1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 #include <linux/lockdep.h>
32 #include <linux/list_sort.h>
33
34 #include <asm/machine.h>
35 #include <asm/isc.h>
36 #include <asm/airq.h>
37 #include <asm/facility.h>
38 #include <asm/pci_insn.h>
39 #include <asm/pci_clp.h>
40 #include <asm/pci_dma.h>
41
42 #include "pci_bus.h"
43 #include "pci_iov.h"
44
45 /* list of all detected zpci devices */
46 static LIST_HEAD(zpci_list);
47 static DEFINE_SPINLOCK(zpci_list_lock);
48
49 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
50 static DEFINE_SPINLOCK(zpci_domain_lock);
51
52 #define ZPCI_IOMAP_ENTRIES \
53 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
54 ZPCI_IOMAP_MAX_ENTRIES)
55
56 unsigned int s390_pci_no_rid;
57
58 static DEFINE_SPINLOCK(zpci_iomap_lock);
59 static unsigned long *zpci_iomap_bitmap;
60 struct zpci_iomap_entry *zpci_iomap_start;
61 EXPORT_SYMBOL_GPL(zpci_iomap_start);
62
63 DEFINE_STATIC_KEY_FALSE(have_mio);
64
65 static struct kmem_cache *zdev_fmb_cache;
66
67 /* AEN structures that must be preserved over KVM module re-insertion */
68 union zpci_sic_iib *zpci_aipb;
69 EXPORT_SYMBOL_GPL(zpci_aipb);
70 struct airq_iv *zpci_aif_sbv;
71 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
72
get_zdev_by_fid(u32 fid)73 struct zpci_dev *get_zdev_by_fid(u32 fid)
74 {
75 struct zpci_dev *tmp, *zdev = NULL;
76
77 spin_lock(&zpci_list_lock);
78 list_for_each_entry(tmp, &zpci_list, entry) {
79 if (tmp->fid == fid) {
80 zdev = tmp;
81 zpci_zdev_get(zdev);
82 break;
83 }
84 }
85 spin_unlock(&zpci_list_lock);
86 return zdev;
87 }
88
zpci_remove_reserved_devices(void)89 void zpci_remove_reserved_devices(void)
90 {
91 struct zpci_dev *tmp, *zdev;
92 enum zpci_state state;
93 LIST_HEAD(remove);
94
95 spin_lock(&zpci_list_lock);
96 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
97 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
98 !clp_get_state(zdev->fid, &state) &&
99 state == ZPCI_FN_STATE_RESERVED)
100 list_move_tail(&zdev->entry, &remove);
101 }
102 spin_unlock(&zpci_list_lock);
103
104 list_for_each_entry_safe(zdev, tmp, &remove, entry)
105 zpci_device_reserved(zdev);
106 }
107
pci_domain_nr(struct pci_bus * bus)108 int pci_domain_nr(struct pci_bus *bus)
109 {
110 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
111 }
112 EXPORT_SYMBOL_GPL(pci_domain_nr);
113
pci_proc_domain(struct pci_bus * bus)114 int pci_proc_domain(struct pci_bus *bus)
115 {
116 return pci_domain_nr(bus);
117 }
118 EXPORT_SYMBOL_GPL(pci_proc_domain);
119
120 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota,u8 * status)121 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
122 u64 base, u64 limit, u64 iota, u8 *status)
123 {
124 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
125 struct zpci_fib fib = {0};
126 u8 cc;
127
128 fib.pba = base;
129 /* Work around off by one in ISM virt device */
130 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
131 fib.pal = limit + (1 << 12);
132 else
133 fib.pal = limit;
134 fib.iota = iota;
135 fib.gd = zdev->gisa;
136 cc = zpci_mod_fc(req, &fib, status);
137 if (cc)
138 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
139 return cc;
140 }
141 EXPORT_SYMBOL_GPL(zpci_register_ioat);
142
143 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)144 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
145 {
146 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
147 struct zpci_fib fib = {0};
148 u8 cc, status;
149
150 fib.gd = zdev->gisa;
151
152 cc = zpci_mod_fc(req, &fib, &status);
153 if (cc)
154 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
155 return cc;
156 }
157
158 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)159 int zpci_fmb_enable_device(struct zpci_dev *zdev)
160 {
161 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
162 struct zpci_iommu_ctrs *ctrs;
163 struct zpci_fib fib = {0};
164 unsigned long flags;
165 u8 cc, status;
166
167 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
168 return -EINVAL;
169
170 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
171 if (!zdev->fmb)
172 return -ENOMEM;
173 WARN_ON((u64) zdev->fmb & 0xf);
174
175 /* reset software counters */
176 spin_lock_irqsave(&zdev->dom_lock, flags);
177 ctrs = zpci_get_iommu_ctrs(zdev);
178 if (ctrs) {
179 atomic64_set(&ctrs->mapped_pages, 0);
180 atomic64_set(&ctrs->unmapped_pages, 0);
181 atomic64_set(&ctrs->global_rpcits, 0);
182 atomic64_set(&ctrs->sync_map_rpcits, 0);
183 atomic64_set(&ctrs->sync_rpcits, 0);
184 }
185 spin_unlock_irqrestore(&zdev->dom_lock, flags);
186
187
188 fib.fmb_addr = virt_to_phys(zdev->fmb);
189 fib.gd = zdev->gisa;
190 cc = zpci_mod_fc(req, &fib, &status);
191 if (cc) {
192 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
193 zdev->fmb = NULL;
194 }
195 return cc ? -EIO : 0;
196 }
197
198 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)199 int zpci_fmb_disable_device(struct zpci_dev *zdev)
200 {
201 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
202 struct zpci_fib fib = {0};
203 u8 cc, status;
204
205 if (!zdev->fmb)
206 return -EINVAL;
207
208 fib.gd = zdev->gisa;
209
210 /* Function measurement is disabled if fmb address is zero */
211 cc = zpci_mod_fc(req, &fib, &status);
212 if (cc == 3) /* Function already gone. */
213 cc = 0;
214
215 if (!cc) {
216 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
217 zdev->fmb = NULL;
218 }
219 return cc ? -EIO : 0;
220 }
221
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)222 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
223 {
224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
225 u64 data;
226 int rc;
227
228 rc = __zpci_load(&data, req, offset);
229 if (!rc) {
230 data = le64_to_cpu((__force __le64) data);
231 data >>= (8 - len) * 8;
232 *val = (u32) data;
233 } else
234 *val = 0xffffffff;
235 return rc;
236 }
237
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)238 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
239 {
240 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
241 u64 data = val;
242 int rc;
243
244 data <<= (8 - len) * 8;
245 data = (__force u64) cpu_to_le64(data);
246 rc = __zpci_store(data, req, offset);
247 return rc;
248 }
249
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)250 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
251 resource_size_t size,
252 resource_size_t align)
253 {
254 return 0;
255 }
256
ioremap_prot(phys_addr_t phys_addr,size_t size,pgprot_t prot)257 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
258 pgprot_t prot)
259 {
260 /*
261 * When PCI MIO instructions are unavailable the "physical" address
262 * encodes a hint for accessing the PCI memory space it represents.
263 * Just pass it unchanged such that ioread/iowrite can decode it.
264 */
265 if (!static_branch_unlikely(&have_mio))
266 return (void __iomem *)phys_addr;
267
268 return generic_ioremap_prot(phys_addr, size, prot);
269 }
270 EXPORT_SYMBOL(ioremap_prot);
271
iounmap(volatile void __iomem * addr)272 void iounmap(volatile void __iomem *addr)
273 {
274 if (static_branch_likely(&have_mio))
275 generic_iounmap(addr);
276 }
277 EXPORT_SYMBOL(iounmap);
278
279 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)280 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
281 unsigned long offset, unsigned long max)
282 {
283 struct zpci_dev *zdev = to_zpci(pdev);
284 int idx;
285
286 idx = zdev->bars[bar].map_idx;
287 spin_lock(&zpci_iomap_lock);
288 /* Detect overrun */
289 WARN_ON(!++zpci_iomap_start[idx].count);
290 zpci_iomap_start[idx].fh = zdev->fh;
291 zpci_iomap_start[idx].bar = bar;
292 spin_unlock(&zpci_iomap_lock);
293
294 return (void __iomem *) ZPCI_ADDR(idx) + offset;
295 }
296
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)297 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
298 unsigned long offset,
299 unsigned long max)
300 {
301 unsigned long barsize = pci_resource_len(pdev, bar);
302 struct zpci_dev *zdev = to_zpci(pdev);
303 void __iomem *iova;
304
305 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
306 return iova ? iova + offset : iova;
307 }
308
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)309 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
310 unsigned long offset, unsigned long max)
311 {
312 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
313 return NULL;
314
315 if (static_branch_likely(&have_mio))
316 return pci_iomap_range_mio(pdev, bar, offset, max);
317 else
318 return pci_iomap_range_fh(pdev, bar, offset, max);
319 }
320 EXPORT_SYMBOL(pci_iomap_range);
321
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)322 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
323 {
324 return pci_iomap_range(dev, bar, 0, maxlen);
325 }
326 EXPORT_SYMBOL(pci_iomap);
327
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)328 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
329 unsigned long offset, unsigned long max)
330 {
331 unsigned long barsize = pci_resource_len(pdev, bar);
332 struct zpci_dev *zdev = to_zpci(pdev);
333 void __iomem *iova;
334
335 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
336 return iova ? iova + offset : iova;
337 }
338
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)339 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
340 unsigned long offset, unsigned long max)
341 {
342 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
343 return NULL;
344
345 if (static_branch_likely(&have_mio))
346 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
347 else
348 return pci_iomap_range_fh(pdev, bar, offset, max);
349 }
350 EXPORT_SYMBOL(pci_iomap_wc_range);
351
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)352 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
353 {
354 return pci_iomap_wc_range(dev, bar, 0, maxlen);
355 }
356 EXPORT_SYMBOL(pci_iomap_wc);
357
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)358 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
359 {
360 unsigned int idx = ZPCI_IDX(addr);
361
362 spin_lock(&zpci_iomap_lock);
363 /* Detect underrun */
364 WARN_ON(!zpci_iomap_start[idx].count);
365 if (!--zpci_iomap_start[idx].count) {
366 zpci_iomap_start[idx].fh = 0;
367 zpci_iomap_start[idx].bar = 0;
368 }
369 spin_unlock(&zpci_iomap_lock);
370 }
371
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)372 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
373 {
374 iounmap(addr);
375 }
376
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)377 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
378 {
379 if (static_branch_likely(&have_mio))
380 pci_iounmap_mio(pdev, addr);
381 else
382 pci_iounmap_fh(pdev, addr);
383 }
384 EXPORT_SYMBOL(pci_iounmap);
385
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)386 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
387 int size, u32 *val)
388 {
389 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
390
391 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
392 }
393
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)394 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
395 int size, u32 val)
396 {
397 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
398
399 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
400 }
401
402 static struct pci_ops pci_root_ops = {
403 .read = pci_read,
404 .write = pci_write,
405 };
406
zpci_map_resources(struct pci_dev * pdev)407 static void zpci_map_resources(struct pci_dev *pdev)
408 {
409 struct zpci_dev *zdev = to_zpci(pdev);
410 resource_size_t len;
411 int i;
412
413 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
414 len = pci_resource_len(pdev, i);
415 if (!len)
416 continue;
417
418 if (zpci_use_mio(zdev))
419 pdev->resource[i].start =
420 (resource_size_t __force) zdev->bars[i].mio_wt;
421 else
422 pdev->resource[i].start = (resource_size_t __force)
423 pci_iomap_range_fh(pdev, i, 0, 0);
424 pdev->resource[i].end = pdev->resource[i].start + len - 1;
425 }
426
427 zpci_iov_map_resources(pdev);
428 }
429
zpci_unmap_resources(struct pci_dev * pdev)430 static void zpci_unmap_resources(struct pci_dev *pdev)
431 {
432 struct zpci_dev *zdev = to_zpci(pdev);
433 resource_size_t len;
434 int i;
435
436 if (zpci_use_mio(zdev))
437 return;
438
439 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
440 len = pci_resource_len(pdev, i);
441 if (!len)
442 continue;
443 pci_iounmap_fh(pdev, (void __iomem __force *)
444 pdev->resource[i].start);
445 }
446 }
447
zpci_alloc_iomap(struct zpci_dev * zdev)448 static int zpci_alloc_iomap(struct zpci_dev *zdev)
449 {
450 unsigned long entry;
451
452 spin_lock(&zpci_iomap_lock);
453 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
454 if (entry == ZPCI_IOMAP_ENTRIES) {
455 spin_unlock(&zpci_iomap_lock);
456 return -ENOSPC;
457 }
458 set_bit(entry, zpci_iomap_bitmap);
459 spin_unlock(&zpci_iomap_lock);
460 return entry;
461 }
462
zpci_free_iomap(struct zpci_dev * zdev,int entry)463 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
464 {
465 spin_lock(&zpci_iomap_lock);
466 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
467 clear_bit(entry, zpci_iomap_bitmap);
468 spin_unlock(&zpci_iomap_lock);
469 }
470
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)471 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
472 {
473 int bar, idx;
474
475 spin_lock(&zpci_iomap_lock);
476 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
477 if (!zdev->bars[bar].size)
478 continue;
479 idx = zdev->bars[bar].map_idx;
480 if (!zpci_iomap_start[idx].count)
481 continue;
482 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
483 }
484 spin_unlock(&zpci_iomap_lock);
485 }
486
zpci_update_fh(struct zpci_dev * zdev,u32 fh)487 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
488 {
489 if (!fh || zdev->fh == fh)
490 return;
491
492 zdev->fh = fh;
493 if (zpci_use_mio(zdev))
494 return;
495 if (zdev->has_resources && zdev_enabled(zdev))
496 zpci_do_update_iomap_fh(zdev, fh);
497 }
498
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)499 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
500 unsigned long size, unsigned long flags)
501 {
502 struct resource *r;
503
504 r = kzalloc(sizeof(*r), GFP_KERNEL);
505 if (!r)
506 return NULL;
507
508 r->start = start;
509 r->end = r->start + size - 1;
510 r->flags = flags;
511 r->name = zdev->res_name;
512
513 if (request_resource(&iomem_resource, r)) {
514 kfree(r);
515 return NULL;
516 }
517 return r;
518 }
519
zpci_setup_bus_resources(struct zpci_dev * zdev)520 int zpci_setup_bus_resources(struct zpci_dev *zdev)
521 {
522 unsigned long addr, size, flags;
523 struct resource *res;
524 int i, entry;
525
526 snprintf(zdev->res_name, sizeof(zdev->res_name),
527 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
528
529 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
530 if (!zdev->bars[i].size)
531 continue;
532 entry = zpci_alloc_iomap(zdev);
533 if (entry < 0)
534 return entry;
535 zdev->bars[i].map_idx = entry;
536
537 /* only MMIO is supported */
538 flags = IORESOURCE_MEM;
539 if (zdev->bars[i].val & 8)
540 flags |= IORESOURCE_PREFETCH;
541 if (zdev->bars[i].val & 4)
542 flags |= IORESOURCE_MEM_64;
543
544 if (zpci_use_mio(zdev))
545 addr = (unsigned long) zdev->bars[i].mio_wt;
546 else
547 addr = ZPCI_ADDR(entry);
548 size = 1UL << zdev->bars[i].size;
549
550 res = __alloc_res(zdev, addr, size, flags);
551 if (!res) {
552 zpci_free_iomap(zdev, entry);
553 return -ENOMEM;
554 }
555 zdev->bars[i].res = res;
556 }
557 zdev->has_resources = 1;
558
559 return 0;
560 }
561
zpci_cleanup_bus_resources(struct zpci_dev * zdev)562 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
563 {
564 struct resource *res;
565 int i;
566
567 pci_lock_rescan_remove();
568 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
569 res = zdev->bars[i].res;
570 if (!res)
571 continue;
572
573 release_resource(res);
574 pci_bus_remove_resource(zdev->zbus->bus, res);
575 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
576 zdev->bars[i].res = NULL;
577 kfree(res);
578 }
579 zdev->has_resources = 0;
580 pci_unlock_rescan_remove();
581 }
582
pcibios_device_add(struct pci_dev * pdev)583 int pcibios_device_add(struct pci_dev *pdev)
584 {
585 struct zpci_dev *zdev = to_zpci(pdev);
586 struct resource *res;
587 int i;
588
589 /* The pdev has a reference to the zdev via its bus */
590 zpci_zdev_get(zdev);
591 if (pdev->is_physfn)
592 pdev->no_vf_scan = 1;
593
594 zpci_map_resources(pdev);
595
596 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
597 res = &pdev->resource[i];
598 if (res->parent || !res->flags)
599 continue;
600 pci_claim_resource(pdev, i);
601 }
602
603 return 0;
604 }
605
pcibios_release_device(struct pci_dev * pdev)606 void pcibios_release_device(struct pci_dev *pdev)
607 {
608 struct zpci_dev *zdev = to_zpci(pdev);
609
610 zpci_unmap_resources(pdev);
611 zpci_zdev_put(zdev);
612 }
613
pcibios_enable_device(struct pci_dev * pdev,int mask)614 int pcibios_enable_device(struct pci_dev *pdev, int mask)
615 {
616 struct zpci_dev *zdev = to_zpci(pdev);
617
618 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
619 zpci_fmb_enable_device(zdev);
620
621 return pci_enable_resources(pdev, mask);
622 }
623
pcibios_disable_device(struct pci_dev * pdev)624 void pcibios_disable_device(struct pci_dev *pdev)
625 {
626 struct zpci_dev *zdev = to_zpci(pdev);
627
628 zpci_fmb_disable_device(zdev);
629 zpci_debug_exit_device(zdev);
630 }
631
__zpci_register_domain(int domain)632 static int __zpci_register_domain(int domain)
633 {
634 spin_lock(&zpci_domain_lock);
635 if (test_bit(domain, zpci_domain)) {
636 spin_unlock(&zpci_domain_lock);
637 pr_err("Domain %04x is already assigned\n", domain);
638 return -EEXIST;
639 }
640 set_bit(domain, zpci_domain);
641 spin_unlock(&zpci_domain_lock);
642 return domain;
643 }
644
__zpci_alloc_domain(void)645 static int __zpci_alloc_domain(void)
646 {
647 int domain;
648
649 spin_lock(&zpci_domain_lock);
650 /*
651 * We can always auto allocate domains below ZPCI_NR_DEVICES.
652 * There is either a free domain or we have reached the maximum in
653 * which case we would have bailed earlier.
654 */
655 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
656 set_bit(domain, zpci_domain);
657 spin_unlock(&zpci_domain_lock);
658 return domain;
659 }
660
zpci_alloc_domain(int domain)661 int zpci_alloc_domain(int domain)
662 {
663 if (zpci_unique_uid) {
664 if (domain)
665 return __zpci_register_domain(domain);
666 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
667 update_uid_checking(false);
668 }
669 return __zpci_alloc_domain();
670 }
671
zpci_free_domain(int domain)672 void zpci_free_domain(int domain)
673 {
674 spin_lock(&zpci_domain_lock);
675 clear_bit(domain, zpci_domain);
676 spin_unlock(&zpci_domain_lock);
677 }
678
679
zpci_enable_device(struct zpci_dev * zdev)680 int zpci_enable_device(struct zpci_dev *zdev)
681 {
682 u32 fh = zdev->fh;
683 int rc = 0;
684
685 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
686 rc = -EIO;
687 else
688 zpci_update_fh(zdev, fh);
689 return rc;
690 }
691 EXPORT_SYMBOL_GPL(zpci_enable_device);
692
zpci_reenable_device(struct zpci_dev * zdev)693 int zpci_reenable_device(struct zpci_dev *zdev)
694 {
695 u8 status;
696 int rc;
697
698 rc = zpci_enable_device(zdev);
699 if (rc)
700 return rc;
701
702 rc = zpci_iommu_register_ioat(zdev, &status);
703 if (rc)
704 zpci_disable_device(zdev);
705
706 return rc;
707 }
708 EXPORT_SYMBOL_GPL(zpci_reenable_device);
709
zpci_disable_device(struct zpci_dev * zdev)710 int zpci_disable_device(struct zpci_dev *zdev)
711 {
712 u32 fh = zdev->fh;
713 int cc, rc = 0;
714
715 cc = clp_disable_fh(zdev, &fh);
716 if (!cc) {
717 zpci_update_fh(zdev, fh);
718 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
719 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
720 zdev->fid);
721 /* Function is already disabled - update handle */
722 rc = clp_refresh_fh(zdev->fid, &fh);
723 if (!rc) {
724 zpci_update_fh(zdev, fh);
725 rc = -EINVAL;
726 }
727 } else {
728 rc = -EIO;
729 }
730 return rc;
731 }
732 EXPORT_SYMBOL_GPL(zpci_disable_device);
733
734 /**
735 * zpci_hot_reset_device - perform a reset of the given zPCI function
736 * @zdev: the slot which should be reset
737 *
738 * Performs a low level reset of the zPCI function. The reset is low level in
739 * the sense that the zPCI function can be reset without detaching it from the
740 * common PCI subsystem. The reset may be performed while under control of
741 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
742 * table is reinstated at the end of the reset.
743 *
744 * After the reset the functions internal state is reset to an initial state
745 * equivalent to its state during boot when first probing a driver.
746 * Consequently after reset the PCI function requires re-initialization via the
747 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
748 * and enabling the function via e.g. pci_enable_device_flags(). The caller
749 * must guard against concurrent reset attempts.
750 *
751 * In most cases this function should not be called directly but through
752 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
753 * locking - asserted by lockdep.
754 *
755 * Return: 0 on success and an error value otherwise
756 */
zpci_hot_reset_device(struct zpci_dev * zdev)757 int zpci_hot_reset_device(struct zpci_dev *zdev)
758 {
759 int rc;
760
761 lockdep_assert_held(&zdev->state_lock);
762 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
763 if (zdev_enabled(zdev)) {
764 /* Disables device access, DMAs and IRQs (reset state) */
765 rc = zpci_disable_device(zdev);
766 /*
767 * Due to a z/VM vs LPAR inconsistency in the error state the
768 * FH may indicate an enabled device but disable says the
769 * device is already disabled don't treat it as an error here.
770 */
771 if (rc == -EINVAL)
772 rc = 0;
773 if (rc)
774 return rc;
775 }
776
777 rc = zpci_reenable_device(zdev);
778
779 return rc;
780 }
781
782 /**
783 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
784 * @fid: Function ID of the device to be created
785 * @fh: Current Function Handle of the device to be created
786 * @state: Initial state after creation either Standby or Configured
787 *
788 * Allocates a new struct zpci_dev and queries the platform for its details.
789 * If successful the device can subsequently be added to the zPCI subsystem
790 * using zpci_add_device().
791 *
792 * Returns: the zdev on success or an error pointer otherwise
793 */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)794 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
795 {
796 struct zpci_dev *zdev;
797 int rc;
798
799 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
800 if (!zdev)
801 return ERR_PTR(-ENOMEM);
802
803 /* FID and Function Handle are the static/dynamic identifiers */
804 zdev->fid = fid;
805 zdev->fh = fh;
806
807 /* Query function properties and update zdev */
808 rc = clp_query_pci_fn(zdev);
809 if (rc)
810 goto error;
811 zdev->state = state;
812
813 mutex_init(&zdev->state_lock);
814 mutex_init(&zdev->fmb_lock);
815 mutex_init(&zdev->kzdev_lock);
816
817 return zdev;
818
819 error:
820 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
821 kfree(zdev);
822 return ERR_PTR(rc);
823 }
824
825 /**
826 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
827 * @zdev: The zPCI device to be added
828 *
829 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
830 * a new one as necessary. A hotplug slot is created and events start to be handled.
831 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
832 * If adding the struct zpci_dev fails the device was not added and should be freed.
833 *
834 * Return: 0 on success, or an error code otherwise
835 */
zpci_add_device(struct zpci_dev * zdev)836 int zpci_add_device(struct zpci_dev *zdev)
837 {
838 int rc;
839
840 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
841 rc = zpci_init_iommu(zdev);
842 if (rc)
843 goto error;
844
845 rc = zpci_bus_device_register(zdev, &pci_root_ops);
846 if (rc)
847 goto error_destroy_iommu;
848
849 kref_init(&zdev->kref);
850 spin_lock(&zpci_list_lock);
851 list_add_tail(&zdev->entry, &zpci_list);
852 spin_unlock(&zpci_list_lock);
853 return 0;
854
855 error_destroy_iommu:
856 zpci_destroy_iommu(zdev);
857 error:
858 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
859 return rc;
860 }
861
zpci_is_device_configured(struct zpci_dev * zdev)862 bool zpci_is_device_configured(struct zpci_dev *zdev)
863 {
864 enum zpci_state state = zdev->state;
865
866 return state != ZPCI_FN_STATE_RESERVED &&
867 state != ZPCI_FN_STATE_STANDBY;
868 }
869
870 /**
871 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
872 * @zdev: The zpci_dev to be configured
873 * @fh: The general function handle supplied by the platform
874 *
875 * Given a device in the configuration state Configured, enables, scans and
876 * adds it to the common code PCI subsystem if possible. If any failure occurs,
877 * the zpci_dev is left disabled.
878 *
879 * Return: 0 on success, or an error code otherwise
880 */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)881 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
882 {
883 zpci_update_fh(zdev, fh);
884 return zpci_bus_scan_device(zdev);
885 }
886
887 /**
888 * zpci_deconfigure_device() - Deconfigure a zpci_dev
889 * @zdev: The zpci_dev to configure
890 *
891 * Deconfigure a zPCI function that is currently configured and possibly known
892 * to the common code PCI subsystem.
893 * If any failure occurs the device is left as is.
894 *
895 * Return: 0 on success, or an error code otherwise
896 */
zpci_deconfigure_device(struct zpci_dev * zdev)897 int zpci_deconfigure_device(struct zpci_dev *zdev)
898 {
899 int rc;
900
901 lockdep_assert_held(&zdev->state_lock);
902 if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
903 return 0;
904
905 if (zdev->zbus->bus)
906 zpci_bus_remove_device(zdev, false);
907
908 if (zdev_enabled(zdev)) {
909 rc = zpci_disable_device(zdev);
910 if (rc)
911 return rc;
912 }
913
914 rc = sclp_pci_deconfigure(zdev->fid);
915 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
916 if (rc)
917 return rc;
918 zdev->state = ZPCI_FN_STATE_STANDBY;
919
920 return 0;
921 }
922
923 /**
924 * zpci_device_reserved() - Mark device as reserved
925 * @zdev: the zpci_dev that was reserved
926 *
927 * Handle the case that a given zPCI function was reserved by another system.
928 * After a call to this function the zpci_dev can not be found via
929 * get_zdev_by_fid() anymore but may still be accessible via existing
930 * references though it will not be functional anymore.
931 */
zpci_device_reserved(struct zpci_dev * zdev)932 void zpci_device_reserved(struct zpci_dev *zdev)
933 {
934 /*
935 * Remove device from zpci_list as it is going away. This also
936 * makes sure we ignore subsequent zPCI events for this device.
937 */
938 spin_lock(&zpci_list_lock);
939 list_del(&zdev->entry);
940 spin_unlock(&zpci_list_lock);
941 zdev->state = ZPCI_FN_STATE_RESERVED;
942 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
943 zpci_zdev_put(zdev);
944 }
945
zpci_release_device(struct kref * kref)946 void zpci_release_device(struct kref *kref)
947 {
948 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
949
950 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
951
952 if (zdev->zbus->bus)
953 zpci_bus_remove_device(zdev, false);
954
955 if (zdev_enabled(zdev))
956 zpci_disable_device(zdev);
957
958 if (zdev->has_hp_slot)
959 zpci_exit_slot(zdev);
960
961 if (zdev->has_resources)
962 zpci_cleanup_bus_resources(zdev);
963
964 zpci_bus_device_unregister(zdev);
965 zpci_destroy_iommu(zdev);
966 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
967 kfree_rcu(zdev, rcu);
968 }
969
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)970 int zpci_report_error(struct pci_dev *pdev,
971 struct zpci_report_error_header *report)
972 {
973 struct zpci_dev *zdev = to_zpci(pdev);
974
975 return sclp_pci_report(report, zdev->fh, zdev->fid);
976 }
977 EXPORT_SYMBOL(zpci_report_error);
978
979 /**
980 * zpci_clear_error_state() - Clears the zPCI error state of the device
981 * @zdev: The zdev for which the zPCI error state should be reset
982 *
983 * Clear the zPCI error state of the device. If clearing the zPCI error state
984 * fails the device is left in the error state. In this case it may make sense
985 * to call zpci_io_perm_failure() on the associated pdev if it exists.
986 *
987 * Returns: 0 on success, -EIO otherwise
988 */
zpci_clear_error_state(struct zpci_dev * zdev)989 int zpci_clear_error_state(struct zpci_dev *zdev)
990 {
991 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
992 struct zpci_fib fib = {0};
993 u8 status;
994 int cc;
995
996 cc = zpci_mod_fc(req, &fib, &status);
997 if (cc) {
998 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
999 return -EIO;
1000 }
1001
1002 return 0;
1003 }
1004
1005 /**
1006 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1007 * @zdev: The zdev for which to unblock load/store access
1008 *
1009 * Re-enables load/store access for a PCI function in the error state while
1010 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1011 * if error recovery is possible while catching any rogue DMA access from the
1012 * device.
1013 *
1014 * Returns: 0 on success, -EIO otherwise
1015 */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1016 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1017 {
1018 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1019 struct zpci_fib fib = {0};
1020 u8 status;
1021 int cc;
1022
1023 cc = zpci_mod_fc(req, &fib, &status);
1024 if (cc) {
1025 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1026 return -EIO;
1027 }
1028
1029 return 0;
1030 }
1031
zpci_mem_init(void)1032 static int zpci_mem_init(void)
1033 {
1034 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1035 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1036
1037 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1038 __alignof__(struct zpci_fmb), 0, NULL);
1039 if (!zdev_fmb_cache)
1040 goto error_fmb;
1041
1042 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1043 sizeof(*zpci_iomap_start), GFP_KERNEL);
1044 if (!zpci_iomap_start)
1045 goto error_iomap;
1046
1047 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1048 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1049 if (!zpci_iomap_bitmap)
1050 goto error_iomap_bitmap;
1051
1052 if (static_branch_likely(&have_mio))
1053 clp_setup_writeback_mio();
1054
1055 return 0;
1056 error_iomap_bitmap:
1057 kfree(zpci_iomap_start);
1058 error_iomap:
1059 kmem_cache_destroy(zdev_fmb_cache);
1060 error_fmb:
1061 return -ENOMEM;
1062 }
1063
zpci_mem_exit(void)1064 static void zpci_mem_exit(void)
1065 {
1066 kfree(zpci_iomap_bitmap);
1067 kfree(zpci_iomap_start);
1068 kmem_cache_destroy(zdev_fmb_cache);
1069 }
1070
1071 static unsigned int s390_pci_probe __initdata = 1;
1072 unsigned int s390_pci_force_floating __initdata;
1073 static unsigned int s390_pci_initialized;
1074
pcibios_setup(char * str)1075 char * __init pcibios_setup(char *str)
1076 {
1077 if (!strcmp(str, "off")) {
1078 s390_pci_probe = 0;
1079 return NULL;
1080 }
1081 if (!strcmp(str, "nomio")) {
1082 clear_machine_feature(MFEATURE_PCI_MIO);
1083 return NULL;
1084 }
1085 if (!strcmp(str, "force_floating")) {
1086 s390_pci_force_floating = 1;
1087 return NULL;
1088 }
1089 if (!strcmp(str, "norid")) {
1090 s390_pci_no_rid = 1;
1091 return NULL;
1092 }
1093 return str;
1094 }
1095
zpci_is_enabled(void)1096 bool zpci_is_enabled(void)
1097 {
1098 return s390_pci_initialized;
1099 }
1100
zpci_cmp_rid(void * priv,const struct list_head * a,const struct list_head * b)1101 static int zpci_cmp_rid(void *priv, const struct list_head *a,
1102 const struct list_head *b)
1103 {
1104 struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1105 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1106
1107 /*
1108 * PCI functions without RID available maintain original order
1109 * between themselves but sort before those with RID.
1110 */
1111 if (za->rid == zb->rid)
1112 return za->rid_available > zb->rid_available;
1113 /*
1114 * PCI functions with RID sort by RID ascending.
1115 */
1116 return za->rid > zb->rid;
1117 }
1118
zpci_add_devices(struct list_head * scan_list)1119 static void zpci_add_devices(struct list_head *scan_list)
1120 {
1121 struct zpci_dev *zdev, *tmp;
1122
1123 list_sort(NULL, scan_list, &zpci_cmp_rid);
1124 list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1125 list_del_init(&zdev->entry);
1126 if (zpci_add_device(zdev))
1127 kfree(zdev);
1128 }
1129 }
1130
zpci_scan_devices(void)1131 int zpci_scan_devices(void)
1132 {
1133 LIST_HEAD(scan_list);
1134 int rc;
1135
1136 rc = clp_scan_pci_devices(&scan_list);
1137 if (rc)
1138 return rc;
1139
1140 zpci_add_devices(&scan_list);
1141 zpci_bus_scan_busses();
1142 return 0;
1143 }
1144
pci_base_init(void)1145 static int __init pci_base_init(void)
1146 {
1147 int rc;
1148
1149 if (!s390_pci_probe)
1150 return 0;
1151
1152 if (!test_facility(69) || !test_facility(71)) {
1153 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1154 return 0;
1155 }
1156
1157 if (test_machine_feature(MFEATURE_PCI_MIO)) {
1158 static_branch_enable(&have_mio);
1159 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1160 }
1161
1162 rc = zpci_debug_init();
1163 if (rc)
1164 goto out;
1165
1166 rc = zpci_mem_init();
1167 if (rc)
1168 goto out_mem;
1169
1170 rc = zpci_irq_init();
1171 if (rc)
1172 goto out_irq;
1173
1174 rc = zpci_scan_devices();
1175 if (rc)
1176 goto out_find;
1177
1178 s390_pci_initialized = 1;
1179 return 0;
1180
1181 out_find:
1182 zpci_irq_exit();
1183 out_irq:
1184 zpci_mem_exit();
1185 out_mem:
1186 zpci_debug_exit();
1187 out:
1188 return rc;
1189 }
1190 subsys_initcall_sync(pci_base_init);
1191