1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kprobes: " fmt
11
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/stop_machine.h>
16 #include <linux/cpufeature.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <linux/execmem.h>
25 #include <asm/text-patching.h>
26 #include <asm/set_memory.h>
27 #include <asm/sections.h>
28 #include <asm/dis.h>
29 #include "entry.h"
30
31 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
32 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
33
34 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
35
alloc_insn_page(void)36 void *alloc_insn_page(void)
37 {
38 void *page;
39
40 page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
41 if (!page)
42 return NULL;
43 set_memory_rox((unsigned long)page, 1);
44 return page;
45 }
46
copy_instruction(struct kprobe * p)47 static void copy_instruction(struct kprobe *p)
48 {
49 kprobe_opcode_t insn[MAX_INSN_SIZE];
50 s64 disp, new_disp;
51 u64 addr, new_addr;
52 unsigned int len;
53
54 len = insn_length(*p->addr >> 8);
55 memcpy(&insn, p->addr, len);
56 p->opcode = insn[0];
57 if (probe_is_insn_relative_long(&insn[0])) {
58 /*
59 * For pc-relative instructions in RIL-b or RIL-c format patch
60 * the RI2 displacement field. The insn slot for the to be
61 * patched instruction is within the same 4GB area like the
62 * original instruction. Therefore the new displacement will
63 * always fit.
64 */
65 disp = *(s32 *)&insn[1];
66 addr = (u64)(unsigned long)p->addr;
67 new_addr = (u64)(unsigned long)p->ainsn.insn;
68 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
69 *(s32 *)&insn[1] = new_disp;
70 }
71 s390_kernel_write(p->ainsn.insn, &insn, len);
72 }
73 NOKPROBE_SYMBOL(copy_instruction);
74
75 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)76 static bool can_probe(unsigned long paddr)
77 {
78 unsigned long addr, offset = 0;
79 kprobe_opcode_t insn;
80 struct kprobe *kp;
81
82 if (paddr & 0x01)
83 return false;
84
85 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
86 return false;
87
88 /* Decode instructions */
89 addr = paddr - offset;
90 while (addr < paddr) {
91 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
92 return false;
93
94 if (insn >> 8 == 0) {
95 if (insn != BREAKPOINT_INSTRUCTION) {
96 /*
97 * Note that QEMU inserts opcode 0x0000 to implement
98 * software breakpoints for guests. Since the size of
99 * the original instruction is unknown, stop following
100 * instructions and prevent setting a kprobe.
101 */
102 return false;
103 }
104 /*
105 * Check if the instruction has been modified by another
106 * kprobe, in which case the original instruction is
107 * decoded.
108 */
109 kp = get_kprobe((void *)addr);
110 if (!kp) {
111 /* not a kprobe */
112 return false;
113 }
114 insn = kp->opcode;
115 }
116 addr += insn_length(insn >> 8);
117 }
118 return addr == paddr;
119 }
120
arch_prepare_kprobe(struct kprobe * p)121 int arch_prepare_kprobe(struct kprobe *p)
122 {
123 if (!can_probe((unsigned long)p->addr))
124 return -EINVAL;
125 /* Make sure the probe isn't going on a difficult instruction */
126 if (probe_is_prohibited_opcode(p->addr))
127 return -EINVAL;
128 p->ainsn.insn = get_insn_slot();
129 if (!p->ainsn.insn)
130 return -ENOMEM;
131 copy_instruction(p);
132 return 0;
133 }
134 NOKPROBE_SYMBOL(arch_prepare_kprobe);
135
136 struct swap_insn_args {
137 struct kprobe *p;
138 unsigned int arm_kprobe : 1;
139 };
140
swap_instruction(void * data)141 static int swap_instruction(void *data)
142 {
143 struct swap_insn_args *args = data;
144 struct kprobe *p = args->p;
145 u16 opc;
146
147 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
148 s390_kernel_write(p->addr, &opc, sizeof(opc));
149 return 0;
150 }
151 NOKPROBE_SYMBOL(swap_instruction);
152
arch_arm_kprobe(struct kprobe * p)153 void arch_arm_kprobe(struct kprobe *p)
154 {
155 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
156
157 if (cpu_has_seq_insn()) {
158 swap_instruction(&args);
159 text_poke_sync();
160 } else {
161 stop_machine_cpuslocked(swap_instruction, &args, NULL);
162 }
163 }
164 NOKPROBE_SYMBOL(arch_arm_kprobe);
165
arch_disarm_kprobe(struct kprobe * p)166 void arch_disarm_kprobe(struct kprobe *p)
167 {
168 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
169
170 if (cpu_has_seq_insn()) {
171 swap_instruction(&args);
172 text_poke_sync();
173 } else {
174 stop_machine_cpuslocked(swap_instruction, &args, NULL);
175 }
176 }
177 NOKPROBE_SYMBOL(arch_disarm_kprobe);
178
arch_remove_kprobe(struct kprobe * p)179 void arch_remove_kprobe(struct kprobe *p)
180 {
181 if (!p->ainsn.insn)
182 return;
183 free_insn_slot(p->ainsn.insn, 0);
184 p->ainsn.insn = NULL;
185 }
186 NOKPROBE_SYMBOL(arch_remove_kprobe);
187
enable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)188 static void enable_singlestep(struct kprobe_ctlblk *kcb,
189 struct pt_regs *regs,
190 unsigned long ip)
191 {
192 union {
193 struct ctlreg regs[3];
194 struct {
195 struct ctlreg control;
196 struct ctlreg start;
197 struct ctlreg end;
198 };
199 } per_kprobe;
200
201 /* Set up the PER control registers %cr9-%cr11 */
202 per_kprobe.control.val = PER_EVENT_IFETCH;
203 per_kprobe.start.val = ip;
204 per_kprobe.end.val = ip;
205
206 /* Save control regs and psw mask */
207 __local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
208 kcb->kprobe_saved_imask = regs->psw.mask &
209 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
210
211 /* Set PER control regs, turns on single step for the given address */
212 __local_ctl_load(9, 11, per_kprobe.regs);
213 regs->psw.mask |= PSW_MASK_PER;
214 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
215 regs->psw.addr = ip;
216 }
217 NOKPROBE_SYMBOL(enable_singlestep);
218
disable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)219 static void disable_singlestep(struct kprobe_ctlblk *kcb,
220 struct pt_regs *regs,
221 unsigned long ip)
222 {
223 /* Restore control regs and psw mask, set new psw address */
224 __local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
225 regs->psw.mask &= ~PSW_MASK_PER;
226 regs->psw.mask |= kcb->kprobe_saved_imask;
227 regs->psw.addr = ip;
228 }
229 NOKPROBE_SYMBOL(disable_singlestep);
230
231 /*
232 * Activate a kprobe by storing its pointer to current_kprobe. The
233 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
234 * two kprobes can be active, see KPROBE_REENTER.
235 */
push_kprobe(struct kprobe_ctlblk * kcb,struct kprobe * p)236 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
237 {
238 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
239 kcb->prev_kprobe.status = kcb->kprobe_status;
240 __this_cpu_write(current_kprobe, p);
241 }
242 NOKPROBE_SYMBOL(push_kprobe);
243
244 /*
245 * Deactivate a kprobe by backing up to the previous state. If the
246 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
247 * for any other state prev_kprobe.kp will be NULL.
248 */
pop_kprobe(struct kprobe_ctlblk * kcb)249 static void pop_kprobe(struct kprobe_ctlblk *kcb)
250 {
251 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
252 kcb->kprobe_status = kcb->prev_kprobe.status;
253 kcb->prev_kprobe.kp = NULL;
254 }
255 NOKPROBE_SYMBOL(pop_kprobe);
256
kprobe_reenter_check(struct kprobe_ctlblk * kcb,struct kprobe * p)257 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
258 {
259 switch (kcb->kprobe_status) {
260 case KPROBE_HIT_SSDONE:
261 case KPROBE_HIT_ACTIVE:
262 kprobes_inc_nmissed_count(p);
263 break;
264 case KPROBE_HIT_SS:
265 case KPROBE_REENTER:
266 default:
267 /*
268 * A kprobe on the code path to single step an instruction
269 * is a BUG. The code path resides in the .kprobes.text
270 * section and is executed with interrupts disabled.
271 */
272 pr_err("Failed to recover from reentered kprobes.\n");
273 dump_kprobe(p);
274 BUG();
275 }
276 }
277 NOKPROBE_SYMBOL(kprobe_reenter_check);
278
kprobe_handler(struct pt_regs * regs)279 static int kprobe_handler(struct pt_regs *regs)
280 {
281 struct kprobe_ctlblk *kcb;
282 struct kprobe *p;
283
284 /*
285 * We want to disable preemption for the entire duration of kprobe
286 * processing. That includes the calls to the pre/post handlers
287 * and single stepping the kprobe instruction.
288 */
289 preempt_disable();
290 kcb = get_kprobe_ctlblk();
291 p = get_kprobe((void *)(regs->psw.addr - 2));
292
293 if (p) {
294 if (kprobe_running()) {
295 /*
296 * We have hit a kprobe while another is still
297 * active. This can happen in the pre and post
298 * handler. Single step the instruction of the
299 * new probe but do not call any handler function
300 * of this secondary kprobe.
301 * push_kprobe and pop_kprobe saves and restores
302 * the currently active kprobe.
303 */
304 kprobe_reenter_check(kcb, p);
305 push_kprobe(kcb, p);
306 kcb->kprobe_status = KPROBE_REENTER;
307 } else {
308 /*
309 * If we have no pre-handler or it returned 0, we
310 * continue with single stepping. If we have a
311 * pre-handler and it returned non-zero, it prepped
312 * for changing execution path, so get out doing
313 * nothing more here.
314 */
315 push_kprobe(kcb, p);
316 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
317 if (p->pre_handler && p->pre_handler(p, regs)) {
318 pop_kprobe(kcb);
319 preempt_enable_no_resched();
320 return 1;
321 }
322 kcb->kprobe_status = KPROBE_HIT_SS;
323 }
324 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
325 return 1;
326 } /* else:
327 * No kprobe at this address and no active kprobe. The trap has
328 * not been caused by a kprobe breakpoint. The race of breakpoint
329 * vs. kprobe remove does not exist because on s390 as we use
330 * stop_machine to arm/disarm the breakpoints.
331 */
332 preempt_enable_no_resched();
333 return 0;
334 }
335 NOKPROBE_SYMBOL(kprobe_handler);
336
337 /*
338 * Called after single-stepping. p->addr is the address of the
339 * instruction whose first byte has been replaced by the "breakpoint"
340 * instruction. To avoid the SMP problems that can occur when we
341 * temporarily put back the original opcode to single-step, we
342 * single-stepped a copy of the instruction. The address of this
343 * copy is p->ainsn.insn.
344 */
resume_execution(struct kprobe * p,struct pt_regs * regs)345 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
346 {
347 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
348 unsigned long ip = regs->psw.addr;
349 int fixup = probe_get_fixup_type(p->ainsn.insn);
350
351 if (fixup & FIXUP_PSW_NORMAL)
352 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
353
354 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
355 int ilen = insn_length(p->ainsn.insn[0] >> 8);
356 if (ip - (unsigned long) p->ainsn.insn == ilen)
357 ip = (unsigned long) p->addr + ilen;
358 }
359
360 if (fixup & FIXUP_RETURN_REGISTER) {
361 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
362 regs->gprs[reg] += (unsigned long) p->addr -
363 (unsigned long) p->ainsn.insn;
364 }
365
366 disable_singlestep(kcb, regs, ip);
367 }
368 NOKPROBE_SYMBOL(resume_execution);
369
post_kprobe_handler(struct pt_regs * regs)370 static int post_kprobe_handler(struct pt_regs *regs)
371 {
372 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
373 struct kprobe *p = kprobe_running();
374
375 if (!p)
376 return 0;
377
378 resume_execution(p, regs);
379 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
380 kcb->kprobe_status = KPROBE_HIT_SSDONE;
381 p->post_handler(p, regs, 0);
382 }
383 pop_kprobe(kcb);
384 preempt_enable_no_resched();
385
386 /*
387 * if somebody else is singlestepping across a probe point, psw mask
388 * will have PER set, in which case, continue the remaining processing
389 * of do_single_step, as if this is not a probe hit.
390 */
391 if (regs->psw.mask & PSW_MASK_PER)
392 return 0;
393
394 return 1;
395 }
396 NOKPROBE_SYMBOL(post_kprobe_handler);
397
kprobe_trap_handler(struct pt_regs * regs,int trapnr)398 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
399 {
400 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
401 struct kprobe *p = kprobe_running();
402
403 switch(kcb->kprobe_status) {
404 case KPROBE_HIT_SS:
405 case KPROBE_REENTER:
406 /*
407 * We are here because the instruction being single
408 * stepped caused a page fault. We reset the current
409 * kprobe and the nip points back to the probe address
410 * and allow the page fault handler to continue as a
411 * normal page fault.
412 */
413 disable_singlestep(kcb, regs, (unsigned long) p->addr);
414 pop_kprobe(kcb);
415 preempt_enable_no_resched();
416 break;
417 case KPROBE_HIT_ACTIVE:
418 case KPROBE_HIT_SSDONE:
419 /*
420 * In case the user-specified fault handler returned
421 * zero, try to fix up.
422 */
423 if (fixup_exception(regs))
424 return 1;
425 /*
426 * fixup_exception() could not handle it,
427 * Let do_page_fault() fix it.
428 */
429 break;
430 default:
431 break;
432 }
433 return 0;
434 }
435 NOKPROBE_SYMBOL(kprobe_trap_handler);
436
kprobe_fault_handler(struct pt_regs * regs,int trapnr)437 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
438 {
439 int ret;
440
441 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
442 local_irq_disable();
443 ret = kprobe_trap_handler(regs, trapnr);
444 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
445 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
446 return ret;
447 }
448 NOKPROBE_SYMBOL(kprobe_fault_handler);
449
450 /*
451 * Wrapper routine to for handling exceptions.
452 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)453 int kprobe_exceptions_notify(struct notifier_block *self,
454 unsigned long val, void *data)
455 {
456 struct die_args *args = (struct die_args *) data;
457 struct pt_regs *regs = args->regs;
458 int ret = NOTIFY_DONE;
459
460 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
461 local_irq_disable();
462
463 switch (val) {
464 case DIE_BPT:
465 if (kprobe_handler(regs))
466 ret = NOTIFY_STOP;
467 break;
468 case DIE_SSTEP:
469 if (post_kprobe_handler(regs))
470 ret = NOTIFY_STOP;
471 break;
472 case DIE_TRAP:
473 if (!preemptible() && kprobe_running() &&
474 kprobe_trap_handler(regs, args->trapnr))
475 ret = NOTIFY_STOP;
476 break;
477 default:
478 break;
479 }
480
481 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
482 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
483
484 return ret;
485 }
486 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
487
arch_init_kprobes(void)488 int __init arch_init_kprobes(void)
489 {
490 return 0;
491 }
492
arch_populate_kprobe_blacklist(void)493 int __init arch_populate_kprobe_blacklist(void)
494 {
495 return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
496 (unsigned long)__irqentry_text_end);
497 }
498
arch_trampoline_kprobe(struct kprobe * p)499 int arch_trampoline_kprobe(struct kprobe *p)
500 {
501 return 0;
502 }
503 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
504