1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR	UL(0)
17 #else
18 #define KERNEL_LINK_ADDR	_AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE		(UL(-1))
21 #else
22 
23 #define ADDRESS_SPACE_END	(UL(-1))
24 
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR	PAGE_OFFSET
30 #endif
31 
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
36 
37 /*
38  * Half of the kernel address space (1/4 of the entries of the page global
39  * directory) is for the direct mapping.
40  */
41 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42 
43 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END      PAGE_OFFSET
45 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
46 
47 #define BPF_JIT_REGION_SIZE	(SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END	(MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END	(VMALLOC_END)
54 #endif
55 
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR		VMALLOC_START
64 #define MODULES_END		VMALLOC_END
65 #endif
66 
67 /*
68  * Roughly size the vmemmap space to be large enough to fit enough
69  * struct pages to map half the virtual address space. Then
70  * position vmemmap directly below the VMALLOC region.
71  */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77 
78 #define VA_BITS		(pgtable_l5_enabled ? \
79 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS		VA_BITS_SV32
82 #endif
83 
84 #define VMEMMAP_SHIFT \
85 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END	VMALLOC_START
88 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
89 
90 /*
91  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93  */
94 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95 
96 #define PCI_IO_SIZE      SZ_16M
97 #define PCI_IO_END       VMEMMAP_START
98 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
99 
100 #define FIXADDR_TOP      PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE	 PMD_SIZE
103 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE	 PGDIR_SIZE
107 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
108 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
111 
112 #endif
113 
114 #ifndef __ASSEMBLY__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121 
122 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123 
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126 
127 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
128 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
129 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
130 
131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135 #else
136 #include <asm/pgtable-32.h>
137 #endif /* CONFIG_64BIT */
138 
139 #include <linux/page_table_check.h>
140 
141 #ifdef CONFIG_XIP_KERNEL
142 #define XIP_FIXUP(addr) ({							\
143 	extern char _sdata[], _start[], _end[];					\
144 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
145 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
146 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
147 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
148 	uintptr_t __a = (uintptr_t)(addr);					\
149 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
150 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
151 	})
152 #else
153 #define XIP_FIXUP(addr)		(addr)
154 #endif /* CONFIG_XIP_KERNEL */
155 
156 struct pt_alloc_ops {
157 	pte_t *(*get_pte_virt)(phys_addr_t pa);
158 	phys_addr_t (*alloc_pte)(uintptr_t va);
159 #ifndef __PAGETABLE_PMD_FOLDED
160 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_pmd)(uintptr_t va);
162 	pud_t *(*get_pud_virt)(phys_addr_t pa);
163 	phys_addr_t (*alloc_pud)(uintptr_t va);
164 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
165 	phys_addr_t (*alloc_p4d)(uintptr_t va);
166 #endif
167 };
168 
169 extern struct pt_alloc_ops pt_ops __meminitdata;
170 
171 #ifdef CONFIG_MMU
172 /* Number of PGD entries that a user-mode program can use */
173 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
174 
175 /* Page protection bits */
176 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
177 
178 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
179 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
181 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
182 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
183 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
184 					 _PAGE_EXEC | _PAGE_WRITE)
185 
186 #define PAGE_COPY		PAGE_READ
187 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
188 #define PAGE_SHARED		PAGE_WRITE
189 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
190 
191 #define _PAGE_KERNEL		(_PAGE_READ \
192 				| _PAGE_WRITE \
193 				| _PAGE_PRESENT \
194 				| _PAGE_ACCESSED \
195 				| _PAGE_DIRTY \
196 				| _PAGE_GLOBAL)
197 
198 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
199 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
200 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
201 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
202 					 | _PAGE_EXEC)
203 
204 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
205 
206 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
207 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
208 
209 extern pgd_t swapper_pg_dir[];
210 extern pgd_t trampoline_pg_dir[];
211 extern pgd_t early_pg_dir[];
212 
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)214 static inline int pmd_present(pmd_t pmd)
215 {
216 	/*
217 	 * Checking for _PAGE_LEAF is needed too because:
218 	 * When splitting a THP, split_huge_page() will temporarily clear
219 	 * the present bit, in this situation, pmd_present() and
220 	 * pmd_trans_huge() still needs to return true.
221 	 */
222 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
223 }
224 #else
pmd_present(pmd_t pmd)225 static inline int pmd_present(pmd_t pmd)
226 {
227 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
228 }
229 #endif
230 
pmd_none(pmd_t pmd)231 static inline int pmd_none(pmd_t pmd)
232 {
233 	return (pmd_val(pmd) == 0);
234 }
235 
pmd_bad(pmd_t pmd)236 static inline int pmd_bad(pmd_t pmd)
237 {
238 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
239 }
240 
241 #define pmd_leaf	pmd_leaf
pmd_leaf(pmd_t pmd)242 static inline bool pmd_leaf(pmd_t pmd)
243 {
244 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
245 }
246 
set_pmd(pmd_t * pmdp,pmd_t pmd)247 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
248 {
249 	WRITE_ONCE(*pmdp, pmd);
250 }
251 
pmd_clear(pmd_t * pmdp)252 static inline void pmd_clear(pmd_t *pmdp)
253 {
254 	set_pmd(pmdp, __pmd(0));
255 }
256 
pfn_pgd(unsigned long pfn,pgprot_t prot)257 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
258 {
259 	unsigned long prot_val = pgprot_val(prot);
260 
261 	ALT_THEAD_PMA(prot_val);
262 
263 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
264 }
265 
_pgd_pfn(pgd_t pgd)266 static inline unsigned long _pgd_pfn(pgd_t pgd)
267 {
268 	return __page_val_to_pfn(pgd_val(pgd));
269 }
270 
pmd_page(pmd_t pmd)271 static inline struct page *pmd_page(pmd_t pmd)
272 {
273 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
274 }
275 
pmd_page_vaddr(pmd_t pmd)276 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
277 {
278 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
279 }
280 
pmd_pte(pmd_t pmd)281 static inline pte_t pmd_pte(pmd_t pmd)
282 {
283 	return __pte(pmd_val(pmd));
284 }
285 
pud_pte(pud_t pud)286 static inline pte_t pud_pte(pud_t pud)
287 {
288 	return __pte(pud_val(pud));
289 }
290 
291 #ifdef CONFIG_RISCV_ISA_SVNAPOT
292 
has_svnapot(void)293 static __always_inline bool has_svnapot(void)
294 {
295 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
296 }
297 
pte_napot(pte_t pte)298 static inline unsigned long pte_napot(pte_t pte)
299 {
300 	return pte_val(pte) & _PAGE_NAPOT;
301 }
302 
pte_mknapot(pte_t pte,unsigned int order)303 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
304 {
305 	int pos = order - 1 + _PAGE_PFN_SHIFT;
306 	unsigned long napot_bit = BIT(pos);
307 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
308 
309 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
310 }
311 
312 #else
313 
has_svnapot(void)314 static __always_inline bool has_svnapot(void) { return false; }
315 
pte_napot(pte_t pte)316 static inline unsigned long pte_napot(pte_t pte)
317 {
318 	return 0;
319 }
320 
321 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
322 
323 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)324 static inline unsigned long pte_pfn(pte_t pte)
325 {
326 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
327 
328 	if (has_svnapot() && pte_napot(pte))
329 		res = res & (res - 1UL);
330 
331 	return res;
332 }
333 
334 #define pte_page(x)     pfn_to_page(pte_pfn(x))
335 
336 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)337 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
338 {
339 	unsigned long prot_val = pgprot_val(prot);
340 
341 	ALT_THEAD_PMA(prot_val);
342 
343 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
344 }
345 
346 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
347 
348 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)349 static inline pgprot_t pte_pgprot(pte_t pte)
350 {
351 	unsigned long pfn = pte_pfn(pte);
352 
353 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
354 }
355 
pte_present(pte_t pte)356 static inline int pte_present(pte_t pte)
357 {
358 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
359 }
360 
361 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)362 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
363 {
364 	if (pte_val(a) & _PAGE_PRESENT)
365 		return true;
366 
367 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
368 	    atomic_read(&mm->tlb_flush_pending))
369 		return true;
370 
371 	return false;
372 }
373 
pte_none(pte_t pte)374 static inline int pte_none(pte_t pte)
375 {
376 	return (pte_val(pte) == 0);
377 }
378 
pte_write(pte_t pte)379 static inline int pte_write(pte_t pte)
380 {
381 	return pte_val(pte) & _PAGE_WRITE;
382 }
383 
pte_exec(pte_t pte)384 static inline int pte_exec(pte_t pte)
385 {
386 	return pte_val(pte) & _PAGE_EXEC;
387 }
388 
pte_user(pte_t pte)389 static inline int pte_user(pte_t pte)
390 {
391 	return pte_val(pte) & _PAGE_USER;
392 }
393 
pte_huge(pte_t pte)394 static inline int pte_huge(pte_t pte)
395 {
396 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
397 }
398 
pte_dirty(pte_t pte)399 static inline int pte_dirty(pte_t pte)
400 {
401 	return pte_val(pte) & _PAGE_DIRTY;
402 }
403 
pte_young(pte_t pte)404 static inline int pte_young(pte_t pte)
405 {
406 	return pte_val(pte) & _PAGE_ACCESSED;
407 }
408 
pte_special(pte_t pte)409 static inline int pte_special(pte_t pte)
410 {
411 	return pte_val(pte) & _PAGE_SPECIAL;
412 }
413 
414 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)415 static inline int pte_devmap(pte_t pte)
416 {
417 	return pte_val(pte) & _PAGE_DEVMAP;
418 }
419 #endif
420 
421 /* static inline pte_t pte_rdprotect(pte_t pte) */
422 
pte_wrprotect(pte_t pte)423 static inline pte_t pte_wrprotect(pte_t pte)
424 {
425 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
426 }
427 
428 /* static inline pte_t pte_mkread(pte_t pte) */
429 
pte_mkwrite_novma(pte_t pte)430 static inline pte_t pte_mkwrite_novma(pte_t pte)
431 {
432 	return __pte(pte_val(pte) | _PAGE_WRITE);
433 }
434 
435 /* static inline pte_t pte_mkexec(pte_t pte) */
436 
pte_mkdirty(pte_t pte)437 static inline pte_t pte_mkdirty(pte_t pte)
438 {
439 	return __pte(pte_val(pte) | _PAGE_DIRTY);
440 }
441 
pte_mkclean(pte_t pte)442 static inline pte_t pte_mkclean(pte_t pte)
443 {
444 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
445 }
446 
pte_mkyoung(pte_t pte)447 static inline pte_t pte_mkyoung(pte_t pte)
448 {
449 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
450 }
451 
pte_mkold(pte_t pte)452 static inline pte_t pte_mkold(pte_t pte)
453 {
454 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
455 }
456 
pte_mkspecial(pte_t pte)457 static inline pte_t pte_mkspecial(pte_t pte)
458 {
459 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
460 }
461 
pte_mkdevmap(pte_t pte)462 static inline pte_t pte_mkdevmap(pte_t pte)
463 {
464 	return __pte(pte_val(pte) | _PAGE_DEVMAP);
465 }
466 
pte_mkhuge(pte_t pte)467 static inline pte_t pte_mkhuge(pte_t pte)
468 {
469 	return pte;
470 }
471 
472 #ifdef CONFIG_RISCV_ISA_SVNAPOT
473 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
474 					napot_cont_size(napot_cont_order(pte)) :\
475 					PAGE_SIZE)
476 #endif
477 
478 #ifdef CONFIG_NUMA_BALANCING
479 /*
480  * See the comment in include/asm-generic/pgtable.h
481  */
pte_protnone(pte_t pte)482 static inline int pte_protnone(pte_t pte)
483 {
484 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
485 }
486 
pmd_protnone(pmd_t pmd)487 static inline int pmd_protnone(pmd_t pmd)
488 {
489 	return pte_protnone(pmd_pte(pmd));
490 }
491 #endif
492 
493 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)494 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
495 {
496 	unsigned long newprot_val = pgprot_val(newprot);
497 
498 	ALT_THEAD_PMA(newprot_val);
499 
500 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
501 }
502 
503 #define pgd_ERROR(e) \
504 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
505 
506 
507 /* Commit new configuration to MMU hardware */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)508 static inline void update_mmu_cache_range(struct vm_fault *vmf,
509 		struct vm_area_struct *vma, unsigned long address,
510 		pte_t *ptep, unsigned int nr)
511 {
512 	asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
513 		 : : : : svvptc);
514 
515 	/*
516 	 * The kernel assumes that TLBs don't cache invalid entries, but
517 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
518 	 * cache flush; it is necessary even after writing invalid entries.
519 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
520 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
521 	 */
522 	while (nr--)
523 		local_flush_tlb_page(address + nr * PAGE_SIZE);
524 
525 svvptc:;
526 	/*
527 	 * Svvptc guarantees that the new valid pte will be visible within
528 	 * a bounded timeframe, so when the uarch does not cache invalid
529 	 * entries, we don't have to do anything.
530 	 */
531 }
532 #define update_mmu_cache(vma, addr, ptep) \
533 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
534 
535 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
536 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
537 
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)538 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
539 		unsigned long address, pmd_t *pmdp)
540 {
541 	pte_t *ptep = (pte_t *)pmdp;
542 
543 	update_mmu_cache(vma, address, ptep);
544 }
545 
546 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)547 static inline int pte_same(pte_t pte_a, pte_t pte_b)
548 {
549 	return pte_val(pte_a) == pte_val(pte_b);
550 }
551 
552 /*
553  * Certain architectures need to do special things when PTEs within
554  * a page table are directly modified.  Thus, the following hook is
555  * made available.
556  */
set_pte(pte_t * ptep,pte_t pteval)557 static inline void set_pte(pte_t *ptep, pte_t pteval)
558 {
559 	WRITE_ONCE(*ptep, pteval);
560 }
561 
562 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
563 
__set_pte_at(struct mm_struct * mm,pte_t * ptep,pte_t pteval)564 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
565 {
566 	if (pte_present(pteval) && pte_exec(pteval))
567 		flush_icache_pte(mm, pteval);
568 
569 	set_pte(ptep, pteval);
570 }
571 
572 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
573 
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval,unsigned int nr)574 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
575 		pte_t *ptep, pte_t pteval, unsigned int nr)
576 {
577 	page_table_check_ptes_set(mm, ptep, pteval, nr);
578 
579 	for (;;) {
580 		__set_pte_at(mm, ptep, pteval);
581 		if (--nr == 0)
582 			break;
583 		ptep++;
584 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
585 	}
586 }
587 #define set_ptes set_ptes
588 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)589 static inline void pte_clear(struct mm_struct *mm,
590 	unsigned long addr, pte_t *ptep)
591 {
592 	__set_pte_at(mm, ptep, __pte(0));
593 }
594 
595 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
596 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
597 				 pte_t *ptep, pte_t entry, int dirty);
598 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
599 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
600 				     pte_t *ptep);
601 
602 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)603 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
604 				       unsigned long address, pte_t *ptep)
605 {
606 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
607 
608 	page_table_check_pte_clear(mm, pte);
609 
610 	return pte;
611 }
612 
613 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)614 static inline void ptep_set_wrprotect(struct mm_struct *mm,
615 				      unsigned long address, pte_t *ptep)
616 {
617 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
618 }
619 
620 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)621 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
622 					 unsigned long address, pte_t *ptep)
623 {
624 	/*
625 	 * This comment is borrowed from x86, but applies equally to RISC-V:
626 	 *
627 	 * Clearing the accessed bit without a TLB flush
628 	 * doesn't cause data corruption. [ It could cause incorrect
629 	 * page aging and the (mistaken) reclaim of hot pages, but the
630 	 * chance of that should be relatively low. ]
631 	 *
632 	 * So as a performance optimization don't flush the TLB when
633 	 * clearing the accessed bit, it will eventually be flushed by
634 	 * a context switch or a VM operation anyway. [ In the rare
635 	 * event of it not getting flushed for a long time the delay
636 	 * shouldn't really matter because there's no real memory
637 	 * pressure for swapout to react to. ]
638 	 */
639 	return ptep_test_and_clear_young(vma, address, ptep);
640 }
641 
642 #define pgprot_nx pgprot_nx
pgprot_nx(pgprot_t _prot)643 static inline pgprot_t pgprot_nx(pgprot_t _prot)
644 {
645 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
646 }
647 
648 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)649 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
650 {
651 	unsigned long prot = pgprot_val(_prot);
652 
653 	prot &= ~_PAGE_MTMASK;
654 	prot |= _PAGE_IO;
655 
656 	return __pgprot(prot);
657 }
658 
659 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)660 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
661 {
662 	unsigned long prot = pgprot_val(_prot);
663 
664 	prot &= ~_PAGE_MTMASK;
665 	prot |= _PAGE_NOCACHE;
666 
667 	return __pgprot(prot);
668 }
669 
670 /*
671  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
672  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
673  * DT.
674  */
675 #define arch_has_hw_pte_young arch_has_hw_pte_young
arch_has_hw_pte_young(void)676 static inline bool arch_has_hw_pte_young(void)
677 {
678 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
679 }
680 
681 /*
682  * THP functions
683  */
pte_pmd(pte_t pte)684 static inline pmd_t pte_pmd(pte_t pte)
685 {
686 	return __pmd(pte_val(pte));
687 }
688 
pte_pud(pte_t pte)689 static inline pud_t pte_pud(pte_t pte)
690 {
691 	return __pud(pte_val(pte));
692 }
693 
pmd_mkhuge(pmd_t pmd)694 static inline pmd_t pmd_mkhuge(pmd_t pmd)
695 {
696 	return pmd;
697 }
698 
pmd_mkinvalid(pmd_t pmd)699 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
700 {
701 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
702 }
703 
704 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
705 
pmd_pfn(pmd_t pmd)706 static inline unsigned long pmd_pfn(pmd_t pmd)
707 {
708 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
709 }
710 
711 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
712 
713 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)714 static inline unsigned long pud_pfn(pud_t pud)
715 {
716 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
717 }
718 
719 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)720 static inline pgprot_t pmd_pgprot(pmd_t pmd)
721 {
722 	return pte_pgprot(pmd_pte(pmd));
723 }
724 
725 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)726 static inline pgprot_t pud_pgprot(pud_t pud)
727 {
728 	return pte_pgprot(pud_pte(pud));
729 }
730 
pmd_modify(pmd_t pmd,pgprot_t newprot)731 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
732 {
733 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
734 }
735 
736 #define pmd_write pmd_write
pmd_write(pmd_t pmd)737 static inline int pmd_write(pmd_t pmd)
738 {
739 	return pte_write(pmd_pte(pmd));
740 }
741 
742 #define pud_write pud_write
pud_write(pud_t pud)743 static inline int pud_write(pud_t pud)
744 {
745 	return pte_write(pud_pte(pud));
746 }
747 
748 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)749 static inline int pmd_dirty(pmd_t pmd)
750 {
751 	return pte_dirty(pmd_pte(pmd));
752 }
753 
754 #define pmd_young pmd_young
pmd_young(pmd_t pmd)755 static inline int pmd_young(pmd_t pmd)
756 {
757 	return pte_young(pmd_pte(pmd));
758 }
759 
pmd_user(pmd_t pmd)760 static inline int pmd_user(pmd_t pmd)
761 {
762 	return pte_user(pmd_pte(pmd));
763 }
764 
pmd_mkold(pmd_t pmd)765 static inline pmd_t pmd_mkold(pmd_t pmd)
766 {
767 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
768 }
769 
pmd_mkyoung(pmd_t pmd)770 static inline pmd_t pmd_mkyoung(pmd_t pmd)
771 {
772 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
773 }
774 
pmd_mkwrite_novma(pmd_t pmd)775 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
776 {
777 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
778 }
779 
pmd_wrprotect(pmd_t pmd)780 static inline pmd_t pmd_wrprotect(pmd_t pmd)
781 {
782 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
783 }
784 
pmd_mkclean(pmd_t pmd)785 static inline pmd_t pmd_mkclean(pmd_t pmd)
786 {
787 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
788 }
789 
pmd_mkdirty(pmd_t pmd)790 static inline pmd_t pmd_mkdirty(pmd_t pmd)
791 {
792 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
793 }
794 
pmd_mkdevmap(pmd_t pmd)795 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
796 {
797 	return pte_pmd(pte_mkdevmap(pmd_pte(pmd)));
798 }
799 
800 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)801 static inline bool pmd_special(pmd_t pmd)
802 {
803 	return pte_special(pmd_pte(pmd));
804 }
805 
pmd_mkspecial(pmd_t pmd)806 static inline pmd_t pmd_mkspecial(pmd_t pmd)
807 {
808 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
809 }
810 #endif
811 
812 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)813 static inline bool pud_special(pud_t pud)
814 {
815 	return pte_special(pud_pte(pud));
816 }
817 
pud_mkspecial(pud_t pud)818 static inline pud_t pud_mkspecial(pud_t pud)
819 {
820 	return pte_pud(pte_mkspecial(pud_pte(pud)));
821 }
822 #endif
823 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)824 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
825 				pmd_t *pmdp, pmd_t pmd)
826 {
827 	page_table_check_pmd_set(mm, pmdp, pmd);
828 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
829 }
830 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)831 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
832 				pud_t *pudp, pud_t pud)
833 {
834 	page_table_check_pud_set(mm, pudp, pud);
835 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
836 }
837 
838 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)839 static inline bool pte_user_accessible_page(pte_t pte)
840 {
841 	return pte_present(pte) && pte_user(pte);
842 }
843 
pmd_user_accessible_page(pmd_t pmd)844 static inline bool pmd_user_accessible_page(pmd_t pmd)
845 {
846 	return pmd_leaf(pmd) && pmd_user(pmd);
847 }
848 
pud_user_accessible_page(pud_t pud)849 static inline bool pud_user_accessible_page(pud_t pud)
850 {
851 	return pud_leaf(pud) && pud_user(pud);
852 }
853 #endif
854 
855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)856 static inline int pmd_trans_huge(pmd_t pmd)
857 {
858 	return pmd_leaf(pmd);
859 }
860 
861 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)862 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
863 					unsigned long address, pmd_t *pmdp,
864 					pmd_t entry, int dirty)
865 {
866 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
867 }
868 
869 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)870 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
871 					unsigned long address, pmd_t *pmdp)
872 {
873 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
874 }
875 
876 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)877 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
878 					unsigned long address, pmd_t *pmdp)
879 {
880 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
881 
882 	page_table_check_pmd_clear(mm, pmd);
883 
884 	return pmd;
885 }
886 
887 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)888 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
889 					unsigned long address, pmd_t *pmdp)
890 {
891 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
892 }
893 
894 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)895 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
896 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
897 {
898 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
899 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
900 }
901 
902 #define pmdp_collapse_flush pmdp_collapse_flush
903 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
904 				 unsigned long address, pmd_t *pmdp);
905 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
906 
907 /*
908  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
909  * are !pte_none() && !pte_present().
910  *
911  * Format of swap PTE:
912  *	bit            0:	_PAGE_PRESENT (zero)
913  *	bit       1 to 3:       _PAGE_LEAF (zero)
914  *	bit            5:	_PAGE_PROT_NONE (zero)
915  *	bit            6:	exclusive marker
916  *	bits      7 to 11:	swap type
917  *	bits 12 to XLEN-1:	swap offset
918  */
919 #define __SWP_TYPE_SHIFT	7
920 #define __SWP_TYPE_BITS		5
921 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
922 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
923 
924 #define MAX_SWAPFILES_CHECK()	\
925 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
926 
927 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
928 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
929 #define __swp_entry(type, offset) ((swp_entry_t) \
930 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
931 	  ((offset) << __SWP_OFFSET_SHIFT) })
932 
933 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
934 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
935 
pte_swp_exclusive(pte_t pte)936 static inline int pte_swp_exclusive(pte_t pte)
937 {
938 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
939 }
940 
pte_swp_mkexclusive(pte_t pte)941 static inline pte_t pte_swp_mkexclusive(pte_t pte)
942 {
943 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
944 }
945 
pte_swp_clear_exclusive(pte_t pte)946 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
947 {
948 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
949 }
950 
951 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
952 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
953 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
954 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
955 
956 /*
957  * In the RV64 Linux scheme, we give the user half of the virtual-address space
958  * and give the kernel the other (upper) half.
959  */
960 #ifdef CONFIG_64BIT
961 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
962 #else
963 #define KERN_VIRT_START	FIXADDR_START
964 #endif
965 
966 /*
967  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
968  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
969  * Task size is:
970  * -        0x9fc00000	(~2.5GB) for RV32.
971  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
972  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
973  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
974  *
975  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
976  * Instruction Set Manual Volume II: Privileged Architecture" states that
977  * "load and store effective addresses, which are 64bits, must have bits
978  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
979  * Similarly for SV57, bits 63–57 must be equal to bit 56.
980  */
981 #ifdef CONFIG_64BIT
982 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
983 #define TASK_SIZE_MAX	LONG_MAX
984 
985 #ifdef CONFIG_COMPAT
986 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
987 #define TASK_SIZE	(is_compat_task() ? \
988 			 TASK_SIZE_32 : TASK_SIZE_64)
989 #else
990 #define TASK_SIZE	TASK_SIZE_64
991 #endif
992 
993 #else
994 #define TASK_SIZE	FIXADDR_START
995 #endif
996 
997 #else /* CONFIG_MMU */
998 
999 #define PAGE_SHARED		__pgprot(0)
1000 #define PAGE_KERNEL		__pgprot(0)
1001 #define swapper_pg_dir		NULL
1002 #define TASK_SIZE		_AC(-1, UL)
1003 #define VMALLOC_START		_AC(0, UL)
1004 #define VMALLOC_END		TASK_SIZE
1005 
1006 #endif /* !CONFIG_MMU */
1007 
1008 extern char _start[];
1009 extern void *_dtb_early_va;
1010 extern uintptr_t _dtb_early_pa;
1011 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1012 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1013 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1014 #else
1015 #define dtb_early_va	_dtb_early_va
1016 #define dtb_early_pa	_dtb_early_pa
1017 #endif /* CONFIG_XIP_KERNEL */
1018 extern u64 satp_mode;
1019 
1020 void paging_init(void);
1021 void misc_mem_init(void);
1022 
1023 /*
1024  * ZERO_PAGE is a global shared page that is always zero,
1025  * used for zero-mapped memory areas, etc.
1026  */
1027 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1028 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1029 
1030 /*
1031  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1032  * TLB flush will be required as a result of the "set". For example, use
1033  * in scenarios where it is known ahead of time that the routine is
1034  * setting non-present entries, or re-setting an existing entry to the
1035  * same value. Otherwise, use the typical "set" helpers and flush the
1036  * TLB.
1037  */
1038 #define set_p4d_safe(p4dp, p4d) \
1039 ({ \
1040 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1041 	set_p4d(p4dp, p4d); \
1042 })
1043 
1044 #define set_pgd_safe(pgdp, pgd) \
1045 ({ \
1046 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1047 	set_pgd(pgdp, pgd); \
1048 })
1049 #endif /* !__ASSEMBLY__ */
1050 
1051 #endif /* _ASM_RISCV_PGTABLE_H */
1052