1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/cpufeature.h>
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/access-regs.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/machine.h>
43 #include <asm/ctlreg.h>
44 #include <asm/pfault.h>
45 #include <asm/diag.h>
46 #include <asm/facility.h>
47 #include <asm/fpu.h>
48 #include <asm/ipl.h>
49 #include <asm/setup.h>
50 #include <asm/irq.h>
51 #include <asm/tlbflush.h>
52 #include <asm/vtimer.h>
53 #include <asm/abs_lowcore.h>
54 #include <asm/sclp.h>
55 #include <asm/debug.h>
56 #include <asm/os_info.h>
57 #include <asm/sigp.h>
58 #include <asm/idle.h>
59 #include <asm/nmi.h>
60 #include <asm/stacktrace.h>
61 #include <asm/topology.h>
62 #include <asm/vdso.h>
63 #include <asm/maccess.h>
64 #include "entry.h"
65
66 enum {
67 ec_schedule = 0,
68 ec_call_function_single,
69 ec_stop_cpu,
70 ec_mcck_pending,
71 ec_irq_work,
72 };
73
74 enum {
75 CPU_STATE_STANDBY,
76 CPU_STATE_CONFIGURED,
77 };
78
79 static u8 boot_core_type;
80 DEFINE_PER_CPU(struct pcpu, pcpu_devices);
81 /*
82 * Pointer to the pcpu area of the boot CPU. This is required when a restart
83 * interrupt is triggered on an offline CPU. For that case accessing percpu
84 * data with the common primitives does not work, since the percpu offset is
85 * stored in a non existent lowcore.
86 */
87 static struct pcpu *ipl_pcpu;
88
89 unsigned int smp_cpu_mt_shift;
90 EXPORT_SYMBOL(smp_cpu_mt_shift);
91
92 unsigned int smp_cpu_mtid;
93 EXPORT_SYMBOL(smp_cpu_mtid);
94
95 #ifdef CONFIG_CRASH_DUMP
96 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97 #endif
98
99 static unsigned int smp_max_threads __initdata = -1U;
100 cpumask_t cpu_setup_mask;
101
early_smt(char * s)102 static int __init early_smt(char *s)
103 {
104 get_option(&s, &smp_max_threads);
105 return 0;
106 }
107 early_param("smt", early_smt);
108
109 /*
110 * The smp_cpu_state_mutex must be held when changing the state or polarization
111 * member of a pcpu data structure within the pcpu_devices array.
112 */
113 DEFINE_MUTEX(smp_cpu_state_mutex);
114
115 /*
116 * Signal processor helper functions.
117 */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)118 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
119 {
120 int cc;
121
122 while (1) {
123 cc = __pcpu_sigp(addr, order, parm, NULL);
124 if (cc != SIGP_CC_BUSY)
125 return cc;
126 cpu_relax();
127 }
128 }
129
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)130 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
131 {
132 int cc, retry;
133
134 for (retry = 0; ; retry++) {
135 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
136 if (cc != SIGP_CC_BUSY)
137 break;
138 if (retry >= 3)
139 udelay(10);
140 }
141 return cc;
142 }
143
pcpu_stopped(struct pcpu * pcpu)144 static inline int pcpu_stopped(struct pcpu *pcpu)
145 {
146 u32 status;
147
148 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
149 0, &status) != SIGP_CC_STATUS_STORED)
150 return 0;
151 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
152 }
153
pcpu_running(struct pcpu * pcpu)154 static inline int pcpu_running(struct pcpu *pcpu)
155 {
156 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
157 0, NULL) != SIGP_CC_STATUS_STORED)
158 return 1;
159 /* Status stored condition code is equivalent to cpu not running. */
160 return 0;
161 }
162
163 /*
164 * Find struct pcpu by cpu address.
165 */
pcpu_find_address(const struct cpumask * mask,u16 address)166 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
167 {
168 int cpu;
169
170 for_each_cpu(cpu, mask)
171 if (per_cpu(pcpu_devices, cpu).address == address)
172 return &per_cpu(pcpu_devices, cpu);
173 return NULL;
174 }
175
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)176 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
177 {
178 int order;
179
180 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
181 return;
182 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
183 pcpu->ec_clk = get_tod_clock_fast();
184 pcpu_sigp_retry(pcpu, order, 0);
185 }
186
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)187 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
188 {
189 unsigned long async_stack, nodat_stack, mcck_stack;
190 struct lowcore *lc;
191
192 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
194 async_stack = stack_alloc();
195 mcck_stack = stack_alloc();
196 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
197 goto out;
198 memcpy(lc, get_lowcore(), 512);
199 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
200 lc->async_stack = async_stack + STACK_INIT_OFFSET;
201 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
202 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
203 lc->cpu_nr = cpu;
204 lc->spinlock_lockval = arch_spin_lockval(cpu);
205 lc->spinlock_index = 0;
206 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
207 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
208 lc->preempt_count = PREEMPT_DISABLED;
209 if (nmi_alloc_mcesa(&lc->mcesad))
210 goto out;
211 if (abs_lowcore_map(cpu, lc, true))
212 goto out_mcesa;
213 lowcore_ptr[cpu] = lc;
214 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
215 return 0;
216
217 out_mcesa:
218 nmi_free_mcesa(&lc->mcesad);
219 out:
220 stack_free(mcck_stack);
221 stack_free(async_stack);
222 free_pages(nodat_stack, THREAD_SIZE_ORDER);
223 free_pages((unsigned long) lc, LC_ORDER);
224 return -ENOMEM;
225 }
226
pcpu_free_lowcore(struct pcpu * pcpu,int cpu)227 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
228 {
229 unsigned long async_stack, nodat_stack, mcck_stack;
230 struct lowcore *lc;
231
232 lc = lowcore_ptr[cpu];
233 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
234 async_stack = lc->async_stack - STACK_INIT_OFFSET;
235 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
236 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
237 lowcore_ptr[cpu] = NULL;
238 abs_lowcore_unmap(cpu);
239 nmi_free_mcesa(&lc->mcesad);
240 stack_free(async_stack);
241 stack_free(mcck_stack);
242 free_pages(nodat_stack, THREAD_SIZE_ORDER);
243 free_pages((unsigned long) lc, LC_ORDER);
244 }
245
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)246 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
247 {
248 struct lowcore *lc, *abs_lc;
249
250 lc = lowcore_ptr[cpu];
251 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253 lc->cpu_nr = cpu;
254 lc->pcpu = (unsigned long)pcpu;
255 lc->restart_flags = RESTART_FLAG_CTLREGS;
256 lc->spinlock_lockval = arch_spin_lockval(cpu);
257 lc->spinlock_index = 0;
258 lc->percpu_offset = __per_cpu_offset[cpu];
259 lc->kernel_asce = get_lowcore()->kernel_asce;
260 lc->user_asce = s390_invalid_asce;
261 lc->user_timer = lc->system_timer =
262 lc->steal_timer = lc->avg_steal_timer = 0;
263 abs_lc = get_abs_lowcore();
264 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
265 put_abs_lowcore(abs_lc);
266 lc->cregs_save_area[1] = lc->kernel_asce;
267 lc->cregs_save_area[7] = lc->user_asce;
268 save_access_regs((unsigned int *) lc->access_regs_save_area);
269 arch_spin_lock_setup(cpu);
270 }
271
pcpu_attach_task(int cpu,struct task_struct * tsk)272 static void pcpu_attach_task(int cpu, struct task_struct *tsk)
273 {
274 struct lowcore *lc;
275
276 lc = lowcore_ptr[cpu];
277 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
278 lc->current_task = (unsigned long)tsk;
279 lc->lpp = LPP_MAGIC;
280 lc->current_pid = tsk->pid;
281 lc->user_timer = tsk->thread.user_timer;
282 lc->guest_timer = tsk->thread.guest_timer;
283 lc->system_timer = tsk->thread.system_timer;
284 lc->hardirq_timer = tsk->thread.hardirq_timer;
285 lc->softirq_timer = tsk->thread.softirq_timer;
286 lc->steal_timer = 0;
287 }
288
pcpu_start_fn(int cpu,void (* func)(void *),void * data)289 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
290 {
291 struct lowcore *lc;
292
293 lc = lowcore_ptr[cpu];
294 lc->restart_stack = lc->kernel_stack;
295 lc->restart_fn = (unsigned long) func;
296 lc->restart_data = (unsigned long) data;
297 lc->restart_source = -1U;
298 pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
299 }
300
301 typedef void (pcpu_delegate_fn)(void *);
302
303 /*
304 * Call function via PSW restart on pcpu and stop the current cpu.
305 */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)306 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
307 {
308 func(data); /* should not return */
309 }
310
pcpu_delegate(struct pcpu * pcpu,int cpu,pcpu_delegate_fn * func,void * data,unsigned long stack)311 static void pcpu_delegate(struct pcpu *pcpu, int cpu,
312 pcpu_delegate_fn *func,
313 void *data, unsigned long stack)
314 {
315 struct lowcore *lc, *abs_lc;
316 unsigned int source_cpu;
317
318 lc = lowcore_ptr[cpu];
319 source_cpu = stap();
320
321 if (pcpu->address == source_cpu) {
322 call_on_stack(2, stack, void, __pcpu_delegate,
323 pcpu_delegate_fn *, func, void *, data);
324 }
325 /* Stop target cpu (if func returns this stops the current cpu). */
326 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
327 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
328 /* Restart func on the target cpu and stop the current cpu. */
329 if (lc) {
330 lc->restart_stack = stack;
331 lc->restart_fn = (unsigned long)func;
332 lc->restart_data = (unsigned long)data;
333 lc->restart_source = source_cpu;
334 } else {
335 abs_lc = get_abs_lowcore();
336 abs_lc->restart_stack = stack;
337 abs_lc->restart_fn = (unsigned long)func;
338 abs_lc->restart_data = (unsigned long)data;
339 abs_lc->restart_source = source_cpu;
340 put_abs_lowcore(abs_lc);
341 }
342 asm volatile(
343 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
344 " brc 2,0b # busy, try again\n"
345 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
346 " brc 2,1b # busy, try again\n"
347 : : "d" (pcpu->address), "d" (source_cpu),
348 "K" (SIGP_RESTART), "K" (SIGP_STOP)
349 : "0", "1", "cc");
350 for (;;) ;
351 }
352
353 /*
354 * Enable additional logical cpus for multi-threading.
355 */
pcpu_set_smt(unsigned int mtid)356 static int pcpu_set_smt(unsigned int mtid)
357 {
358 int cc;
359
360 if (smp_cpu_mtid == mtid)
361 return 0;
362 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
363 if (cc == 0) {
364 smp_cpu_mtid = mtid;
365 smp_cpu_mt_shift = 0;
366 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
367 smp_cpu_mt_shift++;
368 per_cpu(pcpu_devices, 0).address = stap();
369 }
370 return cc;
371 }
372
373 /*
374 * Call function on the ipl CPU.
375 */
smp_call_ipl_cpu(void (* func)(void *),void * data)376 void smp_call_ipl_cpu(void (*func)(void *), void *data)
377 {
378 struct lowcore *lc = lowcore_ptr[0];
379
380 if (ipl_pcpu->address == stap())
381 lc = get_lowcore();
382
383 pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
384 }
385
smp_find_processor_id(u16 address)386 int smp_find_processor_id(u16 address)
387 {
388 int cpu;
389
390 for_each_present_cpu(cpu)
391 if (per_cpu(pcpu_devices, cpu).address == address)
392 return cpu;
393 return -1;
394 }
395
schedule_mcck_handler(void)396 void schedule_mcck_handler(void)
397 {
398 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
399 }
400
arch_vcpu_is_preempted(int cpu)401 bool notrace arch_vcpu_is_preempted(int cpu)
402 {
403 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
404 return false;
405 if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
406 return false;
407 return true;
408 }
409 EXPORT_SYMBOL(arch_vcpu_is_preempted);
410
smp_yield_cpu(int cpu)411 void notrace smp_yield_cpu(int cpu)
412 {
413 if (!machine_has_diag9c())
414 return;
415 diag_stat_inc_norecursion(DIAG_STAT_X09C);
416 asm volatile("diag %0,0,0x9c"
417 : : "d" (per_cpu(pcpu_devices, cpu).address));
418 }
419 EXPORT_SYMBOL_GPL(smp_yield_cpu);
420
421 /*
422 * Send cpus emergency shutdown signal. This gives the cpus the
423 * opportunity to complete outstanding interrupts.
424 */
smp_emergency_stop(void)425 void notrace smp_emergency_stop(void)
426 {
427 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
428 static cpumask_t cpumask;
429 u64 end;
430 int cpu;
431
432 arch_spin_lock(&lock);
433 cpumask_copy(&cpumask, cpu_online_mask);
434 cpumask_clear_cpu(smp_processor_id(), &cpumask);
435
436 end = get_tod_clock() + (1000000UL << 12);
437 for_each_cpu(cpu, &cpumask) {
438 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
439 set_bit(ec_stop_cpu, &pcpu->ec_mask);
440 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
441 0, NULL) == SIGP_CC_BUSY &&
442 get_tod_clock() < end)
443 cpu_relax();
444 }
445 while (get_tod_clock() < end) {
446 for_each_cpu(cpu, &cpumask)
447 if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
448 cpumask_clear_cpu(cpu, &cpumask);
449 if (cpumask_empty(&cpumask))
450 break;
451 cpu_relax();
452 }
453 arch_spin_unlock(&lock);
454 }
455 NOKPROBE_SYMBOL(smp_emergency_stop);
456
457 /*
458 * Stop all cpus but the current one.
459 */
smp_send_stop(void)460 void smp_send_stop(void)
461 {
462 struct pcpu *pcpu;
463 int cpu;
464
465 /* Disable all interrupts/machine checks */
466 __load_psw_mask(PSW_KERNEL_BITS);
467 trace_hardirqs_off();
468
469 debug_set_critical();
470
471 if (oops_in_progress)
472 smp_emergency_stop();
473
474 /* stop all processors */
475 for_each_online_cpu(cpu) {
476 if (cpu == smp_processor_id())
477 continue;
478 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
479 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
480 while (!pcpu_stopped(pcpu))
481 cpu_relax();
482 }
483 }
484
485 /*
486 * This is the main routine where commands issued by other
487 * cpus are handled.
488 */
smp_handle_ext_call(void)489 static void smp_handle_ext_call(void)
490 {
491 unsigned long bits;
492
493 /* handle bit signal external calls */
494 bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
495 if (test_bit(ec_stop_cpu, &bits))
496 smp_stop_cpu();
497 if (test_bit(ec_schedule, &bits))
498 scheduler_ipi();
499 if (test_bit(ec_call_function_single, &bits))
500 generic_smp_call_function_single_interrupt();
501 if (test_bit(ec_mcck_pending, &bits))
502 s390_handle_mcck();
503 if (test_bit(ec_irq_work, &bits))
504 irq_work_run();
505 }
506
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)507 static void do_ext_call_interrupt(struct ext_code ext_code,
508 unsigned int param32, unsigned long param64)
509 {
510 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
511 smp_handle_ext_call();
512 }
513
arch_send_call_function_ipi_mask(const struct cpumask * mask)514 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
515 {
516 int cpu;
517
518 for_each_cpu(cpu, mask)
519 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
520 }
521
arch_send_call_function_single_ipi(int cpu)522 void arch_send_call_function_single_ipi(int cpu)
523 {
524 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
525 }
526
527 /*
528 * this function sends a 'reschedule' IPI to another CPU.
529 * it goes straight through and wastes no time serializing
530 * anything. Worst case is that we lose a reschedule ...
531 */
arch_smp_send_reschedule(int cpu)532 void arch_smp_send_reschedule(int cpu)
533 {
534 pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
535 }
536
537 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)538 void arch_irq_work_raise(void)
539 {
540 pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
541 }
542 #endif
543
544 #ifdef CONFIG_CRASH_DUMP
545
smp_store_status(int cpu)546 int smp_store_status(int cpu)
547 {
548 struct lowcore *lc;
549 struct pcpu *pcpu;
550 unsigned long pa;
551
552 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
553 lc = lowcore_ptr[cpu];
554 pa = __pa(&lc->floating_pt_save_area);
555 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
556 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
557 return -EIO;
558 if (!cpu_has_vx() && !cpu_has_gs())
559 return 0;
560 pa = lc->mcesad & MCESA_ORIGIN_MASK;
561 if (cpu_has_gs())
562 pa |= lc->mcesad & MCESA_LC_MASK;
563 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
564 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
565 return -EIO;
566 return 0;
567 }
568
569 /*
570 * Collect CPU state of the previous, crashed system.
571 * There are three cases:
572 * 1) standard zfcp/nvme dump
573 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
574 * The state for all CPUs except the boot CPU needs to be collected
575 * with sigp stop-and-store-status. The boot CPU state is located in
576 * the absolute lowcore of the memory stored in the HSA. The zcore code
577 * will copy the boot CPU state from the HSA.
578 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
579 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
580 * The state for all CPUs except the boot CPU needs to be collected
581 * with sigp stop-and-store-status. The firmware or the boot-loader
582 * stored the registers of the boot CPU in the absolute lowcore in the
583 * memory of the old system.
584 * 3) kdump or stand-alone kdump for DASD
585 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
586 * The state for all CPUs except the boot CPU needs to be collected
587 * with sigp stop-and-store-status. The kexec code or the boot-loader
588 * stored the registers of the boot CPU in the memory of the old system.
589 *
590 * Note that the legacy kdump mode where the old kernel stored the CPU states
591 * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
592 * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
593 * of the elfcorehdr= parameter.
594 */
dump_available(void)595 static bool dump_available(void)
596 {
597 return oldmem_data.start || is_ipl_type_dump();
598 }
599
smp_save_dump_ipl_cpu(void)600 void __init smp_save_dump_ipl_cpu(void)
601 {
602 struct save_area *sa;
603 void *regs;
604
605 if (!dump_available())
606 return;
607 sa = save_area_alloc(true);
608 regs = memblock_alloc_or_panic(512, 8);
609 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
610 save_area_add_regs(sa, regs);
611 memblock_free(regs, 512);
612 if (cpu_has_vx())
613 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
614 }
615
smp_save_dump_secondary_cpus(void)616 void __init smp_save_dump_secondary_cpus(void)
617 {
618 int addr, boot_cpu_addr, max_cpu_addr;
619 struct save_area *sa;
620 void *page;
621
622 if (!dump_available())
623 return;
624 /* Allocate a page as dumping area for the store status sigps */
625 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
626 if (!page)
627 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
628 PAGE_SIZE, 1UL << 31);
629
630 /* Set multi-threading state to the previous system. */
631 pcpu_set_smt(sclp.mtid_prev);
632 boot_cpu_addr = stap();
633 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
634 for (addr = 0; addr <= max_cpu_addr; addr++) {
635 if (addr == boot_cpu_addr)
636 continue;
637 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
638 SIGP_CC_NOT_OPERATIONAL)
639 continue;
640 sa = save_area_alloc(false);
641 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
642 save_area_add_regs(sa, page);
643 if (cpu_has_vx()) {
644 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
645 save_area_add_vxrs(sa, page);
646 }
647 }
648 memblock_free(page, PAGE_SIZE);
649 diag_amode31_ops.diag308_reset();
650 pcpu_set_smt(0);
651 }
652 #endif /* CONFIG_CRASH_DUMP */
653
smp_cpu_set_polarization(int cpu,int val)654 void smp_cpu_set_polarization(int cpu, int val)
655 {
656 per_cpu(pcpu_devices, cpu).polarization = val;
657 }
658
smp_cpu_get_polarization(int cpu)659 int smp_cpu_get_polarization(int cpu)
660 {
661 return per_cpu(pcpu_devices, cpu).polarization;
662 }
663
smp_cpu_set_capacity(int cpu,unsigned long val)664 void smp_cpu_set_capacity(int cpu, unsigned long val)
665 {
666 per_cpu(pcpu_devices, cpu).capacity = val;
667 }
668
smp_cpu_get_capacity(int cpu)669 unsigned long smp_cpu_get_capacity(int cpu)
670 {
671 return per_cpu(pcpu_devices, cpu).capacity;
672 }
673
smp_set_core_capacity(int cpu,unsigned long val)674 void smp_set_core_capacity(int cpu, unsigned long val)
675 {
676 int i;
677
678 cpu = smp_get_base_cpu(cpu);
679 for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
680 smp_cpu_set_capacity(i, val);
681 }
682
smp_cpu_get_cpu_address(int cpu)683 int smp_cpu_get_cpu_address(int cpu)
684 {
685 return per_cpu(pcpu_devices, cpu).address;
686 }
687
smp_get_core_info(struct sclp_core_info * info,int early)688 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
689 {
690 static int use_sigp_detection;
691 int address;
692
693 if (use_sigp_detection || sclp_get_core_info(info, early)) {
694 use_sigp_detection = 1;
695 for (address = 0;
696 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
697 address += (1U << smp_cpu_mt_shift)) {
698 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
699 SIGP_CC_NOT_OPERATIONAL)
700 continue;
701 info->core[info->configured].core_id =
702 address >> smp_cpu_mt_shift;
703 info->configured++;
704 }
705 info->combined = info->configured;
706 }
707 }
708
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)709 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
710 bool configured, bool early)
711 {
712 struct pcpu *pcpu;
713 int cpu, nr, i;
714 u16 address;
715
716 nr = 0;
717 if (sclp.has_core_type && core->type != boot_core_type)
718 return nr;
719 cpu = cpumask_first(avail);
720 address = core->core_id << smp_cpu_mt_shift;
721 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
722 if (pcpu_find_address(cpu_present_mask, address + i))
723 continue;
724 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
725 pcpu->address = address + i;
726 if (configured)
727 pcpu->state = CPU_STATE_CONFIGURED;
728 else
729 pcpu->state = CPU_STATE_STANDBY;
730 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
731 smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
732 set_cpu_present(cpu, true);
733 if (!early && arch_register_cpu(cpu))
734 set_cpu_present(cpu, false);
735 else
736 nr++;
737 cpumask_clear_cpu(cpu, avail);
738 cpu = cpumask_next(cpu, avail);
739 }
740 return nr;
741 }
742
__smp_rescan_cpus(struct sclp_core_info * info,bool early)743 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
744 {
745 struct sclp_core_entry *core;
746 static cpumask_t avail;
747 bool configured;
748 u16 core_id;
749 int nr, i;
750
751 cpus_read_lock();
752 mutex_lock(&smp_cpu_state_mutex);
753 nr = 0;
754 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
755 /*
756 * Add IPL core first (which got logical CPU number 0) to make sure
757 * that all SMT threads get subsequent logical CPU numbers.
758 */
759 if (early) {
760 core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
761 for (i = 0; i < info->configured; i++) {
762 core = &info->core[i];
763 if (core->core_id == core_id) {
764 nr += smp_add_core(core, &avail, true, early);
765 break;
766 }
767 }
768 }
769 for (i = 0; i < info->combined; i++) {
770 configured = i < info->configured;
771 nr += smp_add_core(&info->core[i], &avail, configured, early);
772 }
773 mutex_unlock(&smp_cpu_state_mutex);
774 cpus_read_unlock();
775 return nr;
776 }
777
smp_detect_cpus(void)778 void __init smp_detect_cpus(void)
779 {
780 unsigned int cpu, mtid, c_cpus, s_cpus;
781 struct sclp_core_info *info;
782 u16 address;
783
784 /* Get CPU information */
785 info = memblock_alloc_or_panic(sizeof(*info), 8);
786 smp_get_core_info(info, 1);
787 /* Find boot CPU type */
788 if (sclp.has_core_type) {
789 address = stap();
790 for (cpu = 0; cpu < info->combined; cpu++)
791 if (info->core[cpu].core_id == address) {
792 /* The boot cpu dictates the cpu type. */
793 boot_core_type = info->core[cpu].type;
794 break;
795 }
796 if (cpu >= info->combined)
797 panic("Could not find boot CPU type");
798 }
799
800 /* Set multi-threading state for the current system */
801 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
802 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
803 pcpu_set_smt(mtid);
804 cpu_smt_set_num_threads(smp_cpu_mtid + 1, smp_cpu_mtid + 1);
805
806 /* Print number of CPUs */
807 c_cpus = s_cpus = 0;
808 for (cpu = 0; cpu < info->combined; cpu++) {
809 if (sclp.has_core_type &&
810 info->core[cpu].type != boot_core_type)
811 continue;
812 if (cpu < info->configured)
813 c_cpus += smp_cpu_mtid + 1;
814 else
815 s_cpus += smp_cpu_mtid + 1;
816 }
817 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
818 memblock_free(info, sizeof(*info));
819 }
820
821 /*
822 * Activate a secondary processor.
823 */
smp_start_secondary(void * cpuvoid)824 static void smp_start_secondary(void *cpuvoid)
825 {
826 struct lowcore *lc = get_lowcore();
827 int cpu = raw_smp_processor_id();
828
829 lc->last_update_clock = get_tod_clock();
830 lc->restart_stack = (unsigned long)restart_stack;
831 lc->restart_fn = (unsigned long)do_restart;
832 lc->restart_data = 0;
833 lc->restart_source = -1U;
834 lc->restart_flags = 0;
835 restore_access_regs(lc->access_regs_save_area);
836 cpu_init();
837 rcutree_report_cpu_starting(cpu);
838 init_cpu_timer();
839 vtime_init();
840 vdso_getcpu_init();
841 pfault_init();
842 cpumask_set_cpu(cpu, &cpu_setup_mask);
843 update_cpu_masks();
844 notify_cpu_starting(cpu);
845 if (topology_cpu_dedicated(cpu))
846 set_cpu_flag(CIF_DEDICATED_CPU);
847 else
848 clear_cpu_flag(CIF_DEDICATED_CPU);
849 set_cpu_online(cpu, true);
850 inc_irq_stat(CPU_RST);
851 local_irq_enable();
852 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
853 }
854
855 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)856 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
857 {
858 struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
859 int rc;
860
861 if (pcpu->state != CPU_STATE_CONFIGURED)
862 return -EIO;
863 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
864 SIGP_CC_ORDER_CODE_ACCEPTED)
865 return -EIO;
866
867 rc = pcpu_alloc_lowcore(pcpu, cpu);
868 if (rc)
869 return rc;
870 /*
871 * Make sure global control register contents do not change
872 * until new CPU has initialized control registers.
873 */
874 system_ctlreg_lock();
875 pcpu_prepare_secondary(pcpu, cpu);
876 pcpu_attach_task(cpu, tidle);
877 pcpu_start_fn(cpu, smp_start_secondary, NULL);
878 /* Wait until cpu puts itself in the online & active maps */
879 while (!cpu_online(cpu))
880 cpu_relax();
881 system_ctlreg_unlock();
882 return 0;
883 }
884
885 static unsigned int setup_possible_cpus __initdata;
886
_setup_possible_cpus(char * s)887 static int __init _setup_possible_cpus(char *s)
888 {
889 get_option(&s, &setup_possible_cpus);
890 return 0;
891 }
892 early_param("possible_cpus", _setup_possible_cpus);
893
__cpu_disable(void)894 int __cpu_disable(void)
895 {
896 struct ctlreg cregs[16];
897 int cpu;
898
899 /* Handle possible pending IPIs */
900 smp_handle_ext_call();
901 cpu = smp_processor_id();
902 set_cpu_online(cpu, false);
903 cpumask_clear_cpu(cpu, &cpu_setup_mask);
904 update_cpu_masks();
905 /* Disable pseudo page faults on this cpu. */
906 pfault_fini();
907 /* Disable interrupt sources via control register. */
908 __local_ctl_store(0, 15, cregs);
909 cregs[0].val &= ~0x0000ee70UL; /* disable all external interrupts */
910 cregs[6].val &= ~0xff000000UL; /* disable all I/O interrupts */
911 cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
912 __local_ctl_load(0, 15, cregs);
913 clear_cpu_flag(CIF_NOHZ_DELAY);
914 return 0;
915 }
916
__cpu_die(unsigned int cpu)917 void __cpu_die(unsigned int cpu)
918 {
919 struct pcpu *pcpu;
920
921 /* Wait until target cpu is down */
922 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
923 while (!pcpu_stopped(pcpu))
924 cpu_relax();
925 pcpu_free_lowcore(pcpu, cpu);
926 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
927 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
928 pcpu->flags = 0;
929 }
930
cpu_die(void)931 void __noreturn cpu_die(void)
932 {
933 idle_task_exit();
934 pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
935 for (;;) ;
936 }
937
smp_fill_possible_mask(void)938 void __init smp_fill_possible_mask(void)
939 {
940 unsigned int possible, sclp_max, cpu;
941
942 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
943 sclp_max = min(smp_max_threads, sclp_max);
944 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
945 possible = setup_possible_cpus ?: nr_cpu_ids;
946 possible = min(possible, sclp_max);
947 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
948 set_cpu_possible(cpu, true);
949 }
950
smp_prepare_cpus(unsigned int max_cpus)951 void __init smp_prepare_cpus(unsigned int max_cpus)
952 {
953 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
954 panic("Couldn't request external interrupt 0x1201");
955 system_ctl_set_bit(0, 14);
956 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
957 panic("Couldn't request external interrupt 0x1202");
958 system_ctl_set_bit(0, 13);
959 smp_rescan_cpus(true);
960 }
961
smp_prepare_boot_cpu(void)962 void __init smp_prepare_boot_cpu(void)
963 {
964 struct lowcore *lc = get_lowcore();
965
966 WARN_ON(!cpu_present(0) || !cpu_online(0));
967 lc->percpu_offset = __per_cpu_offset[0];
968 ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
969 ipl_pcpu->state = CPU_STATE_CONFIGURED;
970 lc->pcpu = (unsigned long)ipl_pcpu;
971 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
972 smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
973 }
974
smp_setup_processor_id(void)975 void __init smp_setup_processor_id(void)
976 {
977 struct lowcore *lc = get_lowcore();
978
979 lc->cpu_nr = 0;
980 per_cpu(pcpu_devices, 0).address = stap();
981 lc->spinlock_lockval = arch_spin_lockval(0);
982 lc->spinlock_index = 0;
983 }
984
985 /*
986 * the frequency of the profiling timer can be changed
987 * by writing a multiplier value into /proc/profile.
988 *
989 * usually you want to run this on all CPUs ;)
990 */
setup_profiling_timer(unsigned int multiplier)991 int setup_profiling_timer(unsigned int multiplier)
992 {
993 return 0;
994 }
995
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)996 static ssize_t cpu_configure_show(struct device *dev,
997 struct device_attribute *attr, char *buf)
998 {
999 ssize_t count;
1000
1001 mutex_lock(&smp_cpu_state_mutex);
1002 count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1003 mutex_unlock(&smp_cpu_state_mutex);
1004 return count;
1005 }
1006
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1007 static ssize_t cpu_configure_store(struct device *dev,
1008 struct device_attribute *attr,
1009 const char *buf, size_t count)
1010 {
1011 struct pcpu *pcpu;
1012 int cpu, val, rc, i;
1013 char delim;
1014
1015 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1016 return -EINVAL;
1017 if (val != 0 && val != 1)
1018 return -EINVAL;
1019 cpus_read_lock();
1020 mutex_lock(&smp_cpu_state_mutex);
1021 rc = -EBUSY;
1022 /* disallow configuration changes of online cpus */
1023 cpu = dev->id;
1024 cpu = smp_get_base_cpu(cpu);
1025 for (i = 0; i <= smp_cpu_mtid; i++)
1026 if (cpu_online(cpu + i))
1027 goto out;
1028 pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1029 rc = 0;
1030 switch (val) {
1031 case 0:
1032 if (pcpu->state != CPU_STATE_CONFIGURED)
1033 break;
1034 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1035 if (rc)
1036 break;
1037 for (i = 0; i <= smp_cpu_mtid; i++) {
1038 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1039 continue;
1040 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1041 smp_cpu_set_polarization(cpu + i,
1042 POLARIZATION_UNKNOWN);
1043 }
1044 topology_expect_change();
1045 break;
1046 case 1:
1047 if (pcpu->state != CPU_STATE_STANDBY)
1048 break;
1049 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1050 if (rc)
1051 break;
1052 for (i = 0; i <= smp_cpu_mtid; i++) {
1053 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1054 continue;
1055 per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1056 smp_cpu_set_polarization(cpu + i,
1057 POLARIZATION_UNKNOWN);
1058 }
1059 topology_expect_change();
1060 break;
1061 default:
1062 break;
1063 }
1064 out:
1065 mutex_unlock(&smp_cpu_state_mutex);
1066 cpus_read_unlock();
1067 return rc ? rc : count;
1068 }
1069 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1070
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1071 static ssize_t show_cpu_address(struct device *dev,
1072 struct device_attribute *attr, char *buf)
1073 {
1074 return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1075 }
1076 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1077
1078 static struct attribute *cpu_common_attrs[] = {
1079 &dev_attr_configure.attr,
1080 &dev_attr_address.attr,
1081 NULL,
1082 };
1083
1084 static struct attribute_group cpu_common_attr_group = {
1085 .attrs = cpu_common_attrs,
1086 };
1087
1088 static struct attribute *cpu_online_attrs[] = {
1089 &dev_attr_idle_count.attr,
1090 &dev_attr_idle_time_us.attr,
1091 NULL,
1092 };
1093
1094 static struct attribute_group cpu_online_attr_group = {
1095 .attrs = cpu_online_attrs,
1096 };
1097
smp_cpu_online(unsigned int cpu)1098 static int smp_cpu_online(unsigned int cpu)
1099 {
1100 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1101
1102 return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1103 }
1104
smp_cpu_pre_down(unsigned int cpu)1105 static int smp_cpu_pre_down(unsigned int cpu)
1106 {
1107 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1108
1109 sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1110 return 0;
1111 }
1112
arch_cpu_is_hotpluggable(int cpu)1113 bool arch_cpu_is_hotpluggable(int cpu)
1114 {
1115 return !!cpu;
1116 }
1117
arch_register_cpu(int cpu)1118 int arch_register_cpu(int cpu)
1119 {
1120 struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1121 int rc;
1122
1123 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1124 rc = register_cpu(c, cpu);
1125 if (rc)
1126 goto out;
1127 rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1128 if (rc)
1129 goto out_cpu;
1130 rc = topology_cpu_init(c);
1131 if (rc)
1132 goto out_topology;
1133 return 0;
1134
1135 out_topology:
1136 sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1137 out_cpu:
1138 unregister_cpu(c);
1139 out:
1140 return rc;
1141 }
1142
smp_rescan_cpus(bool early)1143 int __ref smp_rescan_cpus(bool early)
1144 {
1145 struct sclp_core_info *info;
1146 int nr;
1147
1148 info = kzalloc(sizeof(*info), GFP_KERNEL);
1149 if (!info)
1150 return -ENOMEM;
1151 smp_get_core_info(info, 0);
1152 nr = __smp_rescan_cpus(info, early);
1153 kfree(info);
1154 if (nr)
1155 topology_schedule_update();
1156 return 0;
1157 }
1158
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1159 static ssize_t __ref rescan_store(struct device *dev,
1160 struct device_attribute *attr,
1161 const char *buf,
1162 size_t count)
1163 {
1164 int rc;
1165
1166 rc = lock_device_hotplug_sysfs();
1167 if (rc)
1168 return rc;
1169 rc = smp_rescan_cpus(false);
1170 unlock_device_hotplug();
1171 return rc ? rc : count;
1172 }
1173 static DEVICE_ATTR_WO(rescan);
1174
s390_smp_init(void)1175 static int __init s390_smp_init(void)
1176 {
1177 struct device *dev_root;
1178 int rc;
1179
1180 dev_root = bus_get_dev_root(&cpu_subsys);
1181 if (dev_root) {
1182 rc = device_create_file(dev_root, &dev_attr_rescan);
1183 put_device(dev_root);
1184 if (rc)
1185 return rc;
1186 }
1187 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1188 smp_cpu_online, smp_cpu_pre_down);
1189 rc = rc <= 0 ? rc : 0;
1190 return rc;
1191 }
1192 subsys_initcall(s390_smp_init);
1193