1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8 
9 #include <trace/events/tlb.h>
10 
11 #include <asm/tlbflush.h>
12 #include <asm/paravirt.h>
13 #include <asm/debugreg.h>
14 #include <asm/gsseg.h>
15 #include <asm/desc.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifdef CONFIG_PERF_EVENTS
20 DECLARE_STATIC_KEY_FALSE(rdpmc_never_available_key);
21 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
22 void cr4_update_pce(void *ignored);
23 #endif
24 
25 #ifdef CONFIG_MODIFY_LDT_SYSCALL
26 /*
27  * ldt_structs can be allocated, used, and freed, but they are never
28  * modified while live.
29  */
30 struct ldt_struct {
31 	/*
32 	 * Xen requires page-aligned LDTs with special permissions.  This is
33 	 * needed to prevent us from installing evil descriptors such as
34 	 * call gates.  On native, we could merge the ldt_struct and LDT
35 	 * allocations, but it's not worth trying to optimize.
36 	 */
37 	struct desc_struct	*entries;
38 	unsigned int		nr_entries;
39 
40 	/*
41 	 * If PTI is in use, then the entries array is not mapped while we're
42 	 * in user mode.  The whole array will be aliased at the addressed
43 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
44 	 * and map, and enable a new LDT without invalidating the mapping
45 	 * of an older, still-in-use LDT.
46 	 *
47 	 * slot will be -1 if this LDT doesn't have an alias mapping.
48 	 */
49 	int			slot;
50 };
51 
52 /*
53  * Used for LDT copy/destruction.
54  */
init_new_context_ldt(struct mm_struct * mm)55 static inline void init_new_context_ldt(struct mm_struct *mm)
56 {
57 	mm->context.ldt = NULL;
58 	init_rwsem(&mm->context.ldt_usr_sem);
59 }
60 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 void ldt_arch_exit_mmap(struct mm_struct *mm);
63 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct mm_struct * mm)64 static inline void init_new_context_ldt(struct mm_struct *mm) { }
ldt_dup_context(struct mm_struct * oldmm,struct mm_struct * mm)65 static inline int ldt_dup_context(struct mm_struct *oldmm,
66 				  struct mm_struct *mm)
67 {
68 	return 0;
69 }
destroy_context_ldt(struct mm_struct * mm)70 static inline void destroy_context_ldt(struct mm_struct *mm) { }
ldt_arch_exit_mmap(struct mm_struct * mm)71 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
72 #endif
73 
74 #ifdef CONFIG_MODIFY_LDT_SYSCALL
75 extern void load_mm_ldt(struct mm_struct *mm);
76 extern void switch_ldt(struct mm_struct *prev, struct mm_struct *next);
77 #else
load_mm_ldt(struct mm_struct * mm)78 static inline void load_mm_ldt(struct mm_struct *mm)
79 {
80 	clear_LDT();
81 }
switch_ldt(struct mm_struct * prev,struct mm_struct * next)82 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
83 {
84 	DEBUG_LOCKS_WARN_ON(preemptible());
85 }
86 #endif
87 
88 #ifdef CONFIG_ADDRESS_MASKING
mm_lam_cr3_mask(struct mm_struct * mm)89 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
90 {
91 	/*
92 	 * When switch_mm_irqs_off() is called for a kthread, it may race with
93 	 * LAM enablement. switch_mm_irqs_off() uses the LAM mask to do two
94 	 * things: populate CR3 and populate 'cpu_tlbstate.lam'. Make sure it
95 	 * reads a single value for both.
96 	 */
97 	return READ_ONCE(mm->context.lam_cr3_mask);
98 }
99 
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)100 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
101 {
102 	mm->context.lam_cr3_mask = oldmm->context.lam_cr3_mask;
103 	mm->context.untag_mask = oldmm->context.untag_mask;
104 }
105 
106 #define mm_untag_mask mm_untag_mask
mm_untag_mask(struct mm_struct * mm)107 static inline unsigned long mm_untag_mask(struct mm_struct *mm)
108 {
109 	return mm->context.untag_mask;
110 }
111 
mm_reset_untag_mask(struct mm_struct * mm)112 static inline void mm_reset_untag_mask(struct mm_struct *mm)
113 {
114 	mm->context.untag_mask = -1UL;
115 }
116 
117 #define arch_pgtable_dma_compat arch_pgtable_dma_compat
arch_pgtable_dma_compat(struct mm_struct * mm)118 static inline bool arch_pgtable_dma_compat(struct mm_struct *mm)
119 {
120 	return !mm_lam_cr3_mask(mm) ||
121 		test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags);
122 }
123 #else
124 
mm_lam_cr3_mask(struct mm_struct * mm)125 static inline unsigned long mm_lam_cr3_mask(struct mm_struct *mm)
126 {
127 	return 0;
128 }
129 
dup_lam(struct mm_struct * oldmm,struct mm_struct * mm)130 static inline void dup_lam(struct mm_struct *oldmm, struct mm_struct *mm)
131 {
132 }
133 
mm_reset_untag_mask(struct mm_struct * mm)134 static inline void mm_reset_untag_mask(struct mm_struct *mm)
135 {
136 }
137 #endif
138 
139 #define enter_lazy_tlb enter_lazy_tlb
140 extern void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
141 
142 #define mm_init_global_asid mm_init_global_asid
143 extern void mm_init_global_asid(struct mm_struct *mm);
144 
145 extern void mm_free_global_asid(struct mm_struct *mm);
146 
147 /*
148  * Init a new mm.  Used on mm copies, like at fork()
149  * and on mm's that are brand-new, like at execve().
150  */
151 #define init_new_context init_new_context
init_new_context(struct task_struct * tsk,struct mm_struct * mm)152 static inline int init_new_context(struct task_struct *tsk,
153 				   struct mm_struct *mm)
154 {
155 	mutex_init(&mm->context.lock);
156 
157 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
158 	atomic64_set(&mm->context.tlb_gen, 0);
159 	mm->context.next_trim_cpumask = jiffies + HZ;
160 
161 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
162 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
163 		/* pkey 0 is the default and allocated implicitly */
164 		mm->context.pkey_allocation_map = 0x1;
165 		/* -1 means unallocated or invalid */
166 		mm->context.execute_only_pkey = -1;
167 	}
168 #endif
169 
170 	mm_init_global_asid(mm);
171 	mm_reset_untag_mask(mm);
172 	init_new_context_ldt(mm);
173 	return 0;
174 }
175 
176 #define destroy_context destroy_context
destroy_context(struct mm_struct * mm)177 static inline void destroy_context(struct mm_struct *mm)
178 {
179 	destroy_context_ldt(mm);
180 	mm_free_global_asid(mm);
181 }
182 
183 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
184 		      struct task_struct *tsk);
185 
186 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
187 			       struct task_struct *tsk);
188 #define switch_mm_irqs_off switch_mm_irqs_off
189 
190 #define activate_mm(prev, next)			\
191 do {						\
192 	paravirt_enter_mmap(next);		\
193 	switch_mm((prev), (next), NULL);	\
194 } while (0);
195 
196 #ifdef CONFIG_X86_32
197 #define deactivate_mm(tsk, mm)			\
198 do {						\
199 	loadsegment(gs, 0);			\
200 } while (0)
201 #else
202 #define deactivate_mm(tsk, mm)			\
203 do {						\
204 	shstk_free(tsk);			\
205 	load_gs_index(0);			\
206 	loadsegment(fs, 0);			\
207 } while (0)
208 #endif
209 
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)210 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
211 				  struct mm_struct *mm)
212 {
213 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
214 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
215 		return;
216 
217 	/* Duplicate the oldmm pkey state in mm: */
218 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
219 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
220 #endif
221 }
222 
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)223 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
224 {
225 	arch_dup_pkeys(oldmm, mm);
226 	paravirt_enter_mmap(mm);
227 	dup_lam(oldmm, mm);
228 	return ldt_dup_context(oldmm, mm);
229 }
230 
arch_exit_mmap(struct mm_struct * mm)231 static inline void arch_exit_mmap(struct mm_struct *mm)
232 {
233 	paravirt_arch_exit_mmap(mm);
234 	ldt_arch_exit_mmap(mm);
235 }
236 
237 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)238 static inline bool is_64bit_mm(struct mm_struct *mm)
239 {
240 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
241 		!test_bit(MM_CONTEXT_UPROBE_IA32, &mm->context.flags);
242 }
243 #else
is_64bit_mm(struct mm_struct * mm)244 static inline bool is_64bit_mm(struct mm_struct *mm)
245 {
246 	return false;
247 }
248 #endif
249 
250 /*
251  * We only want to enforce protection keys on the current process
252  * because we effectively have no access to PKRU for other
253  * processes or any way to tell *which * PKRU in a threaded
254  * process we could use.
255  *
256  * So do not enforce things if the VMA is not from the current
257  * mm, or if we are in a kernel thread.
258  */
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)259 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
260 		bool write, bool execute, bool foreign)
261 {
262 	/* pkeys never affect instruction fetches */
263 	if (execute)
264 		return true;
265 	/* allow access if the VMA is not one from this process */
266 	if (foreign || vma_is_foreign(vma))
267 		return true;
268 	return __pkru_allows_pkey(vma_pkey(vma), write);
269 }
270 
271 unsigned long __get_current_cr3_fast(void);
272 
273 #include <asm-generic/mmu_context.h>
274 
275 #endif /* _ASM_X86_MMU_CONTEXT_H */
276