1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/cpufeature.h>
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/access-regs.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/machine.h>
43 #include <asm/ctlreg.h>
44 #include <asm/pfault.h>
45 #include <asm/diag.h>
46 #include <asm/facility.h>
47 #include <asm/fpu.h>
48 #include <asm/ipl.h>
49 #include <asm/setup.h>
50 #include <asm/irq.h>
51 #include <asm/tlbflush.h>
52 #include <asm/vtimer.h>
53 #include <asm/abs_lowcore.h>
54 #include <asm/sclp.h>
55 #include <asm/debug.h>
56 #include <asm/os_info.h>
57 #include <asm/sigp.h>
58 #include <asm/idle.h>
59 #include <asm/nmi.h>
60 #include <asm/stacktrace.h>
61 #include <asm/topology.h>
62 #include <asm/vdso.h>
63 #include <asm/maccess.h>
64 #include "entry.h"
65 
66 enum {
67 	ec_schedule = 0,
68 	ec_call_function_single,
69 	ec_stop_cpu,
70 	ec_mcck_pending,
71 	ec_irq_work,
72 };
73 
74 enum {
75 	CPU_STATE_STANDBY,
76 	CPU_STATE_CONFIGURED,
77 };
78 
79 static u8 boot_core_type;
80 DEFINE_PER_CPU(struct pcpu, pcpu_devices);
81 /*
82  * Pointer to the pcpu area of the boot CPU. This is required when a restart
83  * interrupt is triggered on an offline CPU. For that case accessing percpu
84  * data with the common primitives does not work, since the percpu offset is
85  * stored in a non existent lowcore.
86  */
87 static struct pcpu *ipl_pcpu;
88 
89 unsigned int smp_cpu_mt_shift;
90 EXPORT_SYMBOL(smp_cpu_mt_shift);
91 
92 unsigned int smp_cpu_mtid;
93 EXPORT_SYMBOL(smp_cpu_mtid);
94 
95 #ifdef CONFIG_CRASH_DUMP
96 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97 #endif
98 
99 static unsigned int smp_max_threads __initdata = -1U;
100 cpumask_t cpu_setup_mask;
101 
early_smt(char * s)102 static int __init early_smt(char *s)
103 {
104 	get_option(&s, &smp_max_threads);
105 	return 0;
106 }
107 early_param("smt", early_smt);
108 
109 /*
110  * The smp_cpu_state_mutex must be held when changing the state or polarization
111  * member of a pcpu data structure within the pcpu_devices array.
112  */
113 DEFINE_MUTEX(smp_cpu_state_mutex);
114 
115 /*
116  * Signal processor helper functions.
117  */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)118 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
119 {
120 	int cc;
121 
122 	while (1) {
123 		cc = __pcpu_sigp(addr, order, parm, NULL);
124 		if (cc != SIGP_CC_BUSY)
125 			return cc;
126 		cpu_relax();
127 	}
128 }
129 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)130 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
131 {
132 	int cc, retry;
133 
134 	for (retry = 0; ; retry++) {
135 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
136 		if (cc != SIGP_CC_BUSY)
137 			break;
138 		if (retry >= 3)
139 			udelay(10);
140 	}
141 	return cc;
142 }
143 
pcpu_stopped(struct pcpu * pcpu)144 static inline int pcpu_stopped(struct pcpu *pcpu)
145 {
146 	u32 status;
147 
148 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
149 			0, &status) != SIGP_CC_STATUS_STORED)
150 		return 0;
151 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
152 }
153 
pcpu_running(struct pcpu * pcpu)154 static inline int pcpu_running(struct pcpu *pcpu)
155 {
156 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
157 			0, NULL) != SIGP_CC_STATUS_STORED)
158 		return 1;
159 	/* Status stored condition code is equivalent to cpu not running. */
160 	return 0;
161 }
162 
163 /*
164  * Find struct pcpu by cpu address.
165  */
pcpu_find_address(const struct cpumask * mask,u16 address)166 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
167 {
168 	int cpu;
169 
170 	for_each_cpu(cpu, mask)
171 		if (per_cpu(pcpu_devices, cpu).address == address)
172 			return &per_cpu(pcpu_devices, cpu);
173 	return NULL;
174 }
175 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)176 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
177 {
178 	int order;
179 
180 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
181 		return;
182 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
183 	pcpu->ec_clk = get_tod_clock_fast();
184 	pcpu_sigp_retry(pcpu, order, 0);
185 }
186 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)187 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
188 {
189 	unsigned long async_stack, nodat_stack, mcck_stack;
190 	struct lowcore *lc;
191 
192 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
194 	async_stack = stack_alloc();
195 	mcck_stack = stack_alloc();
196 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
197 		goto out;
198 	memcpy(lc, get_lowcore(), 512);
199 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
200 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
201 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
202 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
203 	lc->cpu_nr = cpu;
204 	lc->spinlock_lockval = arch_spin_lockval(cpu);
205 	lc->spinlock_index = 0;
206 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
207 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
208 	lc->preempt_count = PREEMPT_DISABLED;
209 	if (nmi_alloc_mcesa(&lc->mcesad))
210 		goto out;
211 	if (abs_lowcore_map(cpu, lc, true))
212 		goto out_mcesa;
213 	lowcore_ptr[cpu] = lc;
214 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
215 	return 0;
216 
217 out_mcesa:
218 	nmi_free_mcesa(&lc->mcesad);
219 out:
220 	stack_free(mcck_stack);
221 	stack_free(async_stack);
222 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 	free_pages((unsigned long) lc, LC_ORDER);
224 	return -ENOMEM;
225 }
226 
pcpu_free_lowcore(struct pcpu * pcpu,int cpu)227 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
228 {
229 	unsigned long async_stack, nodat_stack, mcck_stack;
230 	struct lowcore *lc;
231 
232 	lc = lowcore_ptr[cpu];
233 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
234 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
235 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
236 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
237 	lowcore_ptr[cpu] = NULL;
238 	abs_lowcore_unmap(cpu);
239 	nmi_free_mcesa(&lc->mcesad);
240 	stack_free(async_stack);
241 	stack_free(mcck_stack);
242 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
243 	free_pages((unsigned long) lc, LC_ORDER);
244 }
245 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)246 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
247 {
248 	struct lowcore *lc, *abs_lc;
249 
250 	lc = lowcore_ptr[cpu];
251 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 	lc->cpu_nr = cpu;
254 	lc->pcpu = (unsigned long)pcpu;
255 	lc->restart_flags = RESTART_FLAG_CTLREGS;
256 	lc->spinlock_lockval = arch_spin_lockval(cpu);
257 	lc->spinlock_index = 0;
258 	lc->percpu_offset = __per_cpu_offset[cpu];
259 	lc->kernel_asce = get_lowcore()->kernel_asce;
260 	lc->user_asce = s390_invalid_asce;
261 	lc->user_timer = lc->system_timer =
262 		lc->steal_timer = lc->avg_steal_timer = 0;
263 	abs_lc = get_abs_lowcore();
264 	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
265 	put_abs_lowcore(abs_lc);
266 	lc->cregs_save_area[1] = lc->kernel_asce;
267 	lc->cregs_save_area[7] = lc->user_asce;
268 	save_access_regs((unsigned int *) lc->access_regs_save_area);
269 	arch_spin_lock_setup(cpu);
270 }
271 
pcpu_attach_task(int cpu,struct task_struct * tsk)272 static void pcpu_attach_task(int cpu, struct task_struct *tsk)
273 {
274 	struct lowcore *lc;
275 
276 	lc = lowcore_ptr[cpu];
277 	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
278 	lc->current_task = (unsigned long)tsk;
279 	lc->lpp = LPP_MAGIC;
280 	lc->current_pid = tsk->pid;
281 	lc->user_timer = tsk->thread.user_timer;
282 	lc->guest_timer = tsk->thread.guest_timer;
283 	lc->system_timer = tsk->thread.system_timer;
284 	lc->hardirq_timer = tsk->thread.hardirq_timer;
285 	lc->softirq_timer = tsk->thread.softirq_timer;
286 	lc->steal_timer = 0;
287 }
288 
pcpu_start_fn(int cpu,void (* func)(void *),void * data)289 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
290 {
291 	struct lowcore *lc;
292 
293 	lc = lowcore_ptr[cpu];
294 	lc->restart_stack = lc->kernel_stack;
295 	lc->restart_fn = (unsigned long) func;
296 	lc->restart_data = (unsigned long) data;
297 	lc->restart_source = -1U;
298 	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
299 }
300 
301 typedef void (pcpu_delegate_fn)(void *);
302 
303 /*
304  * Call function via PSW restart on pcpu and stop the current cpu.
305  */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)306 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
307 {
308 	func(data);	/* should not return */
309 }
310 
pcpu_delegate(struct pcpu * pcpu,int cpu,pcpu_delegate_fn * func,void * data,unsigned long stack)311 static void pcpu_delegate(struct pcpu *pcpu, int cpu,
312 			  pcpu_delegate_fn *func,
313 			  void *data, unsigned long stack)
314 {
315 	struct lowcore *lc, *abs_lc;
316 	unsigned int source_cpu;
317 
318 	lc = lowcore_ptr[cpu];
319 	source_cpu = stap();
320 
321 	if (pcpu->address == source_cpu) {
322 		call_on_stack(2, stack, void, __pcpu_delegate,
323 			      pcpu_delegate_fn *, func, void *, data);
324 	}
325 	/* Stop target cpu (if func returns this stops the current cpu). */
326 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
327 	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
328 	/* Restart func on the target cpu and stop the current cpu. */
329 	if (lc) {
330 		lc->restart_stack = stack;
331 		lc->restart_fn = (unsigned long)func;
332 		lc->restart_data = (unsigned long)data;
333 		lc->restart_source = source_cpu;
334 	} else {
335 		abs_lc = get_abs_lowcore();
336 		abs_lc->restart_stack = stack;
337 		abs_lc->restart_fn = (unsigned long)func;
338 		abs_lc->restart_data = (unsigned long)data;
339 		abs_lc->restart_source = source_cpu;
340 		put_abs_lowcore(abs_lc);
341 	}
342 	asm volatile(
343 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
344 		"	brc	2,0b	# busy, try again\n"
345 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
346 		"	brc	2,1b	# busy, try again\n"
347 		: : "d" (pcpu->address), "d" (source_cpu),
348 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
349 		: "0", "1", "cc");
350 	for (;;) ;
351 }
352 
353 /*
354  * Enable additional logical cpus for multi-threading.
355  */
pcpu_set_smt(unsigned int mtid)356 static int pcpu_set_smt(unsigned int mtid)
357 {
358 	int cc;
359 
360 	if (smp_cpu_mtid == mtid)
361 		return 0;
362 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
363 	if (cc == 0) {
364 		smp_cpu_mtid = mtid;
365 		smp_cpu_mt_shift = 0;
366 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
367 			smp_cpu_mt_shift++;
368 		per_cpu(pcpu_devices, 0).address = stap();
369 	}
370 	return cc;
371 }
372 
373 /*
374  * Call function on the ipl CPU.
375  */
smp_call_ipl_cpu(void (* func)(void *),void * data)376 void smp_call_ipl_cpu(void (*func)(void *), void *data)
377 {
378 	struct lowcore *lc = lowcore_ptr[0];
379 
380 	if (ipl_pcpu->address == stap())
381 		lc = get_lowcore();
382 
383 	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
384 }
385 
smp_find_processor_id(u16 address)386 int smp_find_processor_id(u16 address)
387 {
388 	int cpu;
389 
390 	for_each_present_cpu(cpu)
391 		if (per_cpu(pcpu_devices, cpu).address == address)
392 			return cpu;
393 	return -1;
394 }
395 
schedule_mcck_handler(void)396 void schedule_mcck_handler(void)
397 {
398 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
399 }
400 
arch_vcpu_is_preempted(int cpu)401 bool notrace arch_vcpu_is_preempted(int cpu)
402 {
403 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
404 		return false;
405 	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
406 		return false;
407 	return true;
408 }
409 EXPORT_SYMBOL(arch_vcpu_is_preempted);
410 
smp_yield_cpu(int cpu)411 void notrace smp_yield_cpu(int cpu)
412 {
413 	if (!machine_has_diag9c())
414 		return;
415 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
416 	asm volatile("diag %0,0,0x9c"
417 		     : : "d" (per_cpu(pcpu_devices, cpu).address));
418 }
419 EXPORT_SYMBOL_GPL(smp_yield_cpu);
420 
421 /*
422  * Send cpus emergency shutdown signal. This gives the cpus the
423  * opportunity to complete outstanding interrupts.
424  */
smp_emergency_stop(void)425 void notrace smp_emergency_stop(void)
426 {
427 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
428 	static cpumask_t cpumask;
429 	u64 end;
430 	int cpu;
431 
432 	arch_spin_lock(&lock);
433 	cpumask_copy(&cpumask, cpu_online_mask);
434 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
435 
436 	end = get_tod_clock() + (1000000UL << 12);
437 	for_each_cpu(cpu, &cpumask) {
438 		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
439 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
440 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
441 				   0, NULL) == SIGP_CC_BUSY &&
442 		       get_tod_clock() < end)
443 			cpu_relax();
444 	}
445 	while (get_tod_clock() < end) {
446 		for_each_cpu(cpu, &cpumask)
447 			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
448 				cpumask_clear_cpu(cpu, &cpumask);
449 		if (cpumask_empty(&cpumask))
450 			break;
451 		cpu_relax();
452 	}
453 	arch_spin_unlock(&lock);
454 }
455 NOKPROBE_SYMBOL(smp_emergency_stop);
456 
457 /*
458  * Stop all cpus but the current one.
459  */
smp_send_stop(void)460 void smp_send_stop(void)
461 {
462 	struct pcpu *pcpu;
463 	int cpu;
464 
465 	/* Disable all interrupts/machine checks */
466 	__load_psw_mask(PSW_KERNEL_BITS);
467 	trace_hardirqs_off();
468 
469 	debug_set_critical();
470 
471 	if (oops_in_progress)
472 		smp_emergency_stop();
473 
474 	/* stop all processors */
475 	for_each_online_cpu(cpu) {
476 		if (cpu == smp_processor_id())
477 			continue;
478 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
479 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
480 		while (!pcpu_stopped(pcpu))
481 			cpu_relax();
482 	}
483 }
484 
485 /*
486  * This is the main routine where commands issued by other
487  * cpus are handled.
488  */
smp_handle_ext_call(void)489 static void smp_handle_ext_call(void)
490 {
491 	unsigned long bits;
492 
493 	/* handle bit signal external calls */
494 	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
495 	if (test_bit(ec_stop_cpu, &bits))
496 		smp_stop_cpu();
497 	if (test_bit(ec_schedule, &bits))
498 		scheduler_ipi();
499 	if (test_bit(ec_call_function_single, &bits))
500 		generic_smp_call_function_single_interrupt();
501 	if (test_bit(ec_mcck_pending, &bits))
502 		s390_handle_mcck();
503 	if (test_bit(ec_irq_work, &bits))
504 		irq_work_run();
505 }
506 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)507 static void do_ext_call_interrupt(struct ext_code ext_code,
508 				  unsigned int param32, unsigned long param64)
509 {
510 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
511 	smp_handle_ext_call();
512 }
513 
arch_send_call_function_ipi_mask(const struct cpumask * mask)514 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
515 {
516 	int cpu;
517 
518 	for_each_cpu(cpu, mask)
519 		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
520 }
521 
arch_send_call_function_single_ipi(int cpu)522 void arch_send_call_function_single_ipi(int cpu)
523 {
524 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
525 }
526 
527 /*
528  * this function sends a 'reschedule' IPI to another CPU.
529  * it goes straight through and wastes no time serializing
530  * anything. Worst case is that we lose a reschedule ...
531  */
arch_smp_send_reschedule(int cpu)532 void arch_smp_send_reschedule(int cpu)
533 {
534 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
535 }
536 
537 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)538 void arch_irq_work_raise(void)
539 {
540 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
541 }
542 #endif
543 
544 #ifdef CONFIG_CRASH_DUMP
545 
smp_store_status(int cpu)546 int smp_store_status(int cpu)
547 {
548 	struct lowcore *lc;
549 	struct pcpu *pcpu;
550 	unsigned long pa;
551 
552 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
553 	lc = lowcore_ptr[cpu];
554 	pa = __pa(&lc->floating_pt_save_area);
555 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
556 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
557 		return -EIO;
558 	if (!cpu_has_vx() && !cpu_has_gs())
559 		return 0;
560 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
561 	if (cpu_has_gs())
562 		pa |= lc->mcesad & MCESA_LC_MASK;
563 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
564 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
565 		return -EIO;
566 	return 0;
567 }
568 
569 /*
570  * Collect CPU state of the previous, crashed system.
571  * There are three cases:
572  * 1) standard zfcp/nvme dump
573  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
574  *    The state for all CPUs except the boot CPU needs to be collected
575  *    with sigp stop-and-store-status. The boot CPU state is located in
576  *    the absolute lowcore of the memory stored in the HSA. The zcore code
577  *    will copy the boot CPU state from the HSA.
578  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
579  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
580  *    The state for all CPUs except the boot CPU needs to be collected
581  *    with sigp stop-and-store-status. The firmware or the boot-loader
582  *    stored the registers of the boot CPU in the absolute lowcore in the
583  *    memory of the old system.
584  * 3) kdump or stand-alone kdump for DASD
585  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
586  *    The state for all CPUs except the boot CPU needs to be collected
587  *    with sigp stop-and-store-status. The kexec code or the boot-loader
588  *    stored the registers of the boot CPU in the memory of the old system.
589  *
590  * Note that the legacy kdump mode where the old kernel stored the CPU states
591  * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
592  * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
593  * of the elfcorehdr= parameter.
594  */
dump_available(void)595 static bool dump_available(void)
596 {
597 	return oldmem_data.start || is_ipl_type_dump();
598 }
599 
smp_save_dump_ipl_cpu(void)600 void __init smp_save_dump_ipl_cpu(void)
601 {
602 	struct save_area *sa;
603 	void *regs;
604 
605 	if (!dump_available())
606 		return;
607 	sa = save_area_alloc(true);
608 	regs = memblock_alloc_or_panic(512, 8);
609 	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
610 	save_area_add_regs(sa, regs);
611 	memblock_free(regs, 512);
612 	if (cpu_has_vx())
613 		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
614 }
615 
smp_save_dump_secondary_cpus(void)616 void __init smp_save_dump_secondary_cpus(void)
617 {
618 	int addr, boot_cpu_addr, max_cpu_addr;
619 	struct save_area *sa;
620 	void *page;
621 
622 	if (!dump_available())
623 		return;
624 	/* Allocate a page as dumping area for the store status sigps */
625 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
626 	if (!page)
627 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
628 		      PAGE_SIZE, 1UL << 31);
629 
630 	/* Set multi-threading state to the previous system. */
631 	pcpu_set_smt(sclp.mtid_prev);
632 	boot_cpu_addr = stap();
633 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
634 	for (addr = 0; addr <= max_cpu_addr; addr++) {
635 		if (addr == boot_cpu_addr)
636 			continue;
637 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
638 		    SIGP_CC_NOT_OPERATIONAL)
639 			continue;
640 		sa = save_area_alloc(false);
641 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
642 		save_area_add_regs(sa, page);
643 		if (cpu_has_vx()) {
644 			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
645 			save_area_add_vxrs(sa, page);
646 		}
647 	}
648 	memblock_free(page, PAGE_SIZE);
649 	diag_amode31_ops.diag308_reset();
650 	pcpu_set_smt(0);
651 }
652 #endif /* CONFIG_CRASH_DUMP */
653 
smp_cpu_set_polarization(int cpu,int val)654 void smp_cpu_set_polarization(int cpu, int val)
655 {
656 	per_cpu(pcpu_devices, cpu).polarization = val;
657 }
658 
smp_cpu_get_polarization(int cpu)659 int smp_cpu_get_polarization(int cpu)
660 {
661 	return per_cpu(pcpu_devices, cpu).polarization;
662 }
663 
smp_cpu_set_capacity(int cpu,unsigned long val)664 void smp_cpu_set_capacity(int cpu, unsigned long val)
665 {
666 	per_cpu(pcpu_devices, cpu).capacity = val;
667 }
668 
smp_cpu_get_capacity(int cpu)669 unsigned long smp_cpu_get_capacity(int cpu)
670 {
671 	return per_cpu(pcpu_devices, cpu).capacity;
672 }
673 
smp_set_core_capacity(int cpu,unsigned long val)674 void smp_set_core_capacity(int cpu, unsigned long val)
675 {
676 	int i;
677 
678 	cpu = smp_get_base_cpu(cpu);
679 	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
680 		smp_cpu_set_capacity(i, val);
681 }
682 
smp_cpu_get_cpu_address(int cpu)683 int smp_cpu_get_cpu_address(int cpu)
684 {
685 	return per_cpu(pcpu_devices, cpu).address;
686 }
687 
smp_get_core_info(struct sclp_core_info * info,int early)688 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
689 {
690 	static int use_sigp_detection;
691 	int address;
692 
693 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
694 		use_sigp_detection = 1;
695 		for (address = 0;
696 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
697 		     address += (1U << smp_cpu_mt_shift)) {
698 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
699 			    SIGP_CC_NOT_OPERATIONAL)
700 				continue;
701 			info->core[info->configured].core_id =
702 				address >> smp_cpu_mt_shift;
703 			info->configured++;
704 		}
705 		info->combined = info->configured;
706 	}
707 }
708 
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)709 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
710 			bool configured, bool early)
711 {
712 	struct pcpu *pcpu;
713 	int cpu, nr, i;
714 	u16 address;
715 
716 	nr = 0;
717 	if (sclp.has_core_type && core->type != boot_core_type)
718 		return nr;
719 	cpu = cpumask_first(avail);
720 	address = core->core_id << smp_cpu_mt_shift;
721 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
722 		if (pcpu_find_address(cpu_present_mask, address + i))
723 			continue;
724 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
725 		pcpu->address = address + i;
726 		if (configured)
727 			pcpu->state = CPU_STATE_CONFIGURED;
728 		else
729 			pcpu->state = CPU_STATE_STANDBY;
730 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
731 		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
732 		set_cpu_present(cpu, true);
733 		if (!early && arch_register_cpu(cpu))
734 			set_cpu_present(cpu, false);
735 		else
736 			nr++;
737 		cpumask_clear_cpu(cpu, avail);
738 		cpu = cpumask_next(cpu, avail);
739 	}
740 	return nr;
741 }
742 
__smp_rescan_cpus(struct sclp_core_info * info,bool early)743 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
744 {
745 	struct sclp_core_entry *core;
746 	static cpumask_t avail;
747 	bool configured;
748 	u16 core_id;
749 	int nr, i;
750 
751 	cpus_read_lock();
752 	mutex_lock(&smp_cpu_state_mutex);
753 	nr = 0;
754 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
755 	/*
756 	 * Add IPL core first (which got logical CPU number 0) to make sure
757 	 * that all SMT threads get subsequent logical CPU numbers.
758 	 */
759 	if (early) {
760 		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
761 		for (i = 0; i < info->configured; i++) {
762 			core = &info->core[i];
763 			if (core->core_id == core_id) {
764 				nr += smp_add_core(core, &avail, true, early);
765 				break;
766 			}
767 		}
768 	}
769 	for (i = 0; i < info->combined; i++) {
770 		configured = i < info->configured;
771 		nr += smp_add_core(&info->core[i], &avail, configured, early);
772 	}
773 	mutex_unlock(&smp_cpu_state_mutex);
774 	cpus_read_unlock();
775 	return nr;
776 }
777 
smp_detect_cpus(void)778 void __init smp_detect_cpus(void)
779 {
780 	unsigned int cpu, mtid, c_cpus, s_cpus;
781 	struct sclp_core_info *info;
782 	u16 address;
783 
784 	/* Get CPU information */
785 	info = memblock_alloc_or_panic(sizeof(*info), 8);
786 	smp_get_core_info(info, 1);
787 	/* Find boot CPU type */
788 	if (sclp.has_core_type) {
789 		address = stap();
790 		for (cpu = 0; cpu < info->combined; cpu++)
791 			if (info->core[cpu].core_id == address) {
792 				/* The boot cpu dictates the cpu type. */
793 				boot_core_type = info->core[cpu].type;
794 				break;
795 			}
796 		if (cpu >= info->combined)
797 			panic("Could not find boot CPU type");
798 	}
799 
800 	/* Set multi-threading state for the current system */
801 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
802 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
803 	pcpu_set_smt(mtid);
804 	cpu_smt_set_num_threads(smp_cpu_mtid + 1, smp_cpu_mtid + 1);
805 
806 	/* Print number of CPUs */
807 	c_cpus = s_cpus = 0;
808 	for (cpu = 0; cpu < info->combined; cpu++) {
809 		if (sclp.has_core_type &&
810 		    info->core[cpu].type != boot_core_type)
811 			continue;
812 		if (cpu < info->configured)
813 			c_cpus += smp_cpu_mtid + 1;
814 		else
815 			s_cpus += smp_cpu_mtid + 1;
816 	}
817 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
818 	memblock_free(info, sizeof(*info));
819 }
820 
821 /*
822  *	Activate a secondary processor.
823  */
smp_start_secondary(void * cpuvoid)824 static void smp_start_secondary(void *cpuvoid)
825 {
826 	struct lowcore *lc = get_lowcore();
827 	int cpu = raw_smp_processor_id();
828 
829 	lc->last_update_clock = get_tod_clock();
830 	lc->restart_stack = (unsigned long)restart_stack;
831 	lc->restart_fn = (unsigned long)do_restart;
832 	lc->restart_data = 0;
833 	lc->restart_source = -1U;
834 	lc->restart_flags = 0;
835 	restore_access_regs(lc->access_regs_save_area);
836 	cpu_init();
837 	rcutree_report_cpu_starting(cpu);
838 	init_cpu_timer();
839 	vtime_init();
840 	vdso_getcpu_init();
841 	pfault_init();
842 	cpumask_set_cpu(cpu, &cpu_setup_mask);
843 	update_cpu_masks();
844 	notify_cpu_starting(cpu);
845 	if (topology_cpu_dedicated(cpu))
846 		set_cpu_flag(CIF_DEDICATED_CPU);
847 	else
848 		clear_cpu_flag(CIF_DEDICATED_CPU);
849 	set_cpu_online(cpu, true);
850 	inc_irq_stat(CPU_RST);
851 	local_irq_enable();
852 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
853 }
854 
855 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)856 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
857 {
858 	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
859 	int rc;
860 
861 	if (pcpu->state != CPU_STATE_CONFIGURED)
862 		return -EIO;
863 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
864 	    SIGP_CC_ORDER_CODE_ACCEPTED)
865 		return -EIO;
866 
867 	rc = pcpu_alloc_lowcore(pcpu, cpu);
868 	if (rc)
869 		return rc;
870 	/*
871 	 * Make sure global control register contents do not change
872 	 * until new CPU has initialized control registers.
873 	 */
874 	system_ctlreg_lock();
875 	pcpu_prepare_secondary(pcpu, cpu);
876 	pcpu_attach_task(cpu, tidle);
877 	pcpu_start_fn(cpu, smp_start_secondary, NULL);
878 	/* Wait until cpu puts itself in the online & active maps */
879 	while (!cpu_online(cpu))
880 		cpu_relax();
881 	system_ctlreg_unlock();
882 	return 0;
883 }
884 
885 static unsigned int setup_possible_cpus __initdata;
886 
_setup_possible_cpus(char * s)887 static int __init _setup_possible_cpus(char *s)
888 {
889 	get_option(&s, &setup_possible_cpus);
890 	return 0;
891 }
892 early_param("possible_cpus", _setup_possible_cpus);
893 
__cpu_disable(void)894 int __cpu_disable(void)
895 {
896 	struct ctlreg cregs[16];
897 	int cpu;
898 
899 	/* Handle possible pending IPIs */
900 	smp_handle_ext_call();
901 	cpu = smp_processor_id();
902 	set_cpu_online(cpu, false);
903 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
904 	update_cpu_masks();
905 	/* Disable pseudo page faults on this cpu. */
906 	pfault_fini();
907 	/* Disable interrupt sources via control register. */
908 	__local_ctl_store(0, 15, cregs);
909 	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
910 	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
911 	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
912 	__local_ctl_load(0, 15, cregs);
913 	clear_cpu_flag(CIF_NOHZ_DELAY);
914 	return 0;
915 }
916 
__cpu_die(unsigned int cpu)917 void __cpu_die(unsigned int cpu)
918 {
919 	struct pcpu *pcpu;
920 
921 	/* Wait until target cpu is down */
922 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
923 	while (!pcpu_stopped(pcpu))
924 		cpu_relax();
925 	pcpu_free_lowcore(pcpu, cpu);
926 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
927 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
928 	pcpu->flags = 0;
929 }
930 
cpu_die(void)931 void __noreturn cpu_die(void)
932 {
933 	idle_task_exit();
934 	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
935 	for (;;) ;
936 }
937 
smp_fill_possible_mask(void)938 void __init smp_fill_possible_mask(void)
939 {
940 	unsigned int possible, sclp_max, cpu;
941 
942 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
943 	sclp_max = min(smp_max_threads, sclp_max);
944 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
945 	possible = setup_possible_cpus ?: nr_cpu_ids;
946 	possible = min(possible, sclp_max);
947 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
948 		set_cpu_possible(cpu, true);
949 }
950 
smp_prepare_cpus(unsigned int max_cpus)951 void __init smp_prepare_cpus(unsigned int max_cpus)
952 {
953 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
954 		panic("Couldn't request external interrupt 0x1201");
955 	system_ctl_set_bit(0, 14);
956 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
957 		panic("Couldn't request external interrupt 0x1202");
958 	system_ctl_set_bit(0, 13);
959 	smp_rescan_cpus(true);
960 }
961 
smp_prepare_boot_cpu(void)962 void __init smp_prepare_boot_cpu(void)
963 {
964 	struct lowcore *lc = get_lowcore();
965 
966 	WARN_ON(!cpu_present(0) || !cpu_online(0));
967 	lc->percpu_offset = __per_cpu_offset[0];
968 	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
969 	ipl_pcpu->state = CPU_STATE_CONFIGURED;
970 	lc->pcpu = (unsigned long)ipl_pcpu;
971 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
972 	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
973 }
974 
smp_setup_processor_id(void)975 void __init smp_setup_processor_id(void)
976 {
977 	struct lowcore *lc = get_lowcore();
978 
979 	lc->cpu_nr = 0;
980 	per_cpu(pcpu_devices, 0).address = stap();
981 	lc->spinlock_lockval = arch_spin_lockval(0);
982 	lc->spinlock_index = 0;
983 }
984 
985 /*
986  * the frequency of the profiling timer can be changed
987  * by writing a multiplier value into /proc/profile.
988  *
989  * usually you want to run this on all CPUs ;)
990  */
setup_profiling_timer(unsigned int multiplier)991 int setup_profiling_timer(unsigned int multiplier)
992 {
993 	return 0;
994 }
995 
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)996 static ssize_t cpu_configure_show(struct device *dev,
997 				  struct device_attribute *attr, char *buf)
998 {
999 	ssize_t count;
1000 
1001 	mutex_lock(&smp_cpu_state_mutex);
1002 	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1003 	mutex_unlock(&smp_cpu_state_mutex);
1004 	return count;
1005 }
1006 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1007 static ssize_t cpu_configure_store(struct device *dev,
1008 				   struct device_attribute *attr,
1009 				   const char *buf, size_t count)
1010 {
1011 	struct pcpu *pcpu;
1012 	int cpu, val, rc, i;
1013 	char delim;
1014 
1015 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1016 		return -EINVAL;
1017 	if (val != 0 && val != 1)
1018 		return -EINVAL;
1019 	cpus_read_lock();
1020 	mutex_lock(&smp_cpu_state_mutex);
1021 	rc = -EBUSY;
1022 	/* disallow configuration changes of online cpus */
1023 	cpu = dev->id;
1024 	cpu = smp_get_base_cpu(cpu);
1025 	for (i = 0; i <= smp_cpu_mtid; i++)
1026 		if (cpu_online(cpu + i))
1027 			goto out;
1028 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1029 	rc = 0;
1030 	switch (val) {
1031 	case 0:
1032 		if (pcpu->state != CPU_STATE_CONFIGURED)
1033 			break;
1034 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1035 		if (rc)
1036 			break;
1037 		for (i = 0; i <= smp_cpu_mtid; i++) {
1038 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1039 				continue;
1040 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1041 			smp_cpu_set_polarization(cpu + i,
1042 						 POLARIZATION_UNKNOWN);
1043 		}
1044 		topology_expect_change();
1045 		break;
1046 	case 1:
1047 		if (pcpu->state != CPU_STATE_STANDBY)
1048 			break;
1049 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1050 		if (rc)
1051 			break;
1052 		for (i = 0; i <= smp_cpu_mtid; i++) {
1053 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1054 				continue;
1055 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1056 			smp_cpu_set_polarization(cpu + i,
1057 						 POLARIZATION_UNKNOWN);
1058 		}
1059 		topology_expect_change();
1060 		break;
1061 	default:
1062 		break;
1063 	}
1064 out:
1065 	mutex_unlock(&smp_cpu_state_mutex);
1066 	cpus_read_unlock();
1067 	return rc ? rc : count;
1068 }
1069 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1070 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1071 static ssize_t show_cpu_address(struct device *dev,
1072 				struct device_attribute *attr, char *buf)
1073 {
1074 	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1075 }
1076 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1077 
1078 static struct attribute *cpu_common_attrs[] = {
1079 	&dev_attr_configure.attr,
1080 	&dev_attr_address.attr,
1081 	NULL,
1082 };
1083 
1084 static struct attribute_group cpu_common_attr_group = {
1085 	.attrs = cpu_common_attrs,
1086 };
1087 
1088 static struct attribute *cpu_online_attrs[] = {
1089 	&dev_attr_idle_count.attr,
1090 	&dev_attr_idle_time_us.attr,
1091 	NULL,
1092 };
1093 
1094 static struct attribute_group cpu_online_attr_group = {
1095 	.attrs = cpu_online_attrs,
1096 };
1097 
smp_cpu_online(unsigned int cpu)1098 static int smp_cpu_online(unsigned int cpu)
1099 {
1100 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1101 
1102 	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1103 }
1104 
smp_cpu_pre_down(unsigned int cpu)1105 static int smp_cpu_pre_down(unsigned int cpu)
1106 {
1107 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1108 
1109 	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1110 	return 0;
1111 }
1112 
arch_cpu_is_hotpluggable(int cpu)1113 bool arch_cpu_is_hotpluggable(int cpu)
1114 {
1115 	return !!cpu;
1116 }
1117 
arch_register_cpu(int cpu)1118 int arch_register_cpu(int cpu)
1119 {
1120 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1121 	int rc;
1122 
1123 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1124 	rc = register_cpu(c, cpu);
1125 	if (rc)
1126 		goto out;
1127 	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1128 	if (rc)
1129 		goto out_cpu;
1130 	rc = topology_cpu_init(c);
1131 	if (rc)
1132 		goto out_topology;
1133 	return 0;
1134 
1135 out_topology:
1136 	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1137 out_cpu:
1138 	unregister_cpu(c);
1139 out:
1140 	return rc;
1141 }
1142 
smp_rescan_cpus(bool early)1143 int __ref smp_rescan_cpus(bool early)
1144 {
1145 	struct sclp_core_info *info;
1146 	int nr;
1147 
1148 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1149 	if (!info)
1150 		return -ENOMEM;
1151 	smp_get_core_info(info, 0);
1152 	nr = __smp_rescan_cpus(info, early);
1153 	kfree(info);
1154 	if (nr)
1155 		topology_schedule_update();
1156 	return 0;
1157 }
1158 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1159 static ssize_t __ref rescan_store(struct device *dev,
1160 				  struct device_attribute *attr,
1161 				  const char *buf,
1162 				  size_t count)
1163 {
1164 	int rc;
1165 
1166 	rc = lock_device_hotplug_sysfs();
1167 	if (rc)
1168 		return rc;
1169 	rc = smp_rescan_cpus(false);
1170 	unlock_device_hotplug();
1171 	return rc ? rc : count;
1172 }
1173 static DEVICE_ATTR_WO(rescan);
1174 
s390_smp_init(void)1175 static int __init s390_smp_init(void)
1176 {
1177 	struct device *dev_root;
1178 	int rc;
1179 
1180 	dev_root = bus_get_dev_root(&cpu_subsys);
1181 	if (dev_root) {
1182 		rc = device_create_file(dev_root, &dev_attr_rescan);
1183 		put_device(dev_root);
1184 		if (rc)
1185 			return rc;
1186 	}
1187 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1188 			       smp_cpu_online, smp_cpu_pre_down);
1189 	rc = rc <= 0 ? rc : 0;
1190 	return rc;
1191 }
1192 subsys_initcall(s390_smp_init);
1193