1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8
9 #include <trace/events/tlb.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/debugreg.h>
14 #include <asm/gsseg.h>
15 #include <asm/desc.h>
16
17 extern atomic64_t last_mm_ctx_id;
18
19 #ifdef CONFIG_PERF_EVENTS
20 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
21 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
22 void cr4_update_pce(void *ignored);
23 #endif
24
25 #ifdef CONFIG_MODIFY_LDT_SYSCALL
26 /*
27 * ldt_structs can be allocated, used, and freed, but they are never
28 * modified while live.
29 */
30 struct ldt_struct {
31 /*
32 * Xen requires page-aligned LDTs with special permissions. This is
33 * needed to prevent us from installing evil descriptors such as
34 * call gates. On native, we could merge the ldt_struct and LDT
35 * allocations, but it's not worth trying to optimize.
36 */
37 struct desc_struct *entries;
38 unsigned int nr_entries;
39
40 /*
41 * If PTI is in use, then the entries array is not mapped while we're
42 * in user mode. The whole array will be aliased at the addressed
43 * given by ldt_slot_va(slot). We use two slots so that we can allocate
44 * and map, and enable a new LDT without invalidating the mapping
45 * of an older, still-in-use LDT.
46 *
47 * slot will be -1 if this LDT doesn't have an alias mapping.
48 */
49 int slot;
50 };
51
52 /*
53 * Used for LDT copy/destruction.
54 */
init_new_context_ldt(struct mm_struct * mm)55 static inline void init_new_context_ldt(struct mm_struct *mm)
56 {
57 mm->context.ldt = NULL;
58 init_rwsem(&mm->context.ldt_usr_sem);
59 }
60 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 void ldt_arch_exit_mmap(struct mm_struct *mm);
63 #else /* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct mm_struct * mm)64 static inline void init_new_context_ldt(struct mm_struct *mm) { }
ldt_dup_context(struct mm_struct * oldmm,struct mm_struct * mm)65 static inline int ldt_dup_context(struct mm_struct *oldmm,
66 struct mm_struct *mm)
67 {
68 return 0;
69 }
destroy_context_ldt(struct mm_struct * mm)70 static inline void destroy_context_ldt(struct mm_struct *mm) { }
ldt_arch_exit_mmap(struct mm_struct * mm)71 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
72 #endif
73
74 #ifdef CONFIG_MODIFY_LDT_SYSCALL
75 extern void load_mm_ldt(struct mm_struct *mm);
76 extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next);
77 #else
load_mm_ldt(struct mm_struct * mm)78 static inline void load_mm_ldt(struct mm_struct *mm)
79 {
80 clear_LDT();
81 }
switch_ldt(struct mm_struct * prev,struct mm_struct * next)82 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
83 {
84 DEBUG_LOCKS_WARN_ON(preemptible());
85 }
86 #endif
87
88 #ifdef CONFIG_ADDRESS_MASKING
mm_lam_cr3_mask(struct mm_struct * mm)89 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
90 {
91 /*
92 * When switch_mm_irqs_off() is called for a kthread, it may race with
93 * LAM enablement. switch_mm_irqs_off() uses the LAM mask to do two
94 * things: populate CR3 and populate 'cpu_tlbstate.lam'. Make sure it
95 * reads a single value for both.
96 */
97 return READ_ONCE(mm->context.lam_cr3_mask);
98 }
99
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)100 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
101 {
102 mm->context.lam_cr3_mask = oldmm->context.lam_cr3_mask;
103 mm->context.untag_mask = oldmm->context.untag_mask;
104 }
105
106 #define mm_untag_mask mm_untag_mask
mm_untag_mask(struct mm_struct * mm)107 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
108 {
109 return mm->context.untag_mask;
110 }
111
mm_reset_untag_mask(struct mm_struct * mm)112 static inline void mm_reset_untag_mask(struct mm_struct *mm)
113 {
114 mm->context.untag_mask = -1UL;
115 }
116
117 #define arch_pgtable_dma_compat arch_pgtable_dma_compat
arch_pgtable_dma_compat(struct mm_struct * mm)118 static inline bool arch_pgtable_dma_compat(struct mm_struct *mm)
119 {
120 return !mm_lam_cr3_mask(mm) ||
121 test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags);
122 }
123 #else
124
mm_lam_cr3_mask(struct mm_struct * mm)125 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
126 {
127 return 0;
128 }
129
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)130 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
131 {
132 }
133
mm_reset_untag_mask(struct mm_struct * mm)134 static inline void mm_reset_untag_mask(struct mm_struct *mm)
135 {
136 }
137 #endif
138
139 #define enter_lazy_tlb enter_lazy_tlb
140 extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
141
142 #define mm_init_global_asid mm_init_global_asid
143 extern void mm_init_global_asid(struct mm_struct *mm);
144
145 extern void mm_free_global_asid(struct mm_struct *mm);
146
147 /*
148 * Init a new mm. Used on mm copies, like at fork()
149 * and on mm's that are brand-new, like at execve().
150 */
151 #define init_new_context init_new_context
init_new_context(struct task_struct * tsk,struct mm_struct * mm)152 static inline int init_new_context(struct task_struct *tsk,
153 struct mm_struct *mm)
154 {
155 mutex_init(&mm->context.lock);
156
157 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
158 atomic64_set(&mm->context.tlb_gen, 0);
159 mm->context.next_trim_cpumask = jiffies + HZ;
160
161 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
162 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
163 /* pkey 0 is the default and allocated implicitly */
164 mm->context.pkey_allocation_map = 0x1;
165 /* -1 means unallocated or invalid */
166 mm->context.execute_only_pkey = -1;
167 }
168 #endif
169
170 mm_init_global_asid(mm);
171 mm_reset_untag_mask(mm);
172 init_new_context_ldt(mm);
173 return 0;
174 }
175
176 #define destroy_context destroy_context
destroy_context(struct mm_struct * mm)177 static inline void destroy_context(struct mm_struct *mm)
178 {
179 destroy_context_ldt(mm);
180 mm_free_global_asid(mm);
181 }
182
183 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
184 struct task_struct *tsk);
185
186 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
187 struct task_struct *tsk);
188 #define switch_mm_irqs_off switch_mm_irqs_off
189
190 #define activate_mm(prev, next) \
191 do { \
192 paravirt_enter_mmap(next); \
193 switch_mm((prev), (next), NULL); \
194 } while (0);
195
196 #ifdef CONFIG_X86_32
197 #define deactivate_mm(tsk, mm) \
198 do { \
199 loadsegment(gs, 0); \
200 } while (0)
201 #else
202 #define deactivate_mm(tsk, mm) \
203 do { \
204 shstk_free(tsk); \
205 load_gs_index(0); \
206 loadsegment(fs, 0); \
207 } while (0)
208 #endif
209
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)210 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
211 struct mm_struct *mm)
212 {
213 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
214 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
215 return;
216
217 /* Duplicate the oldmm pkey state in mm: */
218 mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
219 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
220 #endif
221 }
222
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)223 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
224 {
225 arch_dup_pkeys(oldmm, mm);
226 paravirt_enter_mmap(mm);
227 dup_lam(oldmm, mm);
228 return ldt_dup_context(oldmm, mm);
229 }
230
arch_exit_mmap(struct mm_struct * mm)231 static inline void arch_exit_mmap(struct mm_struct *mm)
232 {
233 paravirt_arch_exit_mmap(mm);
234 ldt_arch_exit_mmap(mm);
235 }
236
237 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)238 static inline bool is_64bit_mm(struct mm_struct *mm)
239 {
240 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
241 !test_bit(MM_CONTEXT_UPROBE_IA32, &mm->context.flags);
242 }
243 #else
is_64bit_mm(struct mm_struct * mm)244 static inline bool is_64bit_mm(struct mm_struct *mm)
245 {
246 return false;
247 }
248 #endif
249
250 /*
251 * We only want to enforce protection keys on the current process
252 * because we effectively have no access to PKRU for other
253 * processes or any way to tell *which * PKRU in a threaded
254 * process we could use.
255 *
256 * So do not enforce things if the VMA is not from the current
257 * mm, or if we are in a kernel thread.
258 */
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)259 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
260 bool write, bool execute, bool foreign)
261 {
262 /* pkeys never affect instruction fetches */
263 if (execute)
264 return true;
265 /* allow access if the VMA is not one from this process */
266 if (foreign || vma_is_foreign(vma))
267 return true;
268 return __pkru_allows_pkey(vma_pkey(vma), write);
269 }
270
271 unsigned long __get_current_cr3_fast(void);
272
273 #include <asm-generic/mmu_context.h>
274
275 #endif /* _ASM_X86_MMU_CONTEXT_H */
276