1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19 
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/cipher.h>
25 #include <crypto/internal/skcipher.h>
26 #include <crypto/scatterwalk.h>
27 #include <linux/err.h>
28 #include <linux/module.h>
29 #include <linux/cpufeature.h>
30 #include <linux/init.h>
31 #include <linux/mutex.h>
32 #include <linux/fips.h>
33 #include <linux/string.h>
34 #include <crypto/xts.h>
35 #include <asm/cpacf.h>
36 
37 static u8 *ctrblk;
38 static DEFINE_MUTEX(ctrblk_lock);
39 
40 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
41 		    kma_functions;
42 
43 struct s390_aes_ctx {
44 	u8 key[AES_MAX_KEY_SIZE];
45 	int key_len;
46 	unsigned long fc;
47 	union {
48 		struct crypto_skcipher *skcipher;
49 		struct crypto_cipher *cip;
50 	} fallback;
51 };
52 
53 struct s390_xts_ctx {
54 	union {
55 		u8 keys[64];
56 		struct {
57 			u8 key[32];
58 			u8 pcc_key[32];
59 		};
60 	};
61 	int key_len;
62 	unsigned long fc;
63 	struct crypto_skcipher *fallback;
64 };
65 
66 struct gcm_sg_walk {
67 	struct scatter_walk walk;
68 	unsigned int walk_bytes;
69 	unsigned int walk_bytes_remain;
70 	u8 buf[AES_BLOCK_SIZE];
71 	unsigned int buf_bytes;
72 	u8 *ptr;
73 	unsigned int nbytes;
74 };
75 
setkey_fallback_cip(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)76 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
77 		unsigned int key_len)
78 {
79 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
80 
81 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
82 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
83 			CRYPTO_TFM_REQ_MASK);
84 
85 	return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
86 }
87 
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)88 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
89 		       unsigned int key_len)
90 {
91 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
92 	unsigned long fc;
93 
94 	/* Pick the correct function code based on the key length */
95 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
96 	     (key_len == 24) ? CPACF_KM_AES_192 :
97 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
98 
99 	/* Check if the function code is available */
100 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
101 	if (!sctx->fc)
102 		return setkey_fallback_cip(tfm, in_key, key_len);
103 
104 	sctx->key_len = key_len;
105 	memcpy(sctx->key, in_key, key_len);
106 	return 0;
107 }
108 
crypto_aes_encrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)109 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
110 {
111 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
112 
113 	if (unlikely(!sctx->fc)) {
114 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
115 		return;
116 	}
117 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
118 }
119 
crypto_aes_decrypt(struct crypto_tfm * tfm,u8 * out,const u8 * in)120 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
121 {
122 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
123 
124 	if (unlikely(!sctx->fc)) {
125 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
126 		return;
127 	}
128 	cpacf_km(sctx->fc | CPACF_DECRYPT,
129 		 &sctx->key, out, in, AES_BLOCK_SIZE);
130 }
131 
fallback_init_cip(struct crypto_tfm * tfm)132 static int fallback_init_cip(struct crypto_tfm *tfm)
133 {
134 	const char *name = tfm->__crt_alg->cra_name;
135 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
136 
137 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
138 						 CRYPTO_ALG_NEED_FALLBACK);
139 
140 	if (IS_ERR(sctx->fallback.cip)) {
141 		pr_err("Allocating AES fallback algorithm %s failed\n",
142 		       name);
143 		return PTR_ERR(sctx->fallback.cip);
144 	}
145 
146 	return 0;
147 }
148 
fallback_exit_cip(struct crypto_tfm * tfm)149 static void fallback_exit_cip(struct crypto_tfm *tfm)
150 {
151 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
152 
153 	crypto_free_cipher(sctx->fallback.cip);
154 	sctx->fallback.cip = NULL;
155 }
156 
157 static struct crypto_alg aes_alg = {
158 	.cra_name		=	"aes",
159 	.cra_driver_name	=	"aes-s390",
160 	.cra_priority		=	300,
161 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
162 					CRYPTO_ALG_NEED_FALLBACK,
163 	.cra_blocksize		=	AES_BLOCK_SIZE,
164 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
165 	.cra_module		=	THIS_MODULE,
166 	.cra_init               =       fallback_init_cip,
167 	.cra_exit               =       fallback_exit_cip,
168 	.cra_u			=	{
169 		.cipher = {
170 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
171 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
172 			.cia_setkey		=	aes_set_key,
173 			.cia_encrypt		=	crypto_aes_encrypt,
174 			.cia_decrypt		=	crypto_aes_decrypt,
175 		}
176 	}
177 };
178 
setkey_fallback_skcipher(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)179 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
180 				    unsigned int len)
181 {
182 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
183 
184 	crypto_skcipher_clear_flags(sctx->fallback.skcipher,
185 				    CRYPTO_TFM_REQ_MASK);
186 	crypto_skcipher_set_flags(sctx->fallback.skcipher,
187 				  crypto_skcipher_get_flags(tfm) &
188 				  CRYPTO_TFM_REQ_MASK);
189 	return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
190 }
191 
fallback_skcipher_crypt(struct s390_aes_ctx * sctx,struct skcipher_request * req,unsigned long modifier)192 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
193 				   struct skcipher_request *req,
194 				   unsigned long modifier)
195 {
196 	struct skcipher_request *subreq = skcipher_request_ctx(req);
197 
198 	*subreq = *req;
199 	skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
200 	return (modifier & CPACF_DECRYPT) ?
201 		crypto_skcipher_decrypt(subreq) :
202 		crypto_skcipher_encrypt(subreq);
203 }
204 
ecb_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)205 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
206 			   unsigned int key_len)
207 {
208 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
209 	unsigned long fc;
210 
211 	/* Pick the correct function code based on the key length */
212 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
213 	     (key_len == 24) ? CPACF_KM_AES_192 :
214 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
215 
216 	/* Check if the function code is available */
217 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
218 	if (!sctx->fc)
219 		return setkey_fallback_skcipher(tfm, in_key, key_len);
220 
221 	sctx->key_len = key_len;
222 	memcpy(sctx->key, in_key, key_len);
223 	return 0;
224 }
225 
ecb_aes_crypt(struct skcipher_request * req,unsigned long modifier)226 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
227 {
228 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
229 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
230 	struct skcipher_walk walk;
231 	unsigned int nbytes, n;
232 	int ret;
233 
234 	if (unlikely(!sctx->fc))
235 		return fallback_skcipher_crypt(sctx, req, modifier);
236 
237 	ret = skcipher_walk_virt(&walk, req, false);
238 	while ((nbytes = walk.nbytes) != 0) {
239 		/* only use complete blocks */
240 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
241 		cpacf_km(sctx->fc | modifier, sctx->key,
242 			 walk.dst.virt.addr, walk.src.virt.addr, n);
243 		ret = skcipher_walk_done(&walk, nbytes - n);
244 	}
245 	return ret;
246 }
247 
ecb_aes_encrypt(struct skcipher_request * req)248 static int ecb_aes_encrypt(struct skcipher_request *req)
249 {
250 	return ecb_aes_crypt(req, 0);
251 }
252 
ecb_aes_decrypt(struct skcipher_request * req)253 static int ecb_aes_decrypt(struct skcipher_request *req)
254 {
255 	return ecb_aes_crypt(req, CPACF_DECRYPT);
256 }
257 
fallback_init_skcipher(struct crypto_skcipher * tfm)258 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
259 {
260 	const char *name = crypto_tfm_alg_name(&tfm->base);
261 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
262 
263 	sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
264 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
265 
266 	if (IS_ERR(sctx->fallback.skcipher)) {
267 		pr_err("Allocating AES fallback algorithm %s failed\n",
268 		       name);
269 		return PTR_ERR(sctx->fallback.skcipher);
270 	}
271 
272 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
273 				    crypto_skcipher_reqsize(sctx->fallback.skcipher));
274 	return 0;
275 }
276 
fallback_exit_skcipher(struct crypto_skcipher * tfm)277 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
278 {
279 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
280 
281 	crypto_free_skcipher(sctx->fallback.skcipher);
282 }
283 
284 static struct skcipher_alg ecb_aes_alg = {
285 	.base.cra_name		=	"ecb(aes)",
286 	.base.cra_driver_name	=	"ecb-aes-s390",
287 	.base.cra_priority	=	401,	/* combo: aes + ecb + 1 */
288 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
289 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
290 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
291 	.base.cra_module	=	THIS_MODULE,
292 	.init			=	fallback_init_skcipher,
293 	.exit			=	fallback_exit_skcipher,
294 	.min_keysize		=	AES_MIN_KEY_SIZE,
295 	.max_keysize		=	AES_MAX_KEY_SIZE,
296 	.setkey			=	ecb_aes_set_key,
297 	.encrypt		=	ecb_aes_encrypt,
298 	.decrypt		=	ecb_aes_decrypt,
299 };
300 
cbc_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)301 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
302 			   unsigned int key_len)
303 {
304 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
305 	unsigned long fc;
306 
307 	/* Pick the correct function code based on the key length */
308 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
309 	     (key_len == 24) ? CPACF_KMC_AES_192 :
310 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
311 
312 	/* Check if the function code is available */
313 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
314 	if (!sctx->fc)
315 		return setkey_fallback_skcipher(tfm, in_key, key_len);
316 
317 	sctx->key_len = key_len;
318 	memcpy(sctx->key, in_key, key_len);
319 	return 0;
320 }
321 
cbc_aes_crypt(struct skcipher_request * req,unsigned long modifier)322 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
323 {
324 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
325 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
326 	struct skcipher_walk walk;
327 	unsigned int nbytes, n;
328 	int ret;
329 	struct {
330 		u8 iv[AES_BLOCK_SIZE];
331 		u8 key[AES_MAX_KEY_SIZE];
332 	} param;
333 
334 	if (unlikely(!sctx->fc))
335 		return fallback_skcipher_crypt(sctx, req, modifier);
336 
337 	ret = skcipher_walk_virt(&walk, req, false);
338 	if (ret)
339 		return ret;
340 	memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
341 	memcpy(param.key, sctx->key, sctx->key_len);
342 	while ((nbytes = walk.nbytes) != 0) {
343 		/* only use complete blocks */
344 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
345 		cpacf_kmc(sctx->fc | modifier, &param,
346 			  walk.dst.virt.addr, walk.src.virt.addr, n);
347 		memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
348 		ret = skcipher_walk_done(&walk, nbytes - n);
349 	}
350 	memzero_explicit(&param, sizeof(param));
351 	return ret;
352 }
353 
cbc_aes_encrypt(struct skcipher_request * req)354 static int cbc_aes_encrypt(struct skcipher_request *req)
355 {
356 	return cbc_aes_crypt(req, 0);
357 }
358 
cbc_aes_decrypt(struct skcipher_request * req)359 static int cbc_aes_decrypt(struct skcipher_request *req)
360 {
361 	return cbc_aes_crypt(req, CPACF_DECRYPT);
362 }
363 
364 static struct skcipher_alg cbc_aes_alg = {
365 	.base.cra_name		=	"cbc(aes)",
366 	.base.cra_driver_name	=	"cbc-aes-s390",
367 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
368 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
369 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
370 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
371 	.base.cra_module	=	THIS_MODULE,
372 	.init			=	fallback_init_skcipher,
373 	.exit			=	fallback_exit_skcipher,
374 	.min_keysize		=	AES_MIN_KEY_SIZE,
375 	.max_keysize		=	AES_MAX_KEY_SIZE,
376 	.ivsize			=	AES_BLOCK_SIZE,
377 	.setkey			=	cbc_aes_set_key,
378 	.encrypt		=	cbc_aes_encrypt,
379 	.decrypt		=	cbc_aes_decrypt,
380 };
381 
xts_fallback_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)382 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
383 			       unsigned int len)
384 {
385 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
386 
387 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
388 	crypto_skcipher_set_flags(xts_ctx->fallback,
389 				  crypto_skcipher_get_flags(tfm) &
390 				  CRYPTO_TFM_REQ_MASK);
391 	return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
392 }
393 
xts_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)394 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
395 			   unsigned int key_len)
396 {
397 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
398 	unsigned long fc;
399 	int err;
400 
401 	err = xts_fallback_setkey(tfm, in_key, key_len);
402 	if (err)
403 		return err;
404 
405 	/* Pick the correct function code based on the key length */
406 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
407 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
408 
409 	/* Check if the function code is available */
410 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
411 	if (!xts_ctx->fc)
412 		return 0;
413 
414 	/* Split the XTS key into the two subkeys */
415 	key_len = key_len / 2;
416 	xts_ctx->key_len = key_len;
417 	memcpy(xts_ctx->key, in_key, key_len);
418 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
419 	return 0;
420 }
421 
xts_aes_crypt(struct skcipher_request * req,unsigned long modifier)422 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
423 {
424 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
425 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
426 	struct skcipher_walk walk;
427 	unsigned int offset, nbytes, n;
428 	int ret;
429 	struct {
430 		u8 key[32];
431 		u8 tweak[16];
432 		u8 block[16];
433 		u8 bit[16];
434 		u8 xts[16];
435 	} pcc_param;
436 	struct {
437 		u8 key[32];
438 		u8 init[16];
439 	} xts_param;
440 
441 	if (req->cryptlen < AES_BLOCK_SIZE)
442 		return -EINVAL;
443 
444 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
445 		struct skcipher_request *subreq = skcipher_request_ctx(req);
446 
447 		*subreq = *req;
448 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
449 		return (modifier & CPACF_DECRYPT) ?
450 			crypto_skcipher_decrypt(subreq) :
451 			crypto_skcipher_encrypt(subreq);
452 	}
453 
454 	ret = skcipher_walk_virt(&walk, req, false);
455 	if (ret)
456 		return ret;
457 	offset = xts_ctx->key_len & 0x10;
458 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
459 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
460 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
461 	memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
462 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
463 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
464 
465 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
466 	memcpy(xts_param.init, pcc_param.xts, 16);
467 
468 	while ((nbytes = walk.nbytes) != 0) {
469 		/* only use complete blocks */
470 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
471 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
472 			 walk.dst.virt.addr, walk.src.virt.addr, n);
473 		ret = skcipher_walk_done(&walk, nbytes - n);
474 	}
475 	memzero_explicit(&pcc_param, sizeof(pcc_param));
476 	memzero_explicit(&xts_param, sizeof(xts_param));
477 	return ret;
478 }
479 
xts_aes_encrypt(struct skcipher_request * req)480 static int xts_aes_encrypt(struct skcipher_request *req)
481 {
482 	return xts_aes_crypt(req, 0);
483 }
484 
xts_aes_decrypt(struct skcipher_request * req)485 static int xts_aes_decrypt(struct skcipher_request *req)
486 {
487 	return xts_aes_crypt(req, CPACF_DECRYPT);
488 }
489 
xts_fallback_init(struct crypto_skcipher * tfm)490 static int xts_fallback_init(struct crypto_skcipher *tfm)
491 {
492 	const char *name = crypto_tfm_alg_name(&tfm->base);
493 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
494 
495 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
496 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
497 
498 	if (IS_ERR(xts_ctx->fallback)) {
499 		pr_err("Allocating XTS fallback algorithm %s failed\n",
500 		       name);
501 		return PTR_ERR(xts_ctx->fallback);
502 	}
503 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
504 				    crypto_skcipher_reqsize(xts_ctx->fallback));
505 	return 0;
506 }
507 
xts_fallback_exit(struct crypto_skcipher * tfm)508 static void xts_fallback_exit(struct crypto_skcipher *tfm)
509 {
510 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
511 
512 	crypto_free_skcipher(xts_ctx->fallback);
513 }
514 
515 static struct skcipher_alg xts_aes_alg = {
516 	.base.cra_name		=	"xts(aes)",
517 	.base.cra_driver_name	=	"xts-aes-s390",
518 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
519 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
520 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
521 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
522 	.base.cra_module	=	THIS_MODULE,
523 	.init			=	xts_fallback_init,
524 	.exit			=	xts_fallback_exit,
525 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
526 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
527 	.ivsize			=	AES_BLOCK_SIZE,
528 	.setkey			=	xts_aes_set_key,
529 	.encrypt		=	xts_aes_encrypt,
530 	.decrypt		=	xts_aes_decrypt,
531 };
532 
fullxts_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)533 static int fullxts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
534 			       unsigned int key_len)
535 {
536 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
537 	unsigned long fc;
538 	int err;
539 
540 	err = xts_fallback_setkey(tfm, in_key, key_len);
541 	if (err)
542 		return err;
543 
544 	/* Pick the correct function code based on the key length */
545 	fc = (key_len == 32) ? CPACF_KM_XTS_128_FULL :
546 	     (key_len == 64) ? CPACF_KM_XTS_256_FULL : 0;
547 
548 	/* Check if the function code is available */
549 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
550 	if (!xts_ctx->fc)
551 		return 0;
552 
553 	/* Store double-key */
554 	memcpy(xts_ctx->keys, in_key, key_len);
555 	xts_ctx->key_len = key_len;
556 	return 0;
557 }
558 
fullxts_aes_crypt(struct skcipher_request * req,unsigned long modifier)559 static int fullxts_aes_crypt(struct skcipher_request *req,  unsigned long modifier)
560 {
561 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
562 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
563 	unsigned int offset, nbytes, n;
564 	struct skcipher_walk walk;
565 	int ret;
566 	struct {
567 		__u8 key[64];
568 		__u8 tweak[16];
569 		__u8 nap[16];
570 	} fxts_param = {
571 		.nap = {0},
572 	};
573 
574 	if (req->cryptlen < AES_BLOCK_SIZE)
575 		return -EINVAL;
576 
577 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
578 		struct skcipher_request *subreq = skcipher_request_ctx(req);
579 
580 		*subreq = *req;
581 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
582 		return (modifier & CPACF_DECRYPT) ?
583 			crypto_skcipher_decrypt(subreq) :
584 			crypto_skcipher_encrypt(subreq);
585 	}
586 
587 	ret = skcipher_walk_virt(&walk, req, false);
588 	if (ret)
589 		return ret;
590 
591 	offset = xts_ctx->key_len & 0x20;
592 	memcpy(fxts_param.key + offset, xts_ctx->keys, xts_ctx->key_len);
593 	memcpy(fxts_param.tweak, req->iv, AES_BLOCK_SIZE);
594 	fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
595 
596 	while ((nbytes = walk.nbytes) != 0) {
597 		/* only use complete blocks */
598 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
599 		cpacf_km(xts_ctx->fc | modifier, fxts_param.key + offset,
600 			 walk.dst.virt.addr, walk.src.virt.addr, n);
601 		ret = skcipher_walk_done(&walk, nbytes - n);
602 	}
603 	memzero_explicit(&fxts_param, sizeof(fxts_param));
604 	return ret;
605 }
606 
fullxts_aes_encrypt(struct skcipher_request * req)607 static int fullxts_aes_encrypt(struct skcipher_request *req)
608 {
609 	return fullxts_aes_crypt(req, 0);
610 }
611 
fullxts_aes_decrypt(struct skcipher_request * req)612 static int fullxts_aes_decrypt(struct skcipher_request *req)
613 {
614 	return fullxts_aes_crypt(req, CPACF_DECRYPT);
615 }
616 
617 static struct skcipher_alg fullxts_aes_alg = {
618 	.base.cra_name		=	"xts(aes)",
619 	.base.cra_driver_name	=	"full-xts-aes-s390",
620 	.base.cra_priority	=	403,	/* aes-xts-s390 + 1 */
621 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
622 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
623 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
624 	.base.cra_module	=	THIS_MODULE,
625 	.init			=	xts_fallback_init,
626 	.exit			=	xts_fallback_exit,
627 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
628 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
629 	.ivsize			=	AES_BLOCK_SIZE,
630 	.setkey			=	fullxts_aes_set_key,
631 	.encrypt		=	fullxts_aes_encrypt,
632 	.decrypt		=	fullxts_aes_decrypt,
633 };
634 
ctr_aes_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)635 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
636 			   unsigned int key_len)
637 {
638 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
639 	unsigned long fc;
640 
641 	/* Pick the correct function code based on the key length */
642 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
643 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
644 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
645 
646 	/* Check if the function code is available */
647 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
648 	if (!sctx->fc)
649 		return setkey_fallback_skcipher(tfm, in_key, key_len);
650 
651 	sctx->key_len = key_len;
652 	memcpy(sctx->key, in_key, key_len);
653 	return 0;
654 }
655 
__ctrblk_init(u8 * ctrptr,u8 * iv,unsigned int nbytes)656 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
657 {
658 	unsigned int i, n;
659 
660 	/* only use complete blocks, max. PAGE_SIZE */
661 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
662 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
663 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
664 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
665 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
666 		ctrptr += AES_BLOCK_SIZE;
667 	}
668 	return n;
669 }
670 
ctr_aes_crypt(struct skcipher_request * req)671 static int ctr_aes_crypt(struct skcipher_request *req)
672 {
673 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
674 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
675 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
676 	struct skcipher_walk walk;
677 	unsigned int n, nbytes;
678 	int ret, locked;
679 
680 	if (unlikely(!sctx->fc))
681 		return fallback_skcipher_crypt(sctx, req, 0);
682 
683 	locked = mutex_trylock(&ctrblk_lock);
684 
685 	ret = skcipher_walk_virt(&walk, req, false);
686 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
687 		n = AES_BLOCK_SIZE;
688 
689 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
690 			n = __ctrblk_init(ctrblk, walk.iv, nbytes);
691 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
692 		cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
693 			    walk.src.virt.addr, n, ctrptr);
694 		if (ctrptr == ctrblk)
695 			memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
696 			       AES_BLOCK_SIZE);
697 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
698 		ret = skcipher_walk_done(&walk, nbytes - n);
699 	}
700 	if (locked)
701 		mutex_unlock(&ctrblk_lock);
702 	/*
703 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
704 	 */
705 	if (nbytes) {
706 		memset(buf, 0, AES_BLOCK_SIZE);
707 		memcpy(buf, walk.src.virt.addr, nbytes);
708 		cpacf_kmctr(sctx->fc, sctx->key, buf, buf,
709 			    AES_BLOCK_SIZE, walk.iv);
710 		memcpy(walk.dst.virt.addr, buf, nbytes);
711 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
712 		ret = skcipher_walk_done(&walk, 0);
713 	}
714 
715 	return ret;
716 }
717 
718 static struct skcipher_alg ctr_aes_alg = {
719 	.base.cra_name		=	"ctr(aes)",
720 	.base.cra_driver_name	=	"ctr-aes-s390",
721 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
722 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
723 	.base.cra_blocksize	=	1,
724 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
725 	.base.cra_module	=	THIS_MODULE,
726 	.init			=	fallback_init_skcipher,
727 	.exit			=	fallback_exit_skcipher,
728 	.min_keysize		=	AES_MIN_KEY_SIZE,
729 	.max_keysize		=	AES_MAX_KEY_SIZE,
730 	.ivsize			=	AES_BLOCK_SIZE,
731 	.setkey			=	ctr_aes_set_key,
732 	.encrypt		=	ctr_aes_crypt,
733 	.decrypt		=	ctr_aes_crypt,
734 	.chunksize		=	AES_BLOCK_SIZE,
735 };
736 
gcm_aes_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)737 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
738 			  unsigned int keylen)
739 {
740 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
741 
742 	switch (keylen) {
743 	case AES_KEYSIZE_128:
744 		ctx->fc = CPACF_KMA_GCM_AES_128;
745 		break;
746 	case AES_KEYSIZE_192:
747 		ctx->fc = CPACF_KMA_GCM_AES_192;
748 		break;
749 	case AES_KEYSIZE_256:
750 		ctx->fc = CPACF_KMA_GCM_AES_256;
751 		break;
752 	default:
753 		return -EINVAL;
754 	}
755 
756 	memcpy(ctx->key, key, keylen);
757 	ctx->key_len = keylen;
758 	return 0;
759 }
760 
gcm_aes_setauthsize(struct crypto_aead * tfm,unsigned int authsize)761 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
762 {
763 	switch (authsize) {
764 	case 4:
765 	case 8:
766 	case 12:
767 	case 13:
768 	case 14:
769 	case 15:
770 	case 16:
771 		break;
772 	default:
773 		return -EINVAL;
774 	}
775 
776 	return 0;
777 }
778 
gcm_walk_start(struct gcm_sg_walk * gw,struct scatterlist * sg,unsigned int len)779 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
780 			   unsigned int len)
781 {
782 	memset(gw, 0, sizeof(*gw));
783 	gw->walk_bytes_remain = len;
784 	scatterwalk_start(&gw->walk, sg);
785 }
786 
_gcm_sg_clamp_and_map(struct gcm_sg_walk * gw)787 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
788 {
789 	if (gw->walk_bytes_remain == 0)
790 		return 0;
791 	gw->walk_bytes = scatterwalk_next(&gw->walk, gw->walk_bytes_remain);
792 	return gw->walk_bytes;
793 }
794 
_gcm_sg_unmap_and_advance(struct gcm_sg_walk * gw,unsigned int nbytes,bool out)795 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
796 					     unsigned int nbytes, bool out)
797 {
798 	gw->walk_bytes_remain -= nbytes;
799 	if (out)
800 		scatterwalk_done_dst(&gw->walk, nbytes);
801 	else
802 		scatterwalk_done_src(&gw->walk, nbytes);
803 }
804 
gcm_in_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)805 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
806 {
807 	int n;
808 
809 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
810 		gw->ptr = gw->buf;
811 		gw->nbytes = gw->buf_bytes;
812 		goto out;
813 	}
814 
815 	if (gw->walk_bytes_remain == 0) {
816 		gw->ptr = NULL;
817 		gw->nbytes = 0;
818 		goto out;
819 	}
820 
821 	if (!_gcm_sg_clamp_and_map(gw)) {
822 		gw->ptr = NULL;
823 		gw->nbytes = 0;
824 		goto out;
825 	}
826 
827 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
828 		gw->ptr = gw->walk.addr;
829 		gw->nbytes = gw->walk_bytes;
830 		goto out;
831 	}
832 
833 	while (1) {
834 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
835 		memcpy(gw->buf + gw->buf_bytes, gw->walk.addr, n);
836 		gw->buf_bytes += n;
837 		_gcm_sg_unmap_and_advance(gw, n, false);
838 		if (gw->buf_bytes >= minbytesneeded) {
839 			gw->ptr = gw->buf;
840 			gw->nbytes = gw->buf_bytes;
841 			goto out;
842 		}
843 		if (!_gcm_sg_clamp_and_map(gw)) {
844 			gw->ptr = NULL;
845 			gw->nbytes = 0;
846 			goto out;
847 		}
848 	}
849 
850 out:
851 	return gw->nbytes;
852 }
853 
gcm_out_walk_go(struct gcm_sg_walk * gw,unsigned int minbytesneeded)854 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
855 {
856 	if (gw->walk_bytes_remain == 0) {
857 		gw->ptr = NULL;
858 		gw->nbytes = 0;
859 		goto out;
860 	}
861 
862 	if (!_gcm_sg_clamp_and_map(gw)) {
863 		gw->ptr = NULL;
864 		gw->nbytes = 0;
865 		goto out;
866 	}
867 
868 	if (gw->walk_bytes >= minbytesneeded) {
869 		gw->ptr = gw->walk.addr;
870 		gw->nbytes = gw->walk_bytes;
871 		goto out;
872 	}
873 
874 	scatterwalk_unmap(&gw->walk);
875 
876 	gw->ptr = gw->buf;
877 	gw->nbytes = sizeof(gw->buf);
878 
879 out:
880 	return gw->nbytes;
881 }
882 
gcm_in_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)883 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
884 {
885 	if (gw->ptr == NULL)
886 		return 0;
887 
888 	if (gw->ptr == gw->buf) {
889 		int n = gw->buf_bytes - bytesdone;
890 		if (n > 0) {
891 			memmove(gw->buf, gw->buf + bytesdone, n);
892 			gw->buf_bytes = n;
893 		} else
894 			gw->buf_bytes = 0;
895 	} else
896 		_gcm_sg_unmap_and_advance(gw, bytesdone, false);
897 
898 	return bytesdone;
899 }
900 
gcm_out_walk_done(struct gcm_sg_walk * gw,unsigned int bytesdone)901 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
902 {
903 	int i, n;
904 
905 	if (gw->ptr == NULL)
906 		return 0;
907 
908 	if (gw->ptr == gw->buf) {
909 		for (i = 0; i < bytesdone; i += n) {
910 			if (!_gcm_sg_clamp_and_map(gw))
911 				return i;
912 			n = min(gw->walk_bytes, bytesdone - i);
913 			memcpy(gw->walk.addr, gw->buf + i, n);
914 			_gcm_sg_unmap_and_advance(gw, n, true);
915 		}
916 	} else
917 		_gcm_sg_unmap_and_advance(gw, bytesdone, true);
918 
919 	return bytesdone;
920 }
921 
gcm_aes_crypt(struct aead_request * req,unsigned int flags)922 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
923 {
924 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
926 	unsigned int ivsize = crypto_aead_ivsize(tfm);
927 	unsigned int taglen = crypto_aead_authsize(tfm);
928 	unsigned int aadlen = req->assoclen;
929 	unsigned int pclen = req->cryptlen;
930 	int ret = 0;
931 
932 	unsigned int n, len, in_bytes, out_bytes,
933 		     min_bytes, bytes, aad_bytes, pc_bytes;
934 	struct gcm_sg_walk gw_in, gw_out;
935 	u8 tag[GHASH_DIGEST_SIZE];
936 
937 	struct {
938 		u32 _[3];		/* reserved */
939 		u32 cv;			/* Counter Value */
940 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
941 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
942 		u64 taadl;		/* Total AAD Length */
943 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
944 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
945 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
946 	} param;
947 
948 	/*
949 	 * encrypt
950 	 *   req->src: aad||plaintext
951 	 *   req->dst: aad||ciphertext||tag
952 	 * decrypt
953 	 *   req->src: aad||ciphertext||tag
954 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
955 	 * aad, plaintext and ciphertext may be empty.
956 	 */
957 	if (flags & CPACF_DECRYPT)
958 		pclen -= taglen;
959 	len = aadlen + pclen;
960 
961 	memset(&param, 0, sizeof(param));
962 	param.cv = 1;
963 	param.taadl = aadlen * 8;
964 	param.tpcl = pclen * 8;
965 	memcpy(param.j0, req->iv, ivsize);
966 	*(u32 *)(param.j0 + ivsize) = 1;
967 	memcpy(param.k, ctx->key, ctx->key_len);
968 
969 	gcm_walk_start(&gw_in, req->src, len);
970 	gcm_walk_start(&gw_out, req->dst, len);
971 
972 	do {
973 		min_bytes = min_t(unsigned int,
974 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
975 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
976 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
977 		bytes = min(in_bytes, out_bytes);
978 
979 		if (aadlen + pclen <= bytes) {
980 			aad_bytes = aadlen;
981 			pc_bytes = pclen;
982 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
983 		} else {
984 			if (aadlen <= bytes) {
985 				aad_bytes = aadlen;
986 				pc_bytes = (bytes - aadlen) &
987 					   ~(AES_BLOCK_SIZE - 1);
988 				flags |= CPACF_KMA_LAAD;
989 			} else {
990 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
991 				pc_bytes = 0;
992 			}
993 		}
994 
995 		if (aad_bytes > 0)
996 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
997 
998 		cpacf_kma(ctx->fc | flags, &param,
999 			  gw_out.ptr + aad_bytes,
1000 			  gw_in.ptr + aad_bytes, pc_bytes,
1001 			  gw_in.ptr, aad_bytes);
1002 
1003 		n = aad_bytes + pc_bytes;
1004 		if (gcm_in_walk_done(&gw_in, n) != n)
1005 			return -ENOMEM;
1006 		if (gcm_out_walk_done(&gw_out, n) != n)
1007 			return -ENOMEM;
1008 		aadlen -= aad_bytes;
1009 		pclen -= pc_bytes;
1010 	} while (aadlen + pclen > 0);
1011 
1012 	if (flags & CPACF_DECRYPT) {
1013 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1014 		if (crypto_memneq(tag, param.t, taglen))
1015 			ret = -EBADMSG;
1016 	} else
1017 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1018 
1019 	memzero_explicit(&param, sizeof(param));
1020 	return ret;
1021 }
1022 
gcm_aes_encrypt(struct aead_request * req)1023 static int gcm_aes_encrypt(struct aead_request *req)
1024 {
1025 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
1026 }
1027 
gcm_aes_decrypt(struct aead_request * req)1028 static int gcm_aes_decrypt(struct aead_request *req)
1029 {
1030 	return gcm_aes_crypt(req, CPACF_DECRYPT);
1031 }
1032 
1033 static struct aead_alg gcm_aes_aead = {
1034 	.setkey			= gcm_aes_setkey,
1035 	.setauthsize		= gcm_aes_setauthsize,
1036 	.encrypt		= gcm_aes_encrypt,
1037 	.decrypt		= gcm_aes_decrypt,
1038 
1039 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
1040 	.maxauthsize		= GHASH_DIGEST_SIZE,
1041 	.chunksize		= AES_BLOCK_SIZE,
1042 
1043 	.base			= {
1044 		.cra_blocksize		= 1,
1045 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
1046 		.cra_priority		= 900,
1047 		.cra_name		= "gcm(aes)",
1048 		.cra_driver_name	= "gcm-aes-s390",
1049 		.cra_module		= THIS_MODULE,
1050 	},
1051 };
1052 
1053 static struct crypto_alg *aes_s390_alg;
1054 static struct skcipher_alg *aes_s390_skcipher_algs[5];
1055 static int aes_s390_skciphers_num;
1056 static struct aead_alg *aes_s390_aead_alg;
1057 
aes_s390_register_skcipher(struct skcipher_alg * alg)1058 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
1059 {
1060 	int ret;
1061 
1062 	ret = crypto_register_skcipher(alg);
1063 	if (!ret)
1064 		aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
1065 	return ret;
1066 }
1067 
aes_s390_fini(void)1068 static void aes_s390_fini(void)
1069 {
1070 	if (aes_s390_alg)
1071 		crypto_unregister_alg(aes_s390_alg);
1072 	while (aes_s390_skciphers_num--)
1073 		crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
1074 	if (ctrblk)
1075 		free_page((unsigned long) ctrblk);
1076 
1077 	if (aes_s390_aead_alg)
1078 		crypto_unregister_aead(aes_s390_aead_alg);
1079 }
1080 
aes_s390_init(void)1081 static int __init aes_s390_init(void)
1082 {
1083 	int ret;
1084 
1085 	/* Query available functions for KM, KMC, KMCTR and KMA */
1086 	cpacf_query(CPACF_KM, &km_functions);
1087 	cpacf_query(CPACF_KMC, &kmc_functions);
1088 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
1089 	cpacf_query(CPACF_KMA, &kma_functions);
1090 
1091 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1092 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1093 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1094 		ret = crypto_register_alg(&aes_alg);
1095 		if (ret)
1096 			goto out_err;
1097 		aes_s390_alg = &aes_alg;
1098 		ret = aes_s390_register_skcipher(&ecb_aes_alg);
1099 		if (ret)
1100 			goto out_err;
1101 	}
1102 
1103 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1104 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1105 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1106 		ret = aes_s390_register_skcipher(&cbc_aes_alg);
1107 		if (ret)
1108 			goto out_err;
1109 	}
1110 
1111 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128_FULL) ||
1112 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256_FULL)) {
1113 		ret = aes_s390_register_skcipher(&fullxts_aes_alg);
1114 		if (ret)
1115 			goto out_err;
1116 	}
1117 
1118 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1119 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1120 		ret = aes_s390_register_skcipher(&xts_aes_alg);
1121 		if (ret)
1122 			goto out_err;
1123 	}
1124 
1125 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1126 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1127 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1128 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1129 		if (!ctrblk) {
1130 			ret = -ENOMEM;
1131 			goto out_err;
1132 		}
1133 		ret = aes_s390_register_skcipher(&ctr_aes_alg);
1134 		if (ret)
1135 			goto out_err;
1136 	}
1137 
1138 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1139 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1140 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1141 		ret = crypto_register_aead(&gcm_aes_aead);
1142 		if (ret)
1143 			goto out_err;
1144 		aes_s390_aead_alg = &gcm_aes_aead;
1145 	}
1146 
1147 	return 0;
1148 out_err:
1149 	aes_s390_fini();
1150 	return ret;
1151 }
1152 
1153 module_cpu_feature_match(S390_CPU_FEATURE_MSA, aes_s390_init);
1154 module_exit(aes_s390_fini);
1155 
1156 MODULE_ALIAS_CRYPTO("aes-all");
1157 
1158 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1159 MODULE_LICENSE("GPL");
1160 MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1161