1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/desc.h>
35 #include <asm/mtrr.h>
36 #include <asm/msr-index.h>
37 #include <asm/asm.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kvm_page_track.h>
40 #include <asm/kvm_vcpu_regs.h>
41 #include <asm/reboot.h>
42 #include <hyperv/hvhdk.h>
43 
44 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
45 
46 /*
47  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
48  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
49  */
50 #ifdef CONFIG_KVM_MAX_NR_VCPUS
51 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
52 #else
53 #define KVM_MAX_VCPUS 1024
54 #endif
55 
56 /*
57  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
58  * might be larger than the actual number of VCPUs because the
59  * APIC ID encodes CPU topology information.
60  *
61  * In the worst case, we'll need less than one extra bit for the
62  * Core ID, and less than one extra bit for the Package (Die) ID,
63  * so ratio of 4 should be enough.
64  */
65 #define KVM_VCPU_ID_RATIO 4
66 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
67 
68 /* memory slots that are not exposed to userspace */
69 #define KVM_INTERNAL_MEM_SLOTS 3
70 
71 #define KVM_HALT_POLL_NS_DEFAULT 200000
72 
73 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
74 
75 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
76 					KVM_DIRTY_LOG_INITIALLY_SET)
77 
78 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
79 						 KVM_BUS_LOCK_DETECTION_EXIT)
80 
81 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
82 						 KVM_X86_NOTIFY_VMEXIT_USER)
83 
84 /* x86-specific vcpu->requests bit members */
85 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
86 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
87 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
88 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
89 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
90 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
91 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
92 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
93 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
94 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
95 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
96 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
97 #ifdef CONFIG_KVM_SMM
98 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
99 #endif
100 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
101 #define KVM_REQ_MCLOCK_INPROGRESS \
102 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
103 #define KVM_REQ_SCAN_IOAPIC \
104 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
106 #define KVM_REQ_APIC_PAGE_RELOAD \
107 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
109 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
110 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
111 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
112 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
113 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
114 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
115 #define KVM_REQ_APICV_UPDATE \
116 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
118 #define KVM_REQ_TLB_FLUSH_GUEST \
119 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
121 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
122 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
123 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
125 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_HV_TLB_FLUSH \
127 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
129 
130 #define CR0_RESERVED_BITS                                               \
131 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
132 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
133 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
134 
135 #define CR4_RESERVED_BITS                                               \
136 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
137 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
138 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
139 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
140 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
141 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
142 			  | X86_CR4_LAM_SUP))
143 
144 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
145 
146 
147 
148 #define INVALID_PAGE (~(hpa_t)0)
149 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
150 
151 /* KVM Hugepage definitions for x86 */
152 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
153 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
154 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
155 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
156 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
157 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
158 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
159 
160 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
161 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
162 #define KVM_MMU_HASH_SHIFT 12
163 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
164 #define KVM_MIN_FREE_MMU_PAGES 5
165 #define KVM_REFILL_PAGES 25
166 #define KVM_MAX_CPUID_ENTRIES 256
167 #define KVM_NR_VAR_MTRR 8
168 
169 #define ASYNC_PF_PER_VCPU 64
170 
171 enum kvm_reg {
172 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
173 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
174 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
175 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
176 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
177 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
178 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
179 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
180 #ifdef CONFIG_X86_64
181 	VCPU_REGS_R8  = __VCPU_REGS_R8,
182 	VCPU_REGS_R9  = __VCPU_REGS_R9,
183 	VCPU_REGS_R10 = __VCPU_REGS_R10,
184 	VCPU_REGS_R11 = __VCPU_REGS_R11,
185 	VCPU_REGS_R12 = __VCPU_REGS_R12,
186 	VCPU_REGS_R13 = __VCPU_REGS_R13,
187 	VCPU_REGS_R14 = __VCPU_REGS_R14,
188 	VCPU_REGS_R15 = __VCPU_REGS_R15,
189 #endif
190 	VCPU_REGS_RIP,
191 	NR_VCPU_REGS,
192 
193 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
194 	VCPU_EXREG_CR0,
195 	VCPU_EXREG_CR3,
196 	VCPU_EXREG_CR4,
197 	VCPU_EXREG_RFLAGS,
198 	VCPU_EXREG_SEGMENTS,
199 	VCPU_EXREG_EXIT_INFO_1,
200 	VCPU_EXREG_EXIT_INFO_2,
201 };
202 
203 enum {
204 	VCPU_SREG_ES,
205 	VCPU_SREG_CS,
206 	VCPU_SREG_SS,
207 	VCPU_SREG_DS,
208 	VCPU_SREG_FS,
209 	VCPU_SREG_GS,
210 	VCPU_SREG_TR,
211 	VCPU_SREG_LDTR,
212 };
213 
214 enum exit_fastpath_completion {
215 	EXIT_FASTPATH_NONE,
216 	EXIT_FASTPATH_REENTER_GUEST,
217 	EXIT_FASTPATH_EXIT_HANDLED,
218 	EXIT_FASTPATH_EXIT_USERSPACE,
219 };
220 typedef enum exit_fastpath_completion fastpath_t;
221 
222 struct x86_emulate_ctxt;
223 struct x86_exception;
224 union kvm_smram;
225 enum x86_intercept;
226 enum x86_intercept_stage;
227 
228 #define KVM_NR_DB_REGS	4
229 
230 #define DR6_BUS_LOCK   (1 << 11)
231 #define DR6_BD		(1 << 13)
232 #define DR6_BS		(1 << 14)
233 #define DR6_BT		(1 << 15)
234 #define DR6_RTM		(1 << 16)
235 /*
236  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
237  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
238  * they will never be 0 for now, but when they are defined
239  * in the future it will require no code change.
240  *
241  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
242  */
243 #define DR6_ACTIVE_LOW	0xffff0ff0
244 #define DR6_VOLATILE	0x0001e80f
245 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
246 
247 #define DR7_BP_EN_MASK	0x000000ff
248 #define DR7_GE		(1 << 9)
249 #define DR7_GD		(1 << 13)
250 #define DR7_FIXED_1	0x00000400
251 #define DR7_VOLATILE	0xffff2bff
252 
253 #define KVM_GUESTDBG_VALID_MASK \
254 	(KVM_GUESTDBG_ENABLE | \
255 	KVM_GUESTDBG_SINGLESTEP | \
256 	KVM_GUESTDBG_USE_HW_BP | \
257 	KVM_GUESTDBG_USE_SW_BP | \
258 	KVM_GUESTDBG_INJECT_BP | \
259 	KVM_GUESTDBG_INJECT_DB | \
260 	KVM_GUESTDBG_BLOCKIRQ)
261 
262 #define PFERR_PRESENT_MASK	BIT(0)
263 #define PFERR_WRITE_MASK	BIT(1)
264 #define PFERR_USER_MASK		BIT(2)
265 #define PFERR_RSVD_MASK		BIT(3)
266 #define PFERR_FETCH_MASK	BIT(4)
267 #define PFERR_PK_MASK		BIT(5)
268 #define PFERR_SGX_MASK		BIT(15)
269 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
270 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
271 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
272 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
273 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
274 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
275 
276 /*
277  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
278  * when emulating instructions that triggers implicit access.
279  */
280 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
281 /*
282  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
283  * when the guest was accessing private memory.
284  */
285 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
286 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
287 
288 /* apic attention bits */
289 #define KVM_APIC_CHECK_VAPIC	0
290 /*
291  * The following bit is set with PV-EOI, unset on EOI.
292  * We detect PV-EOI changes by guest by comparing
293  * this bit with PV-EOI in guest memory.
294  * See the implementation in apic_update_pv_eoi.
295  */
296 #define KVM_APIC_PV_EOI_PENDING	1
297 
298 struct kvm_kernel_irq_routing_entry;
299 
300 /*
301  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
302  * also includes TDP pages) to determine whether or not a page can be used in
303  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
304  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
305  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
306  *
307  * Upper-level shadow pages having gptes are tracked for write-protection via
308  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
309  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
310  * otherwise gfn_write_track will overflow and explosions will ensue.
311  *
312  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
313  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
314  * incorporates various mode bits and properties of the SP.  Roughly speaking,
315  * the number of unique SPs that can theoretically be created is 2^n, where n
316  * is the number of bits that are used to compute the role.
317  *
318  * But, even though there are 20 bits in the mask below, not all combinations
319  * of modes and flags are possible:
320  *
321  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
322  *     so the bits are effectively 18.
323  *
324  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
325  *     execonly and ad_disabled are only used for nested EPT which has
326  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
327  *
328  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
329  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
330  *     paging has exactly one upper level, making level completely redundant
331  *     when has_4_byte_gpte=1.
332  *
333  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
334  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
335  *
336  * Therefore, the maximum number of possible upper-level shadow pages for a
337  * single gfn is a bit less than 2^13.
338  */
339 union kvm_mmu_page_role {
340 	u32 word;
341 	struct {
342 		unsigned level:4;
343 		unsigned has_4_byte_gpte:1;
344 		unsigned quadrant:2;
345 		unsigned direct:1;
346 		unsigned access:3;
347 		unsigned invalid:1;
348 		unsigned efer_nx:1;
349 		unsigned cr0_wp:1;
350 		unsigned smep_andnot_wp:1;
351 		unsigned smap_andnot_wp:1;
352 		unsigned ad_disabled:1;
353 		unsigned guest_mode:1;
354 		unsigned passthrough:1;
355 		unsigned is_mirror:1;
356 		unsigned :4;
357 
358 		/*
359 		 * This is left at the top of the word so that
360 		 * kvm_memslots_for_spte_role can extract it with a
361 		 * simple shift.  While there is room, give it a whole
362 		 * byte so it is also faster to load it from memory.
363 		 */
364 		unsigned smm:8;
365 	};
366 };
367 
368 /*
369  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
370  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
371  * including on nested transitions, if nothing in the full role changes then
372  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
373  * don't treat all-zero structure as valid data.
374  *
375  * The properties that are tracked in the extended role but not the page role
376  * are for things that either (a) do not affect the validity of the shadow page
377  * or (b) are indirectly reflected in the shadow page's role.  For example,
378  * CR4.PKE only affects permission checks for software walks of the guest page
379  * tables (because KVM doesn't support Protection Keys with shadow paging), and
380  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
381  *
382  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
383  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
384  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
385  * SMAP aware regardless of CR0.WP.
386  */
387 union kvm_mmu_extended_role {
388 	u32 word;
389 	struct {
390 		unsigned int valid:1;
391 		unsigned int execonly:1;
392 		unsigned int cr4_pse:1;
393 		unsigned int cr4_pke:1;
394 		unsigned int cr4_smap:1;
395 		unsigned int cr4_smep:1;
396 		unsigned int cr4_la57:1;
397 		unsigned int efer_lma:1;
398 	};
399 };
400 
401 union kvm_cpu_role {
402 	u64 as_u64;
403 	struct {
404 		union kvm_mmu_page_role base;
405 		union kvm_mmu_extended_role ext;
406 	};
407 };
408 
409 struct kvm_rmap_head {
410 	atomic_long_t val;
411 };
412 
413 struct kvm_pio_request {
414 	unsigned long linear_rip;
415 	unsigned long count;
416 	int in;
417 	int port;
418 	int size;
419 };
420 
421 #define PT64_ROOT_MAX_LEVEL 5
422 
423 struct rsvd_bits_validate {
424 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
425 	u64 bad_mt_xwr;
426 };
427 
428 struct kvm_mmu_root_info {
429 	gpa_t pgd;
430 	hpa_t hpa;
431 };
432 
433 #define KVM_MMU_ROOT_INFO_INVALID \
434 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
435 
436 #define KVM_MMU_NUM_PREV_ROOTS 3
437 
438 #define KVM_MMU_ROOT_CURRENT		BIT(0)
439 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
440 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
441 
442 #define KVM_HAVE_MMU_RWLOCK
443 
444 struct kvm_mmu_page;
445 struct kvm_page_fault;
446 
447 /*
448  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
449  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
450  * current mmu mode.
451  */
452 struct kvm_mmu {
453 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
454 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
455 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
456 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
457 				  struct x86_exception *fault);
458 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
459 			    gpa_t gva_or_gpa, u64 access,
460 			    struct x86_exception *exception);
461 	int (*sync_spte)(struct kvm_vcpu *vcpu,
462 			 struct kvm_mmu_page *sp, int i);
463 	struct kvm_mmu_root_info root;
464 	hpa_t mirror_root_hpa;
465 	union kvm_cpu_role cpu_role;
466 	union kvm_mmu_page_role root_role;
467 
468 	/*
469 	* The pkru_mask indicates if protection key checks are needed.  It
470 	* consists of 16 domains indexed by page fault error code bits [4:1],
471 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
472 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
473 	*/
474 	u32 pkru_mask;
475 
476 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
477 
478 	/*
479 	 * Bitmap; bit set = permission fault
480 	 * Byte index: page fault error code [4:1]
481 	 * Bit index: pte permissions in ACC_* format
482 	 */
483 	u8 permissions[16];
484 
485 	u64 *pae_root;
486 	u64 *pml4_root;
487 	u64 *pml5_root;
488 
489 	/*
490 	 * check zero bits on shadow page table entries, these
491 	 * bits include not only hardware reserved bits but also
492 	 * the bits spte never used.
493 	 */
494 	struct rsvd_bits_validate shadow_zero_check;
495 
496 	struct rsvd_bits_validate guest_rsvd_check;
497 
498 	u64 pdptrs[4]; /* pae */
499 };
500 
501 enum pmc_type {
502 	KVM_PMC_GP = 0,
503 	KVM_PMC_FIXED,
504 };
505 
506 struct kvm_pmc {
507 	enum pmc_type type;
508 	u8 idx;
509 	bool is_paused;
510 	bool intr;
511 	/*
512 	 * Base value of the PMC counter, relative to the *consumed* count in
513 	 * the associated perf_event.  This value includes counter updates from
514 	 * the perf_event and emulated_count since the last time the counter
515 	 * was reprogrammed, but it is *not* the current value as seen by the
516 	 * guest or userspace.
517 	 *
518 	 * The count is relative to the associated perf_event so that KVM
519 	 * doesn't need to reprogram the perf_event every time the guest writes
520 	 * to the counter.
521 	 */
522 	u64 counter;
523 	/*
524 	 * PMC events triggered by KVM emulation that haven't been fully
525 	 * processed, i.e. haven't undergone overflow detection.
526 	 */
527 	u64 emulated_counter;
528 	u64 eventsel;
529 	struct perf_event *perf_event;
530 	struct kvm_vcpu *vcpu;
531 	/*
532 	 * only for creating or reusing perf_event,
533 	 * eventsel value for general purpose counters,
534 	 * ctrl value for fixed counters.
535 	 */
536 	u64 current_config;
537 };
538 
539 /* More counters may conflict with other existing Architectural MSRs */
540 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
541 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
542 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
543 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
544 						KVM_MAX_NR_AMD_GP_COUNTERS)
545 
546 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
547 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
548 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
549 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
550 
551 struct kvm_pmu {
552 	u8 version;
553 	unsigned nr_arch_gp_counters;
554 	unsigned nr_arch_fixed_counters;
555 	unsigned available_event_types;
556 	u64 fixed_ctr_ctrl;
557 	u64 fixed_ctr_ctrl_rsvd;
558 	u64 global_ctrl;
559 	u64 global_status;
560 	u64 counter_bitmask[2];
561 	u64 global_ctrl_rsvd;
562 	u64 global_status_rsvd;
563 	u64 reserved_bits;
564 	u64 raw_event_mask;
565 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
566 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
567 
568 	/*
569 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
570 	 * set in a single access, e.g. to reprogram all counters when the PMU
571 	 * filter changes.
572 	 */
573 	union {
574 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
575 		atomic64_t __reprogram_pmi;
576 	};
577 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
578 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
579 
580 	u64 ds_area;
581 	u64 pebs_enable;
582 	u64 pebs_enable_rsvd;
583 	u64 pebs_data_cfg;
584 	u64 pebs_data_cfg_rsvd;
585 
586 	/*
587 	 * If a guest counter is cross-mapped to host counter with different
588 	 * index, its PEBS capability will be temporarily disabled.
589 	 *
590 	 * The user should make sure that this mask is updated
591 	 * after disabling interrupts and before perf_guest_get_msrs();
592 	 */
593 	u64 host_cross_mapped_mask;
594 
595 	/*
596 	 * The gate to release perf_events not marked in
597 	 * pmc_in_use only once in a vcpu time slice.
598 	 */
599 	bool need_cleanup;
600 
601 	/*
602 	 * The total number of programmed perf_events and it helps to avoid
603 	 * redundant check before cleanup if guest don't use vPMU at all.
604 	 */
605 	u8 event_count;
606 };
607 
608 struct kvm_pmu_ops;
609 
610 enum {
611 	KVM_DEBUGREG_BP_ENABLED = 1,
612 	KVM_DEBUGREG_WONT_EXIT = 2,
613 };
614 
615 struct kvm_mtrr {
616 	u64 var[KVM_NR_VAR_MTRR * 2];
617 	u64 fixed_64k;
618 	u64 fixed_16k[2];
619 	u64 fixed_4k[8];
620 	u64 deftype;
621 };
622 
623 /* Hyper-V SynIC timer */
624 struct kvm_vcpu_hv_stimer {
625 	struct hrtimer timer;
626 	int index;
627 	union hv_stimer_config config;
628 	u64 count;
629 	u64 exp_time;
630 	struct hv_message msg;
631 	bool msg_pending;
632 };
633 
634 /* Hyper-V synthetic interrupt controller (SynIC)*/
635 struct kvm_vcpu_hv_synic {
636 	u64 version;
637 	u64 control;
638 	u64 msg_page;
639 	u64 evt_page;
640 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
641 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
642 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
643 	DECLARE_BITMAP(vec_bitmap, 256);
644 	bool active;
645 	bool dont_zero_synic_pages;
646 };
647 
648 /* The maximum number of entries on the TLB flush fifo. */
649 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
650 /*
651  * Note: the following 'magic' entry is made up by KVM to avoid putting
652  * anything besides GVA on the TLB flush fifo. It is theoretically possible
653  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
654  * which will look identical. KVM's action to 'flush everything' instead of
655  * flushing these particular addresses is, however, fully legitimate as
656  * flushing more than requested is always OK.
657  */
658 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
659 
660 enum hv_tlb_flush_fifos {
661 	HV_L1_TLB_FLUSH_FIFO,
662 	HV_L2_TLB_FLUSH_FIFO,
663 	HV_NR_TLB_FLUSH_FIFOS,
664 };
665 
666 struct kvm_vcpu_hv_tlb_flush_fifo {
667 	spinlock_t write_lock;
668 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
669 };
670 
671 /* Hyper-V per vcpu emulation context */
672 struct kvm_vcpu_hv {
673 	struct kvm_vcpu *vcpu;
674 	u32 vp_index;
675 	u64 hv_vapic;
676 	s64 runtime_offset;
677 	struct kvm_vcpu_hv_synic synic;
678 	struct kvm_hyperv_exit exit;
679 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
680 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
681 	bool enforce_cpuid;
682 	struct {
683 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
684 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
685 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
686 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
687 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
688 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
689 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
690 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
691 	} cpuid_cache;
692 
693 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
694 
695 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
696 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
697 
698 	struct hv_vp_assist_page vp_assist_page;
699 
700 	struct {
701 		u64 pa_page_gpa;
702 		u64 vm_id;
703 		u32 vp_id;
704 	} nested;
705 };
706 
707 struct kvm_hypervisor_cpuid {
708 	u32 base;
709 	u32 limit;
710 };
711 
712 #ifdef CONFIG_KVM_XEN
713 /* Xen HVM per vcpu emulation context */
714 struct kvm_vcpu_xen {
715 	u64 hypercall_rip;
716 	u32 current_runstate;
717 	u8 upcall_vector;
718 	struct gfn_to_pfn_cache vcpu_info_cache;
719 	struct gfn_to_pfn_cache vcpu_time_info_cache;
720 	struct gfn_to_pfn_cache runstate_cache;
721 	struct gfn_to_pfn_cache runstate2_cache;
722 	u64 last_steal;
723 	u64 runstate_entry_time;
724 	u64 runstate_times[4];
725 	unsigned long evtchn_pending_sel;
726 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
727 	u32 timer_virq;
728 	u64 timer_expires; /* In guest epoch */
729 	atomic_t timer_pending;
730 	struct hrtimer timer;
731 	int poll_evtchn;
732 	struct timer_list poll_timer;
733 	struct kvm_hypervisor_cpuid cpuid;
734 };
735 #endif
736 
737 struct kvm_queued_exception {
738 	bool pending;
739 	bool injected;
740 	bool has_error_code;
741 	u8 vector;
742 	u32 error_code;
743 	unsigned long payload;
744 	bool has_payload;
745 };
746 
747 /*
748  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
749  * unknown to the kernel, but need to be directly used by KVM.  Note, these
750  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
751  */
752 enum kvm_only_cpuid_leafs {
753 	CPUID_12_EAX	 = NCAPINTS,
754 	CPUID_7_1_EDX,
755 	CPUID_8000_0007_EDX,
756 	CPUID_8000_0022_EAX,
757 	CPUID_7_2_EDX,
758 	CPUID_24_0_EBX,
759 	NR_KVM_CPU_CAPS,
760 
761 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
762 };
763 
764 struct kvm_vcpu_arch {
765 	/*
766 	 * rip and regs accesses must go through
767 	 * kvm_{register,rip}_{read,write} functions.
768 	 */
769 	unsigned long regs[NR_VCPU_REGS];
770 	u32 regs_avail;
771 	u32 regs_dirty;
772 
773 	unsigned long cr0;
774 	unsigned long cr0_guest_owned_bits;
775 	unsigned long cr2;
776 	unsigned long cr3;
777 	unsigned long cr4;
778 	unsigned long cr4_guest_owned_bits;
779 	unsigned long cr4_guest_rsvd_bits;
780 	unsigned long cr8;
781 	u32 host_pkru;
782 	u32 pkru;
783 	u32 hflags;
784 	u64 efer;
785 	u64 host_debugctl;
786 	u64 apic_base;
787 	struct kvm_lapic *apic;    /* kernel irqchip context */
788 	bool load_eoi_exitmap_pending;
789 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
790 	unsigned long apic_attention;
791 	int32_t apic_arb_prio;
792 	int mp_state;
793 	u64 ia32_misc_enable_msr;
794 	u64 smbase;
795 	u64 smi_count;
796 	bool at_instruction_boundary;
797 	bool tpr_access_reporting;
798 	bool xfd_no_write_intercept;
799 	u64 ia32_xss;
800 	u64 microcode_version;
801 	u64 arch_capabilities;
802 	u64 perf_capabilities;
803 
804 	/*
805 	 * Paging state of the vcpu
806 	 *
807 	 * If the vcpu runs in guest mode with two level paging this still saves
808 	 * the paging mode of the l1 guest. This context is always used to
809 	 * handle faults.
810 	 */
811 	struct kvm_mmu *mmu;
812 
813 	/* Non-nested MMU for L1 */
814 	struct kvm_mmu root_mmu;
815 
816 	/* L1 MMU when running nested */
817 	struct kvm_mmu guest_mmu;
818 
819 	/*
820 	 * Paging state of an L2 guest (used for nested npt)
821 	 *
822 	 * This context will save all necessary information to walk page tables
823 	 * of an L2 guest. This context is only initialized for page table
824 	 * walking and not for faulting since we never handle l2 page faults on
825 	 * the host.
826 	 */
827 	struct kvm_mmu nested_mmu;
828 
829 	/*
830 	 * Pointer to the mmu context currently used for
831 	 * gva_to_gpa translations.
832 	 */
833 	struct kvm_mmu *walk_mmu;
834 
835 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
836 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
837 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
838 	struct kvm_mmu_memory_cache mmu_page_header_cache;
839 	/*
840 	 * This cache is to allocate external page table. E.g. private EPT used
841 	 * by the TDX module.
842 	 */
843 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
844 
845 	/*
846 	 * QEMU userspace and the guest each have their own FPU state.
847 	 * In vcpu_run, we switch between the user and guest FPU contexts.
848 	 * While running a VCPU, the VCPU thread will have the guest FPU
849 	 * context.
850 	 *
851 	 * Note that while the PKRU state lives inside the fpu registers,
852 	 * it is switched out separately at VMENTER and VMEXIT time. The
853 	 * "guest_fpstate" state here contains the guest FPU context, with the
854 	 * host PRKU bits.
855 	 */
856 	struct fpu_guest guest_fpu;
857 
858 	u64 xcr0;
859 	u64 guest_supported_xcr0;
860 
861 	struct kvm_pio_request pio;
862 	void *pio_data;
863 	void *sev_pio_data;
864 	unsigned sev_pio_count;
865 
866 	u8 event_exit_inst_len;
867 
868 	bool exception_from_userspace;
869 
870 	/* Exceptions to be injected to the guest. */
871 	struct kvm_queued_exception exception;
872 	/* Exception VM-Exits to be synthesized to L1. */
873 	struct kvm_queued_exception exception_vmexit;
874 
875 	struct kvm_queued_interrupt {
876 		bool injected;
877 		bool soft;
878 		u8 nr;
879 	} interrupt;
880 
881 	int halt_request; /* real mode on Intel only */
882 
883 	int cpuid_nent;
884 	struct kvm_cpuid_entry2 *cpuid_entries;
885 	bool cpuid_dynamic_bits_dirty;
886 	bool is_amd_compatible;
887 
888 	/*
889 	 * cpu_caps holds the effective guest capabilities, i.e. the features
890 	 * the vCPU is allowed to use.  Typically, but not always, features can
891 	 * be used by the guest if and only if both KVM and userspace want to
892 	 * expose the feature to the guest.
893 	 *
894 	 * A common exception is for virtualization holes, i.e. when KVM can't
895 	 * prevent the guest from using a feature, in which case the vCPU "has"
896 	 * the feature regardless of what KVM or userspace desires.
897 	 *
898 	 * Note, features that don't require KVM involvement in any way are
899 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
900 	 * guest CPUID provided by userspace.
901 	 */
902 	u32 cpu_caps[NR_KVM_CPU_CAPS];
903 
904 	u64 reserved_gpa_bits;
905 	int maxphyaddr;
906 
907 	/* emulate context */
908 
909 	struct x86_emulate_ctxt *emulate_ctxt;
910 	bool emulate_regs_need_sync_to_vcpu;
911 	bool emulate_regs_need_sync_from_vcpu;
912 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
913 
914 	gpa_t time;
915 	s8  pvclock_tsc_shift;
916 	u32 pvclock_tsc_mul;
917 	unsigned int hw_tsc_khz;
918 	struct gfn_to_pfn_cache pv_time;
919 	/* set guest stopped flag in pvclock flags field */
920 	bool pvclock_set_guest_stopped_request;
921 
922 	struct {
923 		u8 preempted;
924 		u64 msr_val;
925 		u64 last_steal;
926 		struct gfn_to_hva_cache cache;
927 	} st;
928 
929 	u64 l1_tsc_offset;
930 	u64 tsc_offset; /* current tsc offset */
931 	u64 last_guest_tsc;
932 	u64 last_host_tsc;
933 	u64 tsc_offset_adjustment;
934 	u64 this_tsc_nsec;
935 	u64 this_tsc_write;
936 	u64 this_tsc_generation;
937 	bool tsc_catchup;
938 	bool tsc_always_catchup;
939 	s8 virtual_tsc_shift;
940 	u32 virtual_tsc_mult;
941 	u32 virtual_tsc_khz;
942 	s64 ia32_tsc_adjust_msr;
943 	u64 msr_ia32_power_ctl;
944 	u64 l1_tsc_scaling_ratio;
945 	u64 tsc_scaling_ratio; /* current scaling ratio */
946 
947 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
948 	/* Number of NMIs pending injection, not including hardware vNMIs. */
949 	unsigned int nmi_pending;
950 	bool nmi_injected;    /* Trying to inject an NMI this entry */
951 	bool smi_pending;    /* SMI queued after currently running handler */
952 	u8 handling_intr_from_guest;
953 
954 	struct kvm_mtrr mtrr_state;
955 	u64 pat;
956 
957 	unsigned switch_db_regs;
958 	unsigned long db[KVM_NR_DB_REGS];
959 	unsigned long dr6;
960 	unsigned long dr7;
961 	unsigned long eff_db[KVM_NR_DB_REGS];
962 	unsigned long guest_debug_dr7;
963 	u64 msr_platform_info;
964 	u64 msr_misc_features_enables;
965 
966 	u64 mcg_cap;
967 	u64 mcg_status;
968 	u64 mcg_ctl;
969 	u64 mcg_ext_ctl;
970 	u64 *mce_banks;
971 	u64 *mci_ctl2_banks;
972 
973 	/* Cache MMIO info */
974 	u64 mmio_gva;
975 	unsigned mmio_access;
976 	gfn_t mmio_gfn;
977 	u64 mmio_gen;
978 
979 	struct kvm_pmu pmu;
980 
981 	/* used for guest single stepping over the given code position */
982 	unsigned long singlestep_rip;
983 
984 #ifdef CONFIG_KVM_HYPERV
985 	bool hyperv_enabled;
986 	struct kvm_vcpu_hv *hyperv;
987 #endif
988 #ifdef CONFIG_KVM_XEN
989 	struct kvm_vcpu_xen xen;
990 #endif
991 	cpumask_var_t wbinvd_dirty_mask;
992 
993 	unsigned long last_retry_eip;
994 	unsigned long last_retry_addr;
995 
996 	struct {
997 		bool halted;
998 		gfn_t gfns[ASYNC_PF_PER_VCPU];
999 		struct gfn_to_hva_cache data;
1000 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1001 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1002 		u16 vec;
1003 		u32 id;
1004 		u32 host_apf_flags;
1005 		bool send_always;
1006 		bool delivery_as_pf_vmexit;
1007 		bool pageready_pending;
1008 	} apf;
1009 
1010 	/* OSVW MSRs (AMD only) */
1011 	struct {
1012 		u64 length;
1013 		u64 status;
1014 	} osvw;
1015 
1016 	struct {
1017 		u64 msr_val;
1018 		struct gfn_to_hva_cache data;
1019 	} pv_eoi;
1020 
1021 	u64 msr_kvm_poll_control;
1022 
1023 	/* pv related host specific info */
1024 	struct {
1025 		bool pv_unhalted;
1026 	} pv;
1027 
1028 	int pending_ioapic_eoi;
1029 	int pending_external_vector;
1030 
1031 	/* be preempted when it's in kernel-mode(cpl=0) */
1032 	bool preempted_in_kernel;
1033 
1034 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1035 	bool l1tf_flush_l1d;
1036 
1037 	/* Host CPU on which VM-entry was most recently attempted */
1038 	int last_vmentry_cpu;
1039 
1040 	/* AMD MSRC001_0015 Hardware Configuration */
1041 	u64 msr_hwcr;
1042 
1043 	/* pv related cpuid info */
1044 	struct {
1045 		/*
1046 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1047 		 * leaf.
1048 		 */
1049 		u32 features;
1050 
1051 		/*
1052 		 * indicates whether pv emulation should be disabled if features
1053 		 * are not present in the guest's cpuid
1054 		 */
1055 		bool enforce;
1056 	} pv_cpuid;
1057 
1058 	/* Protected Guests */
1059 	bool guest_state_protected;
1060 	bool guest_tsc_protected;
1061 
1062 	/*
1063 	 * Set when PDPTS were loaded directly by the userspace without
1064 	 * reading the guest memory
1065 	 */
1066 	bool pdptrs_from_userspace;
1067 
1068 #if IS_ENABLED(CONFIG_HYPERV)
1069 	hpa_t hv_root_tdp;
1070 #endif
1071 };
1072 
1073 struct kvm_lpage_info {
1074 	int disallow_lpage;
1075 };
1076 
1077 struct kvm_arch_memory_slot {
1078 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1079 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1080 	unsigned short *gfn_write_track;
1081 };
1082 
1083 /*
1084  * Track the mode of the optimized logical map, as the rules for decoding the
1085  * destination vary per mode.  Enabling the optimized logical map requires all
1086  * software-enabled local APIs to be in the same mode, each addressable APIC to
1087  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1088  */
1089 enum kvm_apic_logical_mode {
1090 	/* All local APICs are software disabled. */
1091 	KVM_APIC_MODE_SW_DISABLED,
1092 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1093 	KVM_APIC_MODE_XAPIC_CLUSTER,
1094 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1095 	KVM_APIC_MODE_XAPIC_FLAT,
1096 	/* All software enabled local APICs in x2APIC mode. */
1097 	KVM_APIC_MODE_X2APIC,
1098 	/*
1099 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1100 	 * mode, same logical ID assigned to multiple APICs, etc.
1101 	 */
1102 	KVM_APIC_MODE_MAP_DISABLED,
1103 };
1104 
1105 struct kvm_apic_map {
1106 	struct rcu_head rcu;
1107 	enum kvm_apic_logical_mode logical_mode;
1108 	u32 max_apic_id;
1109 	union {
1110 		struct kvm_lapic *xapic_flat_map[8];
1111 		struct kvm_lapic *xapic_cluster_map[16][4];
1112 	};
1113 	struct kvm_lapic *phys_map[];
1114 };
1115 
1116 /* Hyper-V synthetic debugger (SynDbg)*/
1117 struct kvm_hv_syndbg {
1118 	struct {
1119 		u64 control;
1120 		u64 status;
1121 		u64 send_page;
1122 		u64 recv_page;
1123 		u64 pending_page;
1124 	} control;
1125 	u64 options;
1126 };
1127 
1128 /* Current state of Hyper-V TSC page clocksource */
1129 enum hv_tsc_page_status {
1130 	/* TSC page was not set up or disabled */
1131 	HV_TSC_PAGE_UNSET = 0,
1132 	/* TSC page MSR was written by the guest, update pending */
1133 	HV_TSC_PAGE_GUEST_CHANGED,
1134 	/* TSC page update was triggered from the host side */
1135 	HV_TSC_PAGE_HOST_CHANGED,
1136 	/* TSC page was properly set up and is currently active  */
1137 	HV_TSC_PAGE_SET,
1138 	/* TSC page was set up with an inaccessible GPA */
1139 	HV_TSC_PAGE_BROKEN,
1140 };
1141 
1142 #ifdef CONFIG_KVM_HYPERV
1143 /* Hyper-V emulation context */
1144 struct kvm_hv {
1145 	struct mutex hv_lock;
1146 	u64 hv_guest_os_id;
1147 	u64 hv_hypercall;
1148 	u64 hv_tsc_page;
1149 	enum hv_tsc_page_status hv_tsc_page_status;
1150 
1151 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1152 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1153 	u64 hv_crash_ctl;
1154 
1155 	struct ms_hyperv_tsc_page tsc_ref;
1156 
1157 	struct idr conn_to_evt;
1158 
1159 	u64 hv_reenlightenment_control;
1160 	u64 hv_tsc_emulation_control;
1161 	u64 hv_tsc_emulation_status;
1162 	u64 hv_invtsc_control;
1163 
1164 	/* How many vCPUs have VP index != vCPU index */
1165 	atomic_t num_mismatched_vp_indexes;
1166 
1167 	/*
1168 	 * How many SynICs use 'AutoEOI' feature
1169 	 * (protected by arch.apicv_update_lock)
1170 	 */
1171 	unsigned int synic_auto_eoi_used;
1172 
1173 	struct kvm_hv_syndbg hv_syndbg;
1174 
1175 	bool xsaves_xsavec_checked;
1176 };
1177 #endif
1178 
1179 struct msr_bitmap_range {
1180 	u32 flags;
1181 	u32 nmsrs;
1182 	u32 base;
1183 	unsigned long *bitmap;
1184 };
1185 
1186 #ifdef CONFIG_KVM_XEN
1187 /* Xen emulation context */
1188 struct kvm_xen {
1189 	struct mutex xen_lock;
1190 	u32 xen_version;
1191 	bool long_mode;
1192 	bool runstate_update_flag;
1193 	u8 upcall_vector;
1194 	struct gfn_to_pfn_cache shinfo_cache;
1195 	struct idr evtchn_ports;
1196 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1197 
1198 	struct kvm_xen_hvm_config hvm_config;
1199 };
1200 #endif
1201 
1202 enum kvm_irqchip_mode {
1203 	KVM_IRQCHIP_NONE,
1204 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1205 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1206 };
1207 
1208 struct kvm_x86_msr_filter {
1209 	u8 count;
1210 	bool default_allow:1;
1211 	struct msr_bitmap_range ranges[16];
1212 };
1213 
1214 struct kvm_x86_pmu_event_filter {
1215 	__u32 action;
1216 	__u32 nevents;
1217 	__u32 fixed_counter_bitmap;
1218 	__u32 flags;
1219 	__u32 nr_includes;
1220 	__u32 nr_excludes;
1221 	__u64 *includes;
1222 	__u64 *excludes;
1223 	__u64 events[];
1224 };
1225 
1226 enum kvm_apicv_inhibit {
1227 
1228 	/********************************************************************/
1229 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1230 	/********************************************************************/
1231 
1232 	/*
1233 	 * APIC acceleration is disabled by a module parameter
1234 	 * and/or not supported in hardware.
1235 	 */
1236 	APICV_INHIBIT_REASON_DISABLED,
1237 
1238 	/*
1239 	 * APIC acceleration is inhibited because AutoEOI feature is
1240 	 * being used by a HyperV guest.
1241 	 */
1242 	APICV_INHIBIT_REASON_HYPERV,
1243 
1244 	/*
1245 	 * APIC acceleration is inhibited because the userspace didn't yet
1246 	 * enable the kernel/split irqchip.
1247 	 */
1248 	APICV_INHIBIT_REASON_ABSENT,
1249 
1250 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1251 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1252 	 * was enabled, to avoid AVIC/APICv bypassing it.
1253 	 */
1254 	APICV_INHIBIT_REASON_BLOCKIRQ,
1255 
1256 	/*
1257 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1258 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1259 	 */
1260 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1261 
1262 	/*
1263 	 * For simplicity, the APIC acceleration is inhibited
1264 	 * first time either APIC ID or APIC base are changed by the guest
1265 	 * from their reset values.
1266 	 */
1267 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1268 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1269 
1270 	/******************************************************/
1271 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1272 	/******************************************************/
1273 
1274 	/*
1275 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1276 	 *
1277 	 * This is needed because unlike APICv, the peers of this vCPU
1278 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1279 	 * a vCPU runs nested.
1280 	 */
1281 	APICV_INHIBIT_REASON_NESTED,
1282 
1283 	/*
1284 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1285 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1286 	 * is inhibited while KVM waits for IRQ window.
1287 	 */
1288 	APICV_INHIBIT_REASON_IRQWIN,
1289 
1290 	/*
1291 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1292 	 * which AVIC doesn't support for edge triggered interrupts.
1293 	 */
1294 	APICV_INHIBIT_REASON_PIT_REINJ,
1295 
1296 	/*
1297 	 * AVIC is disabled because SEV doesn't support it.
1298 	 */
1299 	APICV_INHIBIT_REASON_SEV,
1300 
1301 	/*
1302 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1303 	 * mapping between logical ID and vCPU.
1304 	 */
1305 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1306 
1307 	NR_APICV_INHIBIT_REASONS,
1308 };
1309 
1310 #define __APICV_INHIBIT_REASON(reason)			\
1311 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1312 
1313 #define APICV_INHIBIT_REASONS				\
1314 	__APICV_INHIBIT_REASON(DISABLED),		\
1315 	__APICV_INHIBIT_REASON(HYPERV),			\
1316 	__APICV_INHIBIT_REASON(ABSENT),			\
1317 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1318 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1319 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1320 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1321 	__APICV_INHIBIT_REASON(NESTED),			\
1322 	__APICV_INHIBIT_REASON(IRQWIN),			\
1323 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1324 	__APICV_INHIBIT_REASON(SEV),			\
1325 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1326 
1327 struct kvm_arch {
1328 	unsigned long n_used_mmu_pages;
1329 	unsigned long n_requested_mmu_pages;
1330 	unsigned long n_max_mmu_pages;
1331 	unsigned int indirect_shadow_pages;
1332 	u8 mmu_valid_gen;
1333 	u8 vm_type;
1334 	bool has_private_mem;
1335 	bool has_protected_state;
1336 	bool pre_fault_allowed;
1337 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1338 	struct list_head active_mmu_pages;
1339 	/*
1340 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1341 	 * replaced by an NX huge page.  A shadow page is on this list if its
1342 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1343 	 * and there are no other conditions that prevent a huge page, e.g.
1344 	 * the backing host page is huge, dirtly logging is not enabled for its
1345 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1346 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1347 	 * guest attempts to execute from the region then KVM obviously can't
1348 	 * create an NX huge page (without hanging the guest).
1349 	 */
1350 	struct list_head possible_nx_huge_pages;
1351 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1352 	struct kvm_page_track_notifier_head track_notifier_head;
1353 #endif
1354 	/*
1355 	 * Protects marking pages unsync during page faults, as TDP MMU page
1356 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1357 	 * pages lock is always taken when marking pages unsync regardless of
1358 	 * whether mmu_lock is held for read or write.
1359 	 */
1360 	spinlock_t mmu_unsync_pages_lock;
1361 
1362 	u64 shadow_mmio_value;
1363 
1364 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1365 	atomic_t noncoherent_dma_count;
1366 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1367 	atomic_t assigned_device_count;
1368 	struct kvm_pic *vpic;
1369 	struct kvm_ioapic *vioapic;
1370 	struct kvm_pit *vpit;
1371 	atomic_t vapics_in_nmi_mode;
1372 	struct mutex apic_map_lock;
1373 	struct kvm_apic_map __rcu *apic_map;
1374 	atomic_t apic_map_dirty;
1375 
1376 	bool apic_access_memslot_enabled;
1377 	bool apic_access_memslot_inhibited;
1378 
1379 	/* Protects apicv_inhibit_reasons */
1380 	struct rw_semaphore apicv_update_lock;
1381 	unsigned long apicv_inhibit_reasons;
1382 
1383 	gpa_t wall_clock;
1384 
1385 	bool mwait_in_guest;
1386 	bool hlt_in_guest;
1387 	bool pause_in_guest;
1388 	bool cstate_in_guest;
1389 
1390 	unsigned long irq_sources_bitmap;
1391 	s64 kvmclock_offset;
1392 
1393 	/*
1394 	 * This also protects nr_vcpus_matched_tsc which is read from a
1395 	 * preemption-disabled region, so it must be a raw spinlock.
1396 	 */
1397 	raw_spinlock_t tsc_write_lock;
1398 	u64 last_tsc_nsec;
1399 	u64 last_tsc_write;
1400 	u32 last_tsc_khz;
1401 	u64 last_tsc_offset;
1402 	u64 cur_tsc_nsec;
1403 	u64 cur_tsc_write;
1404 	u64 cur_tsc_offset;
1405 	u64 cur_tsc_generation;
1406 	int nr_vcpus_matched_tsc;
1407 
1408 	u32 default_tsc_khz;
1409 	bool user_set_tsc;
1410 	u64 apic_bus_cycle_ns;
1411 
1412 	seqcount_raw_spinlock_t pvclock_sc;
1413 	bool use_master_clock;
1414 	u64 master_kernel_ns;
1415 	u64 master_cycle_now;
1416 	struct delayed_work kvmclock_update_work;
1417 	struct delayed_work kvmclock_sync_work;
1418 
1419 	/* reads protected by irq_srcu, writes by irq_lock */
1420 	struct hlist_head mask_notifier_list;
1421 
1422 #ifdef CONFIG_KVM_HYPERV
1423 	struct kvm_hv hyperv;
1424 #endif
1425 
1426 #ifdef CONFIG_KVM_XEN
1427 	struct kvm_xen xen;
1428 #endif
1429 
1430 	bool backwards_tsc_observed;
1431 	bool boot_vcpu_runs_old_kvmclock;
1432 	u32 bsp_vcpu_id;
1433 
1434 	u64 disabled_quirks;
1435 
1436 	enum kvm_irqchip_mode irqchip_mode;
1437 	u8 nr_reserved_ioapic_pins;
1438 
1439 	bool disabled_lapic_found;
1440 
1441 	bool x2apic_format;
1442 	bool x2apic_broadcast_quirk_disabled;
1443 
1444 	bool guest_can_read_msr_platform_info;
1445 	bool exception_payload_enabled;
1446 
1447 	bool triple_fault_event;
1448 
1449 	bool bus_lock_detection_enabled;
1450 	bool enable_pmu;
1451 
1452 	u32 notify_window;
1453 	u32 notify_vmexit_flags;
1454 	/*
1455 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1456 	 * emulator fails to emulate an instruction, allow userspace
1457 	 * the opportunity to look at it.
1458 	 */
1459 	bool exit_on_emulation_error;
1460 
1461 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1462 	u32 user_space_msr_mask;
1463 	struct kvm_x86_msr_filter __rcu *msr_filter;
1464 
1465 	u32 hypercall_exit_enabled;
1466 
1467 	/* Guest can access the SGX PROVISIONKEY. */
1468 	bool sgx_provisioning_allowed;
1469 
1470 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1471 	struct vhost_task *nx_huge_page_recovery_thread;
1472 	u64 nx_huge_page_last;
1473 	struct once nx_once;
1474 
1475 #ifdef CONFIG_X86_64
1476 #ifdef CONFIG_KVM_PROVE_MMU
1477 	/*
1478 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1479 	 * check that KVM isn't leaking TDP MMU pages.
1480 	 */
1481 	atomic64_t tdp_mmu_pages;
1482 #endif
1483 
1484 	/*
1485 	 * List of struct kvm_mmu_pages being used as roots.
1486 	 * All struct kvm_mmu_pages in the list should have
1487 	 * tdp_mmu_page set.
1488 	 *
1489 	 * For reads, this list is protected by:
1490 	 *	RCU alone or
1491 	 *	the MMU lock in read mode + RCU or
1492 	 *	the MMU lock in write mode
1493 	 *
1494 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1495 	 * below for the details.
1496 	 *
1497 	 * Roots will remain in the list until their tdp_mmu_root_count
1498 	 * drops to zero, at which point the thread that decremented the
1499 	 * count to zero should removed the root from the list and clean
1500 	 * it up, freeing the root after an RCU grace period.
1501 	 */
1502 	struct list_head tdp_mmu_roots;
1503 
1504 	/*
1505 	 * Protects accesses to the following fields when the MMU lock
1506 	 * is held in read mode:
1507 	 *  - tdp_mmu_roots (above)
1508 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1509 	 *  - possible_nx_huge_pages;
1510 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1511 	 *    by the TDP MMU
1512 	 * Because the lock is only taken within the MMU lock, strictly
1513 	 * speaking it is redundant to acquire this lock when the thread
1514 	 * holds the MMU lock in write mode.  However it often simplifies
1515 	 * the code to do so.
1516 	 */
1517 	spinlock_t tdp_mmu_pages_lock;
1518 #endif /* CONFIG_X86_64 */
1519 
1520 	/*
1521 	 * If set, at least one shadow root has been allocated. This flag
1522 	 * is used as one input when determining whether certain memslot
1523 	 * related allocations are necessary.
1524 	 */
1525 	bool shadow_root_allocated;
1526 
1527 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1528 	/*
1529 	 * If set, the VM has (or had) an external write tracking user, and
1530 	 * thus all write tracking metadata has been allocated, even if KVM
1531 	 * itself isn't using write tracking.
1532 	 */
1533 	bool external_write_tracking_enabled;
1534 #endif
1535 
1536 #if IS_ENABLED(CONFIG_HYPERV)
1537 	hpa_t	hv_root_tdp;
1538 	spinlock_t hv_root_tdp_lock;
1539 	struct hv_partition_assist_pg *hv_pa_pg;
1540 #endif
1541 	/*
1542 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1543 	 * that increase along with the maximum vCPU ID, in which case, using
1544 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1545 	 */
1546 	u32 max_vcpu_ids;
1547 
1548 	bool disable_nx_huge_pages;
1549 
1550 	/*
1551 	 * Memory caches used to allocate shadow pages when performing eager
1552 	 * page splitting. No need for a shadowed_info_cache since eager page
1553 	 * splitting only allocates direct shadow pages.
1554 	 *
1555 	 * Protected by kvm->slots_lock.
1556 	 */
1557 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1558 	struct kvm_mmu_memory_cache split_page_header_cache;
1559 
1560 	/*
1561 	 * Memory cache used to allocate pte_list_desc structs while splitting
1562 	 * huge pages. In the worst case, to split one huge page, 512
1563 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1564 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1565 	 * page table.
1566 	 *
1567 	 * Protected by kvm->slots_lock.
1568 	 */
1569 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1570 	struct kvm_mmu_memory_cache split_desc_cache;
1571 
1572 	gfn_t gfn_direct_bits;
1573 };
1574 
1575 struct kvm_vm_stat {
1576 	struct kvm_vm_stat_generic generic;
1577 	u64 mmu_shadow_zapped;
1578 	u64 mmu_pte_write;
1579 	u64 mmu_pde_zapped;
1580 	u64 mmu_flooded;
1581 	u64 mmu_recycled;
1582 	u64 mmu_cache_miss;
1583 	u64 mmu_unsync;
1584 	union {
1585 		struct {
1586 			atomic64_t pages_4k;
1587 			atomic64_t pages_2m;
1588 			atomic64_t pages_1g;
1589 		};
1590 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1591 	};
1592 	u64 nx_lpage_splits;
1593 	u64 max_mmu_page_hash_collisions;
1594 	u64 max_mmu_rmap_size;
1595 };
1596 
1597 struct kvm_vcpu_stat {
1598 	struct kvm_vcpu_stat_generic generic;
1599 	u64 pf_taken;
1600 	u64 pf_fixed;
1601 	u64 pf_emulate;
1602 	u64 pf_spurious;
1603 	u64 pf_fast;
1604 	u64 pf_mmio_spte_created;
1605 	u64 pf_guest;
1606 	u64 tlb_flush;
1607 	u64 invlpg;
1608 
1609 	u64 exits;
1610 	u64 io_exits;
1611 	u64 mmio_exits;
1612 	u64 signal_exits;
1613 	u64 irq_window_exits;
1614 	u64 nmi_window_exits;
1615 	u64 l1d_flush;
1616 	u64 halt_exits;
1617 	u64 request_irq_exits;
1618 	u64 irq_exits;
1619 	u64 host_state_reload;
1620 	u64 fpu_reload;
1621 	u64 insn_emulation;
1622 	u64 insn_emulation_fail;
1623 	u64 hypercalls;
1624 	u64 irq_injections;
1625 	u64 nmi_injections;
1626 	u64 req_event;
1627 	u64 nested_run;
1628 	u64 directed_yield_attempted;
1629 	u64 directed_yield_successful;
1630 	u64 preemption_reported;
1631 	u64 preemption_other;
1632 	u64 guest_mode;
1633 	u64 notify_window_exits;
1634 };
1635 
1636 struct x86_instruction_info;
1637 
1638 struct msr_data {
1639 	bool host_initiated;
1640 	u32 index;
1641 	u64 data;
1642 };
1643 
1644 struct kvm_lapic_irq {
1645 	u32 vector;
1646 	u16 delivery_mode;
1647 	u16 dest_mode;
1648 	bool level;
1649 	u16 trig_mode;
1650 	u32 shorthand;
1651 	u32 dest_id;
1652 	bool msi_redir_hint;
1653 };
1654 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1655 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1656 {
1657 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1658 }
1659 
1660 struct kvm_x86_ops {
1661 	const char *name;
1662 
1663 	int (*check_processor_compatibility)(void);
1664 
1665 	int (*enable_virtualization_cpu)(void);
1666 	void (*disable_virtualization_cpu)(void);
1667 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1668 
1669 	void (*hardware_unsetup)(void);
1670 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1671 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1672 
1673 	unsigned int vm_size;
1674 	int (*vm_init)(struct kvm *kvm);
1675 	void (*vm_destroy)(struct kvm *kvm);
1676 
1677 	/* Create, but do not attach this VCPU */
1678 	int (*vcpu_precreate)(struct kvm *kvm);
1679 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1680 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1681 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1682 
1683 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1684 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1685 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1686 
1687 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1688 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1689 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1690 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1691 	void (*get_segment)(struct kvm_vcpu *vcpu,
1692 			    struct kvm_segment *var, int seg);
1693 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1694 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1695 	void (*set_segment)(struct kvm_vcpu *vcpu,
1696 			    struct kvm_segment *var, int seg);
1697 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1698 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1699 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1700 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1701 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1702 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1703 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1704 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1705 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1706 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1707 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1708 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1709 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1710 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1711 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1712 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1713 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1714 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1715 
1716 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1717 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1718 #if IS_ENABLED(CONFIG_HYPERV)
1719 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1720 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1721 					gfn_t nr_pages);
1722 #endif
1723 
1724 	/*
1725 	 * Flush any TLB entries associated with the given GVA.
1726 	 * Does not need to flush GPA->HPA mappings.
1727 	 * Can potentially get non-canonical addresses through INVLPGs, which
1728 	 * the implementation may choose to ignore if appropriate.
1729 	 */
1730 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1731 
1732 	/*
1733 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1734 	 * does not need to flush GPA->HPA mappings.
1735 	 */
1736 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1737 
1738 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1739 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1740 						  bool force_immediate_exit);
1741 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1742 		enum exit_fastpath_completion exit_fastpath);
1743 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1744 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1745 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1746 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1747 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1748 				unsigned char *hypercall_addr);
1749 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1750 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1751 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1752 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1753 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1754 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1755 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1756 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1757 	/* Whether or not a virtual NMI is pending in hardware. */
1758 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1759 	/*
1760 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1761 	 * to allow using static_call_ret0 as the fallback.
1762 	 */
1763 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1764 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1765 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1766 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1767 
1768 	const bool x2apic_icr_is_split;
1769 	const unsigned long required_apicv_inhibits;
1770 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1771 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1772 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1773 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1774 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1775 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1776 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1777 				  int trig_mode, int vector);
1778 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1779 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1780 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1781 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1782 
1783 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1784 			     int root_level);
1785 
1786 	/* Update external mapping with page table link. */
1787 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1788 				void *external_spt);
1789 	/* Update the external page table from spte getting set. */
1790 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1791 				 kvm_pfn_t pfn_for_gfn);
1792 
1793 	/* Update external page tables for page table about to be freed. */
1794 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1795 				 void *external_spt);
1796 
1797 	/* Update external page table from spte getting removed, and flush TLB. */
1798 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1799 				    kvm_pfn_t pfn_for_gfn);
1800 
1801 	bool (*has_wbinvd_exit)(void);
1802 
1803 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1804 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1805 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1806 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1807 
1808 	/*
1809 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1810 	 * be used only from within tracepoints or error paths.
1811 	 */
1812 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1813 			      u64 *info1, u64 *info2,
1814 			      u32 *intr_info, u32 *error_code);
1815 
1816 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1817 			       u32 *intr_info, u32 *error_code);
1818 
1819 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1820 			       struct x86_instruction_info *info,
1821 			       enum x86_intercept_stage stage,
1822 			       struct x86_exception *exception);
1823 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1824 
1825 	/*
1826 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1827 	 * value indicates CPU dirty logging is unsupported or disabled.
1828 	 */
1829 	int cpu_dirty_log_size;
1830 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1831 
1832 	const struct kvm_x86_nested_ops *nested_ops;
1833 
1834 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1835 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1836 
1837 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1838 			      uint32_t guest_irq, bool set);
1839 	void (*pi_start_assignment)(struct kvm *kvm);
1840 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1841 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1842 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1843 
1844 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1845 			    bool *expired);
1846 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1847 
1848 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1849 
1850 #ifdef CONFIG_KVM_SMM
1851 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1852 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1853 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1854 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1855 #endif
1856 
1857 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1858 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1859 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1860 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1861 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1862 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1863 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1864 
1865 	int (*get_feature_msr)(u32 msr, u64 *data);
1866 
1867 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1868 					 void *insn, int insn_len);
1869 
1870 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1871 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1872 
1873 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1874 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1875 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1876 
1877 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1878 
1879 	/*
1880 	 * Returns vCPU specific APICv inhibit reasons
1881 	 */
1882 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1883 
1884 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1885 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1886 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1887 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1888 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1889 };
1890 
1891 struct kvm_x86_nested_ops {
1892 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1893 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1894 				    u32 error_code);
1895 	int (*check_events)(struct kvm_vcpu *vcpu);
1896 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1897 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1898 	int (*get_state)(struct kvm_vcpu *vcpu,
1899 			 struct kvm_nested_state __user *user_kvm_nested_state,
1900 			 unsigned user_data_size);
1901 	int (*set_state)(struct kvm_vcpu *vcpu,
1902 			 struct kvm_nested_state __user *user_kvm_nested_state,
1903 			 struct kvm_nested_state *kvm_state);
1904 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1905 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1906 
1907 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1908 			    uint16_t *vmcs_version);
1909 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1910 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1911 };
1912 
1913 struct kvm_x86_init_ops {
1914 	int (*hardware_setup)(void);
1915 	unsigned int (*handle_intel_pt_intr)(void);
1916 
1917 	struct kvm_x86_ops *runtime_ops;
1918 	struct kvm_pmu_ops *pmu_ops;
1919 };
1920 
1921 struct kvm_arch_async_pf {
1922 	u32 token;
1923 	gfn_t gfn;
1924 	unsigned long cr3;
1925 	bool direct_map;
1926 	u64 error_code;
1927 };
1928 
1929 extern u32 __read_mostly kvm_nr_uret_msrs;
1930 extern bool __read_mostly allow_smaller_maxphyaddr;
1931 extern bool __read_mostly enable_apicv;
1932 extern struct kvm_x86_ops kvm_x86_ops;
1933 
1934 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1935 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1936 
1937 #define KVM_X86_OP(func) \
1938 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1939 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1940 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1941 #include <asm/kvm-x86-ops.h>
1942 
1943 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1944 void kvm_x86_vendor_exit(void);
1945 
1946 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1947 static inline struct kvm *kvm_arch_alloc_vm(void)
1948 {
1949 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1950 }
1951 
1952 #define __KVM_HAVE_ARCH_VM_FREE
1953 void kvm_arch_free_vm(struct kvm *kvm);
1954 
1955 #if IS_ENABLED(CONFIG_HYPERV)
1956 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1957 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1958 {
1959 	if (kvm_x86_ops.flush_remote_tlbs &&
1960 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1961 		return 0;
1962 	else
1963 		return -ENOTSUPP;
1964 }
1965 
1966 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1967 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1968 						   u64 nr_pages)
1969 {
1970 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1971 		return -EOPNOTSUPP;
1972 
1973 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1974 }
1975 #endif /* CONFIG_HYPERV */
1976 
1977 enum kvm_intr_type {
1978 	/* Values are arbitrary, but must be non-zero. */
1979 	KVM_HANDLING_IRQ = 1,
1980 	KVM_HANDLING_NMI,
1981 };
1982 
1983 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1984 #define kvm_arch_pmi_in_guest(vcpu) \
1985 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1986 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1987 
1988 void __init kvm_mmu_x86_module_init(void);
1989 int kvm_mmu_vendor_module_init(void);
1990 void kvm_mmu_vendor_module_exit(void);
1991 
1992 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1993 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1994 void kvm_mmu_init_vm(struct kvm *kvm);
1995 void kvm_mmu_uninit_vm(struct kvm *kvm);
1996 
1997 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1998 					    struct kvm_memory_slot *slot);
1999 
2000 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2001 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2002 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2003 				      const struct kvm_memory_slot *memslot,
2004 				      int start_level);
2005 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2006 				       const struct kvm_memory_slot *memslot,
2007 				       int target_level);
2008 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2009 				  const struct kvm_memory_slot *memslot,
2010 				  u64 start, u64 end,
2011 				  int target_level);
2012 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2013 				const struct kvm_memory_slot *memslot);
2014 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2015 				   const struct kvm_memory_slot *memslot);
2016 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2017 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2018 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2019 
2020 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2021 
2022 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2023 			  const void *val, int bytes);
2024 
2025 struct kvm_irq_mask_notifier {
2026 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2027 	int irq;
2028 	struct hlist_node link;
2029 };
2030 
2031 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2032 				    struct kvm_irq_mask_notifier *kimn);
2033 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2034 				      struct kvm_irq_mask_notifier *kimn);
2035 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2036 			     bool mask);
2037 
2038 extern bool tdp_enabled;
2039 
2040 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2041 
2042 /*
2043  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2044  *			userspace I/O) to indicate that the emulation context
2045  *			should be reused as is, i.e. skip initialization of
2046  *			emulation context, instruction fetch and decode.
2047  *
2048  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2049  *		      Indicates that only select instructions (tagged with
2050  *		      EmulateOnUD) should be emulated (to minimize the emulator
2051  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2052  *
2053  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2054  *		   decode the instruction length.  For use *only* by
2055  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2056  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2057  *
2058  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2059  *			     retry native execution under certain conditions,
2060  *			     Can only be set in conjunction with EMULTYPE_PF.
2061  *
2062  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2063  *			     triggered by KVM's magic "force emulation" prefix,
2064  *			     which is opt in via module param (off by default).
2065  *			     Bypasses EmulateOnUD restriction despite emulating
2066  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2067  *			     Used to test the full emulator from userspace.
2068  *
2069  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2070  *			backdoor emulation, which is opt in via module param.
2071  *			VMware backdoor emulation handles select instructions
2072  *			and reinjects the #GP for all other cases.
2073  *
2074  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2075  *		 the CR2/GPA value pass on the stack is valid.
2076  *
2077  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2078  *				 state and inject single-step #DBs after skipping
2079  *				 an instruction (after completing userspace I/O).
2080  *
2081  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2082  *			     is attempting to write a gfn that contains one or
2083  *			     more of the PTEs used to translate the write itself,
2084  *			     and the owning page table is being shadowed by KVM.
2085  *			     If emulation of the faulting instruction fails and
2086  *			     this flag is set, KVM will exit to userspace instead
2087  *			     of retrying emulation as KVM cannot make forward
2088  *			     progress.
2089  *
2090  *			     If emulation fails for a write to guest page tables,
2091  *			     KVM unprotects (zaps) the shadow page for the target
2092  *			     gfn and resumes the guest to retry the non-emulatable
2093  *			     instruction (on hardware).  Unprotecting the gfn
2094  *			     doesn't allow forward progress for a self-changing
2095  *			     access because doing so also zaps the translation for
2096  *			     the gfn, i.e. retrying the instruction will hit a
2097  *			     !PRESENT fault, which results in a new shadow page
2098  *			     and sends KVM back to square one.
2099  */
2100 #define EMULTYPE_NO_DECODE	    (1 << 0)
2101 #define EMULTYPE_TRAP_UD	    (1 << 1)
2102 #define EMULTYPE_SKIP		    (1 << 2)
2103 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2104 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2105 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2106 #define EMULTYPE_PF		    (1 << 6)
2107 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2108 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2109 
kvm_can_emulate_event_vectoring(int emul_type)2110 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2111 {
2112 	return !(emul_type & EMULTYPE_PF);
2113 }
2114 
2115 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2116 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2117 					void *insn, int insn_len);
2118 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2119 					  u64 *data, u8 ndata);
2120 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2121 
2122 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2123 
2124 void kvm_enable_efer_bits(u64);
2125 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2126 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2127 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2128 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2129 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2130 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2131 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2132 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2133 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2134 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2135 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2136 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2138 
2139 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2140 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2141 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2142 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2143 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2144 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2145 
2146 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2147 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2148 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2149 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2150 
2151 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2152 		    int reason, bool has_error_code, u32 error_code);
2153 
2154 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2155 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2157 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2158 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2159 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2161 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2162 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2163 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2164 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2165 
2166 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2167 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2168 
2169 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2170 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2171 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2172 
2173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2174 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2175 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2176 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2177 			   bool has_error_code, u32 error_code);
2178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2179 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2180 				    struct x86_exception *fault);
2181 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2182 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2183 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2184 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2185 				       int irq_source_id, int level)
2186 {
2187 	/* Logical OR for level trig interrupt */
2188 	if (level)
2189 		__set_bit(irq_source_id, irq_state);
2190 	else
2191 		__clear_bit(irq_source_id, irq_state);
2192 
2193 	return !!(*irq_state);
2194 }
2195 
2196 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2197 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2198 
2199 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2200 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2201 
2202 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2203 
2204 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2205 				       bool always_retry);
2206 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2207 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2208 						   gpa_t cr2_or_gpa)
2209 {
2210 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2211 }
2212 
2213 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2214 			ulong roots_to_free);
2215 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2216 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2217 			      struct x86_exception *exception);
2218 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2219 			       struct x86_exception *exception);
2220 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2221 				struct x86_exception *exception);
2222 
2223 bool kvm_apicv_activated(struct kvm *kvm);
2224 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2225 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2226 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2227 				      enum kvm_apicv_inhibit reason, bool set);
2228 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2229 				    enum kvm_apicv_inhibit reason, bool set);
2230 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2231 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2232 					 enum kvm_apicv_inhibit reason)
2233 {
2234 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2235 }
2236 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2237 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2238 					   enum kvm_apicv_inhibit reason)
2239 {
2240 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2241 }
2242 
2243 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2244 		       void *insn, int insn_len);
2245 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2246 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2247 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2248 			     u64 addr, unsigned long roots);
2249 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2250 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2251 
2252 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2253 		       int tdp_max_root_level, int tdp_huge_page_level);
2254 
2255 
2256 #ifdef CONFIG_KVM_PRIVATE_MEM
2257 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2258 #else
2259 #define kvm_arch_has_private_mem(kvm) false
2260 #endif
2261 
2262 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2263 
kvm_read_ldt(void)2264 static inline u16 kvm_read_ldt(void)
2265 {
2266 	u16 ldt;
2267 	asm("sldt %0" : "=g"(ldt));
2268 	return ldt;
2269 }
2270 
kvm_load_ldt(u16 sel)2271 static inline void kvm_load_ldt(u16 sel)
2272 {
2273 	asm("lldt %0" : : "rm"(sel));
2274 }
2275 
2276 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2277 static inline unsigned long read_msr(unsigned long msr)
2278 {
2279 	u64 value;
2280 
2281 	rdmsrl(msr, value);
2282 	return value;
2283 }
2284 #endif
2285 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2286 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2287 {
2288 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2289 }
2290 
2291 #define TSS_IOPB_BASE_OFFSET 0x66
2292 #define TSS_BASE_SIZE 0x68
2293 #define TSS_IOPB_SIZE (65536 / 8)
2294 #define TSS_REDIRECTION_SIZE (256 / 8)
2295 #define RMODE_TSS_SIZE							\
2296 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2297 
2298 enum {
2299 	TASK_SWITCH_CALL = 0,
2300 	TASK_SWITCH_IRET = 1,
2301 	TASK_SWITCH_JMP = 2,
2302 	TASK_SWITCH_GATE = 3,
2303 };
2304 
2305 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2306 
2307 #ifdef CONFIG_KVM_SMM
2308 #define HF_SMM_MASK		(1 << 1)
2309 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2310 
2311 # define KVM_MAX_NR_ADDRESS_SPACES	2
2312 /* SMM is currently unsupported for guests with private memory. */
2313 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2314 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2315 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2316 #else
2317 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2318 #endif
2319 
2320 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2321 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2322 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2323 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2324 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2325 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2326 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2327 
2328 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2329 		    unsigned long ipi_bitmap_high, u32 min,
2330 		    unsigned long icr, int op_64_bit);
2331 
2332 int kvm_add_user_return_msr(u32 msr);
2333 int kvm_find_user_return_msr(u32 msr);
2334 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2335 
kvm_is_supported_user_return_msr(u32 msr)2336 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2337 {
2338 	return kvm_find_user_return_msr(msr) >= 0;
2339 }
2340 
2341 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2342 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2343 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2344 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2345 
2346 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2347 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2348 
2349 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2350 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2351 				       unsigned long *vcpu_bitmap);
2352 
2353 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2354 				     struct kvm_async_pf *work);
2355 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2356 				 struct kvm_async_pf *work);
2357 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2358 			       struct kvm_async_pf *work);
2359 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2360 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2361 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2362 
2363 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2364 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2365 
2366 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2367 				     u32 size);
2368 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2369 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2370 
2371 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2372 			     struct kvm_vcpu **dest_vcpu);
2373 
2374 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2375 		     struct kvm_lapic_irq *irq);
2376 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2377 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2378 {
2379 	/* We can only post Fixed and LowPrio IRQs */
2380 	return (irq->delivery_mode == APIC_DM_FIXED ||
2381 		irq->delivery_mode == APIC_DM_LOWEST);
2382 }
2383 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2384 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2385 {
2386 	kvm_x86_call(vcpu_blocking)(vcpu);
2387 }
2388 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2389 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2390 {
2391 	kvm_x86_call(vcpu_unblocking)(vcpu);
2392 }
2393 
kvm_cpu_get_apicid(int mps_cpu)2394 static inline int kvm_cpu_get_apicid(int mps_cpu)
2395 {
2396 #ifdef CONFIG_X86_LOCAL_APIC
2397 	return default_cpu_present_to_apicid(mps_cpu);
2398 #else
2399 	WARN_ON_ONCE(1);
2400 	return BAD_APICID;
2401 #endif
2402 }
2403 
2404 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2405 
2406 #define KVM_CLOCK_VALID_FLAGS						\
2407 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2408 
2409 #define KVM_X86_VALID_QUIRKS			\
2410 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2411 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2412 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2413 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2414 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2415 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2416 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2417 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2418 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS)
2419 
2420 /*
2421  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2422  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2423  * remaining 31 lower bits must be 0 to preserve ABI.
2424  */
2425 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2426 
kvm_arch_has_irq_bypass(void)2427 static inline bool kvm_arch_has_irq_bypass(void)
2428 {
2429 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
2430 }
2431 
2432 #endif /* _ASM_X86_KVM_HOST_H */
2433