_cpu_data;
2058 c->cpu_index = cpu;
2059
2060 identify_cpu(c);
2061 #ifdef CONFIG_X86_32
2062 enable_sep_cpu();
2063 #endif
2064 x86_spec_ctrl_setup_ap();
2065 update_srbds_msr();
2066 if (boot_cpu_has_bug(X86_BUG_GDS))
2067 update_gds_msr();
2068
2069 tsx_ap_init();
2070 c->initialized = true;
2071 }
2072
print_cpu_info(struct cpuinfo_x86 * c)2073 void print_cpu_info(struct cpuinfo_x86 *c)
2074 {
2075 const char *vendor = NULL;
2076
2077 if (c->x86_vendor < X86_VENDOR_NUM) {
2078 vendor = this_cpu->c_vendor;
2079 } else {
2080 if (c->cpuid_level >= 0)
2081 vendor = c->x86_vendor_id;
2082 }
2083
2084 if (vendor && !strstr(c->x86_model_id, vendor))
2085 pr_cont("%s ", vendor);
2086
2087 if (c->x86_model_id[0])
2088 pr_cont("%s", c->x86_model_id);
2089 else
2090 pr_cont("%d86", c->x86);
2091
2092 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2093
2094 if (c->x86_stepping || c->cpuid_level >= 0)
2095 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2096 else
2097 pr_cont(")\n");
2098 }
2099
2100 /*
2101 * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2102 * These dummy functions prevent them from becoming an environment variable for
2103 * init.
2104 */
2105
setup_clearcpuid(char * arg)2106 static __init int setup_clearcpuid(char *arg)
2107 {
2108 return 1;
2109 }
2110 __setup("clearcpuid=", setup_clearcpuid);
2111
setup_setcpuid(char * arg)2112 static __init int setup_setcpuid(char *arg)
2113 {
2114 return 1;
2115 }
2116 __setup("setcpuid=", setup_setcpuid);
2117
2118 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2119 EXPORT_PER_CPU_SYMBOL(current_task);
2120 EXPORT_PER_CPU_SYMBOL(const_current_task);
2121
2122 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2123 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2124
2125 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2126
2127 #ifdef CONFIG_X86_64
2128 /*
2129 * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2130 * so that this space is reserved in the hot cache section even when the
2131 * mitigation is disabled.
2132 */
2133 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2134 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2135
wrmsrl_cstar(unsigned long val)2136 static void wrmsrl_cstar(unsigned long val)
2137 {
2138 /*
2139 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2140 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2141 * guest. Avoid the pointless write on all Intel CPUs.
2142 */
2143 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2144 wrmsrl(MSR_CSTAR, val);
2145 }
2146
idt_syscall_init(void)2147 static inline void idt_syscall_init(void)
2148 {
2149 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2150
2151 if (ia32_enabled()) {
2152 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2153 /*
2154 * This only works on Intel CPUs.
2155 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2156 * This does not cause SYSENTER to jump to the wrong location, because
2157 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2158 */
2159 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2160 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2161 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2162 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2163 } else {
2164 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2165 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2166 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2167 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2168 }
2169
2170 /*
2171 * Flags to clear on syscall; clear as much as possible
2172 * to minimize user space-kernel interference.
2173 */
2174 wrmsrl(MSR_SYSCALL_MASK,
2175 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2176 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2177 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2178 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2179 X86_EFLAGS_AC|X86_EFLAGS_ID);
2180 }
2181
2182 /* May not be marked __init: used by software suspend */
syscall_init(void)2183 void syscall_init(void)
2184 {
2185 /* The default user and kernel segments */
2186 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2187
2188 /*
2189 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2190 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2191 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2192 * instruction to return to ring 3 (both sysexit and sysret cause
2193 * #UD when FRED is enabled).
2194 */
2195 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2196 idt_syscall_init();
2197 }
2198 #endif /* CONFIG_X86_64 */
2199
2200 #ifdef CONFIG_STACKPROTECTOR
2201 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2202 #ifndef CONFIG_SMP
2203 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2204 #endif
2205 #endif
2206
2207 /*
2208 * Clear all 6 debug registers:
2209 */
clear_all_debug_regs(void)2210 static void clear_all_debug_regs(void)
2211 {
2212 int i;
2213
2214 for (i = 0; i < 8; i++) {
2215 /* Ignore db4, db5 */
2216 if ((i == 4) || (i == 5))
2217 continue;
2218
2219 set_debugreg(0, i);
2220 }
2221 }
2222
2223 #ifdef CONFIG_KGDB
2224 /*
2225 * Restore debug regs if using kgdbwait and you have a kernel debugger
2226 * connection established.
2227 */
dbg_restore_debug_regs(void)2228 static void dbg_restore_debug_regs(void)
2229 {
2230 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2231 arch_kgdb_ops.correct_hw_break();
2232 }
2233 #else /* ! CONFIG_KGDB */
2234 #define dbg_restore_debug_regs()
2235 #endif /* ! CONFIG_KGDB */
2236
setup_getcpu(int cpu)2237 static inline void setup_getcpu(int cpu)
2238 {
2239 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2240 struct desc_struct d = { };
2241
2242 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2243 wrmsr(MSR_TSC_AUX, cpudata, 0);
2244
2245 /* Store CPU and node number in limit. */
2246 d.limit0 = cpudata;
2247 d.limit1 = cpudata >> 16;
2248
2249 d.type = 5; /* RO data, expand down, accessed */
2250 d.dpl = 3; /* Visible to user code */
2251 d.s = 1; /* Not a system segment */
2252 d.p = 1; /* Present */
2253 d.d = 1; /* 32-bit */
2254
2255 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2256 }
2257
2258 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2259 static inline void tss_setup_ist(struct tss_struct *tss)
2260 {
2261 /* Set up the per-CPU TSS IST stacks */
2262 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2263 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2264 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2265 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2266 /* Only mapped when SEV-ES is active */
2267 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2268 }
2269 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2270 static inline void tss_setup_ist(struct tss_struct *tss) { }
2271 #endif /* !CONFIG_X86_64 */
2272
tss_setup_io_bitmap(struct tss_struct * tss)2273 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2274 {
2275 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2276
2277 #ifdef CONFIG_X86_IOPL_IOPERM
2278 tss->io_bitmap.prev_max = 0;
2279 tss->io_bitmap.prev_sequence = 0;
2280 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2281 /*
2282 * Invalidate the extra array entry past the end of the all
2283 * permission bitmap as required by the hardware.
2284 */
2285 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2286 #endif
2287 }
2288
2289 /*
2290 * Setup everything needed to handle exceptions from the IDT, including the IST
2291 * exceptions which use paranoid_entry().
2292 */
cpu_init_exception_handling(bool boot_cpu)2293 void cpu_init_exception_handling(bool boot_cpu)
2294 {
2295 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2296 int cpu = raw_smp_processor_id();
2297
2298 /* paranoid_entry() gets the CPU number from the GDT */
2299 setup_getcpu(cpu);
2300
2301 /* For IDT mode, IST vectors need to be set in TSS. */
2302 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2303 tss_setup_ist(tss);
2304 tss_setup_io_bitmap(tss);
2305 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2306
2307 load_TR_desc();
2308
2309 /* GHCB needs to be setup to handle #VC. */
2310 setup_ghcb();
2311
2312 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2313 /* The boot CPU has enabled FRED during early boot */
2314 if (!boot_cpu)
2315 cpu_init_fred_exceptions();
2316
2317 cpu_init_fred_rsps();
2318 } else {
2319 load_current_idt();
2320 }
2321 }
2322
cpu_init_replace_early_idt(void)2323 void __init cpu_init_replace_early_idt(void)
2324 {
2325 if (cpu_feature_enabled(X86_FEATURE_FRED))
2326 cpu_init_fred_exceptions();
2327 else
2328 idt_setup_early_pf();
2329 }
2330
2331 /*
2332 * cpu_init() initializes state that is per-CPU. Some data is already
2333 * initialized (naturally) in the bootstrap process, such as the GDT. We
2334 * reload it nevertheless, this function acts as a 'CPU state barrier',
2335 * nothing should get across.
2336 */
cpu_init(void)2337 void cpu_init(void)
2338 {
2339 struct task_struct *cur = current;
2340 int cpu = raw_smp_processor_id();
2341
2342 #ifdef CONFIG_NUMA
2343 if (this_cpu_read(numa_node) == 0 &&
2344 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2345 set_numa_node(early_cpu_to_node(cpu));
2346 #endif
2347 pr_debug("Initializing CPU#%d\n", cpu);
2348
2349 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2350 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2351 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2352
2353 if (IS_ENABLED(CONFIG_X86_64)) {
2354 loadsegment(fs, 0);
2355 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2356 syscall_init();
2357
2358 wrmsrl(MSR_FS_BASE, 0);
2359 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2360 barrier();
2361
2362 x2apic_setup();
2363
2364 intel_posted_msi_init();
2365 }
2366
2367 mmgrab(&init_mm);
2368 cur->active_mm = &init_mm;
2369 BUG_ON(cur->mm);
2370 initialize_tlbstate_and_flush();
2371 enter_lazy_tlb(&init_mm, cur);
2372
2373 /*
2374 * sp0 points to the entry trampoline stack regardless of what task
2375 * is running.
2376 */
2377 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2378
2379 load_mm_ldt(&init_mm);
2380
2381 clear_all_debug_regs();
2382 dbg_restore_debug_regs();
2383
2384 doublefault_init_cpu_tss();
2385
2386 if (is_uv_system())
2387 uv_cpu_init();
2388
2389 load_fixmap_gdt(cpu);
2390 }
2391
2392 #ifdef CONFIG_MICROCODE_LATE_LOADING
2393 /**
2394 * store_cpu_caps() - Store a snapshot of CPU capabilities
2395 * @curr_info: Pointer where to store it
2396 *
2397 * Returns: None
2398 */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2399 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2400 {
2401 /* Reload CPUID max function as it might've changed. */
2402 curr_info->cpuid_level = cpuid_eax(0);
2403
2404 /* Copy all capability leafs and pick up the synthetic ones. */
2405 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2406 sizeof(curr_info->x86_capability));
2407
2408 /* Get the hardware CPUID leafs */
2409 get_cpu_cap(curr_info);
2410 }
2411
2412 /**
2413 * microcode_check() - Check if any CPU capabilities changed after an update.
2414 * @prev_info: CPU capabilities stored before an update.
2415 *
2416 * The microcode loader calls this upon late microcode load to recheck features,
2417 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2418 *
2419 * Return: None
2420 */
microcode_check(struct cpuinfo_x86 * prev_info)2421 void microcode_check(struct cpuinfo_x86 *prev_info)
2422 {
2423 struct cpuinfo_x86 curr_info;
2424
2425 perf_check_microcode();
2426
2427 amd_check_microcode();
2428
2429 store_cpu_caps(&curr_info);
2430
2431 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2432 sizeof(prev_info->x86_capability)))
2433 return;
2434
2435 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2436 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2437 }
2438 #endif
2439
2440 /*
2441 * Invoked from core CPU hotplug code after hotplug operations
2442 */
arch_smt_update(void)2443 void arch_smt_update(void)
2444 {
2445 /* Handle the speculative execution misfeatures */
2446 cpu_bugs_smt_update();
2447 /* Check whether IPI broadcasting can be enabled */
2448 apic_smt_update();
2449 }
2450
arch_cpu_finalize_init(void)2451 void __init arch_cpu_finalize_init(void)
2452 {
2453 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2454
2455 identify_boot_cpu();
2456
2457 select_idle_routine();
2458
2459 /*
2460 * identify_boot_cpu() initialized SMT support information, let the
2461 * core code know.
2462 */
2463 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2464
2465 if (!IS_ENABLED(CONFIG_SMP)) {
2466 pr_info("CPU: ");
2467 print_cpu_info(&boot_cpu_data);
2468 }
2469
2470 cpu_select_mitigations();
2471
2472 arch_smt_update();
2473
2474 if (IS_ENABLED(CONFIG_X86_32)) {
2475 /*
2476 * Check whether this is a real i386 which is not longer
2477 * supported and fixup the utsname.
2478 */
2479 if (boot_cpu_data.x86 < 4)
2480 panic("Kernel requires i486+ for 'invlpg' and other features");
2481
2482 init_utsname()->machine[1] =
2483 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2484 }
2485
2486 /*
2487 * Must be before alternatives because it might set or clear
2488 * feature bits.
2489 */
2490 fpu__init_system();
2491 fpu__init_cpu();
2492
2493 /*
2494 * Ensure that access to the per CPU representation has the initial
2495 * boot CPU configuration.
2496 */
2497 *c = boot_cpu_data;
2498 c->initialized = true;
2499
2500 alternative_instructions();
2501
2502 if (IS_ENABLED(CONFIG_X86_64)) {
2503 unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2504
2505 /*
2506 * Enable this when LAM is gated on LASS support
2507 if (cpu_feature_enabled(X86_FEATURE_LAM))
2508 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2509 */
2510 runtime_const_init(ptr, USER_PTR_MAX);
2511
2512 /*
2513 * Make sure the first 2MB area is not mapped by huge pages
2514 * There are typically fixed size MTRRs in there and overlapping
2515 * MTRRs into large pages causes slow downs.
2516 *
2517 * Right now we don't do that with gbpages because there seems
2518 * very little benefit for that case.
2519 */
2520 if (!direct_gbpages)
2521 set_memory_4k((unsigned long)__va(0), 1);
2522 } else {
2523 fpu__init_check_bugs();
2524 }
2525
2526 /*
2527 * This needs to be called before any devices perform DMA
2528 * operations that might use the SWIOTLB bounce buffers. It will
2529 * mark the bounce buffers as decrypted so that their usage will
2530 * not cause "plain-text" data to be decrypted when accessed. It
2531 * must be called after late_time_init() so that Hyper-V x86/x64
2532 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2533 */
2534 mem_encrypt_init();
2535 }
2536