1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 #include <linux/memory.h>
44 #include <linux/bootmem_info.h>
45 
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mmu.h>
53 #include <linux/uaccess.h>
54 #include <asm/smp.h>
55 #include <asm/machdep.h>
56 #include <asm/tlb.h>
57 #include <asm/eeh.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/sections.h>
62 #include <asm/iommu.h>
63 #include <asm/vdso.h>
64 #include <asm/hugetlb.h>
65 
66 #include <mm/mmu_decl.h>
67 
68 #ifdef CONFIG_SPARSEMEM_VMEMMAP
69 /*
70  * Given an address within the vmemmap, determine the page that
71  * represents the start of the subsection it is within.  Note that we have to
72  * do this by hand as the proffered address may not be correctly aligned.
73  * Subtraction of non-aligned pointers produces undefined results.
74  */
vmemmap_subsection_start(unsigned long vmemmap_addr)75 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
76 {
77 	unsigned long start_pfn;
78 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
79 
80 	/* Return the pfn of the start of the section. */
81 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
82 	return pfn_to_page(start_pfn);
83 }
84 
85 /*
86  * Since memory is added in sub-section chunks, before creating a new vmemmap
87  * mapping, the kernel should check whether there is an existing memmap mapping
88  * covering the new subsection added. This is needed because kernel can map
89  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
90  * a range covers multiple subsections (2M)
91  *
92  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
93  * vmemmap populated (There is a page table entry already present). We can't do
94  * a page table lookup here because with the hash translation we don't keep
95  * vmemmap details in linux page table.
96  */
vmemmap_populated(unsigned long vmemmap_addr,int vmemmap_map_size)97 int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
98 {
99 	struct page *start;
100 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
101 	start = vmemmap_subsection_start(vmemmap_addr);
102 
103 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
104 		/*
105 		 * pfn valid check here is intended to really check
106 		 * whether we have any subsection already initialized
107 		 * in this range.
108 		 */
109 		if (pfn_valid(page_to_pfn(start)))
110 			return 1;
111 
112 	return 0;
113 }
114 
115 /*
116  * vmemmap virtual address space management does not have a traditional page
117  * table to track which virtual struct pages are backed by physical mapping.
118  * The virtual to physical mappings are tracked in a simple linked list
119  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
120  * all times where as the 'next' list maintains the available
121  * vmemmap_backing structures which have been deleted from the
122  * 'vmemmap_global' list during system runtime (memory hotplug remove
123  * operation). The freed 'vmemmap_backing' structures are reused later when
124  * new requests come in without allocating fresh memory. This pointer also
125  * tracks the allocated 'vmemmap_backing' structures as we allocate one
126  * full page memory at a time when we dont have any.
127  */
128 struct vmemmap_backing *vmemmap_list;
129 static struct vmemmap_backing *next;
130 
131 /*
132  * The same pointer 'next' tracks individual chunks inside the allocated
133  * full page during the boot time and again tracks the freed nodes during
134  * runtime. It is racy but it does not happen as they are separated by the
135  * boot process. Will create problem if some how we have memory hotplug
136  * operation during boot !!
137  */
138 static int num_left;
139 static int num_freed;
140 
vmemmap_list_alloc(int node)141 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
142 {
143 	struct vmemmap_backing *vmem_back;
144 	/* get from freed entries first */
145 	if (num_freed) {
146 		num_freed--;
147 		vmem_back = next;
148 		next = next->list;
149 
150 		return vmem_back;
151 	}
152 
153 	/* allocate a page when required and hand out chunks */
154 	if (!num_left) {
155 		next = vmemmap_alloc_block(PAGE_SIZE, node);
156 		if (unlikely(!next)) {
157 			WARN_ON(1);
158 			return NULL;
159 		}
160 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
161 	}
162 
163 	num_left--;
164 
165 	return next++;
166 }
167 
vmemmap_list_populate(unsigned long phys,unsigned long start,int node)168 static __meminit int vmemmap_list_populate(unsigned long phys,
169 					   unsigned long start,
170 					   int node)
171 {
172 	struct vmemmap_backing *vmem_back;
173 
174 	vmem_back = vmemmap_list_alloc(node);
175 	if (unlikely(!vmem_back)) {
176 		pr_debug("vmemap list allocation failed\n");
177 		return -ENOMEM;
178 	}
179 
180 	vmem_back->phys = phys;
181 	vmem_back->virt_addr = start;
182 	vmem_back->list = vmemmap_list;
183 
184 	vmemmap_list = vmem_back;
185 	return 0;
186 }
187 
altmap_cross_boundary(struct vmem_altmap * altmap,unsigned long start,unsigned long page_size)188 bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
189 			   unsigned long page_size)
190 {
191 	unsigned long nr_pfn = page_size / sizeof(struct page);
192 	unsigned long start_pfn = page_to_pfn((struct page *)start);
193 
194 	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
195 		return true;
196 
197 	if (start_pfn < altmap->base_pfn)
198 		return true;
199 
200 	return false;
201 }
202 
__vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)203 static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
204 					struct vmem_altmap *altmap)
205 {
206 	bool altmap_alloc;
207 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
208 
209 	/* Align to the page size of the linear mapping. */
210 	start = ALIGN_DOWN(start, page_size);
211 
212 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
213 
214 	for (; start < end; start += page_size) {
215 		void *p = NULL;
216 		int rc;
217 
218 		/*
219 		 * This vmemmap range is backing different subsections. If any
220 		 * of that subsection is marked valid, that means we already
221 		 * have initialized a page table covering this range and hence
222 		 * the vmemmap range is populated.
223 		 */
224 		if (vmemmap_populated(start, page_size))
225 			continue;
226 
227 		/*
228 		 * Allocate from the altmap first if we have one. This may
229 		 * fail due to alignment issues when using 16MB hugepages, so
230 		 * fall back to system memory if the altmap allocation fail.
231 		 */
232 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
233 			p = vmemmap_alloc_block_buf(page_size, node, altmap);
234 			if (!p)
235 				pr_debug("altmap block allocation failed, falling back to system memory");
236 			else
237 				altmap_alloc = true;
238 		}
239 		if (!p) {
240 			p = vmemmap_alloc_block_buf(page_size, node, NULL);
241 			altmap_alloc = false;
242 		}
243 		if (!p)
244 			return -ENOMEM;
245 
246 		if (vmemmap_list_populate(__pa(p), start, node)) {
247 			/*
248 			 * If we don't populate vmemap list, we don't have
249 			 * the ability to free the allocated vmemmap
250 			 * pages in section_deactivate. Hence free them
251 			 * here.
252 			 */
253 			int nr_pfns = page_size >> PAGE_SHIFT;
254 			unsigned long page_order = get_order(page_size);
255 
256 			if (altmap_alloc)
257 				vmem_altmap_free(altmap, nr_pfns);
258 			else
259 				free_pages((unsigned long)p, page_order);
260 			return -ENOMEM;
261 		}
262 
263 		pr_debug("      * %016lx..%016lx allocated at %p\n",
264 			 start, start + page_size, p);
265 
266 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
267 		if (rc < 0) {
268 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
269 				__func__, rc);
270 			return -EFAULT;
271 		}
272 	}
273 
274 	return 0;
275 }
276 
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)277 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
278 			       struct vmem_altmap *altmap)
279 {
280 
281 #ifdef CONFIG_PPC_BOOK3S_64
282 	if (radix_enabled())
283 		return radix__vmemmap_populate(start, end, node, altmap);
284 #endif
285 
286 	return __vmemmap_populate(start, end, node, altmap);
287 }
288 
289 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_list_free(unsigned long start)290 static unsigned long vmemmap_list_free(unsigned long start)
291 {
292 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
293 
294 	vmem_back_prev = vmem_back = vmemmap_list;
295 
296 	/* look for it with prev pointer recorded */
297 	for (; vmem_back; vmem_back = vmem_back->list) {
298 		if (vmem_back->virt_addr == start)
299 			break;
300 		vmem_back_prev = vmem_back;
301 	}
302 
303 	if (unlikely(!vmem_back))
304 		return 0;
305 
306 	/* remove it from vmemmap_list */
307 	if (vmem_back == vmemmap_list) /* remove head */
308 		vmemmap_list = vmem_back->list;
309 	else
310 		vmem_back_prev->list = vmem_back->list;
311 
312 	/* next point to this freed entry */
313 	vmem_back->list = next;
314 	next = vmem_back;
315 	num_freed++;
316 
317 	return vmem_back->phys;
318 }
319 
__vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)320 static void __ref __vmemmap_free(unsigned long start, unsigned long end,
321 				 struct vmem_altmap *altmap)
322 {
323 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
324 	unsigned long page_order = get_order(page_size);
325 	unsigned long alt_start = ~0, alt_end = ~0;
326 	unsigned long base_pfn;
327 
328 	start = ALIGN_DOWN(start, page_size);
329 	if (altmap) {
330 		alt_start = altmap->base_pfn;
331 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
332 	}
333 
334 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
335 
336 	for (; start < end; start += page_size) {
337 		unsigned long nr_pages, addr;
338 		struct page *page;
339 
340 		/*
341 		 * We have already marked the subsection we are trying to remove
342 		 * invalid. So if we want to remove the vmemmap range, we
343 		 * need to make sure there is no subsection marked valid
344 		 * in this range.
345 		 */
346 		if (vmemmap_populated(start, page_size))
347 			continue;
348 
349 		addr = vmemmap_list_free(start);
350 		if (!addr)
351 			continue;
352 
353 		page = pfn_to_page(addr >> PAGE_SHIFT);
354 		nr_pages = 1 << page_order;
355 		base_pfn = PHYS_PFN(addr);
356 
357 		if (base_pfn >= alt_start && base_pfn < alt_end) {
358 			vmem_altmap_free(altmap, nr_pages);
359 		} else if (PageReserved(page)) {
360 			/* allocated from bootmem */
361 			if (page_size < PAGE_SIZE) {
362 				/*
363 				 * this shouldn't happen, but if it is
364 				 * the case, leave the memory there
365 				 */
366 				WARN_ON_ONCE(1);
367 			} else {
368 				while (nr_pages--)
369 					free_reserved_page(page++);
370 			}
371 		} else {
372 			free_pages((unsigned long)(__va(addr)), page_order);
373 		}
374 
375 		vmemmap_remove_mapping(start, page_size);
376 	}
377 }
378 
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)379 void __ref vmemmap_free(unsigned long start, unsigned long end,
380 			struct vmem_altmap *altmap)
381 {
382 #ifdef CONFIG_PPC_BOOK3S_64
383 	if (radix_enabled())
384 		return radix__vmemmap_free(start, end, altmap);
385 #endif
386 	return __vmemmap_free(start, end, altmap);
387 }
388 
389 #endif
390 
391 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long size)392 void register_page_bootmem_memmap(unsigned long section_nr,
393 				  struct page *start_page, unsigned long size)
394 {
395 }
396 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
397 
398 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
399 
400 #ifdef CONFIG_PPC_BOOK3S_64
401 unsigned int mmu_lpid_bits;
402 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
403 EXPORT_SYMBOL_GPL(mmu_lpid_bits);
404 #endif
405 unsigned int mmu_pid_bits;
406 
407 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
408 
parse_disable_radix(char * p)409 static int __init parse_disable_radix(char *p)
410 {
411 	bool val;
412 
413 	if (!p)
414 		val = true;
415 	else if (kstrtobool(p, &val))
416 		return -EINVAL;
417 
418 	disable_radix = val;
419 
420 	return 0;
421 }
422 early_param("disable_radix", parse_disable_radix);
423 
424 /*
425  * If we're running under a hypervisor, we need to check the contents of
426  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
427  * radix.  If not, we clear the radix feature bit so we fall back to hash.
428  */
early_check_vec5(void)429 static void __init early_check_vec5(void)
430 {
431 	unsigned long root, chosen;
432 	int size;
433 	const u8 *vec5;
434 	u8 mmu_supported;
435 
436 	root = of_get_flat_dt_root();
437 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
438 	if (chosen == -FDT_ERR_NOTFOUND) {
439 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
440 		return;
441 	}
442 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
443 	if (!vec5) {
444 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
445 		return;
446 	}
447 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
448 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
449 		return;
450 	}
451 
452 	/* Check for supported configuration */
453 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
454 			OV5_FEAT(OV5_MMU_SUPPORT);
455 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
456 		/* Hypervisor only supports radix - check enabled && GTSE */
457 		if (!early_radix_enabled()) {
458 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
459 		}
460 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
461 						OV5_FEAT(OV5_RADIX_GTSE))) {
462 			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
463 		} else
464 			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
465 		/* Do radix anyway - the hypervisor said we had to */
466 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
467 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
468 		/* Hypervisor only supports hash - disable radix */
469 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
470 		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
471 	}
472 }
473 
dt_scan_mmu_pid_width(unsigned long node,const char * uname,int depth,void * data)474 static int __init dt_scan_mmu_pid_width(unsigned long node,
475 					   const char *uname, int depth,
476 					   void *data)
477 {
478 	int size = 0;
479 	const __be32 *prop;
480 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
481 
482 	/* We are scanning "cpu" nodes only */
483 	if (type == NULL || strcmp(type, "cpu") != 0)
484 		return 0;
485 
486 	/* Find MMU LPID, PID register size */
487 	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
488 	if (prop && size == 4)
489 		mmu_lpid_bits = be32_to_cpup(prop);
490 
491 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
492 	if (prop && size == 4)
493 		mmu_pid_bits = be32_to_cpup(prop);
494 
495 	if (!mmu_pid_bits && !mmu_lpid_bits)
496 		return 0;
497 
498 	return 1;
499 }
500 
501 /*
502  * Outside hotplug the kernel uses this value to map the kernel direct map
503  * with radix. To be compatible with older kernels, let's keep this value
504  * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
505  * things with 1GB size in the case where we don't support hotplug.
506  */
507 #ifndef CONFIG_MEMORY_HOTPLUG
508 #define DEFAULT_MEMORY_BLOCK_SIZE	SZ_16M
509 #else
510 #define DEFAULT_MEMORY_BLOCK_SIZE	MIN_MEMORY_BLOCK_SIZE
511 #endif
512 
update_memory_block_size(unsigned long * block_size,unsigned long mem_size)513 static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
514 {
515 	unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
516 
517 	for (; *block_size > min_memory_block_size; *block_size >>= 2) {
518 		if ((mem_size & *block_size) == 0)
519 			break;
520 	}
521 }
522 
probe_memory_block_size(unsigned long node,const char * uname,int depth,void * data)523 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
524 					  depth, void *data)
525 {
526 	const char *type;
527 	unsigned long *block_size = (unsigned long *)data;
528 	const __be32 *reg, *endp;
529 	int l;
530 
531 	if (depth != 1)
532 		return 0;
533 	/*
534 	 * If we have dynamic-reconfiguration-memory node, use the
535 	 * lmb value.
536 	 */
537 	if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
538 
539 		const __be32 *prop;
540 
541 		prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
542 
543 		if (!prop || l < dt_root_size_cells * sizeof(__be32))
544 			/*
545 			 * Nothing in the device tree
546 			 */
547 			*block_size = DEFAULT_MEMORY_BLOCK_SIZE;
548 		else
549 			*block_size = of_read_number(prop, dt_root_size_cells);
550 		/*
551 		 * We have found the final value. Don't probe further.
552 		 */
553 		return 1;
554 	}
555 	/*
556 	 * Find all the device tree nodes of memory type and make sure
557 	 * the area can be mapped using the memory block size value
558 	 * we end up using. We start with 1G value and keep reducing
559 	 * it such that we can map the entire area using memory_block_size.
560 	 * This will be used on powernv and older pseries that don't
561 	 * have ibm,lmb-size node.
562 	 * For ex: with P5 we can end up with
563 	 * memory@0 -> 128MB
564 	 * memory@128M -> 64M
565 	 * This will end up using 64MB  memory block size value.
566 	 */
567 	type = of_get_flat_dt_prop(node, "device_type", NULL);
568 	if (type == NULL || strcmp(type, "memory") != 0)
569 		return 0;
570 
571 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
572 	if (!reg)
573 		reg = of_get_flat_dt_prop(node, "reg", &l);
574 	if (!reg)
575 		return 0;
576 
577 	endp = reg + (l / sizeof(__be32));
578 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
579 		const char *compatible;
580 		u64 size;
581 
582 		dt_mem_next_cell(dt_root_addr_cells, &reg);
583 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
584 
585 		if (size) {
586 			update_memory_block_size(block_size, size);
587 			continue;
588 		}
589 		/*
590 		 * ibm,coherent-device-memory with linux,usable-memory = 0
591 		 * Force 256MiB block size. Work around for GPUs on P9 PowerNV
592 		 * linux,usable-memory == 0 implies driver managed memory and
593 		 * we can't use large memory block size due to hotplug/unplug
594 		 * limitations.
595 		 */
596 		compatible = of_get_flat_dt_prop(node, "compatible", NULL);
597 		if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
598 			if (*block_size > SZ_256M)
599 				*block_size = SZ_256M;
600 			/*
601 			 * We keep 256M as the upper limit with GPU present.
602 			 */
603 			return 0;
604 		}
605 	}
606 	/* continue looking for other memory device types */
607 	return 0;
608 }
609 
610 /*
611  * start with 1G memory block size. Early init will
612  * fix this with correct value.
613  */
614 unsigned long memory_block_size __ro_after_init = 1UL << 30;
early_init_memory_block_size(void)615 static void __init early_init_memory_block_size(void)
616 {
617 	/*
618 	 * We need to do memory_block_size probe early so that
619 	 * radix__early_init_mmu() can use this as limit for
620 	 * mapping page size.
621 	 */
622 	of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
623 }
624 
mmu_early_init_devtree(void)625 void __init mmu_early_init_devtree(void)
626 {
627 	bool hvmode = !!(mfmsr() & MSR_HV);
628 
629 	/* Disable radix mode based on kernel command line. */
630 	if (disable_radix) {
631 		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
632 			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
633 		else
634 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
635 	}
636 
637 	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
638 	if (hvmode && !mmu_lpid_bits) {
639 		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
640 			mmu_lpid_bits = 12; /* POWER8-10 */
641 		else
642 			mmu_lpid_bits = 10; /* POWER7 */
643 	}
644 	if (!mmu_pid_bits) {
645 		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
646 			mmu_pid_bits = 20; /* POWER9-10 */
647 	}
648 
649 	/*
650 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
651 	 * When running bare-metal, we can use radix if we like
652 	 * even though the ibm,architecture-vec-5 property created by
653 	 * skiboot doesn't have the necessary bits set.
654 	 */
655 	if (!hvmode)
656 		early_check_vec5();
657 
658 	early_init_memory_block_size();
659 
660 	if (early_radix_enabled()) {
661 		radix__early_init_devtree();
662 
663 		/*
664 		 * We have finalized the translation we are going to use by now.
665 		 * Radix mode is not limited by RMA / VRMA addressing.
666 		 * Hence don't limit memblock allocations.
667 		 */
668 		ppc64_rma_size = ULONG_MAX;
669 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
670 	} else
671 		hash__early_init_devtree();
672 
673 	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
674 		hugetlbpage_init_defaultsize();
675 
676 	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
677 	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
678 		panic("kernel does not support any MMU type offered by platform");
679 }
680 #endif /* CONFIG_PPC_BOOK3S_64 */
681