1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Low-level SPU handling
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 *
7 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 */
9
10 #undef DEBUG
11
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <linux/mutex.h>
21 #include <linux/linux_logo.h>
22 #include <linux/syscore_ops.h>
23 #include <asm/spu.h>
24 #include <asm/spu_priv1.h>
25 #include <asm/spu_csa.h>
26 #include <asm/kexec.h>
27
28 const struct spu_management_ops *spu_management_ops;
29 EXPORT_SYMBOL_GPL(spu_management_ops);
30
31 const struct spu_priv1_ops *spu_priv1_ops;
32 EXPORT_SYMBOL_GPL(spu_priv1_ops);
33
34 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
35 EXPORT_SYMBOL_GPL(cbe_spu_info);
36
37 /*
38 * The spufs fault-handling code needs to call force_sig_fault to raise signals
39 * on DMA errors. Export it here to avoid general kernel-wide access to this
40 * function
41 */
42 EXPORT_SYMBOL_GPL(force_sig_fault);
43
44 /*
45 * Protects cbe_spu_info and spu->number.
46 */
47 static DEFINE_SPINLOCK(spu_lock);
48
49 /*
50 * List of all spus in the system.
51 *
52 * This list is iterated by callers from irq context and callers that
53 * want to sleep. Thus modifications need to be done with both
54 * spu_full_list_lock and spu_full_list_mutex held, while iterating
55 * through it requires either of these locks.
56 *
57 * In addition spu_full_list_lock protects all assignments to
58 * spu->mm.
59 */
60 static LIST_HEAD(spu_full_list);
61 static DEFINE_SPINLOCK(spu_full_list_lock);
62 static DEFINE_MUTEX(spu_full_list_mutex);
63
spu_invalidate_slbs(struct spu * spu)64 void spu_invalidate_slbs(struct spu *spu)
65 {
66 struct spu_priv2 __iomem *priv2 = spu->priv2;
67 unsigned long flags;
68
69 spin_lock_irqsave(&spu->register_lock, flags);
70 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
71 out_be64(&priv2->slb_invalidate_all_W, 0UL);
72 spin_unlock_irqrestore(&spu->register_lock, flags);
73 }
74 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
75
76 /* This is called by the MM core when a segment size is changed, to
77 * request a flush of all the SPEs using a given mm
78 */
spu_flush_all_slbs(struct mm_struct * mm)79 void spu_flush_all_slbs(struct mm_struct *mm)
80 {
81 struct spu *spu;
82 unsigned long flags;
83
84 spin_lock_irqsave(&spu_full_list_lock, flags);
85 list_for_each_entry(spu, &spu_full_list, full_list) {
86 if (spu->mm == mm)
87 spu_invalidate_slbs(spu);
88 }
89 spin_unlock_irqrestore(&spu_full_list_lock, flags);
90 }
91
92 /* The hack below stinks... try to do something better one of
93 * these days... Does it even work properly with NR_CPUS == 1 ?
94 */
mm_needs_global_tlbie(struct mm_struct * mm)95 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
96 {
97 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
98
99 /* Global TLBIE broadcast required with SPEs. */
100 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
101 }
102
spu_associate_mm(struct spu * spu,struct mm_struct * mm)103 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
104 {
105 unsigned long flags;
106
107 spin_lock_irqsave(&spu_full_list_lock, flags);
108 spu->mm = mm;
109 spin_unlock_irqrestore(&spu_full_list_lock, flags);
110 if (mm)
111 mm_needs_global_tlbie(mm);
112 }
113 EXPORT_SYMBOL_GPL(spu_associate_mm);
114
spu_64k_pages_available(void)115 int spu_64k_pages_available(void)
116 {
117 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
118 }
119 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
120
spu_restart_dma(struct spu * spu)121 static void spu_restart_dma(struct spu *spu)
122 {
123 struct spu_priv2 __iomem *priv2 = spu->priv2;
124
125 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
126 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
127 else {
128 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
129 mb();
130 }
131 }
132
spu_load_slb(struct spu * spu,int slbe,struct copro_slb * slb)133 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
134 {
135 struct spu_priv2 __iomem *priv2 = spu->priv2;
136
137 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
138 __func__, slbe, slb->vsid, slb->esid);
139
140 out_be64(&priv2->slb_index_W, slbe);
141 /* set invalid before writing vsid */
142 out_be64(&priv2->slb_esid_RW, 0);
143 /* now it's safe to write the vsid */
144 out_be64(&priv2->slb_vsid_RW, slb->vsid);
145 /* setting the new esid makes the entry valid again */
146 out_be64(&priv2->slb_esid_RW, slb->esid);
147 }
148
__spu_trap_data_seg(struct spu * spu,unsigned long ea)149 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
150 {
151 struct copro_slb slb;
152 int ret;
153
154 ret = copro_calculate_slb(spu->mm, ea, &slb);
155 if (ret)
156 return ret;
157
158 spu_load_slb(spu, spu->slb_replace, &slb);
159
160 spu->slb_replace++;
161 if (spu->slb_replace >= 8)
162 spu->slb_replace = 0;
163
164 spu_restart_dma(spu);
165 spu->stats.slb_flt++;
166 return 0;
167 }
168
169 extern int hash_page(unsigned long ea, unsigned long access,
170 unsigned long trap, unsigned long dsisr); //XXX
__spu_trap_data_map(struct spu * spu,unsigned long ea,u64 dsisr)171 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
172 {
173 int ret;
174
175 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
176
177 /*
178 * Handle kernel space hash faults immediately. User hash
179 * faults need to be deferred to process context.
180 */
181 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
182 (get_region_id(ea) != USER_REGION_ID)) {
183
184 spin_unlock(&spu->register_lock);
185 ret = hash_page(ea,
186 _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
187 0x300, dsisr);
188 spin_lock(&spu->register_lock);
189
190 if (!ret) {
191 spu_restart_dma(spu);
192 return 0;
193 }
194 }
195
196 spu->class_1_dar = ea;
197 spu->class_1_dsisr = dsisr;
198
199 spu->stop_callback(spu, 1);
200
201 spu->class_1_dar = 0;
202 spu->class_1_dsisr = 0;
203
204 return 0;
205 }
206
__spu_kernel_slb(void * addr,struct copro_slb * slb)207 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
208 {
209 unsigned long ea = (unsigned long)addr;
210 u64 llp;
211
212 if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
213 llp = mmu_psize_defs[mmu_linear_psize].sllp;
214 else
215 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
216
217 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
218 SLB_VSID_KERNEL | llp;
219 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
220 }
221
222 /**
223 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
224 * address @new_addr is present.
225 */
__slb_present(struct copro_slb * slbs,int nr_slbs,void * new_addr)226 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
227 void *new_addr)
228 {
229 unsigned long ea = (unsigned long)new_addr;
230 int i;
231
232 for (i = 0; i < nr_slbs; i++)
233 if (!((slbs[i].esid ^ ea) & ESID_MASK))
234 return 1;
235
236 return 0;
237 }
238
239 /**
240 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
241 * need to map both the context save area, and the save/restore code.
242 *
243 * Because the lscsa and code may cross segment boundaries, we check to see
244 * if mappings are required for the start and end of each range. We currently
245 * assume that the mappings are smaller that one segment - if not, something
246 * is seriously wrong.
247 */
spu_setup_kernel_slbs(struct spu * spu,struct spu_lscsa * lscsa,void * code,int code_size)248 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
249 void *code, int code_size)
250 {
251 struct copro_slb slbs[4];
252 int i, nr_slbs = 0;
253 /* start and end addresses of both mappings */
254 void *addrs[] = {
255 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
256 code, code + code_size - 1
257 };
258
259 /* check the set of addresses, and create a new entry in the slbs array
260 * if there isn't already a SLB for that address */
261 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
262 if (__slb_present(slbs, nr_slbs, addrs[i]))
263 continue;
264
265 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
266 nr_slbs++;
267 }
268
269 spin_lock_irq(&spu->register_lock);
270 /* Add the set of SLBs */
271 for (i = 0; i < nr_slbs; i++)
272 spu_load_slb(spu, i, &slbs[i]);
273 spin_unlock_irq(&spu->register_lock);
274 }
275 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
276
277 static irqreturn_t
spu_irq_class_0(int irq,void * data)278 spu_irq_class_0(int irq, void *data)
279 {
280 struct spu *spu;
281 unsigned long stat, mask;
282
283 spu = data;
284
285 spin_lock(&spu->register_lock);
286 mask = spu_int_mask_get(spu, 0);
287 stat = spu_int_stat_get(spu, 0) & mask;
288
289 spu->class_0_pending |= stat;
290 spu->class_0_dar = spu_mfc_dar_get(spu);
291 spu->stop_callback(spu, 0);
292 spu->class_0_pending = 0;
293 spu->class_0_dar = 0;
294
295 spu_int_stat_clear(spu, 0, stat);
296 spin_unlock(&spu->register_lock);
297
298 return IRQ_HANDLED;
299 }
300
301 static irqreturn_t
spu_irq_class_1(int irq,void * data)302 spu_irq_class_1(int irq, void *data)
303 {
304 struct spu *spu;
305 unsigned long stat, mask, dar, dsisr;
306
307 spu = data;
308
309 /* atomically read & clear class1 status. */
310 spin_lock(&spu->register_lock);
311 mask = spu_int_mask_get(spu, 1);
312 stat = spu_int_stat_get(spu, 1) & mask;
313 dar = spu_mfc_dar_get(spu);
314 dsisr = spu_mfc_dsisr_get(spu);
315 if (stat & CLASS1_STORAGE_FAULT_INTR)
316 spu_mfc_dsisr_set(spu, 0ul);
317 spu_int_stat_clear(spu, 1, stat);
318
319 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
320 dar, dsisr);
321
322 if (stat & CLASS1_SEGMENT_FAULT_INTR)
323 __spu_trap_data_seg(spu, dar);
324
325 if (stat & CLASS1_STORAGE_FAULT_INTR)
326 __spu_trap_data_map(spu, dar, dsisr);
327
328 spu->class_1_dsisr = 0;
329 spu->class_1_dar = 0;
330
331 spin_unlock(&spu->register_lock);
332
333 return stat ? IRQ_HANDLED : IRQ_NONE;
334 }
335
336 static irqreturn_t
spu_irq_class_2(int irq,void * data)337 spu_irq_class_2(int irq, void *data)
338 {
339 struct spu *spu;
340 unsigned long stat;
341 unsigned long mask;
342 const int mailbox_intrs =
343 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
344
345 spu = data;
346 spin_lock(&spu->register_lock);
347 stat = spu_int_stat_get(spu, 2);
348 mask = spu_int_mask_get(spu, 2);
349 /* ignore interrupts we're not waiting for */
350 stat &= mask;
351 /* mailbox interrupts are level triggered. mask them now before
352 * acknowledging */
353 if (stat & mailbox_intrs)
354 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
355 /* acknowledge all interrupts before the callbacks */
356 spu_int_stat_clear(spu, 2, stat);
357
358 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
359
360 if (stat & CLASS2_MAILBOX_INTR)
361 spu->ibox_callback(spu);
362
363 if (stat & CLASS2_SPU_STOP_INTR)
364 spu->stop_callback(spu, 2);
365
366 if (stat & CLASS2_SPU_HALT_INTR)
367 spu->stop_callback(spu, 2);
368
369 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
370 spu->mfc_callback(spu);
371
372 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
373 spu->wbox_callback(spu);
374
375 spu->stats.class2_intr++;
376
377 spin_unlock(&spu->register_lock);
378
379 return stat ? IRQ_HANDLED : IRQ_NONE;
380 }
381
spu_request_irqs(struct spu * spu)382 static int __init spu_request_irqs(struct spu *spu)
383 {
384 int ret = 0;
385
386 if (spu->irqs[0]) {
387 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
388 spu->number);
389 ret = request_irq(spu->irqs[0], spu_irq_class_0,
390 0, spu->irq_c0, spu);
391 if (ret)
392 goto bail0;
393 }
394 if (spu->irqs[1]) {
395 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
396 spu->number);
397 ret = request_irq(spu->irqs[1], spu_irq_class_1,
398 0, spu->irq_c1, spu);
399 if (ret)
400 goto bail1;
401 }
402 if (spu->irqs[2]) {
403 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
404 spu->number);
405 ret = request_irq(spu->irqs[2], spu_irq_class_2,
406 0, spu->irq_c2, spu);
407 if (ret)
408 goto bail2;
409 }
410 return 0;
411
412 bail2:
413 if (spu->irqs[1])
414 free_irq(spu->irqs[1], spu);
415 bail1:
416 if (spu->irqs[0])
417 free_irq(spu->irqs[0], spu);
418 bail0:
419 return ret;
420 }
421
spu_free_irqs(struct spu * spu)422 static void spu_free_irqs(struct spu *spu)
423 {
424 if (spu->irqs[0])
425 free_irq(spu->irqs[0], spu);
426 if (spu->irqs[1])
427 free_irq(spu->irqs[1], spu);
428 if (spu->irqs[2])
429 free_irq(spu->irqs[2], spu);
430 }
431
spu_init_channels(struct spu * spu)432 void spu_init_channels(struct spu *spu)
433 {
434 static const struct {
435 unsigned channel;
436 unsigned count;
437 } zero_list[] = {
438 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
439 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
440 }, count_list[] = {
441 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
442 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
443 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
444 };
445 struct spu_priv2 __iomem *priv2;
446 int i;
447
448 priv2 = spu->priv2;
449
450 /* initialize all channel data to zero */
451 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
452 int count;
453
454 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
455 for (count = 0; count < zero_list[i].count; count++)
456 out_be64(&priv2->spu_chnldata_RW, 0);
457 }
458
459 /* initialize channel counts to meaningful values */
460 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
461 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
462 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
463 }
464 }
465 EXPORT_SYMBOL_GPL(spu_init_channels);
466
467 static struct bus_type spu_subsys = {
468 .name = "spu",
469 .dev_name = "spu",
470 };
471
spu_add_dev_attr(struct device_attribute * attr)472 int spu_add_dev_attr(struct device_attribute *attr)
473 {
474 struct spu *spu;
475
476 mutex_lock(&spu_full_list_mutex);
477 list_for_each_entry(spu, &spu_full_list, full_list)
478 device_create_file(&spu->dev, attr);
479 mutex_unlock(&spu_full_list_mutex);
480
481 return 0;
482 }
483 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
484
spu_add_dev_attr_group(const struct attribute_group * attrs)485 int spu_add_dev_attr_group(const struct attribute_group *attrs)
486 {
487 struct spu *spu;
488 int rc = 0;
489
490 mutex_lock(&spu_full_list_mutex);
491 list_for_each_entry(spu, &spu_full_list, full_list) {
492 rc = sysfs_create_group(&spu->dev.kobj, attrs);
493
494 /* we're in trouble here, but try unwinding anyway */
495 if (rc) {
496 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
497 __func__, attrs->name);
498
499 list_for_each_entry_continue_reverse(spu,
500 &spu_full_list, full_list)
501 sysfs_remove_group(&spu->dev.kobj, attrs);
502 break;
503 }
504 }
505
506 mutex_unlock(&spu_full_list_mutex);
507
508 return rc;
509 }
510 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
511
512
spu_remove_dev_attr(struct device_attribute * attr)513 void spu_remove_dev_attr(struct device_attribute *attr)
514 {
515 struct spu *spu;
516
517 mutex_lock(&spu_full_list_mutex);
518 list_for_each_entry(spu, &spu_full_list, full_list)
519 device_remove_file(&spu->dev, attr);
520 mutex_unlock(&spu_full_list_mutex);
521 }
522 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
523
spu_remove_dev_attr_group(const struct attribute_group * attrs)524 void spu_remove_dev_attr_group(const struct attribute_group *attrs)
525 {
526 struct spu *spu;
527
528 mutex_lock(&spu_full_list_mutex);
529 list_for_each_entry(spu, &spu_full_list, full_list)
530 sysfs_remove_group(&spu->dev.kobj, attrs);
531 mutex_unlock(&spu_full_list_mutex);
532 }
533 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
534
spu_create_dev(struct spu * spu)535 static int __init spu_create_dev(struct spu *spu)
536 {
537 int ret;
538
539 spu->dev.id = spu->number;
540 spu->dev.bus = &spu_subsys;
541 ret = device_register(&spu->dev);
542 if (ret) {
543 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
544 spu->number);
545 return ret;
546 }
547
548 sysfs_add_device_to_node(&spu->dev, spu->node);
549
550 return 0;
551 }
552
create_spu(void * data)553 static int __init create_spu(void *data)
554 {
555 struct spu *spu;
556 int ret;
557 static int number;
558 unsigned long flags;
559
560 ret = -ENOMEM;
561 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
562 if (!spu)
563 goto out;
564
565 spu->alloc_state = SPU_FREE;
566
567 spin_lock_init(&spu->register_lock);
568 spin_lock(&spu_lock);
569 spu->number = number++;
570 spin_unlock(&spu_lock);
571
572 ret = spu_create_spu(spu, data);
573
574 if (ret)
575 goto out_free;
576
577 spu_mfc_sdr_setup(spu);
578 spu_mfc_sr1_set(spu, 0x33);
579 ret = spu_request_irqs(spu);
580 if (ret)
581 goto out_destroy;
582
583 ret = spu_create_dev(spu);
584 if (ret)
585 goto out_free_irqs;
586
587 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
588 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
589 cbe_spu_info[spu->node].n_spus++;
590 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
591
592 mutex_lock(&spu_full_list_mutex);
593 spin_lock_irqsave(&spu_full_list_lock, flags);
594 list_add(&spu->full_list, &spu_full_list);
595 spin_unlock_irqrestore(&spu_full_list_lock, flags);
596 mutex_unlock(&spu_full_list_mutex);
597
598 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
599 spu->stats.tstamp = ktime_get_ns();
600
601 INIT_LIST_HEAD(&spu->aff_list);
602
603 goto out;
604
605 out_free_irqs:
606 spu_free_irqs(spu);
607 out_destroy:
608 spu_destroy_spu(spu);
609 out_free:
610 kfree(spu);
611 out:
612 return ret;
613 }
614
615 static const char *spu_state_names[] = {
616 "user", "system", "iowait", "idle"
617 };
618
spu_acct_time(struct spu * spu,enum spu_utilization_state state)619 static unsigned long long spu_acct_time(struct spu *spu,
620 enum spu_utilization_state state)
621 {
622 unsigned long long time = spu->stats.times[state];
623
624 /*
625 * If the spu is idle or the context is stopped, utilization
626 * statistics are not updated. Apply the time delta from the
627 * last recorded state of the spu.
628 */
629 if (spu->stats.util_state == state)
630 time += ktime_get_ns() - spu->stats.tstamp;
631
632 return time / NSEC_PER_MSEC;
633 }
634
635
spu_stat_show(struct device * dev,struct device_attribute * attr,char * buf)636 static ssize_t spu_stat_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
638 {
639 struct spu *spu = container_of(dev, struct spu, dev);
640
641 return sprintf(buf, "%s %llu %llu %llu %llu "
642 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
643 spu_state_names[spu->stats.util_state],
644 spu_acct_time(spu, SPU_UTIL_USER),
645 spu_acct_time(spu, SPU_UTIL_SYSTEM),
646 spu_acct_time(spu, SPU_UTIL_IOWAIT),
647 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
648 spu->stats.vol_ctx_switch,
649 spu->stats.invol_ctx_switch,
650 spu->stats.slb_flt,
651 spu->stats.hash_flt,
652 spu->stats.min_flt,
653 spu->stats.maj_flt,
654 spu->stats.class2_intr,
655 spu->stats.libassist);
656 }
657
658 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
659
660 #ifdef CONFIG_KEXEC_CORE
661
662 struct crash_spu_info {
663 struct spu *spu;
664 u32 saved_spu_runcntl_RW;
665 u32 saved_spu_status_R;
666 u32 saved_spu_npc_RW;
667 u64 saved_mfc_sr1_RW;
668 u64 saved_mfc_dar;
669 u64 saved_mfc_dsisr;
670 };
671
672 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
673 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
674
crash_kexec_stop_spus(void)675 static void crash_kexec_stop_spus(void)
676 {
677 struct spu *spu;
678 int i;
679 u64 tmp;
680
681 for (i = 0; i < CRASH_NUM_SPUS; i++) {
682 if (!crash_spu_info[i].spu)
683 continue;
684
685 spu = crash_spu_info[i].spu;
686
687 crash_spu_info[i].saved_spu_runcntl_RW =
688 in_be32(&spu->problem->spu_runcntl_RW);
689 crash_spu_info[i].saved_spu_status_R =
690 in_be32(&spu->problem->spu_status_R);
691 crash_spu_info[i].saved_spu_npc_RW =
692 in_be32(&spu->problem->spu_npc_RW);
693
694 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
695 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
696 tmp = spu_mfc_sr1_get(spu);
697 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
698
699 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
700 spu_mfc_sr1_set(spu, tmp);
701
702 __delay(200);
703 }
704 }
705
crash_register_spus(struct list_head * list)706 static void __init crash_register_spus(struct list_head *list)
707 {
708 struct spu *spu;
709 int ret;
710
711 list_for_each_entry(spu, list, full_list) {
712 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
713 continue;
714
715 crash_spu_info[spu->number].spu = spu;
716 }
717
718 ret = crash_shutdown_register(&crash_kexec_stop_spus);
719 if (ret)
720 printk(KERN_ERR "Could not register SPU crash handler");
721 }
722
723 #else
crash_register_spus(struct list_head * list)724 static inline void crash_register_spus(struct list_head *list)
725 {
726 }
727 #endif
728
spu_shutdown(void)729 static void spu_shutdown(void)
730 {
731 struct spu *spu;
732
733 mutex_lock(&spu_full_list_mutex);
734 list_for_each_entry(spu, &spu_full_list, full_list) {
735 spu_free_irqs(spu);
736 spu_destroy_spu(spu);
737 }
738 mutex_unlock(&spu_full_list_mutex);
739 }
740
741 static struct syscore_ops spu_syscore_ops = {
742 .shutdown = spu_shutdown,
743 };
744
init_spu_base(void)745 static int __init init_spu_base(void)
746 {
747 int i, ret = 0;
748
749 for (i = 0; i < MAX_NUMNODES; i++) {
750 mutex_init(&cbe_spu_info[i].list_mutex);
751 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
752 }
753
754 if (!spu_management_ops)
755 goto out;
756
757 /* create system subsystem for spus */
758 ret = subsys_system_register(&spu_subsys, NULL);
759 if (ret)
760 goto out;
761
762 ret = spu_enumerate_spus(create_spu);
763
764 if (ret < 0) {
765 printk(KERN_WARNING "%s: Error initializing spus\n",
766 __func__);
767 goto out_unregister_subsys;
768 }
769
770 if (ret > 0)
771 fb_append_extra_logo(&logo_spe_clut224, ret);
772
773 mutex_lock(&spu_full_list_mutex);
774 crash_register_spus(&spu_full_list);
775 mutex_unlock(&spu_full_list_mutex);
776 spu_add_dev_attr(&dev_attr_stat);
777 register_syscore_ops(&spu_syscore_ops);
778
779 spu_init_affinity();
780
781 return 0;
782
783 out_unregister_subsys:
784 bus_unregister(&spu_subsys);
785 out:
786 return ret;
787 }
788 device_initcall(init_spu_base);
789