1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
8 * Manish Ahuja
9 *
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12 */
13
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 #include <asm/prom.h>
37
38 /*
39 * The CPU who acquired the lock to trigger the fadump crash should
40 * wait for other CPUs to enter.
41 *
42 * The timeout is in milliseconds.
43 */
44 #define CRASH_TIMEOUT 500
45
46 static struct fw_dump fw_dump;
47
48 static void __init fadump_reserve_crash_area(u64 base);
49
50 #ifndef CONFIG_PRESERVE_FA_DUMP
51
52 static struct kobject *fadump_kobj;
53
54 static atomic_t cpus_in_fadump;
55 static DEFINE_MUTEX(fadump_mutex);
56
57 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
59 sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 static struct fadump_mrange_info
62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68
69 /*
70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71 *
72 * This function initializes CMA area from fadump reserved memory.
73 * The total size of fadump reserved memory covers for boot memory size
74 * + cpu data size + hpte size and metadata.
75 * Initialize only the area equivalent to boot memory size for CMA use.
76 * The remaining portion of fadump reserved memory will be not given
77 * to CMA and pages for those will stay reserved. boot memory size is
78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79 * But for some reason even if it fails we still have the memory reservation
80 * with us and we can still continue doing fadump.
81 */
fadump_cma_init(void)82 void __init fadump_cma_init(void)
83 {
84 unsigned long long base, size, end;
85 int rc;
86
87 if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
88 fw_dump.dump_active)
89 return;
90 /*
91 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 */
93 if (fw_dump.nocma || !fw_dump.boot_memory_size)
94 return;
95
96 /*
97 * [base, end) should be reserved during early init in
98 * fadump_reserve_mem(). No need to check this here as
99 * cma_init_reserved_mem() already checks for overlap.
100 * Here we give the aligned chunk of this reserved memory to CMA.
101 */
102 base = fw_dump.reserve_dump_area_start;
103 size = fw_dump.boot_memory_size;
104 end = base + size;
105
106 base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
107 end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
108 size = end - base;
109
110 if (end <= base) {
111 pr_warn("%s: Too less memory to give to CMA\n", __func__);
112 return;
113 }
114
115 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
116 if (rc) {
117 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118 /*
119 * Though the CMA init has failed we still have memory
120 * reservation with us. The reserved memory will be
121 * blocked from production system usage. Hence return 1,
122 * so that we can continue with fadump.
123 */
124 return;
125 }
126
127 /*
128 * If CMA activation fails, keep the pages reserved, instead of
129 * exposing them to buddy allocator. Same as 'fadump=nocma' case.
130 */
131 cma_reserve_pages_on_error(fadump_cma);
132
133 /*
134 * So we now have successfully initialized cma area for fadump.
135 */
136 pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
137 "bytes of memory reserved for firmware-assisted dump\n",
138 cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
139 fw_dump.reserve_dump_area_start,
140 fw_dump.boot_memory_size >> 20);
141 return;
142 }
143 #endif /* CONFIG_CMA */
144
145 /*
146 * Additional parameters meant for capture kernel are placed in a dedicated area.
147 * If this is capture kernel boot, append these parameters to bootargs.
148 */
fadump_append_bootargs(void)149 void __init fadump_append_bootargs(void)
150 {
151 char *append_args;
152 size_t len;
153
154 if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
155 return;
156
157 if (fw_dump.param_area < fw_dump.boot_mem_top) {
158 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
159 pr_warn("WARNING: Can't use additional parameters area!\n");
160 fw_dump.param_area = 0;
161 return;
162 }
163 }
164
165 append_args = (char *)fw_dump.param_area;
166 len = strlen(boot_command_line);
167
168 /*
169 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
170 * to cmdline size and proceed anyway.
171 */
172 if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
173 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174
175 pr_debug("Cmdline: %s\n", boot_command_line);
176 snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
177 pr_info("Updated cmdline: %s\n", boot_command_line);
178 }
179
180 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)181 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
182 int depth, void *data)
183 {
184 if (depth == 0) {
185 early_init_dt_scan_reserved_ranges(node);
186 return 0;
187 }
188
189 if (depth != 1)
190 return 0;
191
192 if (strcmp(uname, "rtas") == 0) {
193 rtas_fadump_dt_scan(&fw_dump, node);
194 return 1;
195 }
196
197 if (strcmp(uname, "ibm,opal") == 0) {
198 opal_fadump_dt_scan(&fw_dump, node);
199 return 1;
200 }
201
202 return 0;
203 }
204
205 /*
206 * If fadump is registered, check if the memory provided
207 * falls within boot memory area and reserved memory area.
208 */
is_fadump_memory_area(u64 addr,unsigned long size)209 int is_fadump_memory_area(u64 addr, unsigned long size)
210 {
211 u64 d_start, d_end;
212
213 if (!fw_dump.dump_registered)
214 return 0;
215
216 if (!size)
217 return 0;
218
219 d_start = fw_dump.reserve_dump_area_start;
220 d_end = d_start + fw_dump.reserve_dump_area_size;
221 if (((addr + size) > d_start) && (addr <= d_end))
222 return 1;
223
224 return (addr <= fw_dump.boot_mem_top);
225 }
226
should_fadump_crash(void)227 int should_fadump_crash(void)
228 {
229 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
230 return 0;
231 return 1;
232 }
233
is_fadump_active(void)234 int is_fadump_active(void)
235 {
236 return fw_dump.dump_active;
237 }
238
239 /*
240 * Returns true, if there are no holes in memory area between d_start to d_end,
241 * false otherwise.
242 */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)243 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244 {
245 phys_addr_t reg_start, reg_end;
246 bool ret = false;
247 u64 i, start, end;
248
249 for_each_mem_range(i, ®_start, ®_end) {
250 start = max_t(u64, d_start, reg_start);
251 end = min_t(u64, d_end, reg_end);
252 if (d_start < end) {
253 /* Memory hole from d_start to start */
254 if (start > d_start)
255 break;
256
257 if (end == d_end) {
258 ret = true;
259 break;
260 }
261
262 d_start = end + 1;
263 }
264 }
265
266 return ret;
267 }
268
269 /*
270 * Returns true, if there are no holes in reserved memory area,
271 * false otherwise.
272 */
is_fadump_reserved_mem_contiguous(void)273 bool is_fadump_reserved_mem_contiguous(void)
274 {
275 u64 d_start, d_end;
276
277 d_start = fw_dump.reserve_dump_area_start;
278 d_end = d_start + fw_dump.reserve_dump_area_size;
279 return is_fadump_mem_area_contiguous(d_start, d_end);
280 }
281
282 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)283 static void __init fadump_show_config(void)
284 {
285 int i;
286
287 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
288 (fw_dump.fadump_supported ? "present" : "no support"));
289
290 if (!fw_dump.fadump_supported)
291 return;
292
293 pr_debug("Fadump enabled : %s\n",
294 (fw_dump.fadump_enabled ? "yes" : "no"));
295 pr_debug("Dump Active : %s\n",
296 (fw_dump.dump_active ? "yes" : "no"));
297 pr_debug("Dump section sizes:\n");
298 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
299 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
300 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
301 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
302 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
303 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
304 pr_debug("[%03d] base = %llx, size = %llx\n", i,
305 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
306 }
307 }
308
309 /**
310 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
311 *
312 * Function to find the largest memory size we need to reserve during early
313 * boot process. This will be the size of the memory that is required for a
314 * kernel to boot successfully.
315 *
316 * This function has been taken from phyp-assisted dump feature implementation.
317 *
318 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
319 *
320 * TODO: Come up with better approach to find out more accurate memory size
321 * that is required for a kernel to boot successfully.
322 *
323 */
fadump_calculate_reserve_size(void)324 static __init u64 fadump_calculate_reserve_size(void)
325 {
326 u64 base, size, bootmem_min;
327 int ret;
328
329 if (fw_dump.reserve_bootvar)
330 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
331
332 /*
333 * Check if the size is specified through crashkernel= cmdline
334 * option. If yes, then use that but ignore base as fadump reserves
335 * memory at a predefined offset.
336 */
337 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
338 &size, &base, NULL, NULL);
339 if (ret == 0 && size > 0) {
340 unsigned long max_size;
341
342 if (fw_dump.reserve_bootvar)
343 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
344
345 fw_dump.reserve_bootvar = (unsigned long)size;
346
347 /*
348 * Adjust if the boot memory size specified is above
349 * the upper limit.
350 */
351 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
352 if (fw_dump.reserve_bootvar > max_size) {
353 fw_dump.reserve_bootvar = max_size;
354 pr_info("Adjusted boot memory size to %luMB\n",
355 (fw_dump.reserve_bootvar >> 20));
356 }
357
358 return fw_dump.reserve_bootvar;
359 } else if (fw_dump.reserve_bootvar) {
360 /*
361 * 'fadump_reserve_mem=' is being used to reserve memory
362 * for firmware-assisted dump.
363 */
364 return fw_dump.reserve_bootvar;
365 }
366
367 /* divide by 20 to get 5% of value */
368 size = memblock_phys_mem_size() / 20;
369
370 /* round it down in multiples of 256 */
371 size = size & ~0x0FFFFFFFUL;
372
373 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
374 if (memory_limit && size > memory_limit)
375 size = memory_limit;
376
377 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
378 return (size > bootmem_min ? size : bootmem_min);
379 }
380
381 /*
382 * Calculate the total memory size required to be reserved for
383 * firmware-assisted dump registration.
384 */
get_fadump_area_size(void)385 static unsigned long __init get_fadump_area_size(void)
386 {
387 unsigned long size = 0;
388
389 size += fw_dump.cpu_state_data_size;
390 size += fw_dump.hpte_region_size;
391 /*
392 * Account for pagesize alignment of boot memory area destination address.
393 * This faciliates in mmap reading of first kernel's memory.
394 */
395 size = PAGE_ALIGN(size);
396 size += fw_dump.boot_memory_size;
397 size += sizeof(struct fadump_crash_info_header);
398
399 /* This is to hold kernel metadata on platforms that support it */
400 size += (fw_dump.ops->fadump_get_metadata_size ?
401 fw_dump.ops->fadump_get_metadata_size() : 0);
402 return size;
403 }
404
add_boot_mem_region(unsigned long rstart,unsigned long rsize)405 static int __init add_boot_mem_region(unsigned long rstart,
406 unsigned long rsize)
407 {
408 int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
409 int i = fw_dump.boot_mem_regs_cnt++;
410
411 if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
412 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
413 return 0;
414 }
415
416 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
417 i, rstart, (rstart + rsize));
418 fw_dump.boot_mem_addr[i] = rstart;
419 fw_dump.boot_mem_sz[i] = rsize;
420 return 1;
421 }
422
423 /*
424 * Firmware usually has a hard limit on the data it can copy per region.
425 * Honour that by splitting a memory range into multiple regions.
426 */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)427 static int __init add_boot_mem_regions(unsigned long mstart,
428 unsigned long msize)
429 {
430 unsigned long rstart, rsize, max_size;
431 int ret = 1;
432
433 rstart = mstart;
434 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
435 while (msize) {
436 if (msize > max_size)
437 rsize = max_size;
438 else
439 rsize = msize;
440
441 ret = add_boot_mem_region(rstart, rsize);
442 if (!ret)
443 break;
444
445 msize -= rsize;
446 rstart += rsize;
447 }
448
449 return ret;
450 }
451
fadump_get_boot_mem_regions(void)452 static int __init fadump_get_boot_mem_regions(void)
453 {
454 unsigned long size, cur_size, hole_size, last_end;
455 unsigned long mem_size = fw_dump.boot_memory_size;
456 phys_addr_t reg_start, reg_end;
457 int ret = 1;
458 u64 i;
459
460 fw_dump.boot_mem_regs_cnt = 0;
461
462 last_end = 0;
463 hole_size = 0;
464 cur_size = 0;
465 for_each_mem_range(i, ®_start, ®_end) {
466 size = reg_end - reg_start;
467 hole_size += (reg_start - last_end);
468
469 if ((cur_size + size) >= mem_size) {
470 size = (mem_size - cur_size);
471 ret = add_boot_mem_regions(reg_start, size);
472 break;
473 }
474
475 mem_size -= size;
476 cur_size += size;
477 ret = add_boot_mem_regions(reg_start, size);
478 if (!ret)
479 break;
480
481 last_end = reg_end;
482 }
483 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
484
485 return ret;
486 }
487
488 /*
489 * Returns true, if the given range overlaps with reserved memory ranges
490 * starting at idx. Also, updates idx to index of overlapping memory range
491 * with the given memory range.
492 * False, otherwise.
493 */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)494 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
495 {
496 bool ret = false;
497 int i;
498
499 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
500 u64 rbase = reserved_mrange_info.mem_ranges[i].base;
501 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
502
503 if (end <= rbase)
504 break;
505
506 if ((end > rbase) && (base < rend)) {
507 *idx = i;
508 ret = true;
509 break;
510 }
511 }
512
513 return ret;
514 }
515
516 /*
517 * Locate a suitable memory area to reserve memory for FADump. While at it,
518 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
519 */
fadump_locate_reserve_mem(u64 base,u64 size)520 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
521 {
522 struct fadump_memory_range *mrngs;
523 phys_addr_t mstart, mend;
524 int idx = 0;
525 u64 i, ret = 0;
526
527 mrngs = reserved_mrange_info.mem_ranges;
528 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
529 &mstart, &mend, NULL) {
530 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
531 i, mstart, mend, base);
532
533 if (mstart > base)
534 base = PAGE_ALIGN(mstart);
535
536 while ((mend > base) && ((mend - base) >= size)) {
537 if (!overlaps_reserved_ranges(base, base+size, &idx)) {
538 ret = base;
539 goto out;
540 }
541
542 base = mrngs[idx].base + mrngs[idx].size;
543 base = PAGE_ALIGN(base);
544 }
545 }
546
547 out:
548 return ret;
549 }
550
fadump_reserve_mem(void)551 int __init fadump_reserve_mem(void)
552 {
553 u64 base, size, mem_boundary, bootmem_min;
554 int ret = 1;
555
556 if (!fw_dump.fadump_enabled)
557 return 0;
558
559 if (!fw_dump.fadump_supported) {
560 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
561 goto error_out;
562 }
563
564 /*
565 * Initialize boot memory size
566 * If dump is active then we have already calculated the size during
567 * first kernel.
568 */
569 if (!fw_dump.dump_active) {
570 fw_dump.boot_memory_size =
571 PAGE_ALIGN(fadump_calculate_reserve_size());
572
573 bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
574 if (fw_dump.boot_memory_size < bootmem_min) {
575 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
576 fw_dump.boot_memory_size, bootmem_min);
577 goto error_out;
578 }
579
580 if (!fadump_get_boot_mem_regions()) {
581 pr_err("Too many holes in boot memory area to enable fadump\n");
582 goto error_out;
583 }
584 }
585
586 if (memory_limit)
587 mem_boundary = memory_limit;
588 else
589 mem_boundary = memblock_end_of_DRAM();
590
591 base = fw_dump.boot_mem_top;
592 size = get_fadump_area_size();
593 fw_dump.reserve_dump_area_size = size;
594 if (fw_dump.dump_active) {
595 pr_info("Firmware-assisted dump is active.\n");
596
597 #ifdef CONFIG_HUGETLB_PAGE
598 /*
599 * FADump capture kernel doesn't care much about hugepages.
600 * In fact, handling hugepages in capture kernel is asking for
601 * trouble. So, disable HugeTLB support when fadump is active.
602 */
603 hugetlb_disabled = true;
604 #endif
605 /*
606 * If last boot has crashed then reserve all the memory
607 * above boot memory size so that we don't touch it until
608 * dump is written to disk by userspace tool. This memory
609 * can be released for general use by invalidating fadump.
610 */
611 fadump_reserve_crash_area(base);
612
613 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
614 pr_debug("Reserve dump area start address: 0x%lx\n",
615 fw_dump.reserve_dump_area_start);
616 } else {
617 /*
618 * Reserve memory at an offset closer to bottom of the RAM to
619 * minimize the impact of memory hot-remove operation.
620 */
621 base = fadump_locate_reserve_mem(base, size);
622
623 if (!base || (base + size > mem_boundary)) {
624 pr_err("Failed to find memory chunk for reservation!\n");
625 goto error_out;
626 }
627 fw_dump.reserve_dump_area_start = base;
628
629 /*
630 * Calculate the kernel metadata address and register it with
631 * f/w if the platform supports.
632 */
633 if (fw_dump.ops->fadump_setup_metadata &&
634 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
635 goto error_out;
636
637 if (memblock_reserve(base, size)) {
638 pr_err("Failed to reserve memory!\n");
639 goto error_out;
640 }
641
642 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
643 (size >> 20), base, (memblock_phys_mem_size() >> 20));
644 }
645
646 return ret;
647 error_out:
648 fw_dump.fadump_enabled = 0;
649 fw_dump.reserve_dump_area_size = 0;
650 return 0;
651 }
652
653 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)654 static int __init early_fadump_param(char *p)
655 {
656 if (!p)
657 return 1;
658
659 if (strncmp(p, "on", 2) == 0)
660 fw_dump.fadump_enabled = 1;
661 else if (strncmp(p, "off", 3) == 0)
662 fw_dump.fadump_enabled = 0;
663 else if (strncmp(p, "nocma", 5) == 0) {
664 fw_dump.fadump_enabled = 1;
665 fw_dump.nocma = 1;
666 }
667
668 return 0;
669 }
670 early_param("fadump", early_fadump_param);
671
672 /*
673 * Look for fadump_reserve_mem= cmdline option
674 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
675 * the sooner 'crashkernel=' parameter is accustomed to.
676 */
early_fadump_reserve_mem(char * p)677 static int __init early_fadump_reserve_mem(char *p)
678 {
679 if (p)
680 fw_dump.reserve_bootvar = memparse(p, &p);
681 return 0;
682 }
683 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
684
crash_fadump(struct pt_regs * regs,const char * str)685 void crash_fadump(struct pt_regs *regs, const char *str)
686 {
687 unsigned int msecs;
688 struct fadump_crash_info_header *fdh = NULL;
689 int old_cpu, this_cpu;
690 /* Do not include first CPU */
691 unsigned int ncpus = num_online_cpus() - 1;
692
693 if (!should_fadump_crash())
694 return;
695
696 /*
697 * old_cpu == -1 means this is the first CPU which has come here,
698 * go ahead and trigger fadump.
699 *
700 * old_cpu != -1 means some other CPU has already on its way
701 * to trigger fadump, just keep looping here.
702 */
703 this_cpu = smp_processor_id();
704 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
705
706 if (old_cpu != -1) {
707 atomic_inc(&cpus_in_fadump);
708
709 /*
710 * We can't loop here indefinitely. Wait as long as fadump
711 * is in force. If we race with fadump un-registration this
712 * loop will break and then we go down to normal panic path
713 * and reboot. If fadump is in force the first crashing
714 * cpu will definitely trigger fadump.
715 */
716 while (fw_dump.dump_registered)
717 cpu_relax();
718 return;
719 }
720
721 fdh = __va(fw_dump.fadumphdr_addr);
722 fdh->crashing_cpu = crashing_cpu;
723 crash_save_vmcoreinfo();
724
725 if (regs)
726 fdh->regs = *regs;
727 else
728 ppc_save_regs(&fdh->regs);
729
730 fdh->cpu_mask = *cpu_online_mask;
731
732 /*
733 * If we came in via system reset, wait a while for the secondary
734 * CPUs to enter.
735 */
736 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
737 msecs = CRASH_TIMEOUT;
738 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
739 mdelay(1);
740 }
741
742 fw_dump.ops->fadump_trigger(fdh, str);
743 }
744
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)745 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
746 {
747 struct elf_prstatus prstatus;
748
749 memset(&prstatus, 0, sizeof(prstatus));
750 /*
751 * FIXME: How do i get PID? Do I really need it?
752 * prstatus.pr_pid = ????
753 */
754 elf_core_copy_regs(&prstatus.pr_reg, regs);
755 buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
756 &prstatus, sizeof(prstatus));
757 return buf;
758 }
759
fadump_update_elfcore_header(char * bufp)760 void __init fadump_update_elfcore_header(char *bufp)
761 {
762 struct elf_phdr *phdr;
763
764 bufp += sizeof(struct elfhdr);
765
766 /* First note is a place holder for cpu notes info. */
767 phdr = (struct elf_phdr *)bufp;
768
769 if (phdr->p_type == PT_NOTE) {
770 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
771 phdr->p_offset = phdr->p_paddr;
772 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
773 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
774 }
775 return;
776 }
777
fadump_alloc_buffer(unsigned long size)778 static void *__init fadump_alloc_buffer(unsigned long size)
779 {
780 unsigned long count, i;
781 struct page *page;
782 void *vaddr;
783
784 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
785 if (!vaddr)
786 return NULL;
787
788 count = PAGE_ALIGN(size) / PAGE_SIZE;
789 page = virt_to_page(vaddr);
790 for (i = 0; i < count; i++)
791 mark_page_reserved(page + i);
792 return vaddr;
793 }
794
fadump_free_buffer(unsigned long vaddr,unsigned long size)795 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
796 {
797 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
798 }
799
fadump_setup_cpu_notes_buf(u32 num_cpus)800 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
801 {
802 /* Allocate buffer to hold cpu crash notes. */
803 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
804 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
805 fw_dump.cpu_notes_buf_vaddr =
806 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
807 if (!fw_dump.cpu_notes_buf_vaddr) {
808 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
809 fw_dump.cpu_notes_buf_size);
810 return -ENOMEM;
811 }
812
813 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
814 fw_dump.cpu_notes_buf_size,
815 fw_dump.cpu_notes_buf_vaddr);
816 return 0;
817 }
818
fadump_free_cpu_notes_buf(void)819 void fadump_free_cpu_notes_buf(void)
820 {
821 if (!fw_dump.cpu_notes_buf_vaddr)
822 return;
823
824 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
825 fw_dump.cpu_notes_buf_size);
826 fw_dump.cpu_notes_buf_vaddr = 0;
827 fw_dump.cpu_notes_buf_size = 0;
828 }
829
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)830 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
831 {
832 if (mrange_info->is_static) {
833 mrange_info->mem_range_cnt = 0;
834 return;
835 }
836
837 kfree(mrange_info->mem_ranges);
838 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
839 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
840 }
841
842 /*
843 * Allocate or reallocate mem_ranges array in incremental units
844 * of PAGE_SIZE.
845 */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)846 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
847 {
848 struct fadump_memory_range *new_array;
849 u64 new_size;
850
851 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
852 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
853 new_size, mrange_info->name);
854
855 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
856 if (new_array == NULL) {
857 pr_err("Insufficient memory for setting up %s memory ranges\n",
858 mrange_info->name);
859 fadump_free_mem_ranges(mrange_info);
860 return -ENOMEM;
861 }
862
863 mrange_info->mem_ranges = new_array;
864 mrange_info->mem_ranges_sz = new_size;
865 mrange_info->max_mem_ranges = (new_size /
866 sizeof(struct fadump_memory_range));
867 return 0;
868 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)869 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
870 u64 base, u64 end)
871 {
872 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
873 bool is_adjacent = false;
874 u64 start, size;
875
876 if (base == end)
877 return 0;
878
879 /*
880 * Fold adjacent memory ranges to bring down the memory ranges/
881 * PT_LOAD segments count.
882 */
883 if (mrange_info->mem_range_cnt) {
884 start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
885 size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
886
887 /*
888 * Boot memory area needs separate PT_LOAD segment(s) as it
889 * is moved to a different location at the time of crash.
890 * So, fold only if the region is not boot memory area.
891 */
892 if ((start + size) == base && start >= fw_dump.boot_mem_top)
893 is_adjacent = true;
894 }
895 if (!is_adjacent) {
896 /* resize the array on reaching the limit */
897 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
898 int ret;
899
900 if (mrange_info->is_static) {
901 pr_err("Reached array size limit for %s memory ranges\n",
902 mrange_info->name);
903 return -ENOSPC;
904 }
905
906 ret = fadump_alloc_mem_ranges(mrange_info);
907 if (ret)
908 return ret;
909
910 /* Update to the new resized array */
911 mem_ranges = mrange_info->mem_ranges;
912 }
913
914 start = base;
915 mem_ranges[mrange_info->mem_range_cnt].base = start;
916 mrange_info->mem_range_cnt++;
917 }
918
919 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
920 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
921 mrange_info->name, (mrange_info->mem_range_cnt - 1),
922 start, end - 1, (end - start));
923 return 0;
924 }
925
fadump_init_elfcore_header(char * bufp)926 static int fadump_init_elfcore_header(char *bufp)
927 {
928 struct elfhdr *elf;
929
930 elf = (struct elfhdr *) bufp;
931 bufp += sizeof(struct elfhdr);
932 memcpy(elf->e_ident, ELFMAG, SELFMAG);
933 elf->e_ident[EI_CLASS] = ELF_CLASS;
934 elf->e_ident[EI_DATA] = ELF_DATA;
935 elf->e_ident[EI_VERSION] = EV_CURRENT;
936 elf->e_ident[EI_OSABI] = ELF_OSABI;
937 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
938 elf->e_type = ET_CORE;
939 elf->e_machine = ELF_ARCH;
940 elf->e_version = EV_CURRENT;
941 elf->e_entry = 0;
942 elf->e_phoff = sizeof(struct elfhdr);
943 elf->e_shoff = 0;
944
945 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
946 elf->e_flags = 2;
947 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
948 elf->e_flags = 1;
949 else
950 elf->e_flags = 0;
951
952 elf->e_ehsize = sizeof(struct elfhdr);
953 elf->e_phentsize = sizeof(struct elf_phdr);
954 elf->e_phnum = 0;
955 elf->e_shentsize = 0;
956 elf->e_shnum = 0;
957 elf->e_shstrndx = 0;
958
959 return 0;
960 }
961
962 /*
963 * If the given physical address falls within the boot memory region then
964 * return the relocated address that points to the dump region reserved
965 * for saving initial boot memory contents.
966 */
fadump_relocate(unsigned long paddr)967 static inline unsigned long fadump_relocate(unsigned long paddr)
968 {
969 unsigned long raddr, rstart, rend, rlast, hole_size;
970 int i;
971
972 hole_size = 0;
973 rlast = 0;
974 raddr = paddr;
975 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
976 rstart = fw_dump.boot_mem_addr[i];
977 rend = rstart + fw_dump.boot_mem_sz[i];
978 hole_size += (rstart - rlast);
979
980 if (paddr >= rstart && paddr < rend) {
981 raddr += fw_dump.boot_mem_dest_addr - hole_size;
982 break;
983 }
984
985 rlast = rend;
986 }
987
988 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
989 return raddr;
990 }
991
populate_elf_pt_load(struct elf_phdr * phdr,u64 start,u64 size,unsigned long long offset)992 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
993 u64 size, unsigned long long offset)
994 {
995 phdr->p_align = 0;
996 phdr->p_memsz = size;
997 phdr->p_filesz = size;
998 phdr->p_paddr = start;
999 phdr->p_offset = offset;
1000 phdr->p_type = PT_LOAD;
1001 phdr->p_flags = PF_R|PF_W|PF_X;
1002 phdr->p_vaddr = (unsigned long)__va(start);
1003 }
1004
fadump_populate_elfcorehdr(struct fadump_crash_info_header * fdh)1005 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1006 {
1007 char *bufp;
1008 struct elfhdr *elf;
1009 struct elf_phdr *phdr;
1010 u64 boot_mem_dest_offset;
1011 unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1012
1013 bufp = (char *) fw_dump.elfcorehdr_addr;
1014 fadump_init_elfcore_header(bufp);
1015 elf = (struct elfhdr *)bufp;
1016 bufp += sizeof(struct elfhdr);
1017
1018 /*
1019 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1020 * The notes info will be populated later by platform-specific code.
1021 * Hence, this PT_NOTE will always be the first ELF note.
1022 *
1023 * NOTE: Any new ELF note addition should be placed after this note.
1024 */
1025 phdr = (struct elf_phdr *)bufp;
1026 bufp += sizeof(struct elf_phdr);
1027 phdr->p_type = PT_NOTE;
1028 phdr->p_flags = 0;
1029 phdr->p_vaddr = 0;
1030 phdr->p_align = 0;
1031 phdr->p_offset = 0;
1032 phdr->p_paddr = 0;
1033 phdr->p_filesz = 0;
1034 phdr->p_memsz = 0;
1035 /* Increment number of program headers. */
1036 (elf->e_phnum)++;
1037
1038 /* setup ELF PT_NOTE for vmcoreinfo */
1039 phdr = (struct elf_phdr *)bufp;
1040 bufp += sizeof(struct elf_phdr);
1041 phdr->p_type = PT_NOTE;
1042 phdr->p_flags = 0;
1043 phdr->p_vaddr = 0;
1044 phdr->p_align = 0;
1045 phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr;
1046 phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size;
1047 /* Increment number of program headers. */
1048 (elf->e_phnum)++;
1049
1050 /*
1051 * Setup PT_LOAD sections. first include boot memory regions
1052 * and then add rest of the memory regions.
1053 */
1054 boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1055 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1056 phdr = (struct elf_phdr *)bufp;
1057 bufp += sizeof(struct elf_phdr);
1058 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1059 fw_dump.boot_mem_sz[i],
1060 boot_mem_dest_offset);
1061 /* Increment number of program headers. */
1062 (elf->e_phnum)++;
1063 boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1064 }
1065
1066 /* Memory reserved for fadump in first kernel */
1067 ra_start = fw_dump.reserve_dump_area_start;
1068 ra_size = get_fadump_area_size();
1069 ra_end = ra_start + ra_size;
1070
1071 phdr = (struct elf_phdr *)bufp;
1072 for_each_mem_range(i, &mstart, &mend) {
1073 /* Boot memory regions already added, skip them now */
1074 if (mstart < fw_dump.boot_mem_top) {
1075 if (mend > fw_dump.boot_mem_top)
1076 mstart = fw_dump.boot_mem_top;
1077 else
1078 continue;
1079 }
1080
1081 /* Handle memblock regions overlaps with fadump reserved area */
1082 if ((ra_start < mend) && (ra_end > mstart)) {
1083 if ((mstart < ra_start) && (mend > ra_end)) {
1084 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1085 /* Increment number of program headers. */
1086 (elf->e_phnum)++;
1087 bufp += sizeof(struct elf_phdr);
1088 phdr = (struct elf_phdr *)bufp;
1089 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1090 } else if (mstart < ra_start) {
1091 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1092 } else if (ra_end < mend) {
1093 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1094 }
1095 } else {
1096 /* No overlap with fadump reserved memory region */
1097 populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1098 }
1099
1100 /* Increment number of program headers. */
1101 (elf->e_phnum)++;
1102 bufp += sizeof(struct elf_phdr);
1103 phdr = (struct elf_phdr *) bufp;
1104 }
1105 }
1106
init_fadump_header(unsigned long addr)1107 static unsigned long init_fadump_header(unsigned long addr)
1108 {
1109 struct fadump_crash_info_header *fdh;
1110
1111 if (!addr)
1112 return 0;
1113
1114 fdh = __va(addr);
1115 addr += sizeof(struct fadump_crash_info_header);
1116
1117 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1118 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1119 fdh->version = FADUMP_HEADER_VERSION;
1120 /* We will set the crashing cpu id in crash_fadump() during crash. */
1121 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1122
1123 /*
1124 * The physical address and size of vmcoreinfo are required in the
1125 * second kernel to prepare elfcorehdr.
1126 */
1127 fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1128 fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1129
1130
1131 fdh->pt_regs_sz = sizeof(struct pt_regs);
1132 /*
1133 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1134 * register data is processed while exporting the vmcore.
1135 */
1136 fdh->cpu_mask = *cpu_possible_mask;
1137 fdh->cpu_mask_sz = sizeof(struct cpumask);
1138
1139 return addr;
1140 }
1141
register_fadump(void)1142 static int register_fadump(void)
1143 {
1144 unsigned long addr;
1145
1146 /*
1147 * If no memory is reserved then we can not register for firmware-
1148 * assisted dump.
1149 */
1150 if (!fw_dump.reserve_dump_area_size)
1151 return -ENODEV;
1152
1153 addr = fw_dump.fadumphdr_addr;
1154
1155 /* Initialize fadump crash info header. */
1156 addr = init_fadump_header(addr);
1157
1158 /* register the future kernel dump with firmware. */
1159 pr_debug("Registering for firmware-assisted kernel dump...\n");
1160 return fw_dump.ops->fadump_register(&fw_dump);
1161 }
1162
fadump_cleanup(void)1163 void fadump_cleanup(void)
1164 {
1165 if (!fw_dump.fadump_supported)
1166 return;
1167
1168 /* Invalidate the registration only if dump is active. */
1169 if (fw_dump.dump_active) {
1170 pr_debug("Invalidating firmware-assisted dump registration\n");
1171 fw_dump.ops->fadump_invalidate(&fw_dump);
1172 } else if (fw_dump.dump_registered) {
1173 /* Un-register Firmware-assisted dump if it was registered. */
1174 fw_dump.ops->fadump_unregister(&fw_dump);
1175 }
1176
1177 if (fw_dump.ops->fadump_cleanup)
1178 fw_dump.ops->fadump_cleanup(&fw_dump);
1179 }
1180
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1181 static void fadump_free_reserved_memory(unsigned long start_pfn,
1182 unsigned long end_pfn)
1183 {
1184 unsigned long pfn;
1185 unsigned long time_limit = jiffies + HZ;
1186
1187 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1188 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1189
1190 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1191 free_reserved_page(pfn_to_page(pfn));
1192
1193 if (time_after(jiffies, time_limit)) {
1194 cond_resched();
1195 time_limit = jiffies + HZ;
1196 }
1197 }
1198 }
1199
1200 /*
1201 * Skip memory holes and free memory that was actually reserved.
1202 */
fadump_release_reserved_area(u64 start,u64 end)1203 static void fadump_release_reserved_area(u64 start, u64 end)
1204 {
1205 unsigned long reg_spfn, reg_epfn;
1206 u64 tstart, tend, spfn, epfn;
1207 int i;
1208
1209 spfn = PHYS_PFN(start);
1210 epfn = PHYS_PFN(end);
1211
1212 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) {
1213 tstart = max_t(u64, spfn, reg_spfn);
1214 tend = min_t(u64, epfn, reg_epfn);
1215
1216 if (tstart < tend) {
1217 fadump_free_reserved_memory(tstart, tend);
1218
1219 if (tend == epfn)
1220 break;
1221
1222 spfn = tend;
1223 }
1224 }
1225 }
1226
1227 /*
1228 * Sort the mem ranges in-place and merge adjacent ranges
1229 * to minimize the memory ranges count.
1230 */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1231 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1232 {
1233 struct fadump_memory_range *mem_ranges;
1234 u64 base, size;
1235 int i, j, idx;
1236
1237 if (!reserved_mrange_info.mem_range_cnt)
1238 return;
1239
1240 /* Sort the memory ranges */
1241 mem_ranges = mrange_info->mem_ranges;
1242 for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1243 idx = i;
1244 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1245 if (mem_ranges[idx].base > mem_ranges[j].base)
1246 idx = j;
1247 }
1248 if (idx != i)
1249 swap(mem_ranges[idx], mem_ranges[i]);
1250 }
1251
1252 /* Merge adjacent reserved ranges */
1253 idx = 0;
1254 for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1255 base = mem_ranges[i-1].base;
1256 size = mem_ranges[i-1].size;
1257 if (mem_ranges[i].base == (base + size))
1258 mem_ranges[idx].size += mem_ranges[i].size;
1259 else {
1260 idx++;
1261 if (i == idx)
1262 continue;
1263
1264 mem_ranges[idx] = mem_ranges[i];
1265 }
1266 }
1267 mrange_info->mem_range_cnt = idx + 1;
1268 }
1269
1270 /*
1271 * Scan reserved-ranges to consider them while reserving/releasing
1272 * memory for FADump.
1273 */
early_init_dt_scan_reserved_ranges(unsigned long node)1274 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1275 {
1276 const __be32 *prop;
1277 int len, ret = -1;
1278 unsigned long i;
1279
1280 /* reserved-ranges already scanned */
1281 if (reserved_mrange_info.mem_range_cnt != 0)
1282 return;
1283
1284 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1285 if (!prop)
1286 return;
1287
1288 /*
1289 * Each reserved range is an (address,size) pair, 2 cells each,
1290 * totalling 4 cells per range.
1291 */
1292 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1293 u64 base, size;
1294
1295 base = of_read_number(prop + (i * 4) + 0, 2);
1296 size = of_read_number(prop + (i * 4) + 2, 2);
1297
1298 if (size) {
1299 ret = fadump_add_mem_range(&reserved_mrange_info,
1300 base, base + size);
1301 if (ret < 0) {
1302 pr_warn("some reserved ranges are ignored!\n");
1303 break;
1304 }
1305 }
1306 }
1307
1308 /* Compact reserved ranges */
1309 sort_and_merge_mem_ranges(&reserved_mrange_info);
1310 }
1311
1312 /*
1313 * Release the memory that was reserved during early boot to preserve the
1314 * crash'ed kernel's memory contents except reserved dump area (permanent
1315 * reservation) and reserved ranges used by F/W. The released memory will
1316 * be available for general use.
1317 */
fadump_release_memory(u64 begin,u64 end)1318 static void fadump_release_memory(u64 begin, u64 end)
1319 {
1320 u64 ra_start, ra_end, tstart;
1321 int i, ret;
1322
1323 ra_start = fw_dump.reserve_dump_area_start;
1324 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1325
1326 /*
1327 * If reserved ranges array limit is hit, overwrite the last reserved
1328 * memory range with reserved dump area to ensure it is excluded from
1329 * the memory being released (reused for next FADump registration).
1330 */
1331 if (reserved_mrange_info.mem_range_cnt ==
1332 reserved_mrange_info.max_mem_ranges)
1333 reserved_mrange_info.mem_range_cnt--;
1334
1335 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1336 if (ret != 0)
1337 return;
1338
1339 /* Get the reserved ranges list in order first. */
1340 sort_and_merge_mem_ranges(&reserved_mrange_info);
1341
1342 /* Exclude reserved ranges and release remaining memory */
1343 tstart = begin;
1344 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1345 ra_start = reserved_mrange_info.mem_ranges[i].base;
1346 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1347
1348 if (tstart >= ra_end)
1349 continue;
1350
1351 if (tstart < ra_start)
1352 fadump_release_reserved_area(tstart, ra_start);
1353 tstart = ra_end;
1354 }
1355
1356 if (tstart < end)
1357 fadump_release_reserved_area(tstart, end);
1358 }
1359
fadump_free_elfcorehdr_buf(void)1360 static void fadump_free_elfcorehdr_buf(void)
1361 {
1362 if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1363 return;
1364
1365 /*
1366 * Before freeing the memory of `elfcorehdr`, reset the global
1367 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1368 * invalid memory.
1369 */
1370 elfcorehdr_addr = ELFCORE_ADDR_ERR;
1371 fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1372 fw_dump.elfcorehdr_addr = 0;
1373 fw_dump.elfcorehdr_size = 0;
1374 }
1375
fadump_invalidate_release_mem(void)1376 static void fadump_invalidate_release_mem(void)
1377 {
1378 mutex_lock(&fadump_mutex);
1379 if (!fw_dump.dump_active) {
1380 mutex_unlock(&fadump_mutex);
1381 return;
1382 }
1383
1384 fadump_cleanup();
1385 mutex_unlock(&fadump_mutex);
1386
1387 fadump_free_elfcorehdr_buf();
1388 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1389 fadump_free_cpu_notes_buf();
1390
1391 /*
1392 * Setup kernel metadata and initialize the kernel dump
1393 * memory structure for FADump re-registration.
1394 */
1395 if (fw_dump.ops->fadump_setup_metadata &&
1396 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1397 pr_warn("Failed to setup kernel metadata!\n");
1398 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1399 }
1400
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1401 static ssize_t release_mem_store(struct kobject *kobj,
1402 struct kobj_attribute *attr,
1403 const char *buf, size_t count)
1404 {
1405 int input = -1;
1406
1407 if (!fw_dump.dump_active)
1408 return -EPERM;
1409
1410 if (kstrtoint(buf, 0, &input))
1411 return -EINVAL;
1412
1413 if (input == 1) {
1414 /*
1415 * Take away the '/proc/vmcore'. We are releasing the dump
1416 * memory, hence it will not be valid anymore.
1417 */
1418 #ifdef CONFIG_PROC_VMCORE
1419 vmcore_cleanup();
1420 #endif
1421 fadump_invalidate_release_mem();
1422
1423 } else
1424 return -EINVAL;
1425 return count;
1426 }
1427
1428 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1429 static void __init unregister_fadump(void)
1430 {
1431 fadump_cleanup();
1432 fadump_release_memory(fw_dump.reserve_dump_area_start,
1433 fw_dump.reserve_dump_area_size);
1434 fw_dump.fadump_enabled = 0;
1435 kobject_put(fadump_kobj);
1436 }
1437
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1438 static ssize_t enabled_show(struct kobject *kobj,
1439 struct kobj_attribute *attr,
1440 char *buf)
1441 {
1442 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1443 }
1444
1445 /*
1446 * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1447 * to usersapce that fadump re-registration is not required on memory
1448 * hotplug events.
1449 */
hotplug_ready_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1450 static ssize_t hotplug_ready_show(struct kobject *kobj,
1451 struct kobj_attribute *attr,
1452 char *buf)
1453 {
1454 return sprintf(buf, "%d\n", 1);
1455 }
1456
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1457 static ssize_t mem_reserved_show(struct kobject *kobj,
1458 struct kobj_attribute *attr,
1459 char *buf)
1460 {
1461 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1462 }
1463
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1464 static ssize_t registered_show(struct kobject *kobj,
1465 struct kobj_attribute *attr,
1466 char *buf)
1467 {
1468 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1469 }
1470
bootargs_append_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t bootargs_append_show(struct kobject *kobj,
1472 struct kobj_attribute *attr,
1473 char *buf)
1474 {
1475 return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1476 }
1477
bootargs_append_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1478 static ssize_t bootargs_append_store(struct kobject *kobj,
1479 struct kobj_attribute *attr,
1480 const char *buf, size_t count)
1481 {
1482 char *params;
1483
1484 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1485 return -EPERM;
1486
1487 if (count >= COMMAND_LINE_SIZE)
1488 return -EINVAL;
1489
1490 /*
1491 * Fail here instead of handling this scenario with
1492 * some silly workaround in capture kernel.
1493 */
1494 if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1495 pr_err("Appending parameters exceeds cmdline size!\n");
1496 return -ENOSPC;
1497 }
1498
1499 params = __va(fw_dump.param_area);
1500 strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1501 /* Remove newline character at the end. */
1502 if (params[count-1] == '\n')
1503 params[count-1] = '\0';
1504
1505 return count;
1506 }
1507
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1508 static ssize_t registered_store(struct kobject *kobj,
1509 struct kobj_attribute *attr,
1510 const char *buf, size_t count)
1511 {
1512 int ret = 0;
1513 int input = -1;
1514
1515 if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1516 return -EPERM;
1517
1518 if (kstrtoint(buf, 0, &input))
1519 return -EINVAL;
1520
1521 mutex_lock(&fadump_mutex);
1522
1523 switch (input) {
1524 case 0:
1525 if (fw_dump.dump_registered == 0) {
1526 goto unlock_out;
1527 }
1528
1529 /* Un-register Firmware-assisted dump */
1530 pr_debug("Un-register firmware-assisted dump\n");
1531 fw_dump.ops->fadump_unregister(&fw_dump);
1532 break;
1533 case 1:
1534 if (fw_dump.dump_registered == 1) {
1535 /* Un-register Firmware-assisted dump */
1536 fw_dump.ops->fadump_unregister(&fw_dump);
1537 }
1538 /* Register Firmware-assisted dump */
1539 ret = register_fadump();
1540 break;
1541 default:
1542 ret = -EINVAL;
1543 break;
1544 }
1545
1546 unlock_out:
1547 mutex_unlock(&fadump_mutex);
1548 return ret < 0 ? ret : count;
1549 }
1550
fadump_region_show(struct seq_file * m,void * private)1551 static int fadump_region_show(struct seq_file *m, void *private)
1552 {
1553 if (!fw_dump.fadump_enabled)
1554 return 0;
1555
1556 mutex_lock(&fadump_mutex);
1557 fw_dump.ops->fadump_region_show(&fw_dump, m);
1558 mutex_unlock(&fadump_mutex);
1559 return 0;
1560 }
1561
1562 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1563 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1564 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1565 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1566 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1567 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1568
1569 static struct attribute *fadump_attrs[] = {
1570 &enable_attr.attr,
1571 ®ister_attr.attr,
1572 &mem_reserved_attr.attr,
1573 &hotplug_ready_attr.attr,
1574 NULL,
1575 };
1576
1577 ATTRIBUTE_GROUPS(fadump);
1578
1579 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1580
fadump_init_files(void)1581 static void __init fadump_init_files(void)
1582 {
1583 int rc = 0;
1584
1585 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1586 if (!fadump_kobj) {
1587 pr_err("failed to create fadump kobject\n");
1588 return;
1589 }
1590
1591 if (fw_dump.param_area) {
1592 rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1593 if (rc)
1594 pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1595 }
1596
1597 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1598 &fadump_region_fops);
1599
1600 if (fw_dump.dump_active) {
1601 rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1602 if (rc)
1603 pr_err("unable to create release_mem sysfs file (%d)\n",
1604 rc);
1605 }
1606
1607 rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1608 if (rc) {
1609 pr_err("sysfs group creation failed (%d), unregistering FADump",
1610 rc);
1611 unregister_fadump();
1612 return;
1613 }
1614
1615 /*
1616 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1617 * create symlink at old location to maintain backward compatibility.
1618 *
1619 * - fadump_enabled -> fadump/enabled
1620 * - fadump_registered -> fadump/registered
1621 * - fadump_release_mem -> fadump/release_mem
1622 */
1623 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1624 "enabled", "fadump_enabled");
1625 if (rc) {
1626 pr_err("unable to create fadump_enabled symlink (%d)", rc);
1627 return;
1628 }
1629
1630 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1631 "registered",
1632 "fadump_registered");
1633 if (rc) {
1634 pr_err("unable to create fadump_registered symlink (%d)", rc);
1635 sysfs_remove_link(kernel_kobj, "fadump_enabled");
1636 return;
1637 }
1638
1639 if (fw_dump.dump_active) {
1640 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1641 fadump_kobj,
1642 "release_mem",
1643 "fadump_release_mem");
1644 if (rc)
1645 pr_err("unable to create fadump_release_mem symlink (%d)",
1646 rc);
1647 }
1648 return;
1649 }
1650
fadump_setup_elfcorehdr_buf(void)1651 static int __init fadump_setup_elfcorehdr_buf(void)
1652 {
1653 int elf_phdr_cnt;
1654 unsigned long elfcorehdr_size;
1655
1656 /*
1657 * Program header for CPU notes comes first, followed by one for
1658 * vmcoreinfo, and the remaining program headers correspond to
1659 * memory regions.
1660 */
1661 elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1662 elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1663 elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1664
1665 fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1666 if (!fw_dump.elfcorehdr_addr) {
1667 pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1668 elfcorehdr_size);
1669 return -ENOMEM;
1670 }
1671 fw_dump.elfcorehdr_size = elfcorehdr_size;
1672 return 0;
1673 }
1674
1675 /*
1676 * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1677 *
1678 * It checks the magic number, endianness, and size of non-primitive type
1679 * members of fadump header to ensure safe dump collection.
1680 */
is_fadump_header_compatible(struct fadump_crash_info_header * fdh)1681 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1682 {
1683 if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1684 pr_err("Old magic number, can't process the dump.\n");
1685 return false;
1686 }
1687
1688 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1689 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1690 pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1691 else
1692 pr_err("Fadump header is corrupted.\n");
1693
1694 return false;
1695 }
1696
1697 /*
1698 * Dump collection is not safe if the size of non-primitive type members
1699 * of the fadump header do not match between crashed and fadump kernel.
1700 */
1701 if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1702 fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1703 pr_err("Fadump header size mismatch.\n");
1704 return false;
1705 }
1706
1707 return true;
1708 }
1709
fadump_process(void)1710 static void __init fadump_process(void)
1711 {
1712 struct fadump_crash_info_header *fdh;
1713
1714 fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1715 if (!fdh) {
1716 pr_err("Crash info header is empty.\n");
1717 goto err_out;
1718 }
1719
1720 /* Avoid processing the dump if fadump header isn't compatible */
1721 if (!is_fadump_header_compatible(fdh))
1722 goto err_out;
1723
1724 /* Allocate buffer for elfcorehdr */
1725 if (fadump_setup_elfcorehdr_buf())
1726 goto err_out;
1727
1728 fadump_populate_elfcorehdr(fdh);
1729
1730 /* Let platform update the CPU notes in elfcorehdr */
1731 if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1732 goto err_out;
1733
1734 /*
1735 * elfcorehdr is now ready to be exported.
1736 *
1737 * set elfcorehdr_addr so that vmcore module will export the
1738 * elfcorehdr through '/proc/vmcore'.
1739 */
1740 elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1741 return;
1742
1743 err_out:
1744 fadump_invalidate_release_mem();
1745 }
1746
1747 /*
1748 * Reserve memory to store additional parameters to be passed
1749 * for fadump/capture kernel.
1750 */
fadump_setup_param_area(void)1751 void __init fadump_setup_param_area(void)
1752 {
1753 phys_addr_t range_start, range_end;
1754
1755 if (!fw_dump.param_area_supported || fw_dump.dump_active)
1756 return;
1757
1758 /* This memory can't be used by PFW or bootloader as it is shared across kernels */
1759 if (early_radix_enabled()) {
1760 /*
1761 * Anywhere in the upper half should be good enough as all memory
1762 * is accessible in real mode.
1763 */
1764 range_start = memblock_end_of_DRAM() / 2;
1765 range_end = memblock_end_of_DRAM();
1766 } else {
1767 /*
1768 * Memory range for passing additional parameters for HASH MMU
1769 * must meet the following conditions:
1770 * 1. The first memory block size must be higher than the
1771 * minimum RMA (MIN_RMA) size. Bootloader can use memory
1772 * upto RMA size. So it should be avoided.
1773 * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size)
1774 * 3. It must not overlap with the fadump reserved area.
1775 */
1776 if (ppc64_rma_size < MIN_RMA*1024*1024)
1777 return;
1778
1779 range_start = MIN_RMA * 1024 * 1024;
1780 range_end = min(ppc64_rma_size, fw_dump.boot_mem_top);
1781 }
1782
1783 fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1784 COMMAND_LINE_SIZE,
1785 range_start,
1786 range_end);
1787 if (!fw_dump.param_area) {
1788 pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1789 return;
1790 }
1791
1792 memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1793 }
1794
1795 /*
1796 * Prepare for firmware-assisted dump.
1797 */
setup_fadump(void)1798 int __init setup_fadump(void)
1799 {
1800 if (!fw_dump.fadump_supported)
1801 return 0;
1802
1803 fadump_init_files();
1804 fadump_show_config();
1805
1806 if (!fw_dump.fadump_enabled)
1807 return 1;
1808
1809 /*
1810 * If dump data is available then see if it is valid and prepare for
1811 * saving it to the disk.
1812 */
1813 if (fw_dump.dump_active) {
1814 fadump_process();
1815 }
1816 /* Initialize the kernel dump memory structure and register with f/w */
1817 else if (fw_dump.reserve_dump_area_size) {
1818 fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1819 register_fadump();
1820 }
1821
1822 /*
1823 * In case of panic, fadump is triggered via ppc_panic_event()
1824 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1825 * lets panic() function take crash friendly path before panic
1826 * notifiers are invoked.
1827 */
1828 crash_kexec_post_notifiers = true;
1829
1830 return 1;
1831 }
1832 /*
1833 * Use subsys_initcall_sync() here because there is dependency with
1834 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1835 * is done before registering with f/w.
1836 */
1837 subsys_initcall_sync(setup_fadump);
1838 #else /* !CONFIG_PRESERVE_FA_DUMP */
1839
1840 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1841 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1842 int depth, void *data)
1843 {
1844 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1845 return 0;
1846
1847 opal_fadump_dt_scan(&fw_dump, node);
1848 return 1;
1849 }
1850
1851 /*
1852 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1853 * preserve crash data. The subsequent memory preserving kernel boot
1854 * is likely to process this crash data.
1855 */
fadump_reserve_mem(void)1856 int __init fadump_reserve_mem(void)
1857 {
1858 if (fw_dump.dump_active) {
1859 /*
1860 * If last boot has crashed then reserve all the memory
1861 * above boot memory to preserve crash data.
1862 */
1863 pr_info("Preserving crash data for processing in next boot.\n");
1864 fadump_reserve_crash_area(fw_dump.boot_mem_top);
1865 } else
1866 pr_debug("FADump-aware kernel..\n");
1867
1868 return 1;
1869 }
1870 #endif /* CONFIG_PRESERVE_FA_DUMP */
1871
1872 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1873 static void __init fadump_reserve_crash_area(u64 base)
1874 {
1875 u64 i, mstart, mend, msize;
1876
1877 for_each_mem_range(i, &mstart, &mend) {
1878 msize = mend - mstart;
1879
1880 if ((mstart + msize) < base)
1881 continue;
1882
1883 if (mstart < base) {
1884 msize -= (base - mstart);
1885 mstart = base;
1886 }
1887
1888 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1889 (msize >> 20), mstart);
1890 memblock_reserve(mstart, msize);
1891 }
1892 }
1893