1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2014 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7 #include <linux/cpuhotplug.h>
8 #include <linux/init.h>
9 #include <linux/percpu.h>
10 #include <linux/slab.h>
11 #include <linux/suspend.h>
12
13 #include <asm/asm-offsets.h>
14 #include <asm/cacheflush.h>
15 #include <asm/cacheops.h>
16 #include <asm/idle.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mipsmtregs.h>
19 #include <asm/pm.h>
20 #include <asm/pm-cps.h>
21 #include <asm/regdef.h>
22 #include <asm/smp-cps.h>
23 #include <asm/uasm.h>
24
25 /*
26 * cps_nc_entry_fn - type of a generated non-coherent state entry function
27 * @online: the count of online coupled VPEs
28 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
29 *
30 * The code entering & exiting non-coherent states is generated at runtime
31 * using uasm, in order to ensure that the compiler cannot insert a stray
32 * memory access at an unfortunate time and to allow the generation of optimal
33 * core-specific code particularly for cache routines. If coupled_coherence
34 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
35 * returns the number of VPEs that were in the wait state at the point this
36 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
37 * the entry function for CPS_PM_NC_WAIT.
38 */
39 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
40
41 /*
42 * The entry point of the generated non-coherent idle state entry/exit
43 * functions. Actually per-core rather than per-CPU.
44 */
45 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
46 nc_asm_enter);
47
48 /* Bitmap indicating which states are supported by the system */
49 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
50
51 /*
52 * Indicates the number of coupled VPEs ready to operate in a non-coherent
53 * state. Actually per-core rather than per-CPU.
54 */
55 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
56
57 /* Indicates online CPUs coupled with the current CPU */
58 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
59
60 /* Used to synchronize entry to deep idle states */
61 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
62
63 /* Saved CPU state across the CPS_PM_POWER_GATED state */
64 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
65
66 /* A somewhat arbitrary number of labels & relocs for uasm */
67 static struct uasm_label labels[32];
68 static struct uasm_reloc relocs[32];
69
cps_pm_support_state(enum cps_pm_state state)70 bool cps_pm_support_state(enum cps_pm_state state)
71 {
72 return test_bit(state, state_support);
73 }
74
coupled_barrier(atomic_t * a,unsigned online)75 static void coupled_barrier(atomic_t *a, unsigned online)
76 {
77 /*
78 * This function is effectively the same as
79 * cpuidle_coupled_parallel_barrier, which can't be used here since
80 * there's no cpuidle device.
81 */
82
83 if (!coupled_coherence)
84 return;
85
86 smp_mb__before_atomic();
87 atomic_inc(a);
88
89 while (atomic_read(a) < online)
90 cpu_relax();
91
92 if (atomic_inc_return(a) == online * 2) {
93 atomic_set(a, 0);
94 return;
95 }
96
97 while (atomic_read(a) > online)
98 cpu_relax();
99 }
100
cps_pm_enter_state(enum cps_pm_state state)101 int cps_pm_enter_state(enum cps_pm_state state)
102 {
103 unsigned cpu = smp_processor_id();
104 unsigned int cluster = cpu_cluster(¤t_cpu_data);
105 unsigned core = cpu_core(¤t_cpu_data);
106 unsigned online, left;
107 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
108 u32 *core_ready_count, *nc_core_ready_count;
109 void *nc_addr;
110 cps_nc_entry_fn entry;
111 struct cluster_boot_config *cluster_cfg;
112 struct core_boot_config *core_cfg;
113 struct vpe_boot_config *vpe_cfg;
114 atomic_t *barrier;
115
116 /* Check that there is an entry function for this state */
117 entry = per_cpu(nc_asm_enter, cpu)[state];
118 if (!entry)
119 return -EINVAL;
120
121 /* Calculate which coupled CPUs (VPEs) are online */
122 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
123 if (cpu_online(cpu)) {
124 cpumask_and(coupled_mask, cpu_online_mask,
125 &cpu_sibling_map[cpu]);
126 online = cpumask_weight(coupled_mask);
127 cpumask_clear_cpu(cpu, coupled_mask);
128 } else
129 #endif
130 {
131 cpumask_clear(coupled_mask);
132 online = 1;
133 }
134
135 /* Setup the VPE to run mips_cps_pm_restore when started again */
136 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
137 /* Power gating relies upon CPS SMP */
138 if (!mips_cps_smp_in_use())
139 return -EINVAL;
140
141 cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
142 core_cfg = &cluster_cfg->core_config[core];
143 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)];
144 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
145 vpe_cfg->gp = (unsigned long)current_thread_info();
146 vpe_cfg->sp = 0;
147 }
148
149 /* Indicate that this CPU might not be coherent */
150 cpumask_clear_cpu(cpu, &cpu_coherent_mask);
151 smp_mb__after_atomic();
152
153 /* Create a non-coherent mapping of the core ready_count */
154 core_ready_count = per_cpu(ready_count, cpu);
155 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
156 (unsigned long)core_ready_count);
157 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
158 nc_core_ready_count = nc_addr;
159
160 /* Ensure ready_count is zero-initialised before the assembly runs */
161 WRITE_ONCE(*nc_core_ready_count, 0);
162 barrier = &per_cpu(pm_barrier, cpumask_first(&cpu_sibling_map[cpu]));
163 coupled_barrier(barrier, online);
164
165 /* Run the generated entry code */
166 left = entry(online, nc_core_ready_count);
167
168 /* Remove the non-coherent mapping of ready_count */
169 kunmap_noncoherent();
170
171 /* Indicate that this CPU is definitely coherent */
172 cpumask_set_cpu(cpu, &cpu_coherent_mask);
173
174 /*
175 * If this VPE is the first to leave the non-coherent wait state then
176 * it needs to wake up any coupled VPEs still running their wait
177 * instruction so that they return to cpuidle, which can then complete
178 * coordination between the coupled VPEs & provide the governor with
179 * a chance to reflect on the length of time the VPEs were in the
180 * idle state.
181 */
182 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
183 arch_send_call_function_ipi_mask(coupled_mask);
184
185 return 0;
186 }
187
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)188 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
189 struct uasm_reloc **pr,
190 const struct cache_desc *cache,
191 unsigned op, int lbl)
192 {
193 unsigned cache_size = cache->ways << cache->waybit;
194 unsigned i;
195 const unsigned unroll_lines = 32;
196
197 /* If the cache isn't present this function has it easy */
198 if (cache->flags & MIPS_CACHE_NOT_PRESENT)
199 return;
200
201 /* Load base address */
202 UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
203
204 /* Calculate end address */
205 if (cache_size < 0x8000)
206 uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size);
207 else
208 UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size));
209
210 /* Start of cache op loop */
211 uasm_build_label(pl, *pp, lbl);
212
213 /* Generate the cache ops */
214 for (i = 0; i < unroll_lines; i++) {
215 if (cpu_has_mips_r6) {
216 uasm_i_cache(pp, op, 0, GPR_T0);
217 uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz);
218 } else {
219 uasm_i_cache(pp, op, i * cache->linesz, GPR_T0);
220 }
221 }
222
223 if (!cpu_has_mips_r6)
224 /* Update the base address */
225 uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz);
226
227 /* Loop if we haven't reached the end address yet */
228 uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl);
229 uasm_i_nop(pp);
230 }
231
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)232 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
233 struct uasm_reloc **pr,
234 const struct cpuinfo_mips *cpu_info,
235 int lbl)
236 {
237 unsigned i, fsb_size = 8;
238 unsigned num_loads = (fsb_size * 3) / 2;
239 unsigned line_stride = 2;
240 unsigned line_size = cpu_info->dcache.linesz;
241 unsigned perf_counter, perf_event;
242 unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
243
244 /*
245 * Determine whether this CPU requires an FSB flush, and if so which
246 * performance counter/event reflect stalls due to a full FSB.
247 */
248 switch (__get_cpu_type(cpu_info->cputype)) {
249 case CPU_INTERAPTIV:
250 perf_counter = 1;
251 perf_event = 51;
252 break;
253
254 case CPU_PROAPTIV:
255 /* Newer proAptiv cores don't require this workaround */
256 if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
257 return 0;
258
259 /* On older ones it's unavailable */
260 return -1;
261
262 default:
263 /* Assume that the CPU does not need this workaround */
264 return 0;
265 }
266
267 /*
268 * Ensure that the fill/store buffer (FSB) is not holding the results
269 * of a prefetch, since if it is then the CPC sequencer may become
270 * stuck in the D3 (ClrBus) state whilst entering a low power state.
271 */
272
273 /* Preserve perf counter setup */
274 uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
275 uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
276
277 /* Setup perf counter to count FSB full pipeline stalls */
278 uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf);
279 uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
280 uasm_i_ehb(pp);
281 uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */
282 uasm_i_ehb(pp);
283
284 /* Base address for loads */
285 UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
286
287 /* Start of clear loop */
288 uasm_build_label(pl, *pp, lbl);
289
290 /* Perform some loads to fill the FSB */
291 for (i = 0; i < num_loads; i++)
292 uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0);
293
294 /*
295 * Invalidate the new D-cache entries so that the cache will need
296 * refilling (via the FSB) if the loop is executed again.
297 */
298 for (i = 0; i < num_loads; i++) {
299 uasm_i_cache(pp, Hit_Invalidate_D,
300 i * line_size * line_stride, GPR_T0);
301 uasm_i_cache(pp, Hit_Writeback_Inv_SD,
302 i * line_size * line_stride, GPR_T0);
303 }
304
305 /* Barrier ensuring previous cache invalidates are complete */
306 uasm_i_sync(pp, __SYNC_full);
307 uasm_i_ehb(pp);
308
309 /* Check whether the pipeline stalled due to the FSB being full */
310 uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */
311
312 /* Loop if it didn't */
313 uasm_il_beqz(pp, pr, GPR_T1, lbl);
314 uasm_i_nop(pp);
315
316 /* Restore perf counter 1. The count may well now be wrong... */
317 uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
318 uasm_i_ehb(pp);
319 uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
320 uasm_i_ehb(pp);
321
322 return 0;
323 }
324
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)325 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
326 struct uasm_reloc **pr,
327 unsigned r_addr, int lbl)
328 {
329 uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000));
330 uasm_build_label(pl, *pp, lbl);
331 uasm_i_ll(pp, GPR_T1, 0, r_addr);
332 uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0);
333 uasm_i_sc(pp, GPR_T1, 0, r_addr);
334 uasm_il_beqz(pp, pr, GPR_T1, lbl);
335 uasm_i_nop(pp);
336 }
337
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)338 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
339 {
340 struct uasm_label *l = labels;
341 struct uasm_reloc *r = relocs;
342 u32 *buf, *p;
343 const unsigned r_online = GPR_A0;
344 const unsigned r_nc_count = GPR_A1;
345 const unsigned r_pcohctl = GPR_T8;
346 const unsigned max_instrs = 256;
347 unsigned cpc_cmd;
348 int err;
349 enum {
350 lbl_incready = 1,
351 lbl_poll_cont,
352 lbl_secondary_hang,
353 lbl_disable_coherence,
354 lbl_flush_fsb,
355 lbl_invicache,
356 lbl_flushdcache,
357 lbl_hang,
358 lbl_set_cont,
359 lbl_secondary_cont,
360 lbl_decready,
361 };
362
363 /* Allocate a buffer to hold the generated code */
364 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
365 if (!buf)
366 return NULL;
367
368 /* Clear labels & relocs ready for (re)use */
369 memset(labels, 0, sizeof(labels));
370 memset(relocs, 0, sizeof(relocs));
371
372 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
373 /* Power gating relies upon CPS SMP */
374 if (!mips_cps_smp_in_use())
375 goto out_err;
376
377 /*
378 * Save CPU state. Note the non-standard calling convention
379 * with the return address placed in v0 to avoid clobbering
380 * the ra register before it is saved.
381 */
382 UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save);
383 uasm_i_jalr(&p, GPR_V0, GPR_T0);
384 uasm_i_nop(&p);
385 }
386
387 /*
388 * Load addresses of required CM & CPC registers. This is done early
389 * because they're needed in both the enable & disable coherence steps
390 * but in the coupled case the enable step will only run on one VPE.
391 */
392 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
393
394 if (coupled_coherence) {
395 /* Increment ready_count */
396 uasm_i_sync(&p, __SYNC_mb);
397 uasm_build_label(&l, p, lbl_incready);
398 uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
399 uasm_i_addiu(&p, GPR_T2, GPR_T1, 1);
400 uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
401 uasm_il_beqz(&p, &r, GPR_T2, lbl_incready);
402 uasm_i_addiu(&p, GPR_T1, GPR_T1, 1);
403
404 /* Barrier ensuring all CPUs see the updated r_nc_count value */
405 uasm_i_sync(&p, __SYNC_mb);
406
407 /*
408 * If this is the last VPE to become ready for non-coherence
409 * then it should branch below.
410 */
411 uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence);
412 uasm_i_nop(&p);
413
414 if (state < CPS_PM_POWER_GATED) {
415 /*
416 * Otherwise this is not the last VPE to become ready
417 * for non-coherence. It needs to wait until coherence
418 * has been disabled before proceeding, which it will do
419 * by polling for the top bit of ready_count being set.
420 */
421 uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1);
422 uasm_build_label(&l, p, lbl_poll_cont);
423 uasm_i_lw(&p, GPR_T0, 0, r_nc_count);
424 uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont);
425 uasm_i_ehb(&p);
426 if (cpu_has_mipsmt)
427 uasm_i_yield(&p, GPR_ZERO, GPR_T1);
428 uasm_il_b(&p, &r, lbl_poll_cont);
429 uasm_i_nop(&p);
430 } else {
431 /*
432 * The core will lose power & this VPE will not continue
433 * so it can simply halt here.
434 */
435 if (cpu_has_mipsmt) {
436 /* Halt the VPE via C0 tchalt register */
437 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H);
438 uasm_i_mtc0(&p, GPR_T0, 2, 4);
439 } else if (cpu_has_vp) {
440 /* Halt the VP via the CPC VP_STOP register */
441 unsigned int vpe_id;
442
443 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
444 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id);
445 UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop());
446 uasm_i_sw(&p, GPR_T0, 0, GPR_T1);
447 } else {
448 BUG();
449 }
450 uasm_build_label(&l, p, lbl_secondary_hang);
451 uasm_il_b(&p, &r, lbl_secondary_hang);
452 uasm_i_nop(&p);
453 }
454 }
455
456 /*
457 * This is the point of no return - this VPE will now proceed to
458 * disable coherence. At this point we *must* be sure that no other
459 * VPE within the core will interfere with the L1 dcache.
460 */
461 uasm_build_label(&l, p, lbl_disable_coherence);
462
463 /* Invalidate the L1 icache */
464 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
465 Index_Invalidate_I, lbl_invicache);
466
467 /* Writeback & invalidate the L1 dcache */
468 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
469 Index_Writeback_Inv_D, lbl_flushdcache);
470
471 /* Barrier ensuring previous cache invalidates are complete */
472 uasm_i_sync(&p, __SYNC_full);
473 uasm_i_ehb(&p);
474
475 if (mips_cm_revision() < CM_REV_CM3) {
476 /*
477 * Disable all but self interventions. The load from COHCTL is
478 * defined by the interAptiv & proAptiv SUMs as ensuring that the
479 * operation resulting from the preceding store is complete.
480 */
481 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu]));
482 uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
483 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
484
485 /* Barrier to ensure write to coherence control is complete */
486 uasm_i_sync(&p, __SYNC_full);
487 uasm_i_ehb(&p);
488 }
489
490 /* Disable coherence */
491 uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl);
492 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
493
494 if (state >= CPS_PM_CLOCK_GATED) {
495 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
496 lbl_flush_fsb);
497 if (err)
498 goto out_err;
499
500 /* Determine the CPC command to issue */
501 switch (state) {
502 case CPS_PM_CLOCK_GATED:
503 cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
504 break;
505 case CPS_PM_POWER_GATED:
506 cpc_cmd = CPC_Cx_CMD_PWRDOWN;
507 break;
508 default:
509 BUG();
510 goto out_err;
511 }
512
513 /* Issue the CPC command */
514 UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd());
515 uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd);
516 uasm_i_sw(&p, GPR_T1, 0, GPR_T0);
517
518 if (state == CPS_PM_POWER_GATED) {
519 /* If anything goes wrong just hang */
520 uasm_build_label(&l, p, lbl_hang);
521 uasm_il_b(&p, &r, lbl_hang);
522 uasm_i_nop(&p);
523
524 /*
525 * There's no point generating more code, the core is
526 * powered down & if powered back up will run from the
527 * reset vector not from here.
528 */
529 goto gen_done;
530 }
531
532 /* Barrier to ensure write to CPC command is complete */
533 uasm_i_sync(&p, __SYNC_full);
534 uasm_i_ehb(&p);
535 }
536
537 if (state == CPS_PM_NC_WAIT) {
538 /*
539 * At this point it is safe for all VPEs to proceed with
540 * execution. This VPE will set the top bit of ready_count
541 * to indicate to the other VPEs that they may continue.
542 */
543 if (coupled_coherence)
544 cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
545 lbl_set_cont);
546
547 /*
548 * VPEs which did not disable coherence will continue
549 * executing, after coherence has been disabled, from this
550 * point.
551 */
552 uasm_build_label(&l, p, lbl_secondary_cont);
553
554 /* Now perform our wait */
555 uasm_i_wait(&p, 0);
556 }
557
558 /*
559 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
560 * will run this. The first will actually re-enable coherence & the
561 * rest will just be performing a rather unusual nop.
562 */
563 uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3
564 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
565 : CM3_GCR_Cx_COHERENCE_COHEN);
566
567 uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
568 uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
569
570 /* Barrier to ensure write to coherence control is complete */
571 uasm_i_sync(&p, __SYNC_full);
572 uasm_i_ehb(&p);
573
574 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
575 /* Decrement ready_count */
576 uasm_build_label(&l, p, lbl_decready);
577 uasm_i_sync(&p, __SYNC_mb);
578 uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
579 uasm_i_addiu(&p, GPR_T2, GPR_T1, -1);
580 uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
581 uasm_il_beqz(&p, &r, GPR_T2, lbl_decready);
582 uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1);
583
584 /* Barrier ensuring all CPUs see the updated r_nc_count value */
585 uasm_i_sync(&p, __SYNC_mb);
586 }
587
588 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
589 /*
590 * At this point it is safe for all VPEs to proceed with
591 * execution. This VPE will set the top bit of ready_count
592 * to indicate to the other VPEs that they may continue.
593 */
594 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
595
596 /*
597 * This core will be reliant upon another core sending a
598 * power-up command to the CPC in order to resume operation.
599 * Thus an arbitrary VPE can't trigger the core leaving the
600 * idle state and the one that disables coherence might as well
601 * be the one to re-enable it. The rest will continue from here
602 * after that has been done.
603 */
604 uasm_build_label(&l, p, lbl_secondary_cont);
605
606 /* Barrier ensuring all CPUs see the updated r_nc_count value */
607 uasm_i_sync(&p, __SYNC_mb);
608 }
609
610 /* The core is coherent, time to return to C code */
611 uasm_i_jr(&p, GPR_RA);
612 uasm_i_nop(&p);
613
614 gen_done:
615 /* Ensure the code didn't exceed the resources allocated for it */
616 BUG_ON((p - buf) > max_instrs);
617 BUG_ON((l - labels) > ARRAY_SIZE(labels));
618 BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
619
620 /* Patch branch offsets */
621 uasm_resolve_relocs(relocs, labels);
622
623 /* Flush the icache */
624 local_flush_icache_range((unsigned long)buf, (unsigned long)p);
625
626 return buf;
627 out_err:
628 kfree(buf);
629 return NULL;
630 }
631
cps_pm_online_cpu(unsigned int cpu)632 static int cps_pm_online_cpu(unsigned int cpu)
633 {
634 unsigned int sibling, core;
635 void *entry_fn, *core_rc;
636 enum cps_pm_state state;
637
638 core = cpu_core(&cpu_data[cpu]);
639
640 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
641 if (per_cpu(nc_asm_enter, cpu)[state])
642 continue;
643 if (!test_bit(state, state_support))
644 continue;
645
646 entry_fn = cps_gen_entry_code(cpu, state);
647 if (!entry_fn) {
648 pr_err("Failed to generate core %u state %u entry\n",
649 core, state);
650 clear_bit(state, state_support);
651 }
652
653 for_each_cpu(sibling, &cpu_sibling_map[cpu])
654 per_cpu(nc_asm_enter, sibling)[state] = entry_fn;
655 }
656
657 if (!per_cpu(ready_count, cpu)) {
658 core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
659 if (!core_rc) {
660 pr_err("Failed allocate core %u ready_count\n", core);
661 return -ENOMEM;
662 }
663
664 for_each_cpu(sibling, &cpu_sibling_map[cpu])
665 per_cpu(ready_count, sibling) = core_rc;
666 }
667
668 return 0;
669 }
670
cps_pm_power_notifier(struct notifier_block * this,unsigned long event,void * ptr)671 static int cps_pm_power_notifier(struct notifier_block *this,
672 unsigned long event, void *ptr)
673 {
674 unsigned int stat;
675
676 switch (event) {
677 case PM_SUSPEND_PREPARE:
678 stat = read_cpc_cl_stat_conf();
679 /*
680 * If we're attempting to suspend the system and power down all
681 * of the cores, the JTAG detect bit indicates that the CPC will
682 * instead put the cores into clock-off state. In this state
683 * a connected debugger can cause the CPU to attempt
684 * interactions with the powered down system. At best this will
685 * fail. At worst, it can hang the NoC, requiring a hard reset.
686 * To avoid this, just block system suspend if a JTAG probe
687 * is detected.
688 */
689 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
690 pr_warn("JTAG probe is connected - abort suspend\n");
691 return NOTIFY_BAD;
692 }
693 return NOTIFY_DONE;
694 default:
695 return NOTIFY_DONE;
696 }
697 }
698
cps_pm_init(void)699 static int __init cps_pm_init(void)
700 {
701 /* A CM is required for all non-coherent states */
702 if (!mips_cm_present()) {
703 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
704 return 0;
705 }
706
707 /*
708 * If interrupts were enabled whilst running a wait instruction on a
709 * non-coherent core then the VPE may end up processing interrupts
710 * whilst non-coherent. That would be bad.
711 */
712 if (cpu_wait == r4k_wait_irqoff)
713 set_bit(CPS_PM_NC_WAIT, state_support);
714 else
715 pr_warn("pm-cps: non-coherent wait unavailable\n");
716
717 /* Detect whether a CPC is present */
718 if (mips_cpc_present()) {
719 /* Detect whether clock gating is implemented */
720 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
721 set_bit(CPS_PM_CLOCK_GATED, state_support);
722 else
723 pr_warn("pm-cps: CPC does not support clock gating\n");
724
725 /* Power gating is available with CPS SMP & any CPC */
726 if (mips_cps_smp_in_use())
727 set_bit(CPS_PM_POWER_GATED, state_support);
728 else
729 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
730 } else {
731 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
732 }
733
734 pm_notifier(cps_pm_power_notifier, 0);
735
736 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
737 cps_pm_online_cpu, NULL);
738 }
739 arch_initcall(cps_pm_init);
740