1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 #include <asm/prom.h>
37 
38 /*
39  * The CPU who acquired the lock to trigger the fadump crash should
40  * wait for other CPUs to enter.
41  *
42  * The timeout is in milliseconds.
43  */
44 #define CRASH_TIMEOUT		500
45 
46 static struct fw_dump fw_dump;
47 
48 static void __init fadump_reserve_crash_area(u64 base);
49 
50 #ifndef CONFIG_PRESERVE_FA_DUMP
51 
52 static struct kobject *fadump_kobj;
53 
54 static atomic_t cpus_in_fadump;
55 static DEFINE_MUTEX(fadump_mutex);
56 
57 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
59 				 sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 static struct fadump_mrange_info
62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63 
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68 
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The remaining portion of fadump reserved memory will be not given
77  * to CMA and pages for those will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
fadump_cma_init(void)82 void __init fadump_cma_init(void)
83 {
84 	unsigned long long base, size, end;
85 	int rc;
86 
87 	if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
88 			fw_dump.dump_active)
89 		return;
90 	/*
91 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 	 */
93 	if (fw_dump.nocma || !fw_dump.boot_memory_size)
94 		return;
95 
96 	/*
97 	 * [base, end) should be reserved during early init in
98 	 * fadump_reserve_mem(). No need to check this here as
99 	 * cma_init_reserved_mem() already checks for overlap.
100 	 * Here we give the aligned chunk of this reserved memory to CMA.
101 	 */
102 	base = fw_dump.reserve_dump_area_start;
103 	size = fw_dump.boot_memory_size;
104 	end = base + size;
105 
106 	base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
107 	end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
108 	size = end - base;
109 
110 	if (end <= base) {
111 		pr_warn("%s: Too less memory to give to CMA\n", __func__);
112 		return;
113 	}
114 
115 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
116 	if (rc) {
117 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118 		/*
119 		 * Though the CMA init has failed we still have memory
120 		 * reservation with us. The reserved memory will be
121 		 * blocked from production system usage.  Hence return 1,
122 		 * so that we can continue with fadump.
123 		 */
124 		return;
125 	}
126 
127 	/*
128 	 *  If CMA activation fails, keep the pages reserved, instead of
129 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
130 	 */
131 	cma_reserve_pages_on_error(fadump_cma);
132 
133 	/*
134 	 * So we now have successfully initialized cma area for fadump.
135 	 */
136 	pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
137 		"bytes of memory reserved for firmware-assisted dump\n",
138 		cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
139 		fw_dump.reserve_dump_area_start,
140 		fw_dump.boot_memory_size >> 20);
141 	return;
142 }
143 #endif /* CONFIG_CMA */
144 
145 /*
146  * Additional parameters meant for capture kernel are placed in a dedicated area.
147  * If this is capture kernel boot, append these parameters to bootargs.
148  */
fadump_append_bootargs(void)149 void __init fadump_append_bootargs(void)
150 {
151 	char *append_args;
152 	size_t len;
153 
154 	if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
155 		return;
156 
157 	if (fw_dump.param_area < fw_dump.boot_mem_top) {
158 		if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
159 			pr_warn("WARNING: Can't use additional parameters area!\n");
160 			fw_dump.param_area = 0;
161 			return;
162 		}
163 	}
164 
165 	append_args = (char *)fw_dump.param_area;
166 	len = strlen(boot_command_line);
167 
168 	/*
169 	 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
170 	 * to cmdline size and proceed anyway.
171 	 */
172 	if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
173 		pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174 
175 	pr_debug("Cmdline: %s\n", boot_command_line);
176 	snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
177 	pr_info("Updated cmdline: %s\n", boot_command_line);
178 }
179 
180 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)181 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
182 				      int depth, void *data)
183 {
184 	if (depth == 0) {
185 		early_init_dt_scan_reserved_ranges(node);
186 		return 0;
187 	}
188 
189 	if (depth != 1)
190 		return 0;
191 
192 	if (strcmp(uname, "rtas") == 0) {
193 		rtas_fadump_dt_scan(&fw_dump, node);
194 		return 1;
195 	}
196 
197 	if (strcmp(uname, "ibm,opal") == 0) {
198 		opal_fadump_dt_scan(&fw_dump, node);
199 		return 1;
200 	}
201 
202 	return 0;
203 }
204 
205 /*
206  * If fadump is registered, check if the memory provided
207  * falls within boot memory area and reserved memory area.
208  */
is_fadump_memory_area(u64 addr,unsigned long size)209 int is_fadump_memory_area(u64 addr, unsigned long size)
210 {
211 	u64 d_start, d_end;
212 
213 	if (!fw_dump.dump_registered)
214 		return 0;
215 
216 	if (!size)
217 		return 0;
218 
219 	d_start = fw_dump.reserve_dump_area_start;
220 	d_end = d_start + fw_dump.reserve_dump_area_size;
221 	if (((addr + size) > d_start) && (addr <= d_end))
222 		return 1;
223 
224 	return (addr <= fw_dump.boot_mem_top);
225 }
226 
should_fadump_crash(void)227 int should_fadump_crash(void)
228 {
229 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
230 		return 0;
231 	return 1;
232 }
233 
is_fadump_active(void)234 int is_fadump_active(void)
235 {
236 	return fw_dump.dump_active;
237 }
238 
239 /*
240  * Returns true, if there are no holes in memory area between d_start to d_end,
241  * false otherwise.
242  */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)243 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244 {
245 	phys_addr_t reg_start, reg_end;
246 	bool ret = false;
247 	u64 i, start, end;
248 
249 	for_each_mem_range(i, &reg_start, &reg_end) {
250 		start = max_t(u64, d_start, reg_start);
251 		end = min_t(u64, d_end, reg_end);
252 		if (d_start < end) {
253 			/* Memory hole from d_start to start */
254 			if (start > d_start)
255 				break;
256 
257 			if (end == d_end) {
258 				ret = true;
259 				break;
260 			}
261 
262 			d_start = end + 1;
263 		}
264 	}
265 
266 	return ret;
267 }
268 
269 /*
270  * Returns true, if there are no holes in reserved memory area,
271  * false otherwise.
272  */
is_fadump_reserved_mem_contiguous(void)273 bool is_fadump_reserved_mem_contiguous(void)
274 {
275 	u64 d_start, d_end;
276 
277 	d_start	= fw_dump.reserve_dump_area_start;
278 	d_end	= d_start + fw_dump.reserve_dump_area_size;
279 	return is_fadump_mem_area_contiguous(d_start, d_end);
280 }
281 
282 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)283 static void __init fadump_show_config(void)
284 {
285 	int i;
286 
287 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
288 			(fw_dump.fadump_supported ? "present" : "no support"));
289 
290 	if (!fw_dump.fadump_supported)
291 		return;
292 
293 	pr_debug("Fadump enabled    : %s\n",
294 				(fw_dump.fadump_enabled ? "yes" : "no"));
295 	pr_debug("Dump Active       : %s\n",
296 				(fw_dump.dump_active ? "yes" : "no"));
297 	pr_debug("Dump section sizes:\n");
298 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
299 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
300 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
301 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
302 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
303 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
304 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
305 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
306 	}
307 }
308 
309 /**
310  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
311  *
312  * Function to find the largest memory size we need to reserve during early
313  * boot process. This will be the size of the memory that is required for a
314  * kernel to boot successfully.
315  *
316  * This function has been taken from phyp-assisted dump feature implementation.
317  *
318  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
319  *
320  * TODO: Come up with better approach to find out more accurate memory size
321  * that is required for a kernel to boot successfully.
322  *
323  */
fadump_calculate_reserve_size(void)324 static __init u64 fadump_calculate_reserve_size(void)
325 {
326 	u64 base, size, bootmem_min;
327 	int ret;
328 
329 	if (fw_dump.reserve_bootvar)
330 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
331 
332 	/*
333 	 * Check if the size is specified through crashkernel= cmdline
334 	 * option. If yes, then use that but ignore base as fadump reserves
335 	 * memory at a predefined offset.
336 	 */
337 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
338 				&size, &base, NULL, NULL);
339 	if (ret == 0 && size > 0) {
340 		unsigned long max_size;
341 
342 		if (fw_dump.reserve_bootvar)
343 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
344 
345 		fw_dump.reserve_bootvar = (unsigned long)size;
346 
347 		/*
348 		 * Adjust if the boot memory size specified is above
349 		 * the upper limit.
350 		 */
351 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
352 		if (fw_dump.reserve_bootvar > max_size) {
353 			fw_dump.reserve_bootvar = max_size;
354 			pr_info("Adjusted boot memory size to %luMB\n",
355 				(fw_dump.reserve_bootvar >> 20));
356 		}
357 
358 		return fw_dump.reserve_bootvar;
359 	} else if (fw_dump.reserve_bootvar) {
360 		/*
361 		 * 'fadump_reserve_mem=' is being used to reserve memory
362 		 * for firmware-assisted dump.
363 		 */
364 		return fw_dump.reserve_bootvar;
365 	}
366 
367 	/* divide by 20 to get 5% of value */
368 	size = memblock_phys_mem_size() / 20;
369 
370 	/* round it down in multiples of 256 */
371 	size = size & ~0x0FFFFFFFUL;
372 
373 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
374 	if (memory_limit && size > memory_limit)
375 		size = memory_limit;
376 
377 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
378 	return (size > bootmem_min ? size : bootmem_min);
379 }
380 
381 /*
382  * Calculate the total memory size required to be reserved for
383  * firmware-assisted dump registration.
384  */
get_fadump_area_size(void)385 static unsigned long __init get_fadump_area_size(void)
386 {
387 	unsigned long size = 0;
388 
389 	size += fw_dump.cpu_state_data_size;
390 	size += fw_dump.hpte_region_size;
391 	/*
392 	 * Account for pagesize alignment of boot memory area destination address.
393 	 * This faciliates in mmap reading of first kernel's memory.
394 	 */
395 	size = PAGE_ALIGN(size);
396 	size += fw_dump.boot_memory_size;
397 	size += sizeof(struct fadump_crash_info_header);
398 
399 	/* This is to hold kernel metadata on platforms that support it */
400 	size += (fw_dump.ops->fadump_get_metadata_size ?
401 		 fw_dump.ops->fadump_get_metadata_size() : 0);
402 	return size;
403 }
404 
add_boot_mem_region(unsigned long rstart,unsigned long rsize)405 static int __init add_boot_mem_region(unsigned long rstart,
406 				      unsigned long rsize)
407 {
408 	int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
409 	int i = fw_dump.boot_mem_regs_cnt++;
410 
411 	if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
412 		fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
413 		return 0;
414 	}
415 
416 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
417 		 i, rstart, (rstart + rsize));
418 	fw_dump.boot_mem_addr[i] = rstart;
419 	fw_dump.boot_mem_sz[i] = rsize;
420 	return 1;
421 }
422 
423 /*
424  * Firmware usually has a hard limit on the data it can copy per region.
425  * Honour that by splitting a memory range into multiple regions.
426  */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)427 static int __init add_boot_mem_regions(unsigned long mstart,
428 				       unsigned long msize)
429 {
430 	unsigned long rstart, rsize, max_size;
431 	int ret = 1;
432 
433 	rstart = mstart;
434 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
435 	while (msize) {
436 		if (msize > max_size)
437 			rsize = max_size;
438 		else
439 			rsize = msize;
440 
441 		ret = add_boot_mem_region(rstart, rsize);
442 		if (!ret)
443 			break;
444 
445 		msize -= rsize;
446 		rstart += rsize;
447 	}
448 
449 	return ret;
450 }
451 
fadump_get_boot_mem_regions(void)452 static int __init fadump_get_boot_mem_regions(void)
453 {
454 	unsigned long size, cur_size, hole_size, last_end;
455 	unsigned long mem_size = fw_dump.boot_memory_size;
456 	phys_addr_t reg_start, reg_end;
457 	int ret = 1;
458 	u64 i;
459 
460 	fw_dump.boot_mem_regs_cnt = 0;
461 
462 	last_end = 0;
463 	hole_size = 0;
464 	cur_size = 0;
465 	for_each_mem_range(i, &reg_start, &reg_end) {
466 		size = reg_end - reg_start;
467 		hole_size += (reg_start - last_end);
468 
469 		if ((cur_size + size) >= mem_size) {
470 			size = (mem_size - cur_size);
471 			ret = add_boot_mem_regions(reg_start, size);
472 			break;
473 		}
474 
475 		mem_size -= size;
476 		cur_size += size;
477 		ret = add_boot_mem_regions(reg_start, size);
478 		if (!ret)
479 			break;
480 
481 		last_end = reg_end;
482 	}
483 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
484 
485 	return ret;
486 }
487 
488 /*
489  * Returns true, if the given range overlaps with reserved memory ranges
490  * starting at idx. Also, updates idx to index of overlapping memory range
491  * with the given memory range.
492  * False, otherwise.
493  */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)494 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
495 {
496 	bool ret = false;
497 	int i;
498 
499 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
500 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
501 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
502 
503 		if (end <= rbase)
504 			break;
505 
506 		if ((end > rbase) &&  (base < rend)) {
507 			*idx = i;
508 			ret = true;
509 			break;
510 		}
511 	}
512 
513 	return ret;
514 }
515 
516 /*
517  * Locate a suitable memory area to reserve memory for FADump. While at it,
518  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
519  */
fadump_locate_reserve_mem(u64 base,u64 size)520 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
521 {
522 	struct fadump_memory_range *mrngs;
523 	phys_addr_t mstart, mend;
524 	int idx = 0;
525 	u64 i, ret = 0;
526 
527 	mrngs = reserved_mrange_info.mem_ranges;
528 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
529 				&mstart, &mend, NULL) {
530 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
531 			 i, mstart, mend, base);
532 
533 		if (mstart > base)
534 			base = PAGE_ALIGN(mstart);
535 
536 		while ((mend > base) && ((mend - base) >= size)) {
537 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
538 				ret = base;
539 				goto out;
540 			}
541 
542 			base = mrngs[idx].base + mrngs[idx].size;
543 			base = PAGE_ALIGN(base);
544 		}
545 	}
546 
547 out:
548 	return ret;
549 }
550 
fadump_reserve_mem(void)551 int __init fadump_reserve_mem(void)
552 {
553 	u64 base, size, mem_boundary, bootmem_min;
554 	int ret = 1;
555 
556 	if (!fw_dump.fadump_enabled)
557 		return 0;
558 
559 	if (!fw_dump.fadump_supported) {
560 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
561 		goto error_out;
562 	}
563 
564 	/*
565 	 * Initialize boot memory size
566 	 * If dump is active then we have already calculated the size during
567 	 * first kernel.
568 	 */
569 	if (!fw_dump.dump_active) {
570 		fw_dump.boot_memory_size =
571 			PAGE_ALIGN(fadump_calculate_reserve_size());
572 
573 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
574 		if (fw_dump.boot_memory_size < bootmem_min) {
575 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
576 			       fw_dump.boot_memory_size, bootmem_min);
577 			goto error_out;
578 		}
579 
580 		if (!fadump_get_boot_mem_regions()) {
581 			pr_err("Too many holes in boot memory area to enable fadump\n");
582 			goto error_out;
583 		}
584 	}
585 
586 	if (memory_limit)
587 		mem_boundary = memory_limit;
588 	else
589 		mem_boundary = memblock_end_of_DRAM();
590 
591 	base = fw_dump.boot_mem_top;
592 	size = get_fadump_area_size();
593 	fw_dump.reserve_dump_area_size = size;
594 	if (fw_dump.dump_active) {
595 		pr_info("Firmware-assisted dump is active.\n");
596 
597 #ifdef CONFIG_HUGETLB_PAGE
598 		/*
599 		 * FADump capture kernel doesn't care much about hugepages.
600 		 * In fact, handling hugepages in capture kernel is asking for
601 		 * trouble. So, disable HugeTLB support when fadump is active.
602 		 */
603 		hugetlb_disabled = true;
604 #endif
605 		/*
606 		 * If last boot has crashed then reserve all the memory
607 		 * above boot memory size so that we don't touch it until
608 		 * dump is written to disk by userspace tool. This memory
609 		 * can be released for general use by invalidating fadump.
610 		 */
611 		fadump_reserve_crash_area(base);
612 
613 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
614 		pr_debug("Reserve dump area start address: 0x%lx\n",
615 			 fw_dump.reserve_dump_area_start);
616 	} else {
617 		/*
618 		 * Reserve memory at an offset closer to bottom of the RAM to
619 		 * minimize the impact of memory hot-remove operation.
620 		 */
621 		base = fadump_locate_reserve_mem(base, size);
622 
623 		if (!base || (base + size > mem_boundary)) {
624 			pr_err("Failed to find memory chunk for reservation!\n");
625 			goto error_out;
626 		}
627 		fw_dump.reserve_dump_area_start = base;
628 
629 		/*
630 		 * Calculate the kernel metadata address and register it with
631 		 * f/w if the platform supports.
632 		 */
633 		if (fw_dump.ops->fadump_setup_metadata &&
634 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
635 			goto error_out;
636 
637 		if (memblock_reserve(base, size)) {
638 			pr_err("Failed to reserve memory!\n");
639 			goto error_out;
640 		}
641 
642 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
643 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
644 	}
645 
646 	return ret;
647 error_out:
648 	fw_dump.fadump_enabled = 0;
649 	fw_dump.reserve_dump_area_size = 0;
650 	return 0;
651 }
652 
653 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)654 static int __init early_fadump_param(char *p)
655 {
656 	if (!p)
657 		return 1;
658 
659 	if (strncmp(p, "on", 2) == 0)
660 		fw_dump.fadump_enabled = 1;
661 	else if (strncmp(p, "off", 3) == 0)
662 		fw_dump.fadump_enabled = 0;
663 	else if (strncmp(p, "nocma", 5) == 0) {
664 		fw_dump.fadump_enabled = 1;
665 		fw_dump.nocma = 1;
666 	}
667 
668 	return 0;
669 }
670 early_param("fadump", early_fadump_param);
671 
672 /*
673  * Look for fadump_reserve_mem= cmdline option
674  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
675  *       the sooner 'crashkernel=' parameter is accustomed to.
676  */
early_fadump_reserve_mem(char * p)677 static int __init early_fadump_reserve_mem(char *p)
678 {
679 	if (p)
680 		fw_dump.reserve_bootvar = memparse(p, &p);
681 	return 0;
682 }
683 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
684 
crash_fadump(struct pt_regs * regs,const char * str)685 void crash_fadump(struct pt_regs *regs, const char *str)
686 {
687 	unsigned int msecs;
688 	struct fadump_crash_info_header *fdh = NULL;
689 	int old_cpu, this_cpu;
690 	/* Do not include first CPU */
691 	unsigned int ncpus = num_online_cpus() - 1;
692 
693 	if (!should_fadump_crash())
694 		return;
695 
696 	/*
697 	 * old_cpu == -1 means this is the first CPU which has come here,
698 	 * go ahead and trigger fadump.
699 	 *
700 	 * old_cpu != -1 means some other CPU has already on its way
701 	 * to trigger fadump, just keep looping here.
702 	 */
703 	this_cpu = smp_processor_id();
704 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
705 
706 	if (old_cpu != -1) {
707 		atomic_inc(&cpus_in_fadump);
708 
709 		/*
710 		 * We can't loop here indefinitely. Wait as long as fadump
711 		 * is in force. If we race with fadump un-registration this
712 		 * loop will break and then we go down to normal panic path
713 		 * and reboot. If fadump is in force the first crashing
714 		 * cpu will definitely trigger fadump.
715 		 */
716 		while (fw_dump.dump_registered)
717 			cpu_relax();
718 		return;
719 	}
720 
721 	fdh = __va(fw_dump.fadumphdr_addr);
722 	fdh->crashing_cpu = crashing_cpu;
723 	crash_save_vmcoreinfo();
724 
725 	if (regs)
726 		fdh->regs = *regs;
727 	else
728 		ppc_save_regs(&fdh->regs);
729 
730 	fdh->cpu_mask = *cpu_online_mask;
731 
732 	/*
733 	 * If we came in via system reset, wait a while for the secondary
734 	 * CPUs to enter.
735 	 */
736 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
737 		msecs = CRASH_TIMEOUT;
738 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
739 			mdelay(1);
740 	}
741 
742 	fw_dump.ops->fadump_trigger(fdh, str);
743 }
744 
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)745 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
746 {
747 	struct elf_prstatus prstatus;
748 
749 	memset(&prstatus, 0, sizeof(prstatus));
750 	/*
751 	 * FIXME: How do i get PID? Do I really need it?
752 	 * prstatus.pr_pid = ????
753 	 */
754 	elf_core_copy_regs(&prstatus.pr_reg, regs);
755 	buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
756 			      &prstatus, sizeof(prstatus));
757 	return buf;
758 }
759 
fadump_update_elfcore_header(char * bufp)760 void __init fadump_update_elfcore_header(char *bufp)
761 {
762 	struct elf_phdr *phdr;
763 
764 	bufp += sizeof(struct elfhdr);
765 
766 	/* First note is a place holder for cpu notes info. */
767 	phdr = (struct elf_phdr *)bufp;
768 
769 	if (phdr->p_type == PT_NOTE) {
770 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
771 		phdr->p_offset	= phdr->p_paddr;
772 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
773 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
774 	}
775 	return;
776 }
777 
fadump_alloc_buffer(unsigned long size)778 static void *__init fadump_alloc_buffer(unsigned long size)
779 {
780 	unsigned long count, i;
781 	struct page *page;
782 	void *vaddr;
783 
784 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
785 	if (!vaddr)
786 		return NULL;
787 
788 	count = PAGE_ALIGN(size) / PAGE_SIZE;
789 	page = virt_to_page(vaddr);
790 	for (i = 0; i < count; i++)
791 		mark_page_reserved(page + i);
792 	return vaddr;
793 }
794 
fadump_free_buffer(unsigned long vaddr,unsigned long size)795 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
796 {
797 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
798 }
799 
fadump_setup_cpu_notes_buf(u32 num_cpus)800 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
801 {
802 	/* Allocate buffer to hold cpu crash notes. */
803 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
804 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
805 	fw_dump.cpu_notes_buf_vaddr =
806 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
807 	if (!fw_dump.cpu_notes_buf_vaddr) {
808 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
809 		       fw_dump.cpu_notes_buf_size);
810 		return -ENOMEM;
811 	}
812 
813 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
814 		 fw_dump.cpu_notes_buf_size,
815 		 fw_dump.cpu_notes_buf_vaddr);
816 	return 0;
817 }
818 
fadump_free_cpu_notes_buf(void)819 void fadump_free_cpu_notes_buf(void)
820 {
821 	if (!fw_dump.cpu_notes_buf_vaddr)
822 		return;
823 
824 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
825 			   fw_dump.cpu_notes_buf_size);
826 	fw_dump.cpu_notes_buf_vaddr = 0;
827 	fw_dump.cpu_notes_buf_size = 0;
828 }
829 
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)830 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
831 {
832 	if (mrange_info->is_static) {
833 		mrange_info->mem_range_cnt = 0;
834 		return;
835 	}
836 
837 	kfree(mrange_info->mem_ranges);
838 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
839 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
840 }
841 
842 /*
843  * Allocate or reallocate mem_ranges array in incremental units
844  * of PAGE_SIZE.
845  */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)846 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
847 {
848 	struct fadump_memory_range *new_array;
849 	u64 new_size;
850 
851 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
852 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
853 		 new_size, mrange_info->name);
854 
855 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
856 	if (new_array == NULL) {
857 		pr_err("Insufficient memory for setting up %s memory ranges\n",
858 		       mrange_info->name);
859 		fadump_free_mem_ranges(mrange_info);
860 		return -ENOMEM;
861 	}
862 
863 	mrange_info->mem_ranges = new_array;
864 	mrange_info->mem_ranges_sz = new_size;
865 	mrange_info->max_mem_ranges = (new_size /
866 				       sizeof(struct fadump_memory_range));
867 	return 0;
868 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)869 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
870 				       u64 base, u64 end)
871 {
872 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
873 	bool is_adjacent = false;
874 	u64 start, size;
875 
876 	if (base == end)
877 		return 0;
878 
879 	/*
880 	 * Fold adjacent memory ranges to bring down the memory ranges/
881 	 * PT_LOAD segments count.
882 	 */
883 	if (mrange_info->mem_range_cnt) {
884 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
885 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
886 
887 		/*
888 		 * Boot memory area needs separate PT_LOAD segment(s) as it
889 		 * is moved to a different location at the time of crash.
890 		 * So, fold only if the region is not boot memory area.
891 		 */
892 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
893 			is_adjacent = true;
894 	}
895 	if (!is_adjacent) {
896 		/* resize the array on reaching the limit */
897 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
898 			int ret;
899 
900 			if (mrange_info->is_static) {
901 				pr_err("Reached array size limit for %s memory ranges\n",
902 				       mrange_info->name);
903 				return -ENOSPC;
904 			}
905 
906 			ret = fadump_alloc_mem_ranges(mrange_info);
907 			if (ret)
908 				return ret;
909 
910 			/* Update to the new resized array */
911 			mem_ranges = mrange_info->mem_ranges;
912 		}
913 
914 		start = base;
915 		mem_ranges[mrange_info->mem_range_cnt].base = start;
916 		mrange_info->mem_range_cnt++;
917 	}
918 
919 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
920 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
921 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
922 		 start, end - 1, (end - start));
923 	return 0;
924 }
925 
fadump_init_elfcore_header(char * bufp)926 static int fadump_init_elfcore_header(char *bufp)
927 {
928 	struct elfhdr *elf;
929 
930 	elf = (struct elfhdr *) bufp;
931 	bufp += sizeof(struct elfhdr);
932 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
933 	elf->e_ident[EI_CLASS] = ELF_CLASS;
934 	elf->e_ident[EI_DATA] = ELF_DATA;
935 	elf->e_ident[EI_VERSION] = EV_CURRENT;
936 	elf->e_ident[EI_OSABI] = ELF_OSABI;
937 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
938 	elf->e_type = ET_CORE;
939 	elf->e_machine = ELF_ARCH;
940 	elf->e_version = EV_CURRENT;
941 	elf->e_entry = 0;
942 	elf->e_phoff = sizeof(struct elfhdr);
943 	elf->e_shoff = 0;
944 
945 	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
946 		elf->e_flags = 2;
947 	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
948 		elf->e_flags = 1;
949 	else
950 		elf->e_flags = 0;
951 
952 	elf->e_ehsize = sizeof(struct elfhdr);
953 	elf->e_phentsize = sizeof(struct elf_phdr);
954 	elf->e_phnum = 0;
955 	elf->e_shentsize = 0;
956 	elf->e_shnum = 0;
957 	elf->e_shstrndx = 0;
958 
959 	return 0;
960 }
961 
962 /*
963  * If the given physical address falls within the boot memory region then
964  * return the relocated address that points to the dump region reserved
965  * for saving initial boot memory contents.
966  */
fadump_relocate(unsigned long paddr)967 static inline unsigned long fadump_relocate(unsigned long paddr)
968 {
969 	unsigned long raddr, rstart, rend, rlast, hole_size;
970 	int i;
971 
972 	hole_size = 0;
973 	rlast = 0;
974 	raddr = paddr;
975 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
976 		rstart = fw_dump.boot_mem_addr[i];
977 		rend = rstart + fw_dump.boot_mem_sz[i];
978 		hole_size += (rstart - rlast);
979 
980 		if (paddr >= rstart && paddr < rend) {
981 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
982 			break;
983 		}
984 
985 		rlast = rend;
986 	}
987 
988 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
989 	return raddr;
990 }
991 
populate_elf_pt_load(struct elf_phdr * phdr,u64 start,u64 size,unsigned long long offset)992 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
993 			     u64 size, unsigned long long offset)
994 {
995 	phdr->p_align	= 0;
996 	phdr->p_memsz	= size;
997 	phdr->p_filesz	= size;
998 	phdr->p_paddr	= start;
999 	phdr->p_offset	= offset;
1000 	phdr->p_type	= PT_LOAD;
1001 	phdr->p_flags	= PF_R|PF_W|PF_X;
1002 	phdr->p_vaddr	= (unsigned long)__va(start);
1003 }
1004 
fadump_populate_elfcorehdr(struct fadump_crash_info_header * fdh)1005 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1006 {
1007 	char *bufp;
1008 	struct elfhdr *elf;
1009 	struct elf_phdr *phdr;
1010 	u64 boot_mem_dest_offset;
1011 	unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1012 
1013 	bufp = (char *) fw_dump.elfcorehdr_addr;
1014 	fadump_init_elfcore_header(bufp);
1015 	elf = (struct elfhdr *)bufp;
1016 	bufp += sizeof(struct elfhdr);
1017 
1018 	/*
1019 	 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1020 	 * The notes info will be populated later by platform-specific code.
1021 	 * Hence, this PT_NOTE will always be the first ELF note.
1022 	 *
1023 	 * NOTE: Any new ELF note addition should be placed after this note.
1024 	 */
1025 	phdr = (struct elf_phdr *)bufp;
1026 	bufp += sizeof(struct elf_phdr);
1027 	phdr->p_type = PT_NOTE;
1028 	phdr->p_flags	= 0;
1029 	phdr->p_vaddr	= 0;
1030 	phdr->p_align	= 0;
1031 	phdr->p_offset	= 0;
1032 	phdr->p_paddr	= 0;
1033 	phdr->p_filesz	= 0;
1034 	phdr->p_memsz	= 0;
1035 	/* Increment number of program headers. */
1036 	(elf->e_phnum)++;
1037 
1038 	/* setup ELF PT_NOTE for vmcoreinfo */
1039 	phdr = (struct elf_phdr *)bufp;
1040 	bufp += sizeof(struct elf_phdr);
1041 	phdr->p_type	= PT_NOTE;
1042 	phdr->p_flags	= 0;
1043 	phdr->p_vaddr	= 0;
1044 	phdr->p_align	= 0;
1045 	phdr->p_paddr	= phdr->p_offset = fdh->vmcoreinfo_raddr;
1046 	phdr->p_memsz	= phdr->p_filesz = fdh->vmcoreinfo_size;
1047 	/* Increment number of program headers. */
1048 	(elf->e_phnum)++;
1049 
1050 	/*
1051 	 * Setup PT_LOAD sections. first include boot memory regions
1052 	 * and then add rest of the memory regions.
1053 	 */
1054 	boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1055 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1056 		phdr = (struct elf_phdr *)bufp;
1057 		bufp += sizeof(struct elf_phdr);
1058 		populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1059 				     fw_dump.boot_mem_sz[i],
1060 				     boot_mem_dest_offset);
1061 		/* Increment number of program headers. */
1062 		(elf->e_phnum)++;
1063 		boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1064 	}
1065 
1066 	/* Memory reserved for fadump in first kernel */
1067 	ra_start = fw_dump.reserve_dump_area_start;
1068 	ra_size = get_fadump_area_size();
1069 	ra_end = ra_start + ra_size;
1070 
1071 	phdr = (struct elf_phdr *)bufp;
1072 	for_each_mem_range(i, &mstart, &mend) {
1073 		/* Boot memory regions already added, skip them now */
1074 		if (mstart < fw_dump.boot_mem_top) {
1075 			if (mend > fw_dump.boot_mem_top)
1076 				mstart = fw_dump.boot_mem_top;
1077 			else
1078 				continue;
1079 		}
1080 
1081 		/* Handle memblock regions overlaps with fadump reserved area */
1082 		if ((ra_start < mend) && (ra_end > mstart)) {
1083 			if ((mstart < ra_start) && (mend > ra_end)) {
1084 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1085 				/* Increment number of program headers. */
1086 				(elf->e_phnum)++;
1087 				bufp += sizeof(struct elf_phdr);
1088 				phdr = (struct elf_phdr *)bufp;
1089 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1090 			} else if (mstart < ra_start) {
1091 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1092 			} else if (ra_end < mend) {
1093 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1094 			}
1095 		} else {
1096 		/* No overlap with fadump reserved memory region */
1097 			populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1098 		}
1099 
1100 		/* Increment number of program headers. */
1101 		(elf->e_phnum)++;
1102 		bufp += sizeof(struct elf_phdr);
1103 		phdr = (struct elf_phdr *) bufp;
1104 	}
1105 }
1106 
init_fadump_header(unsigned long addr)1107 static unsigned long init_fadump_header(unsigned long addr)
1108 {
1109 	struct fadump_crash_info_header *fdh;
1110 
1111 	if (!addr)
1112 		return 0;
1113 
1114 	fdh = __va(addr);
1115 	addr += sizeof(struct fadump_crash_info_header);
1116 
1117 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1118 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1119 	fdh->version = FADUMP_HEADER_VERSION;
1120 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1121 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1122 
1123 	/*
1124 	 * The physical address and size of vmcoreinfo are required in the
1125 	 * second kernel to prepare elfcorehdr.
1126 	 */
1127 	fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1128 	fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1129 
1130 
1131 	fdh->pt_regs_sz = sizeof(struct pt_regs);
1132 	/*
1133 	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1134 	 * register data is processed while exporting the vmcore.
1135 	 */
1136 	fdh->cpu_mask = *cpu_possible_mask;
1137 	fdh->cpu_mask_sz = sizeof(struct cpumask);
1138 
1139 	return addr;
1140 }
1141 
register_fadump(void)1142 static int register_fadump(void)
1143 {
1144 	unsigned long addr;
1145 
1146 	/*
1147 	 * If no memory is reserved then we can not register for firmware-
1148 	 * assisted dump.
1149 	 */
1150 	if (!fw_dump.reserve_dump_area_size)
1151 		return -ENODEV;
1152 
1153 	addr = fw_dump.fadumphdr_addr;
1154 
1155 	/* Initialize fadump crash info header. */
1156 	addr = init_fadump_header(addr);
1157 
1158 	/* register the future kernel dump with firmware. */
1159 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1160 	return fw_dump.ops->fadump_register(&fw_dump);
1161 }
1162 
fadump_cleanup(void)1163 void fadump_cleanup(void)
1164 {
1165 	if (!fw_dump.fadump_supported)
1166 		return;
1167 
1168 	/* Invalidate the registration only if dump is active. */
1169 	if (fw_dump.dump_active) {
1170 		pr_debug("Invalidating firmware-assisted dump registration\n");
1171 		fw_dump.ops->fadump_invalidate(&fw_dump);
1172 	} else if (fw_dump.dump_registered) {
1173 		/* Un-register Firmware-assisted dump if it was registered. */
1174 		fw_dump.ops->fadump_unregister(&fw_dump);
1175 	}
1176 
1177 	if (fw_dump.ops->fadump_cleanup)
1178 		fw_dump.ops->fadump_cleanup(&fw_dump);
1179 }
1180 
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1181 static void fadump_free_reserved_memory(unsigned long start_pfn,
1182 					unsigned long end_pfn)
1183 {
1184 	unsigned long pfn;
1185 	unsigned long time_limit = jiffies + HZ;
1186 
1187 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1188 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1189 
1190 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1191 		free_reserved_page(pfn_to_page(pfn));
1192 
1193 		if (time_after(jiffies, time_limit)) {
1194 			cond_resched();
1195 			time_limit = jiffies + HZ;
1196 		}
1197 	}
1198 }
1199 
1200 /*
1201  * Skip memory holes and free memory that was actually reserved.
1202  */
fadump_release_reserved_area(u64 start,u64 end)1203 static void fadump_release_reserved_area(u64 start, u64 end)
1204 {
1205 	unsigned long reg_spfn, reg_epfn;
1206 	u64 tstart, tend, spfn, epfn;
1207 	int i;
1208 
1209 	spfn = PHYS_PFN(start);
1210 	epfn = PHYS_PFN(end);
1211 
1212 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1213 		tstart = max_t(u64, spfn, reg_spfn);
1214 		tend   = min_t(u64, epfn, reg_epfn);
1215 
1216 		if (tstart < tend) {
1217 			fadump_free_reserved_memory(tstart, tend);
1218 
1219 			if (tend == epfn)
1220 				break;
1221 
1222 			spfn = tend;
1223 		}
1224 	}
1225 }
1226 
1227 /*
1228  * Sort the mem ranges in-place and merge adjacent ranges
1229  * to minimize the memory ranges count.
1230  */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1231 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1232 {
1233 	struct fadump_memory_range *mem_ranges;
1234 	u64 base, size;
1235 	int i, j, idx;
1236 
1237 	if (!reserved_mrange_info.mem_range_cnt)
1238 		return;
1239 
1240 	/* Sort the memory ranges */
1241 	mem_ranges = mrange_info->mem_ranges;
1242 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1243 		idx = i;
1244 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1245 			if (mem_ranges[idx].base > mem_ranges[j].base)
1246 				idx = j;
1247 		}
1248 		if (idx != i)
1249 			swap(mem_ranges[idx], mem_ranges[i]);
1250 	}
1251 
1252 	/* Merge adjacent reserved ranges */
1253 	idx = 0;
1254 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1255 		base = mem_ranges[i-1].base;
1256 		size = mem_ranges[i-1].size;
1257 		if (mem_ranges[i].base == (base + size))
1258 			mem_ranges[idx].size += mem_ranges[i].size;
1259 		else {
1260 			idx++;
1261 			if (i == idx)
1262 				continue;
1263 
1264 			mem_ranges[idx] = mem_ranges[i];
1265 		}
1266 	}
1267 	mrange_info->mem_range_cnt = idx + 1;
1268 }
1269 
1270 /*
1271  * Scan reserved-ranges to consider them while reserving/releasing
1272  * memory for FADump.
1273  */
early_init_dt_scan_reserved_ranges(unsigned long node)1274 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1275 {
1276 	const __be32 *prop;
1277 	int len, ret = -1;
1278 	unsigned long i;
1279 
1280 	/* reserved-ranges already scanned */
1281 	if (reserved_mrange_info.mem_range_cnt != 0)
1282 		return;
1283 
1284 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1285 	if (!prop)
1286 		return;
1287 
1288 	/*
1289 	 * Each reserved range is an (address,size) pair, 2 cells each,
1290 	 * totalling 4 cells per range.
1291 	 */
1292 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1293 		u64 base, size;
1294 
1295 		base = of_read_number(prop + (i * 4) + 0, 2);
1296 		size = of_read_number(prop + (i * 4) + 2, 2);
1297 
1298 		if (size) {
1299 			ret = fadump_add_mem_range(&reserved_mrange_info,
1300 						   base, base + size);
1301 			if (ret < 0) {
1302 				pr_warn("some reserved ranges are ignored!\n");
1303 				break;
1304 			}
1305 		}
1306 	}
1307 
1308 	/* Compact reserved ranges */
1309 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1310 }
1311 
1312 /*
1313  * Release the memory that was reserved during early boot to preserve the
1314  * crash'ed kernel's memory contents except reserved dump area (permanent
1315  * reservation) and reserved ranges used by F/W. The released memory will
1316  * be available for general use.
1317  */
fadump_release_memory(u64 begin,u64 end)1318 static void fadump_release_memory(u64 begin, u64 end)
1319 {
1320 	u64 ra_start, ra_end, tstart;
1321 	int i, ret;
1322 
1323 	ra_start = fw_dump.reserve_dump_area_start;
1324 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1325 
1326 	/*
1327 	 * If reserved ranges array limit is hit, overwrite the last reserved
1328 	 * memory range with reserved dump area to ensure it is excluded from
1329 	 * the memory being released (reused for next FADump registration).
1330 	 */
1331 	if (reserved_mrange_info.mem_range_cnt ==
1332 	    reserved_mrange_info.max_mem_ranges)
1333 		reserved_mrange_info.mem_range_cnt--;
1334 
1335 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1336 	if (ret != 0)
1337 		return;
1338 
1339 	/* Get the reserved ranges list in order first. */
1340 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1341 
1342 	/* Exclude reserved ranges and release remaining memory */
1343 	tstart = begin;
1344 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1345 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1346 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1347 
1348 		if (tstart >= ra_end)
1349 			continue;
1350 
1351 		if (tstart < ra_start)
1352 			fadump_release_reserved_area(tstart, ra_start);
1353 		tstart = ra_end;
1354 	}
1355 
1356 	if (tstart < end)
1357 		fadump_release_reserved_area(tstart, end);
1358 }
1359 
fadump_free_elfcorehdr_buf(void)1360 static void fadump_free_elfcorehdr_buf(void)
1361 {
1362 	if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1363 		return;
1364 
1365 	/*
1366 	 * Before freeing the memory of `elfcorehdr`, reset the global
1367 	 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1368 	 * invalid memory.
1369 	 */
1370 	elfcorehdr_addr = ELFCORE_ADDR_ERR;
1371 	fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1372 	fw_dump.elfcorehdr_addr = 0;
1373 	fw_dump.elfcorehdr_size = 0;
1374 }
1375 
fadump_invalidate_release_mem(void)1376 static void fadump_invalidate_release_mem(void)
1377 {
1378 	mutex_lock(&fadump_mutex);
1379 	if (!fw_dump.dump_active) {
1380 		mutex_unlock(&fadump_mutex);
1381 		return;
1382 	}
1383 
1384 	fadump_cleanup();
1385 	mutex_unlock(&fadump_mutex);
1386 
1387 	fadump_free_elfcorehdr_buf();
1388 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1389 	fadump_free_cpu_notes_buf();
1390 
1391 	/*
1392 	 * Setup kernel metadata and initialize the kernel dump
1393 	 * memory structure for FADump re-registration.
1394 	 */
1395 	if (fw_dump.ops->fadump_setup_metadata &&
1396 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1397 		pr_warn("Failed to setup kernel metadata!\n");
1398 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1399 }
1400 
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1401 static ssize_t release_mem_store(struct kobject *kobj,
1402 				 struct kobj_attribute *attr,
1403 				 const char *buf, size_t count)
1404 {
1405 	int input = -1;
1406 
1407 	if (!fw_dump.dump_active)
1408 		return -EPERM;
1409 
1410 	if (kstrtoint(buf, 0, &input))
1411 		return -EINVAL;
1412 
1413 	if (input == 1) {
1414 		/*
1415 		 * Take away the '/proc/vmcore'. We are releasing the dump
1416 		 * memory, hence it will not be valid anymore.
1417 		 */
1418 #ifdef CONFIG_PROC_VMCORE
1419 		vmcore_cleanup();
1420 #endif
1421 		fadump_invalidate_release_mem();
1422 
1423 	} else
1424 		return -EINVAL;
1425 	return count;
1426 }
1427 
1428 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1429 static void __init unregister_fadump(void)
1430 {
1431 	fadump_cleanup();
1432 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1433 			      fw_dump.reserve_dump_area_size);
1434 	fw_dump.fadump_enabled = 0;
1435 	kobject_put(fadump_kobj);
1436 }
1437 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1438 static ssize_t enabled_show(struct kobject *kobj,
1439 			    struct kobj_attribute *attr,
1440 			    char *buf)
1441 {
1442 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1443 }
1444 
1445 /*
1446  * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1447  * to usersapce that fadump re-registration is not required on memory
1448  * hotplug events.
1449  */
hotplug_ready_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1450 static ssize_t hotplug_ready_show(struct kobject *kobj,
1451 				      struct kobj_attribute *attr,
1452 				      char *buf)
1453 {
1454 	return sprintf(buf, "%d\n", 1);
1455 }
1456 
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1457 static ssize_t mem_reserved_show(struct kobject *kobj,
1458 				 struct kobj_attribute *attr,
1459 				 char *buf)
1460 {
1461 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1462 }
1463 
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1464 static ssize_t registered_show(struct kobject *kobj,
1465 			       struct kobj_attribute *attr,
1466 			       char *buf)
1467 {
1468 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1469 }
1470 
bootargs_append_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1471 static ssize_t bootargs_append_show(struct kobject *kobj,
1472 				   struct kobj_attribute *attr,
1473 				   char *buf)
1474 {
1475 	return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1476 }
1477 
bootargs_append_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1478 static ssize_t bootargs_append_store(struct kobject *kobj,
1479 				   struct kobj_attribute *attr,
1480 				   const char *buf, size_t count)
1481 {
1482 	char *params;
1483 
1484 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1485 		return -EPERM;
1486 
1487 	if (count >= COMMAND_LINE_SIZE)
1488 		return -EINVAL;
1489 
1490 	/*
1491 	 * Fail here instead of handling this scenario with
1492 	 * some silly workaround in capture kernel.
1493 	 */
1494 	if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1495 		pr_err("Appending parameters exceeds cmdline size!\n");
1496 		return -ENOSPC;
1497 	}
1498 
1499 	params = __va(fw_dump.param_area);
1500 	strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1501 	/* Remove newline character at the end. */
1502 	if (params[count-1] == '\n')
1503 		params[count-1] = '\0';
1504 
1505 	return count;
1506 }
1507 
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1508 static ssize_t registered_store(struct kobject *kobj,
1509 				struct kobj_attribute *attr,
1510 				const char *buf, size_t count)
1511 {
1512 	int ret = 0;
1513 	int input = -1;
1514 
1515 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1516 		return -EPERM;
1517 
1518 	if (kstrtoint(buf, 0, &input))
1519 		return -EINVAL;
1520 
1521 	mutex_lock(&fadump_mutex);
1522 
1523 	switch (input) {
1524 	case 0:
1525 		if (fw_dump.dump_registered == 0) {
1526 			goto unlock_out;
1527 		}
1528 
1529 		/* Un-register Firmware-assisted dump */
1530 		pr_debug("Un-register firmware-assisted dump\n");
1531 		fw_dump.ops->fadump_unregister(&fw_dump);
1532 		break;
1533 	case 1:
1534 		if (fw_dump.dump_registered == 1) {
1535 			/* Un-register Firmware-assisted dump */
1536 			fw_dump.ops->fadump_unregister(&fw_dump);
1537 		}
1538 		/* Register Firmware-assisted dump */
1539 		ret = register_fadump();
1540 		break;
1541 	default:
1542 		ret = -EINVAL;
1543 		break;
1544 	}
1545 
1546 unlock_out:
1547 	mutex_unlock(&fadump_mutex);
1548 	return ret < 0 ? ret : count;
1549 }
1550 
fadump_region_show(struct seq_file * m,void * private)1551 static int fadump_region_show(struct seq_file *m, void *private)
1552 {
1553 	if (!fw_dump.fadump_enabled)
1554 		return 0;
1555 
1556 	mutex_lock(&fadump_mutex);
1557 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1558 	mutex_unlock(&fadump_mutex);
1559 	return 0;
1560 }
1561 
1562 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1563 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1564 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1565 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1566 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1567 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1568 
1569 static struct attribute *fadump_attrs[] = {
1570 	&enable_attr.attr,
1571 	&register_attr.attr,
1572 	&mem_reserved_attr.attr,
1573 	&hotplug_ready_attr.attr,
1574 	NULL,
1575 };
1576 
1577 ATTRIBUTE_GROUPS(fadump);
1578 
1579 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1580 
fadump_init_files(void)1581 static void __init fadump_init_files(void)
1582 {
1583 	int rc = 0;
1584 
1585 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1586 	if (!fadump_kobj) {
1587 		pr_err("failed to create fadump kobject\n");
1588 		return;
1589 	}
1590 
1591 	if (fw_dump.param_area) {
1592 		rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1593 		if (rc)
1594 			pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1595 	}
1596 
1597 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1598 			    &fadump_region_fops);
1599 
1600 	if (fw_dump.dump_active) {
1601 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1602 		if (rc)
1603 			pr_err("unable to create release_mem sysfs file (%d)\n",
1604 			       rc);
1605 	}
1606 
1607 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1608 	if (rc) {
1609 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1610 		       rc);
1611 		unregister_fadump();
1612 		return;
1613 	}
1614 
1615 	/*
1616 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1617 	 * create symlink at old location to maintain backward compatibility.
1618 	 *
1619 	 *      - fadump_enabled -> fadump/enabled
1620 	 *      - fadump_registered -> fadump/registered
1621 	 *      - fadump_release_mem -> fadump/release_mem
1622 	 */
1623 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1624 						  "enabled", "fadump_enabled");
1625 	if (rc) {
1626 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1627 		return;
1628 	}
1629 
1630 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1631 						  "registered",
1632 						  "fadump_registered");
1633 	if (rc) {
1634 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1635 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1636 		return;
1637 	}
1638 
1639 	if (fw_dump.dump_active) {
1640 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1641 							  fadump_kobj,
1642 							  "release_mem",
1643 							  "fadump_release_mem");
1644 		if (rc)
1645 			pr_err("unable to create fadump_release_mem symlink (%d)",
1646 			       rc);
1647 	}
1648 	return;
1649 }
1650 
fadump_setup_elfcorehdr_buf(void)1651 static int __init fadump_setup_elfcorehdr_buf(void)
1652 {
1653 	int elf_phdr_cnt;
1654 	unsigned long elfcorehdr_size;
1655 
1656 	/*
1657 	 * Program header for CPU notes comes first, followed by one for
1658 	 * vmcoreinfo, and the remaining program headers correspond to
1659 	 * memory regions.
1660 	 */
1661 	elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1662 	elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1663 	elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1664 
1665 	fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1666 	if (!fw_dump.elfcorehdr_addr) {
1667 		pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1668 		       elfcorehdr_size);
1669 		return -ENOMEM;
1670 	}
1671 	fw_dump.elfcorehdr_size = elfcorehdr_size;
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1677  *
1678  * It checks the magic number, endianness, and size of non-primitive type
1679  * members of fadump header to ensure safe dump collection.
1680  */
is_fadump_header_compatible(struct fadump_crash_info_header * fdh)1681 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1682 {
1683 	if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1684 		pr_err("Old magic number, can't process the dump.\n");
1685 		return false;
1686 	}
1687 
1688 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1689 		if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1690 			pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1691 		else
1692 			pr_err("Fadump header is corrupted.\n");
1693 
1694 		return false;
1695 	}
1696 
1697 	/*
1698 	 * Dump collection is not safe if the size of non-primitive type members
1699 	 * of the fadump header do not match between crashed and fadump kernel.
1700 	 */
1701 	if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1702 	    fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1703 		pr_err("Fadump header size mismatch.\n");
1704 		return false;
1705 	}
1706 
1707 	return true;
1708 }
1709 
fadump_process(void)1710 static void __init fadump_process(void)
1711 {
1712 	struct fadump_crash_info_header *fdh;
1713 
1714 	fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1715 	if (!fdh) {
1716 		pr_err("Crash info header is empty.\n");
1717 		goto err_out;
1718 	}
1719 
1720 	/* Avoid processing the dump if fadump header isn't compatible */
1721 	if (!is_fadump_header_compatible(fdh))
1722 		goto err_out;
1723 
1724 	/* Allocate buffer for elfcorehdr */
1725 	if (fadump_setup_elfcorehdr_buf())
1726 		goto err_out;
1727 
1728 	fadump_populate_elfcorehdr(fdh);
1729 
1730 	/* Let platform update the CPU notes in elfcorehdr */
1731 	if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1732 		goto err_out;
1733 
1734 	/*
1735 	 * elfcorehdr is now ready to be exported.
1736 	 *
1737 	 * set elfcorehdr_addr so that vmcore module will export the
1738 	 * elfcorehdr through '/proc/vmcore'.
1739 	 */
1740 	elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1741 	return;
1742 
1743 err_out:
1744 	fadump_invalidate_release_mem();
1745 }
1746 
1747 /*
1748  * Reserve memory to store additional parameters to be passed
1749  * for fadump/capture kernel.
1750  */
fadump_setup_param_area(void)1751 void __init fadump_setup_param_area(void)
1752 {
1753 	phys_addr_t range_start, range_end;
1754 
1755 	if (!fw_dump.param_area_supported || fw_dump.dump_active)
1756 		return;
1757 
1758 	/* This memory can't be used by PFW or bootloader as it is shared across kernels */
1759 	if (early_radix_enabled()) {
1760 		/*
1761 		 * Anywhere in the upper half should be good enough as all memory
1762 		 * is accessible in real mode.
1763 		 */
1764 		range_start = memblock_end_of_DRAM() / 2;
1765 		range_end = memblock_end_of_DRAM();
1766 	} else {
1767 		/*
1768 		 * Memory range for passing additional parameters for HASH MMU
1769 		 * must meet the following conditions:
1770 		 * 1. The first memory block size must be higher than the
1771 		 *    minimum RMA (MIN_RMA) size. Bootloader can use memory
1772 		 *    upto RMA size. So it should be avoided.
1773 		 * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size)
1774 		 * 3. It must not overlap with the fadump reserved area.
1775 		 */
1776 		if (ppc64_rma_size < MIN_RMA*1024*1024)
1777 			return;
1778 
1779 		range_start = MIN_RMA * 1024 * 1024;
1780 		range_end = min(ppc64_rma_size, fw_dump.boot_mem_top);
1781 	}
1782 
1783 	fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1784 						       COMMAND_LINE_SIZE,
1785 						       range_start,
1786 						       range_end);
1787 	if (!fw_dump.param_area) {
1788 		pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1789 		return;
1790 	}
1791 
1792 	memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1793 }
1794 
1795 /*
1796  * Prepare for firmware-assisted dump.
1797  */
setup_fadump(void)1798 int __init setup_fadump(void)
1799 {
1800 	if (!fw_dump.fadump_supported)
1801 		return 0;
1802 
1803 	fadump_init_files();
1804 	fadump_show_config();
1805 
1806 	if (!fw_dump.fadump_enabled)
1807 		return 1;
1808 
1809 	/*
1810 	 * If dump data is available then see if it is valid and prepare for
1811 	 * saving it to the disk.
1812 	 */
1813 	if (fw_dump.dump_active) {
1814 		fadump_process();
1815 	}
1816 	/* Initialize the kernel dump memory structure and register with f/w */
1817 	else if (fw_dump.reserve_dump_area_size) {
1818 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1819 		register_fadump();
1820 	}
1821 
1822 	/*
1823 	 * In case of panic, fadump is triggered via ppc_panic_event()
1824 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1825 	 * lets panic() function take crash friendly path before panic
1826 	 * notifiers are invoked.
1827 	 */
1828 	crash_kexec_post_notifiers = true;
1829 
1830 	return 1;
1831 }
1832 /*
1833  * Use subsys_initcall_sync() here because there is dependency with
1834  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1835  * is done before registering with f/w.
1836  */
1837 subsys_initcall_sync(setup_fadump);
1838 #else /* !CONFIG_PRESERVE_FA_DUMP */
1839 
1840 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1841 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1842 				      int depth, void *data)
1843 {
1844 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1845 		return 0;
1846 
1847 	opal_fadump_dt_scan(&fw_dump, node);
1848 	return 1;
1849 }
1850 
1851 /*
1852  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1853  * preserve crash data. The subsequent memory preserving kernel boot
1854  * is likely to process this crash data.
1855  */
fadump_reserve_mem(void)1856 int __init fadump_reserve_mem(void)
1857 {
1858 	if (fw_dump.dump_active) {
1859 		/*
1860 		 * If last boot has crashed then reserve all the memory
1861 		 * above boot memory to preserve crash data.
1862 		 */
1863 		pr_info("Preserving crash data for processing in next boot.\n");
1864 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1865 	} else
1866 		pr_debug("FADump-aware kernel..\n");
1867 
1868 	return 1;
1869 }
1870 #endif /* CONFIG_PRESERVE_FA_DUMP */
1871 
1872 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1873 static void __init fadump_reserve_crash_area(u64 base)
1874 {
1875 	u64 i, mstart, mend, msize;
1876 
1877 	for_each_mem_range(i, &mstart, &mend) {
1878 		msize  = mend - mstart;
1879 
1880 		if ((mstart + msize) < base)
1881 			continue;
1882 
1883 		if (mstart < base) {
1884 			msize -= (base - mstart);
1885 			mstart = base;
1886 		}
1887 
1888 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1889 			(msize >> 20), mstart);
1890 		memblock_reserve(mstart, msize);
1891 	}
1892 }
1893