1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 2000 Ralf Baechle
7  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
10  */
11 #include <linux/bug.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/highmem.h>
27 #include <linux/swap.h>
28 #include <linux/proc_fs.h>
29 #include <linux/pfn.h>
30 #include <linux/hardirq.h>
31 #include <linux/gfp.h>
32 #include <linux/kcore.h>
33 #include <linux/initrd.h>
34 #include <linux/execmem.h>
35 
36 #include <asm/bootinfo.h>
37 #include <asm/cachectl.h>
38 #include <asm/cpu.h>
39 #include <asm/dma.h>
40 #include <asm/maar.h>
41 #include <asm/mmu_context.h>
42 #include <asm/mmzone.h>
43 #include <asm/sections.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlb.h>
46 #include <asm/fixmap.h>
47 
48 /*
49  * We have up to 8 empty zeroed pages so we can map one of the right colour
50  * when needed.	 This is necessary only on R4000 / R4400 SC and MC versions
51  * where we have to avoid VCED / VECI exceptions for good performance at
52  * any price.  Since page is never written to after the initialization we
53  * don't have to care about aliases on other CPUs.
54  */
55 unsigned long empty_zero_page, zero_page_mask;
56 EXPORT_SYMBOL_GPL(empty_zero_page);
57 EXPORT_SYMBOL(zero_page_mask);
58 
59 /*
60  * Not static inline because used by IP27 special magic initialization code
61  */
setup_zero_pages(void)62 static void __init setup_zero_pages(void)
63 {
64 	unsigned int order;
65 
66 	if (cpu_has_vce)
67 		order = 3;
68 	else
69 		order = 0;
70 
71 	empty_zero_page = (unsigned long)memblock_alloc_or_panic(PAGE_SIZE << order, PAGE_SIZE);
72 
73 	zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
74 }
75 
__kmap_pgprot(struct page * page,unsigned long addr,pgprot_t prot)76 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
77 {
78 	enum fixed_addresses idx;
79 	unsigned int old_mmid;
80 	unsigned long vaddr, flags, entrylo;
81 	unsigned long old_ctx;
82 	pte_t pte;
83 	int tlbidx;
84 
85 	BUG_ON(folio_test_dcache_dirty(page_folio(page)));
86 
87 	preempt_disable();
88 	pagefault_disable();
89 	idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
90 	idx += in_interrupt() ? FIX_N_COLOURS : 0;
91 	vaddr = __fix_to_virt(FIX_CMAP_END - idx);
92 	pte = mk_pte(page, prot);
93 #if defined(CONFIG_XPA)
94 	entrylo = pte_to_entrylo(pte.pte_high);
95 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
96 	entrylo = pte.pte_high;
97 #else
98 	entrylo = pte_to_entrylo(pte_val(pte));
99 #endif
100 
101 	local_irq_save(flags);
102 	old_ctx = read_c0_entryhi();
103 	write_c0_entryhi(vaddr & (PAGE_MASK << 1));
104 	write_c0_entrylo0(entrylo);
105 	write_c0_entrylo1(entrylo);
106 	if (cpu_has_mmid) {
107 		old_mmid = read_c0_memorymapid();
108 		write_c0_memorymapid(MMID_KERNEL_WIRED);
109 	}
110 #ifdef CONFIG_XPA
111 	if (cpu_has_xpa) {
112 		entrylo = (pte.pte_low & _PFNX_MASK);
113 		writex_c0_entrylo0(entrylo);
114 		writex_c0_entrylo1(entrylo);
115 	}
116 #endif
117 	tlbidx = num_wired_entries();
118 	write_c0_wired(tlbidx + 1);
119 	write_c0_index(tlbidx);
120 	mtc0_tlbw_hazard();
121 	tlb_write_indexed();
122 	tlbw_use_hazard();
123 	write_c0_entryhi(old_ctx);
124 	if (cpu_has_mmid)
125 		write_c0_memorymapid(old_mmid);
126 	local_irq_restore(flags);
127 
128 	return (void*) vaddr;
129 }
130 
kmap_coherent(struct page * page,unsigned long addr)131 void *kmap_coherent(struct page *page, unsigned long addr)
132 {
133 	return __kmap_pgprot(page, addr, PAGE_KERNEL);
134 }
135 
kmap_noncoherent(struct page * page,unsigned long addr)136 void *kmap_noncoherent(struct page *page, unsigned long addr)
137 {
138 	return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
139 }
140 
kunmap_coherent(void)141 void kunmap_coherent(void)
142 {
143 	unsigned int wired;
144 	unsigned long flags, old_ctx;
145 
146 	local_irq_save(flags);
147 	old_ctx = read_c0_entryhi();
148 	wired = num_wired_entries() - 1;
149 	write_c0_wired(wired);
150 	write_c0_index(wired);
151 	write_c0_entryhi(UNIQUE_ENTRYHI(wired));
152 	write_c0_entrylo0(0);
153 	write_c0_entrylo1(0);
154 	mtc0_tlbw_hazard();
155 	tlb_write_indexed();
156 	tlbw_use_hazard();
157 	write_c0_entryhi(old_ctx);
158 	local_irq_restore(flags);
159 	pagefault_enable();
160 	preempt_enable();
161 }
162 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)163 void copy_user_highpage(struct page *to, struct page *from,
164 	unsigned long vaddr, struct vm_area_struct *vma)
165 {
166 	struct folio *src = page_folio(from);
167 	void *vfrom, *vto;
168 
169 	vto = kmap_atomic(to);
170 	if (cpu_has_dc_aliases &&
171 	    folio_mapped(src) && !folio_test_dcache_dirty(src)) {
172 		vfrom = kmap_coherent(from, vaddr);
173 		copy_page(vto, vfrom);
174 		kunmap_coherent();
175 	} else {
176 		vfrom = kmap_atomic(from);
177 		copy_page(vto, vfrom);
178 		kunmap_atomic(vfrom);
179 	}
180 	if ((!cpu_has_ic_fills_f_dc) ||
181 	    pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
182 		flush_data_cache_page((unsigned long)vto);
183 	kunmap_atomic(vto);
184 	/* Make sure this page is cleared on other CPU's too before using it */
185 	smp_wmb();
186 }
187 
copy_to_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)188 void copy_to_user_page(struct vm_area_struct *vma,
189 	struct page *page, unsigned long vaddr, void *dst, const void *src,
190 	unsigned long len)
191 {
192 	struct folio *folio = page_folio(page);
193 
194 	if (cpu_has_dc_aliases &&
195 	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
196 		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
197 		memcpy(vto, src, len);
198 		kunmap_coherent();
199 	} else {
200 		memcpy(dst, src, len);
201 		if (cpu_has_dc_aliases)
202 			folio_set_dcache_dirty(folio);
203 	}
204 	if (vma->vm_flags & VM_EXEC)
205 		flush_cache_page(vma, vaddr, page_to_pfn(page));
206 }
207 
copy_from_user_page(struct vm_area_struct * vma,struct page * page,unsigned long vaddr,void * dst,const void * src,unsigned long len)208 void copy_from_user_page(struct vm_area_struct *vma,
209 	struct page *page, unsigned long vaddr, void *dst, const void *src,
210 	unsigned long len)
211 {
212 	struct folio *folio = page_folio(page);
213 
214 	if (cpu_has_dc_aliases &&
215 	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
216 		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
217 		memcpy(dst, vfrom, len);
218 		kunmap_coherent();
219 	} else {
220 		memcpy(dst, src, len);
221 		if (cpu_has_dc_aliases)
222 			folio_set_dcache_dirty(folio);
223 	}
224 }
225 EXPORT_SYMBOL_GPL(copy_from_user_page);
226 
fixrange_init(unsigned long start,unsigned long end,pgd_t * pgd_base)227 void __init fixrange_init(unsigned long start, unsigned long end,
228 	pgd_t *pgd_base)
229 {
230 #ifdef CONFIG_HIGHMEM
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 	int i, j, k;
236 	unsigned long vaddr;
237 
238 	vaddr = start;
239 	i = pgd_index(vaddr);
240 	j = pud_index(vaddr);
241 	k = pmd_index(vaddr);
242 	pgd = pgd_base + i;
243 
244 	for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
245 		pud = (pud_t *)pgd;
246 		for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
247 			pmd = (pmd_t *)pud;
248 			for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
249 				if (pmd_none(*pmd)) {
250 					pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
251 									   PAGE_SIZE);
252 					if (!pte)
253 						panic("%s: Failed to allocate %lu bytes align=%lx\n",
254 						      __func__, PAGE_SIZE,
255 						      PAGE_SIZE);
256 
257 					set_pmd(pmd, __pmd((unsigned long)pte));
258 					BUG_ON(pte != pte_offset_kernel(pmd, 0));
259 				}
260 				vaddr += PMD_SIZE;
261 			}
262 			k = 0;
263 		}
264 		j = 0;
265 	}
266 #endif
267 }
268 
269 struct maar_walk_info {
270 	struct maar_config cfg[16];
271 	unsigned int num_cfg;
272 };
273 
maar_res_walk(unsigned long start_pfn,unsigned long nr_pages,void * data)274 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
275 			 void *data)
276 {
277 	struct maar_walk_info *wi = data;
278 	struct maar_config *cfg = &wi->cfg[wi->num_cfg];
279 	unsigned int maar_align;
280 
281 	/* MAAR registers hold physical addresses right shifted by 4 bits */
282 	maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
283 
284 	/* Fill in the MAAR config entry */
285 	cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
286 	cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
287 	cfg->attrs = MIPS_MAAR_S;
288 
289 	/* Ensure we don't overflow the cfg array */
290 	if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
291 		wi->num_cfg++;
292 
293 	return 0;
294 }
295 
296 
platform_maar_init(unsigned num_pairs)297 unsigned __weak platform_maar_init(unsigned num_pairs)
298 {
299 	unsigned int num_configured;
300 	struct maar_walk_info wi;
301 
302 	wi.num_cfg = 0;
303 	walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
304 
305 	num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
306 	if (num_configured < wi.num_cfg)
307 		pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
308 			num_pairs, wi.num_cfg);
309 
310 	return num_configured;
311 }
312 
maar_init(void)313 void maar_init(void)
314 {
315 	unsigned num_maars, used, i;
316 	phys_addr_t lower, upper, attr;
317 	static struct {
318 		struct maar_config cfgs[3];
319 		unsigned used;
320 	} recorded = { { { 0 } }, 0 };
321 
322 	if (!cpu_has_maar)
323 		return;
324 
325 	/* Detect the number of MAARs */
326 	write_c0_maari(~0);
327 	back_to_back_c0_hazard();
328 	num_maars = read_c0_maari() + 1;
329 
330 	/* MAARs should be in pairs */
331 	WARN_ON(num_maars % 2);
332 
333 	/* Set MAARs using values we recorded already */
334 	if (recorded.used) {
335 		used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
336 		BUG_ON(used != recorded.used);
337 	} else {
338 		/* Configure the required MAARs */
339 		used = platform_maar_init(num_maars / 2);
340 	}
341 
342 	/* Disable any further MAARs */
343 	for (i = (used * 2); i < num_maars; i++) {
344 		write_c0_maari(i);
345 		back_to_back_c0_hazard();
346 		write_c0_maar(0);
347 		back_to_back_c0_hazard();
348 	}
349 
350 	if (recorded.used)
351 		return;
352 
353 	pr_info("MAAR configuration:\n");
354 	for (i = 0; i < num_maars; i += 2) {
355 		write_c0_maari(i);
356 		back_to_back_c0_hazard();
357 		upper = read_c0_maar();
358 #ifdef CONFIG_XPA
359 		upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
360 #endif
361 
362 		write_c0_maari(i + 1);
363 		back_to_back_c0_hazard();
364 		lower = read_c0_maar();
365 #ifdef CONFIG_XPA
366 		lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
367 #endif
368 
369 		attr = lower & upper;
370 		lower = (lower & MIPS_MAAR_ADDR) << 4;
371 		upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
372 
373 		pr_info("  [%d]: ", i / 2);
374 		if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
375 			pr_cont("disabled\n");
376 			continue;
377 		}
378 
379 		pr_cont("%pa-%pa", &lower, &upper);
380 
381 		if (attr & MIPS_MAAR_S)
382 			pr_cont(" speculate");
383 
384 		pr_cont("\n");
385 
386 		/* Record the setup for use on secondary CPUs */
387 		if (used <= ARRAY_SIZE(recorded.cfgs)) {
388 			recorded.cfgs[recorded.used].lower = lower;
389 			recorded.cfgs[recorded.used].upper = upper;
390 			recorded.cfgs[recorded.used].attrs = attr;
391 			recorded.used++;
392 		}
393 	}
394 }
395 
396 #ifndef CONFIG_NUMA
paging_init(void)397 void __init paging_init(void)
398 {
399 	unsigned long max_zone_pfns[MAX_NR_ZONES];
400 
401 	pagetable_init();
402 
403 #ifdef CONFIG_ZONE_DMA
404 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
405 #endif
406 #ifdef CONFIG_ZONE_DMA32
407 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
408 #endif
409 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
410 #ifdef CONFIG_HIGHMEM
411 	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
412 
413 	if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
414 		printk(KERN_WARNING "This processor doesn't support highmem."
415 		       " %ldk highmem ignored\n",
416 		       (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
417 		max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
418 	}
419 #endif
420 
421 	free_area_init(max_zone_pfns);
422 }
423 
424 #ifdef CONFIG_64BIT
425 static struct kcore_list kcore_kseg0;
426 #endif
427 
arch_mm_preinit(void)428 void __init arch_mm_preinit(void)
429 {
430 	/*
431 	 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
432 	 * bits to hold a full 32b physical address on MIPS32 systems.
433 	 */
434 	BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT));
435 
436 	maar_init();
437 	setup_zero_pages();	/* Setup zeroed pages.  */
438 
439 #ifdef CONFIG_64BIT
440 	if ((unsigned long) &_text > (unsigned long) CKSEG0)
441 		/* The -4 is a hack so that user tools don't have to handle
442 		   the overflow.  */
443 		kclist_add(&kcore_kseg0, (void *) CKSEG0,
444 				0x80000000 - 4, KCORE_TEXT);
445 #endif
446 }
447 #else  /* CONFIG_NUMA */
arch_mm_preinit(void)448 void __init arch_mm_preinit(void)
449 {
450 	setup_zero_pages();	/* This comes from node 0 */
451 }
452 #endif /* !CONFIG_NUMA */
453 
free_init_pages(const char * what,unsigned long begin,unsigned long end)454 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
455 {
456 	unsigned long pfn;
457 
458 	for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
459 		struct page *page = pfn_to_page(pfn);
460 		void *addr = phys_to_virt(PFN_PHYS(pfn));
461 
462 		memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
463 		free_reserved_page(page);
464 	}
465 	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
466 }
467 
468 void (*free_init_pages_eva)(void *begin, void *end) = NULL;
469 
prom_free_prom_memory(void)470 void __weak __init prom_free_prom_memory(void)
471 {
472 	/* nothing to do */
473 }
474 
free_initmem(void)475 void __ref free_initmem(void)
476 {
477 	prom_free_prom_memory();
478 	/*
479 	 * Let the platform define a specific function to free the
480 	 * init section since EVA may have used any possible mapping
481 	 * between virtual and physical addresses.
482 	 */
483 	if (free_init_pages_eva)
484 		free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
485 	else
486 		free_initmem_default(POISON_FREE_INITMEM);
487 }
488 
489 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
490 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
491 EXPORT_SYMBOL(__per_cpu_offset);
492 
pcpu_cpu_distance(unsigned int from,unsigned int to)493 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
494 {
495 	return node_distance(cpu_to_node(from), cpu_to_node(to));
496 }
497 
pcpu_cpu_to_node(int cpu)498 static int __init pcpu_cpu_to_node(int cpu)
499 {
500 	return cpu_to_node(cpu);
501 }
502 
setup_per_cpu_areas(void)503 void __init setup_per_cpu_areas(void)
504 {
505 	unsigned long delta;
506 	unsigned int cpu;
507 	int rc;
508 
509 	/*
510 	 * Always reserve area for module percpu variables.  That's
511 	 * what the legacy allocator did.
512 	 */
513 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
514 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
515 				    pcpu_cpu_distance,
516 				    pcpu_cpu_to_node);
517 	if (rc < 0)
518 		panic("Failed to initialize percpu areas.");
519 
520 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
521 	for_each_possible_cpu(cpu)
522 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
523 }
524 #endif
525 
526 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
527 unsigned long pgd_current[NR_CPUS];
528 #endif
529 
530 /*
531  * Align swapper_pg_dir in to 64K, allows its address to be loaded
532  * with a single LUI instruction in the TLB handlers.  If we used
533  * __aligned(64K), its size would get rounded up to the alignment
534  * size, and waste space.  So we place it in its own section and align
535  * it in the linker script.
536  */
537 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
538 #ifndef __PAGETABLE_PUD_FOLDED
539 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
540 #endif
541 #ifndef __PAGETABLE_PMD_FOLDED
542 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
543 EXPORT_SYMBOL_GPL(invalid_pmd_table);
544 #endif
545 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
546 EXPORT_SYMBOL(invalid_pte_table);
547 
548 #ifdef CONFIG_EXECMEM
549 #ifdef MODULES_VADDR
550 static struct execmem_info execmem_info __ro_after_init;
551 
execmem_arch_setup(void)552 struct execmem_info __init *execmem_arch_setup(void)
553 {
554 	execmem_info = (struct execmem_info){
555 		.ranges = {
556 			[EXECMEM_DEFAULT] = {
557 				.start	= MODULES_VADDR,
558 				.end	= MODULES_END,
559 				.pgprot	= PAGE_KERNEL,
560 				.alignment = 1,
561 			},
562 		},
563 	};
564 
565 	return &execmem_info;
566 }
567 #endif
568 #endif /* CONFIG_EXECMEM */
569