1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __POWERNV_PCI_H
3 #define __POWERNV_PCI_H
4 
5 #include <linux/compiler.h>		/* for __printf */
6 #include <linux/iommu.h>
7 #include <asm/iommu.h>
8 #include <asm/msi_bitmap.h>
9 
10 struct pci_dn;
11 
12 enum pnv_phb_type {
13 	PNV_PHB_IODA2,
14 	PNV_PHB_NPU_OCAPI,
15 };
16 
17 /* Precise PHB model for error management */
18 enum pnv_phb_model {
19 	PNV_PHB_MODEL_UNKNOWN,
20 	PNV_PHB_MODEL_P7IOC,
21 	PNV_PHB_MODEL_PHB3,
22 };
23 
24 #define PNV_PCI_DIAG_BUF_SIZE	8192
25 #define PNV_IODA_PE_DEV		(1 << 0)	/* PE has single PCI device	*/
26 #define PNV_IODA_PE_BUS		(1 << 1)	/* PE has primary PCI bus	*/
27 #define PNV_IODA_PE_BUS_ALL	(1 << 2)	/* PE has subordinate buses	*/
28 #define PNV_IODA_PE_MASTER	(1 << 3)	/* Master PE in compound case	*/
29 #define PNV_IODA_PE_SLAVE	(1 << 4)	/* Slave PE in compound case	*/
30 #define PNV_IODA_PE_VF		(1 << 5)	/* PE for one VF 		*/
31 
32 /*
33  * A brief note on PNV_IODA_PE_BUS_ALL
34  *
35  * This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
36  * the Requester ID field of the PCIe request header to determine the device
37  * (and PE) that initiated a DMA. In legacy PCI individual memory read/write
38  * requests aren't tagged with the RID. To work around this the PCIe-to-PCI
39  * bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
40  *
41  * PCIe-to-X bridges have a similar issue even though PCI-X requests also have
42  * a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
43  * ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
44  * side of the bridge.
45  *
46  * To work around these problems we use the BUS_ALL flag since every subordinate
47  * bus of the bridge should go into the same PE.
48  */
49 
50 /* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
51 #define PNV_IODA_STOPPED_STATE	0x8000000000000000
52 
53 /* Data associated with a PE, including IOMMU tracking etc.. */
54 struct pnv_phb;
55 struct pnv_ioda_pe {
56 	unsigned long		flags;
57 	struct pnv_phb		*phb;
58 	int			device_count;
59 
60 	/* A PE can be associated with a single device or an
61 	 * entire bus (& children). In the former case, pdev
62 	 * is populated, in the later case, pbus is.
63 	 */
64 #ifdef CONFIG_PCI_IOV
65 	struct pci_dev          *parent_dev;
66 #endif
67 	struct pci_dev		*pdev;
68 	struct pci_bus		*pbus;
69 
70 	/* Effective RID (device RID for a device PE and base bus
71 	 * RID with devfn 0 for a bus PE)
72 	 */
73 	unsigned int		rid;
74 
75 	/* PE number */
76 	unsigned int		pe_number;
77 
78 	/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
79 	struct iommu_table_group table_group;
80 
81 	/* 64-bit TCE bypass region */
82 	bool			tce_bypass_enabled;
83 	uint64_t		tce_bypass_base;
84 
85 	/*
86 	 * Used to track whether we've done DMA setup for this PE or not. We
87 	 * want to defer allocating TCE tables, etc until we've added a
88 	 * non-bridge device to the PE.
89 	 */
90 	bool			dma_setup_done;
91 
92 	/* MSIs. MVE index is identical for 32 and 64 bit MSI
93 	 * and -1 if not supported. (It's actually identical to the
94 	 * PE number)
95 	 */
96 	int			mve_number;
97 
98 	/* PEs in compound case */
99 	struct pnv_ioda_pe	*master;
100 	struct list_head	slaves;
101 
102 	/* Link in list of PE#s */
103 	struct list_head	list;
104 };
105 
106 #define PNV_PHB_FLAG_EEH	(1 << 0)
107 
108 struct pnv_phb {
109 	struct pci_controller	*hose;
110 	enum pnv_phb_type	type;
111 	enum pnv_phb_model	model;
112 	u64			hub_id;
113 	u64			opal_id;
114 	int			flags;
115 	void __iomem		*regs;
116 	u64			regs_phys;
117 	spinlock_t		lock;
118 
119 #ifdef CONFIG_DEBUG_FS
120 	int			has_dbgfs;
121 	struct dentry		*dbgfs;
122 #endif
123 
124 	unsigned int		msi_base;
125 	struct msi_bitmap	msi_bmp;
126 	int (*init_m64)(struct pnv_phb *phb);
127 	int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
128 	void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
129 	int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
130 
131 	struct {
132 		/* Global bridge info */
133 		unsigned int		total_pe_num;
134 		unsigned int		reserved_pe_idx;
135 		unsigned int		root_pe_idx;
136 
137 		/* 32-bit MMIO window */
138 		unsigned int		m32_size;
139 		unsigned int		m32_segsize;
140 		unsigned int		m32_pci_base;
141 
142 		/* 64-bit MMIO window */
143 		unsigned int		m64_bar_idx;
144 		unsigned long		m64_size;
145 		unsigned long		m64_segsize;
146 		unsigned long		m64_base;
147 #define MAX_M64_BARS 64
148 		unsigned long		m64_bar_alloc;
149 
150 		/* IO ports */
151 		unsigned int		io_size;
152 		unsigned int		io_segsize;
153 		unsigned int		io_pci_base;
154 
155 		/* PE allocation */
156 		struct mutex		pe_alloc_mutex;
157 		unsigned long		*pe_alloc;
158 		struct pnv_ioda_pe	*pe_array;
159 
160 		/* M32 & IO segment maps */
161 		unsigned int		*m64_segmap;
162 		unsigned int		*m32_segmap;
163 		unsigned int		*io_segmap;
164 
165 		/* IRQ chip */
166 		struct irq_chip		irq_chip;
167 
168 		/* Sorted list of used PE's based
169 		 * on the sequence of creation
170 		 */
171 		struct list_head	pe_list;
172 		struct mutex            pe_list_mutex;
173 
174 		/* Reverse map of PEs, indexed by {bus, devfn} */
175 		unsigned int		pe_rmap[0x10000];
176 	} ioda;
177 
178 	/* PHB and hub diagnostics */
179 	unsigned int		diag_data_size;
180 	u8			*diag_data;
181 };
182 
183 
184 /* IODA PE management */
185 
pnv_pci_is_m64(struct pnv_phb * phb,struct resource * r)186 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
187 {
188 	/*
189 	 * WARNING: We cannot rely on the resource flags. The Linux PCI
190 	 * allocation code sometimes decides to put a 64-bit prefetchable
191 	 * BAR in the 32-bit window, so we have to compare the addresses.
192 	 *
193 	 * For simplicity we only test resource start.
194 	 */
195 	return (r->start >= phb->ioda.m64_base &&
196 		r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
197 }
198 
pnv_pci_is_m64_flags(unsigned long resource_flags)199 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
200 {
201 	unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
202 
203 	return (resource_flags & flags) == flags;
204 }
205 
206 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
207 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
208 
209 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
210 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
211 
212 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
213 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
214 
215 #ifdef CONFIG_PCI_IOV
216 /*
217  * For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
218  * This requires a bit of acrobatics with the MMIO -> PE configuration
219  * and this structure is used to keep track of it all.
220  */
221 struct pnv_iov_data {
222 	/* number of VFs enabled */
223 	u16     num_vfs;
224 
225 	/* pointer to the array of VF PEs. num_vfs long*/
226 	struct pnv_ioda_pe *vf_pe_arr;
227 
228 	/* Did we map the VF BAR with single-PE IODA BARs? */
229 	bool    m64_single_mode[PCI_SRIOV_NUM_BARS];
230 
231 	/*
232 	 * True if we're using any segmented windows. In that case we need
233 	 * shift the start of the IOV resource the segment corresponding to
234 	 * the allocated PE.
235 	 */
236 	bool    need_shift;
237 
238 	/*
239 	 * Bit mask used to track which m64 windows are used to map the
240 	 * SR-IOV BARs for this device.
241 	 */
242 	DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
243 
244 	/*
245 	 * If we map the SR-IOV BARs with a segmented window then
246 	 * parts of that window will be "claimed" by other PEs.
247 	 *
248 	 * "holes" here is used to reserve the leading portion
249 	 * of the window that is used by other (non VF) PEs.
250 	 */
251 	struct resource holes[PCI_SRIOV_NUM_BARS];
252 };
253 
pnv_iov_get(struct pci_dev * pdev)254 static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
255 {
256 	return pdev->dev.archdata.iov_data;
257 }
258 
259 void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
260 resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
261 
262 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
263 int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
264 #endif /* CONFIG_PCI_IOV */
265 
266 extern struct pci_ops pnv_pci_ops;
267 
268 void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
269 				unsigned char *log_buff);
270 int pnv_pci_cfg_read(struct pci_dn *pdn,
271 		     int where, int size, u32 *val);
272 int pnv_pci_cfg_write(struct pci_dn *pdn,
273 		      int where, int size, u32 val);
274 extern struct iommu_table *pnv_pci_table_alloc(int nid);
275 
276 extern void pnv_pci_init_ioda2_phb(struct device_node *np);
277 extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
278 extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
279 extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
280 
281 extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
282 extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
283 extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
284 		__u64 window_size, __u32 levels);
285 extern int pnv_eeh_post_init(void);
286 
287 __printf(3, 4)
288 extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
289 			    const char *fmt, ...);
290 #define pe_err(pe, fmt, ...)					\
291 	pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
292 #define pe_warn(pe, fmt, ...)					\
293 	pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
294 #define pe_info(pe, fmt, ...)					\
295 	pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
296 
297 /* pci-ioda-tce.c */
298 #define POWERNV_IOMMU_DEFAULT_LEVELS	2
299 #define POWERNV_IOMMU_MAX_LEVELS	5
300 
301 extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
302 		unsigned long uaddr, enum dma_data_direction direction,
303 		unsigned long attrs);
304 extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
305 extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
306 		unsigned long *hpa, enum dma_data_direction *direction);
307 extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
308 		bool alloc);
309 extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
310 
311 extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
312 		__u32 page_shift, __u64 window_size, __u32 levels,
313 		bool alloc_userspace_copy, struct iommu_table *tbl);
314 extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
315 
316 extern long pnv_pci_link_table_and_group(int node, int num,
317 		struct iommu_table *tbl,
318 		struct iommu_table_group *table_group);
319 extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
320 		struct iommu_table_group *table_group);
321 extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
322 		void *tce_mem, u64 tce_size,
323 		u64 dma_offset, unsigned int page_shift);
324 
325 extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
326 
pci_bus_to_pnvhb(struct pci_bus * bus)327 static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
328 {
329 	struct pci_controller *hose = bus->sysdata;
330 
331 	if (hose)
332 		return hose->private_data;
333 
334 	return NULL;
335 }
336 
337 #endif /* __POWERNV_PCI_H */
338