1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
8 * Copyright (C) 1996 Paul Mackerras
9 *
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 *
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
15 */
16
17 #undef DEBUG
18
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 #include <linux/memory.h>
44 #include <linux/bootmem_info.h>
45
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mmu.h>
53 #include <linux/uaccess.h>
54 #include <asm/smp.h>
55 #include <asm/machdep.h>
56 #include <asm/tlb.h>
57 #include <asm/eeh.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/sections.h>
62 #include <asm/iommu.h>
63 #include <asm/vdso.h>
64 #include <asm/hugetlb.h>
65
66 #include <mm/mmu_decl.h>
67
68 #ifdef CONFIG_SPARSEMEM_VMEMMAP
69 /*
70 * Given an address within the vmemmap, determine the page that
71 * represents the start of the subsection it is within. Note that we have to
72 * do this by hand as the proffered address may not be correctly aligned.
73 * Subtraction of non-aligned pointers produces undefined results.
74 */
vmemmap_subsection_start(unsigned long vmemmap_addr)75 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
76 {
77 unsigned long start_pfn;
78 unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
79
80 /* Return the pfn of the start of the section. */
81 start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
82 return pfn_to_page(start_pfn);
83 }
84
85 /*
86 * Since memory is added in sub-section chunks, before creating a new vmemmap
87 * mapping, the kernel should check whether there is an existing memmap mapping
88 * covering the new subsection added. This is needed because kernel can map
89 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
90 * a range covers multiple subsections (2M)
91 *
92 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
93 * vmemmap populated (There is a page table entry already present). We can't do
94 * a page table lookup here because with the hash translation we don't keep
95 * vmemmap details in linux page table.
96 */
vmemmap_populated(unsigned long vmemmap_addr,int vmemmap_map_size)97 int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
98 {
99 struct page *start;
100 unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
101 start = vmemmap_subsection_start(vmemmap_addr);
102
103 for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
104 /*
105 * pfn valid check here is intended to really check
106 * whether we have any subsection already initialized
107 * in this range.
108 */
109 if (pfn_valid(page_to_pfn(start)))
110 return 1;
111
112 return 0;
113 }
114
115 /*
116 * vmemmap virtual address space management does not have a traditional page
117 * table to track which virtual struct pages are backed by physical mapping.
118 * The virtual to physical mappings are tracked in a simple linked list
119 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
120 * all times where as the 'next' list maintains the available
121 * vmemmap_backing structures which have been deleted from the
122 * 'vmemmap_global' list during system runtime (memory hotplug remove
123 * operation). The freed 'vmemmap_backing' structures are reused later when
124 * new requests come in without allocating fresh memory. This pointer also
125 * tracks the allocated 'vmemmap_backing' structures as we allocate one
126 * full page memory at a time when we dont have any.
127 */
128 struct vmemmap_backing *vmemmap_list;
129 static struct vmemmap_backing *next;
130
131 /*
132 * The same pointer 'next' tracks individual chunks inside the allocated
133 * full page during the boot time and again tracks the freed nodes during
134 * runtime. It is racy but it does not happen as they are separated by the
135 * boot process. Will create problem if some how we have memory hotplug
136 * operation during boot !!
137 */
138 static int num_left;
139 static int num_freed;
140
vmemmap_list_alloc(int node)141 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
142 {
143 struct vmemmap_backing *vmem_back;
144 /* get from freed entries first */
145 if (num_freed) {
146 num_freed--;
147 vmem_back = next;
148 next = next->list;
149
150 return vmem_back;
151 }
152
153 /* allocate a page when required and hand out chunks */
154 if (!num_left) {
155 next = vmemmap_alloc_block(PAGE_SIZE, node);
156 if (unlikely(!next)) {
157 WARN_ON(1);
158 return NULL;
159 }
160 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
161 }
162
163 num_left--;
164
165 return next++;
166 }
167
vmemmap_list_populate(unsigned long phys,unsigned long start,int node)168 static __meminit int vmemmap_list_populate(unsigned long phys,
169 unsigned long start,
170 int node)
171 {
172 struct vmemmap_backing *vmem_back;
173
174 vmem_back = vmemmap_list_alloc(node);
175 if (unlikely(!vmem_back)) {
176 pr_debug("vmemap list allocation failed\n");
177 return -ENOMEM;
178 }
179
180 vmem_back->phys = phys;
181 vmem_back->virt_addr = start;
182 vmem_back->list = vmemmap_list;
183
184 vmemmap_list = vmem_back;
185 return 0;
186 }
187
altmap_cross_boundary(struct vmem_altmap * altmap,unsigned long start,unsigned long page_size)188 bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
189 unsigned long page_size)
190 {
191 unsigned long nr_pfn = page_size / sizeof(struct page);
192 unsigned long start_pfn = page_to_pfn((struct page *)start);
193
194 if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
195 return true;
196
197 if (start_pfn < altmap->base_pfn)
198 return true;
199
200 return false;
201 }
202
__vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)203 static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
204 struct vmem_altmap *altmap)
205 {
206 bool altmap_alloc;
207 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
208
209 /* Align to the page size of the linear mapping. */
210 start = ALIGN_DOWN(start, page_size);
211
212 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
213
214 for (; start < end; start += page_size) {
215 void *p = NULL;
216 int rc;
217
218 /*
219 * This vmemmap range is backing different subsections. If any
220 * of that subsection is marked valid, that means we already
221 * have initialized a page table covering this range and hence
222 * the vmemmap range is populated.
223 */
224 if (vmemmap_populated(start, page_size))
225 continue;
226
227 /*
228 * Allocate from the altmap first if we have one. This may
229 * fail due to alignment issues when using 16MB hugepages, so
230 * fall back to system memory if the altmap allocation fail.
231 */
232 if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
233 p = vmemmap_alloc_block_buf(page_size, node, altmap);
234 if (!p)
235 pr_debug("altmap block allocation failed, falling back to system memory");
236 else
237 altmap_alloc = true;
238 }
239 if (!p) {
240 p = vmemmap_alloc_block_buf(page_size, node, NULL);
241 altmap_alloc = false;
242 }
243 if (!p)
244 return -ENOMEM;
245
246 if (vmemmap_list_populate(__pa(p), start, node)) {
247 /*
248 * If we don't populate vmemap list, we don't have
249 * the ability to free the allocated vmemmap
250 * pages in section_deactivate. Hence free them
251 * here.
252 */
253 int nr_pfns = page_size >> PAGE_SHIFT;
254 unsigned long page_order = get_order(page_size);
255
256 if (altmap_alloc)
257 vmem_altmap_free(altmap, nr_pfns);
258 else
259 free_pages((unsigned long)p, page_order);
260 return -ENOMEM;
261 }
262
263 pr_debug(" * %016lx..%016lx allocated at %p\n",
264 start, start + page_size, p);
265
266 rc = vmemmap_create_mapping(start, page_size, __pa(p));
267 if (rc < 0) {
268 pr_warn("%s: Unable to create vmemmap mapping: %d\n",
269 __func__, rc);
270 return -EFAULT;
271 }
272 }
273
274 return 0;
275 }
276
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)277 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
278 struct vmem_altmap *altmap)
279 {
280
281 #ifdef CONFIG_PPC_BOOK3S_64
282 if (radix_enabled())
283 return radix__vmemmap_populate(start, end, node, altmap);
284 #endif
285
286 return __vmemmap_populate(start, end, node, altmap);
287 }
288
289 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_list_free(unsigned long start)290 static unsigned long vmemmap_list_free(unsigned long start)
291 {
292 struct vmemmap_backing *vmem_back, *vmem_back_prev;
293
294 vmem_back_prev = vmem_back = vmemmap_list;
295
296 /* look for it with prev pointer recorded */
297 for (; vmem_back; vmem_back = vmem_back->list) {
298 if (vmem_back->virt_addr == start)
299 break;
300 vmem_back_prev = vmem_back;
301 }
302
303 if (unlikely(!vmem_back))
304 return 0;
305
306 /* remove it from vmemmap_list */
307 if (vmem_back == vmemmap_list) /* remove head */
308 vmemmap_list = vmem_back->list;
309 else
310 vmem_back_prev->list = vmem_back->list;
311
312 /* next point to this freed entry */
313 vmem_back->list = next;
314 next = vmem_back;
315 num_freed++;
316
317 return vmem_back->phys;
318 }
319
__vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)320 static void __ref __vmemmap_free(unsigned long start, unsigned long end,
321 struct vmem_altmap *altmap)
322 {
323 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
324 unsigned long page_order = get_order(page_size);
325 unsigned long alt_start = ~0, alt_end = ~0;
326 unsigned long base_pfn;
327
328 start = ALIGN_DOWN(start, page_size);
329 if (altmap) {
330 alt_start = altmap->base_pfn;
331 alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
332 }
333
334 pr_debug("vmemmap_free %lx...%lx\n", start, end);
335
336 for (; start < end; start += page_size) {
337 unsigned long nr_pages, addr;
338 struct page *page;
339
340 /*
341 * We have already marked the subsection we are trying to remove
342 * invalid. So if we want to remove the vmemmap range, we
343 * need to make sure there is no subsection marked valid
344 * in this range.
345 */
346 if (vmemmap_populated(start, page_size))
347 continue;
348
349 addr = vmemmap_list_free(start);
350 if (!addr)
351 continue;
352
353 page = pfn_to_page(addr >> PAGE_SHIFT);
354 nr_pages = 1 << page_order;
355 base_pfn = PHYS_PFN(addr);
356
357 if (base_pfn >= alt_start && base_pfn < alt_end) {
358 vmem_altmap_free(altmap, nr_pages);
359 } else if (PageReserved(page)) {
360 /* allocated from bootmem */
361 if (page_size < PAGE_SIZE) {
362 /*
363 * this shouldn't happen, but if it is
364 * the case, leave the memory there
365 */
366 WARN_ON_ONCE(1);
367 } else {
368 while (nr_pages--)
369 free_reserved_page(page++);
370 }
371 } else {
372 free_pages((unsigned long)(__va(addr)), page_order);
373 }
374
375 vmemmap_remove_mapping(start, page_size);
376 }
377 }
378
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)379 void __ref vmemmap_free(unsigned long start, unsigned long end,
380 struct vmem_altmap *altmap)
381 {
382 #ifdef CONFIG_PPC_BOOK3S_64
383 if (radix_enabled())
384 return radix__vmemmap_free(start, end, altmap);
385 #endif
386 return __vmemmap_free(start, end, altmap);
387 }
388
389 #endif
390
391 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long size)392 void register_page_bootmem_memmap(unsigned long section_nr,
393 struct page *start_page, unsigned long size)
394 {
395 }
396 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
397
398 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
399
400 #ifdef CONFIG_PPC_BOOK3S_64
401 unsigned int mmu_lpid_bits;
402 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
403 EXPORT_SYMBOL_GPL(mmu_lpid_bits);
404 #endif
405 unsigned int mmu_pid_bits;
406
407 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
408
parse_disable_radix(char * p)409 static int __init parse_disable_radix(char *p)
410 {
411 bool val;
412
413 if (!p)
414 val = true;
415 else if (kstrtobool(p, &val))
416 return -EINVAL;
417
418 disable_radix = val;
419
420 return 0;
421 }
422 early_param("disable_radix", parse_disable_radix);
423
424 /*
425 * If we're running under a hypervisor, we need to check the contents of
426 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
427 * radix. If not, we clear the radix feature bit so we fall back to hash.
428 */
early_check_vec5(void)429 static void __init early_check_vec5(void)
430 {
431 unsigned long root, chosen;
432 int size;
433 const u8 *vec5;
434 u8 mmu_supported;
435
436 root = of_get_flat_dt_root();
437 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
438 if (chosen == -FDT_ERR_NOTFOUND) {
439 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
440 return;
441 }
442 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
443 if (!vec5) {
444 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
445 return;
446 }
447 if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
448 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
449 return;
450 }
451
452 /* Check for supported configuration */
453 mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
454 OV5_FEAT(OV5_MMU_SUPPORT);
455 if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
456 /* Hypervisor only supports radix - check enabled && GTSE */
457 if (!early_radix_enabled()) {
458 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
459 }
460 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
461 OV5_FEAT(OV5_RADIX_GTSE))) {
462 cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
463 } else
464 cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
465 /* Do radix anyway - the hypervisor said we had to */
466 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
467 } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
468 /* Hypervisor only supports hash - disable radix */
469 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
470 cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
471 }
472 }
473
dt_scan_mmu_pid_width(unsigned long node,const char * uname,int depth,void * data)474 static int __init dt_scan_mmu_pid_width(unsigned long node,
475 const char *uname, int depth,
476 void *data)
477 {
478 int size = 0;
479 const __be32 *prop;
480 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
481
482 /* We are scanning "cpu" nodes only */
483 if (type == NULL || strcmp(type, "cpu") != 0)
484 return 0;
485
486 /* Find MMU LPID, PID register size */
487 prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
488 if (prop && size == 4)
489 mmu_lpid_bits = be32_to_cpup(prop);
490
491 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
492 if (prop && size == 4)
493 mmu_pid_bits = be32_to_cpup(prop);
494
495 if (!mmu_pid_bits && !mmu_lpid_bits)
496 return 0;
497
498 return 1;
499 }
500
501 /*
502 * Outside hotplug the kernel uses this value to map the kernel direct map
503 * with radix. To be compatible with older kernels, let's keep this value
504 * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
505 * things with 1GB size in the case where we don't support hotplug.
506 */
507 #ifndef CONFIG_MEMORY_HOTPLUG
508 #define DEFAULT_MEMORY_BLOCK_SIZE SZ_16M
509 #else
510 #define DEFAULT_MEMORY_BLOCK_SIZE MIN_MEMORY_BLOCK_SIZE
511 #endif
512
update_memory_block_size(unsigned long * block_size,unsigned long mem_size)513 static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
514 {
515 unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
516
517 for (; *block_size > min_memory_block_size; *block_size >>= 2) {
518 if ((mem_size & *block_size) == 0)
519 break;
520 }
521 }
522
probe_memory_block_size(unsigned long node,const char * uname,int depth,void * data)523 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
524 depth, void *data)
525 {
526 const char *type;
527 unsigned long *block_size = (unsigned long *)data;
528 const __be32 *reg, *endp;
529 int l;
530
531 if (depth != 1)
532 return 0;
533 /*
534 * If we have dynamic-reconfiguration-memory node, use the
535 * lmb value.
536 */
537 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
538
539 const __be32 *prop;
540
541 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
542
543 if (!prop || l < dt_root_size_cells * sizeof(__be32))
544 /*
545 * Nothing in the device tree
546 */
547 *block_size = DEFAULT_MEMORY_BLOCK_SIZE;
548 else
549 *block_size = of_read_number(prop, dt_root_size_cells);
550 /*
551 * We have found the final value. Don't probe further.
552 */
553 return 1;
554 }
555 /*
556 * Find all the device tree nodes of memory type and make sure
557 * the area can be mapped using the memory block size value
558 * we end up using. We start with 1G value and keep reducing
559 * it such that we can map the entire area using memory_block_size.
560 * This will be used on powernv and older pseries that don't
561 * have ibm,lmb-size node.
562 * For ex: with P5 we can end up with
563 * memory@0 -> 128MB
564 * memory@128M -> 64M
565 * This will end up using 64MB memory block size value.
566 */
567 type = of_get_flat_dt_prop(node, "device_type", NULL);
568 if (type == NULL || strcmp(type, "memory") != 0)
569 return 0;
570
571 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
572 if (!reg)
573 reg = of_get_flat_dt_prop(node, "reg", &l);
574 if (!reg)
575 return 0;
576
577 endp = reg + (l / sizeof(__be32));
578 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
579 const char *compatible;
580 u64 size;
581
582 dt_mem_next_cell(dt_root_addr_cells, ®);
583 size = dt_mem_next_cell(dt_root_size_cells, ®);
584
585 if (size) {
586 update_memory_block_size(block_size, size);
587 continue;
588 }
589 /*
590 * ibm,coherent-device-memory with linux,usable-memory = 0
591 * Force 256MiB block size. Work around for GPUs on P9 PowerNV
592 * linux,usable-memory == 0 implies driver managed memory and
593 * we can't use large memory block size due to hotplug/unplug
594 * limitations.
595 */
596 compatible = of_get_flat_dt_prop(node, "compatible", NULL);
597 if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
598 if (*block_size > SZ_256M)
599 *block_size = SZ_256M;
600 /*
601 * We keep 256M as the upper limit with GPU present.
602 */
603 return 0;
604 }
605 }
606 /* continue looking for other memory device types */
607 return 0;
608 }
609
610 /*
611 * start with 1G memory block size. Early init will
612 * fix this with correct value.
613 */
614 unsigned long memory_block_size __ro_after_init = 1UL << 30;
early_init_memory_block_size(void)615 static void __init early_init_memory_block_size(void)
616 {
617 /*
618 * We need to do memory_block_size probe early so that
619 * radix__early_init_mmu() can use this as limit for
620 * mapping page size.
621 */
622 of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
623 }
624
mmu_early_init_devtree(void)625 void __init mmu_early_init_devtree(void)
626 {
627 bool hvmode = !!(mfmsr() & MSR_HV);
628
629 /* Disable radix mode based on kernel command line. */
630 if (disable_radix) {
631 if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
632 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
633 else
634 pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
635 }
636
637 of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
638 if (hvmode && !mmu_lpid_bits) {
639 if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
640 mmu_lpid_bits = 12; /* POWER8-10 */
641 else
642 mmu_lpid_bits = 10; /* POWER7 */
643 }
644 if (!mmu_pid_bits) {
645 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
646 mmu_pid_bits = 20; /* POWER9-10 */
647 }
648
649 /*
650 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
651 * When running bare-metal, we can use radix if we like
652 * even though the ibm,architecture-vec-5 property created by
653 * skiboot doesn't have the necessary bits set.
654 */
655 if (!hvmode)
656 early_check_vec5();
657
658 early_init_memory_block_size();
659
660 if (early_radix_enabled()) {
661 radix__early_init_devtree();
662
663 /*
664 * We have finalized the translation we are going to use by now.
665 * Radix mode is not limited by RMA / VRMA addressing.
666 * Hence don't limit memblock allocations.
667 */
668 ppc64_rma_size = ULONG_MAX;
669 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
670 } else
671 hash__early_init_devtree();
672
673 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
674 hugetlbpage_init_defaultsize();
675
676 if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
677 !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
678 panic("kernel does not support any MMU type offered by platform");
679 }
680 #endif /* CONFIG_PPC_BOOK3S_64 */
681