1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpuhotplug.h>
8 #include <linux/init.h>
9 #include <linux/percpu.h>
10 #include <linux/slab.h>
11 #include <linux/suspend.h>
12 
13 #include <asm/asm-offsets.h>
14 #include <asm/cacheflush.h>
15 #include <asm/cacheops.h>
16 #include <asm/idle.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mipsmtregs.h>
19 #include <asm/pm.h>
20 #include <asm/pm-cps.h>
21 #include <asm/regdef.h>
22 #include <asm/smp-cps.h>
23 #include <asm/uasm.h>
24 
25 /*
26  * cps_nc_entry_fn - type of a generated non-coherent state entry function
27  * @online: the count of online coupled VPEs
28  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
29  *
30  * The code entering & exiting non-coherent states is generated at runtime
31  * using uasm, in order to ensure that the compiler cannot insert a stray
32  * memory access at an unfortunate time and to allow the generation of optimal
33  * core-specific code particularly for cache routines. If coupled_coherence
34  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
35  * returns the number of VPEs that were in the wait state at the point this
36  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
37  * the entry function for CPS_PM_NC_WAIT.
38  */
39 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
40 
41 /*
42  * The entry point of the generated non-coherent idle state entry/exit
43  * functions. Actually per-core rather than per-CPU.
44  */
45 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
46 				  nc_asm_enter);
47 
48 /* Bitmap indicating which states are supported by the system */
49 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
50 
51 /*
52  * Indicates the number of coupled VPEs ready to operate in a non-coherent
53  * state. Actually per-core rather than per-CPU.
54  */
55 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
56 
57 /* Indicates online CPUs coupled with the current CPU */
58 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
59 
60 /* Used to synchronize entry to deep idle states */
61 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
62 
63 /* Saved CPU state across the CPS_PM_POWER_GATED state */
64 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
65 
66 /* A somewhat arbitrary number of labels & relocs for uasm */
67 static struct uasm_label labels[32];
68 static struct uasm_reloc relocs[32];
69 
cps_pm_support_state(enum cps_pm_state state)70 bool cps_pm_support_state(enum cps_pm_state state)
71 {
72 	return test_bit(state, state_support);
73 }
74 
coupled_barrier(atomic_t * a,unsigned online)75 static void coupled_barrier(atomic_t *a, unsigned online)
76 {
77 	/*
78 	 * This function is effectively the same as
79 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
80 	 * there's no cpuidle device.
81 	 */
82 
83 	if (!coupled_coherence)
84 		return;
85 
86 	smp_mb__before_atomic();
87 	atomic_inc(a);
88 
89 	while (atomic_read(a) < online)
90 		cpu_relax();
91 
92 	if (atomic_inc_return(a) == online * 2) {
93 		atomic_set(a, 0);
94 		return;
95 	}
96 
97 	while (atomic_read(a) > online)
98 		cpu_relax();
99 }
100 
cps_pm_enter_state(enum cps_pm_state state)101 int cps_pm_enter_state(enum cps_pm_state state)
102 {
103 	unsigned cpu = smp_processor_id();
104 	unsigned int cluster = cpu_cluster(&current_cpu_data);
105 	unsigned core = cpu_core(&current_cpu_data);
106 	unsigned online, left;
107 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
108 	u32 *core_ready_count, *nc_core_ready_count;
109 	void *nc_addr;
110 	cps_nc_entry_fn entry;
111 	struct cluster_boot_config *cluster_cfg;
112 	struct core_boot_config *core_cfg;
113 	struct vpe_boot_config *vpe_cfg;
114 	atomic_t *barrier;
115 
116 	/* Check that there is an entry function for this state */
117 	entry = per_cpu(nc_asm_enter, cpu)[state];
118 	if (!entry)
119 		return -EINVAL;
120 
121 	/* Calculate which coupled CPUs (VPEs) are online */
122 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
123 	if (cpu_online(cpu)) {
124 		cpumask_and(coupled_mask, cpu_online_mask,
125 			    &cpu_sibling_map[cpu]);
126 		online = cpumask_weight(coupled_mask);
127 		cpumask_clear_cpu(cpu, coupled_mask);
128 	} else
129 #endif
130 	{
131 		cpumask_clear(coupled_mask);
132 		online = 1;
133 	}
134 
135 	/* Setup the VPE to run mips_cps_pm_restore when started again */
136 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
137 		/* Power gating relies upon CPS SMP */
138 		if (!mips_cps_smp_in_use())
139 			return -EINVAL;
140 
141 		cluster_cfg = &mips_cps_cluster_bootcfg[cluster];
142 		core_cfg = &cluster_cfg->core_config[core];
143 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
144 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
145 		vpe_cfg->gp = (unsigned long)current_thread_info();
146 		vpe_cfg->sp = 0;
147 	}
148 
149 	/* Indicate that this CPU might not be coherent */
150 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
151 	smp_mb__after_atomic();
152 
153 	/* Create a non-coherent mapping of the core ready_count */
154 	core_ready_count = per_cpu(ready_count, cpu);
155 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
156 				   (unsigned long)core_ready_count);
157 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
158 	nc_core_ready_count = nc_addr;
159 
160 	/* Ensure ready_count is zero-initialised before the assembly runs */
161 	WRITE_ONCE(*nc_core_ready_count, 0);
162 	barrier = &per_cpu(pm_barrier, cpumask_first(&cpu_sibling_map[cpu]));
163 	coupled_barrier(barrier, online);
164 
165 	/* Run the generated entry code */
166 	left = entry(online, nc_core_ready_count);
167 
168 	/* Remove the non-coherent mapping of ready_count */
169 	kunmap_noncoherent();
170 
171 	/* Indicate that this CPU is definitely coherent */
172 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
173 
174 	/*
175 	 * If this VPE is the first to leave the non-coherent wait state then
176 	 * it needs to wake up any coupled VPEs still running their wait
177 	 * instruction so that they return to cpuidle, which can then complete
178 	 * coordination between the coupled VPEs & provide the governor with
179 	 * a chance to reflect on the length of time the VPEs were in the
180 	 * idle state.
181 	 */
182 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
183 		arch_send_call_function_ipi_mask(coupled_mask);
184 
185 	return 0;
186 }
187 
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)188 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
189 				  struct uasm_reloc **pr,
190 				  const struct cache_desc *cache,
191 				  unsigned op, int lbl)
192 {
193 	unsigned cache_size = cache->ways << cache->waybit;
194 	unsigned i;
195 	const unsigned unroll_lines = 32;
196 
197 	/* If the cache isn't present this function has it easy */
198 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
199 		return;
200 
201 	/* Load base address */
202 	UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
203 
204 	/* Calculate end address */
205 	if (cache_size < 0x8000)
206 		uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size);
207 	else
208 		UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size));
209 
210 	/* Start of cache op loop */
211 	uasm_build_label(pl, *pp, lbl);
212 
213 	/* Generate the cache ops */
214 	for (i = 0; i < unroll_lines; i++) {
215 		if (cpu_has_mips_r6) {
216 			uasm_i_cache(pp, op, 0, GPR_T0);
217 			uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz);
218 		} else {
219 			uasm_i_cache(pp, op, i * cache->linesz, GPR_T0);
220 		}
221 	}
222 
223 	if (!cpu_has_mips_r6)
224 		/* Update the base address */
225 		uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz);
226 
227 	/* Loop if we haven't reached the end address yet */
228 	uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl);
229 	uasm_i_nop(pp);
230 }
231 
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)232 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
233 			     struct uasm_reloc **pr,
234 			     const struct cpuinfo_mips *cpu_info,
235 			     int lbl)
236 {
237 	unsigned i, fsb_size = 8;
238 	unsigned num_loads = (fsb_size * 3) / 2;
239 	unsigned line_stride = 2;
240 	unsigned line_size = cpu_info->dcache.linesz;
241 	unsigned perf_counter, perf_event;
242 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
243 
244 	/*
245 	 * Determine whether this CPU requires an FSB flush, and if so which
246 	 * performance counter/event reflect stalls due to a full FSB.
247 	 */
248 	switch (__get_cpu_type(cpu_info->cputype)) {
249 	case CPU_INTERAPTIV:
250 		perf_counter = 1;
251 		perf_event = 51;
252 		break;
253 
254 	case CPU_PROAPTIV:
255 		/* Newer proAptiv cores don't require this workaround */
256 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
257 			return 0;
258 
259 		/* On older ones it's unavailable */
260 		return -1;
261 
262 	default:
263 		/* Assume that the CPU does not need this workaround */
264 		return 0;
265 	}
266 
267 	/*
268 	 * Ensure that the fill/store buffer (FSB) is not holding the results
269 	 * of a prefetch, since if it is then the CPC sequencer may become
270 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
271 	 */
272 
273 	/* Preserve perf counter setup */
274 	uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
275 	uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
276 
277 	/* Setup perf counter to count FSB full pipeline stalls */
278 	uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf);
279 	uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
280 	uasm_i_ehb(pp);
281 	uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */
282 	uasm_i_ehb(pp);
283 
284 	/* Base address for loads */
285 	UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
286 
287 	/* Start of clear loop */
288 	uasm_build_label(pl, *pp, lbl);
289 
290 	/* Perform some loads to fill the FSB */
291 	for (i = 0; i < num_loads; i++)
292 		uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0);
293 
294 	/*
295 	 * Invalidate the new D-cache entries so that the cache will need
296 	 * refilling (via the FSB) if the loop is executed again.
297 	 */
298 	for (i = 0; i < num_loads; i++) {
299 		uasm_i_cache(pp, Hit_Invalidate_D,
300 			     i * line_size * line_stride, GPR_T0);
301 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
302 			     i * line_size * line_stride, GPR_T0);
303 	}
304 
305 	/* Barrier ensuring previous cache invalidates are complete */
306 	uasm_i_sync(pp, __SYNC_full);
307 	uasm_i_ehb(pp);
308 
309 	/* Check whether the pipeline stalled due to the FSB being full */
310 	uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */
311 
312 	/* Loop if it didn't */
313 	uasm_il_beqz(pp, pr, GPR_T1, lbl);
314 	uasm_i_nop(pp);
315 
316 	/* Restore perf counter 1. The count may well now be wrong... */
317 	uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
318 	uasm_i_ehb(pp);
319 	uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
320 	uasm_i_ehb(pp);
321 
322 	return 0;
323 }
324 
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)325 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
326 				struct uasm_reloc **pr,
327 				unsigned r_addr, int lbl)
328 {
329 	uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000));
330 	uasm_build_label(pl, *pp, lbl);
331 	uasm_i_ll(pp, GPR_T1, 0, r_addr);
332 	uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0);
333 	uasm_i_sc(pp, GPR_T1, 0, r_addr);
334 	uasm_il_beqz(pp, pr, GPR_T1, lbl);
335 	uasm_i_nop(pp);
336 }
337 
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)338 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
339 {
340 	struct uasm_label *l = labels;
341 	struct uasm_reloc *r = relocs;
342 	u32 *buf, *p;
343 	const unsigned r_online = GPR_A0;
344 	const unsigned r_nc_count = GPR_A1;
345 	const unsigned r_pcohctl = GPR_T8;
346 	const unsigned max_instrs = 256;
347 	unsigned cpc_cmd;
348 	int err;
349 	enum {
350 		lbl_incready = 1,
351 		lbl_poll_cont,
352 		lbl_secondary_hang,
353 		lbl_disable_coherence,
354 		lbl_flush_fsb,
355 		lbl_invicache,
356 		lbl_flushdcache,
357 		lbl_hang,
358 		lbl_set_cont,
359 		lbl_secondary_cont,
360 		lbl_decready,
361 	};
362 
363 	/* Allocate a buffer to hold the generated code */
364 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
365 	if (!buf)
366 		return NULL;
367 
368 	/* Clear labels & relocs ready for (re)use */
369 	memset(labels, 0, sizeof(labels));
370 	memset(relocs, 0, sizeof(relocs));
371 
372 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
373 		/* Power gating relies upon CPS SMP */
374 		if (!mips_cps_smp_in_use())
375 			goto out_err;
376 
377 		/*
378 		 * Save CPU state. Note the non-standard calling convention
379 		 * with the return address placed in v0 to avoid clobbering
380 		 * the ra register before it is saved.
381 		 */
382 		UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save);
383 		uasm_i_jalr(&p, GPR_V0, GPR_T0);
384 		uasm_i_nop(&p);
385 	}
386 
387 	/*
388 	 * Load addresses of required CM & CPC registers. This is done early
389 	 * because they're needed in both the enable & disable coherence steps
390 	 * but in the coupled case the enable step will only run on one VPE.
391 	 */
392 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
393 
394 	if (coupled_coherence) {
395 		/* Increment ready_count */
396 		uasm_i_sync(&p, __SYNC_mb);
397 		uasm_build_label(&l, p, lbl_incready);
398 		uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
399 		uasm_i_addiu(&p, GPR_T2, GPR_T1, 1);
400 		uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
401 		uasm_il_beqz(&p, &r, GPR_T2, lbl_incready);
402 		uasm_i_addiu(&p, GPR_T1, GPR_T1, 1);
403 
404 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
405 		uasm_i_sync(&p, __SYNC_mb);
406 
407 		/*
408 		 * If this is the last VPE to become ready for non-coherence
409 		 * then it should branch below.
410 		 */
411 		uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence);
412 		uasm_i_nop(&p);
413 
414 		if (state < CPS_PM_POWER_GATED) {
415 			/*
416 			 * Otherwise this is not the last VPE to become ready
417 			 * for non-coherence. It needs to wait until coherence
418 			 * has been disabled before proceeding, which it will do
419 			 * by polling for the top bit of ready_count being set.
420 			 */
421 			uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1);
422 			uasm_build_label(&l, p, lbl_poll_cont);
423 			uasm_i_lw(&p, GPR_T0, 0, r_nc_count);
424 			uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont);
425 			uasm_i_ehb(&p);
426 			if (cpu_has_mipsmt)
427 				uasm_i_yield(&p, GPR_ZERO, GPR_T1);
428 			uasm_il_b(&p, &r, lbl_poll_cont);
429 			uasm_i_nop(&p);
430 		} else {
431 			/*
432 			 * The core will lose power & this VPE will not continue
433 			 * so it can simply halt here.
434 			 */
435 			if (cpu_has_mipsmt) {
436 				/* Halt the VPE via C0 tchalt register */
437 				uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H);
438 				uasm_i_mtc0(&p, GPR_T0, 2, 4);
439 			} else if (cpu_has_vp) {
440 				/* Halt the VP via the CPC VP_STOP register */
441 				unsigned int vpe_id;
442 
443 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
444 				uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id);
445 				UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop());
446 				uasm_i_sw(&p, GPR_T0, 0, GPR_T1);
447 			} else {
448 				BUG();
449 			}
450 			uasm_build_label(&l, p, lbl_secondary_hang);
451 			uasm_il_b(&p, &r, lbl_secondary_hang);
452 			uasm_i_nop(&p);
453 		}
454 	}
455 
456 	/*
457 	 * This is the point of no return - this VPE will now proceed to
458 	 * disable coherence. At this point we *must* be sure that no other
459 	 * VPE within the core will interfere with the L1 dcache.
460 	 */
461 	uasm_build_label(&l, p, lbl_disable_coherence);
462 
463 	/* Invalidate the L1 icache */
464 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
465 			      Index_Invalidate_I, lbl_invicache);
466 
467 	/* Writeback & invalidate the L1 dcache */
468 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
469 			      Index_Writeback_Inv_D, lbl_flushdcache);
470 
471 	/* Barrier ensuring previous cache invalidates are complete */
472 	uasm_i_sync(&p, __SYNC_full);
473 	uasm_i_ehb(&p);
474 
475 	if (mips_cm_revision() < CM_REV_CM3) {
476 		/*
477 		* Disable all but self interventions. The load from COHCTL is
478 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
479 		*  operation resulting from the preceding store is complete.
480 		*/
481 		uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu]));
482 		uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
483 		uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
484 
485 		/* Barrier to ensure write to coherence control is complete */
486 		uasm_i_sync(&p, __SYNC_full);
487 		uasm_i_ehb(&p);
488 	}
489 
490 	/* Disable coherence */
491 	uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl);
492 	uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
493 
494 	if (state >= CPS_PM_CLOCK_GATED) {
495 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
496 					lbl_flush_fsb);
497 		if (err)
498 			goto out_err;
499 
500 		/* Determine the CPC command to issue */
501 		switch (state) {
502 		case CPS_PM_CLOCK_GATED:
503 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
504 			break;
505 		case CPS_PM_POWER_GATED:
506 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
507 			break;
508 		default:
509 			BUG();
510 			goto out_err;
511 		}
512 
513 		/* Issue the CPC command */
514 		UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd());
515 		uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd);
516 		uasm_i_sw(&p, GPR_T1, 0, GPR_T0);
517 
518 		if (state == CPS_PM_POWER_GATED) {
519 			/* If anything goes wrong just hang */
520 			uasm_build_label(&l, p, lbl_hang);
521 			uasm_il_b(&p, &r, lbl_hang);
522 			uasm_i_nop(&p);
523 
524 			/*
525 			 * There's no point generating more code, the core is
526 			 * powered down & if powered back up will run from the
527 			 * reset vector not from here.
528 			 */
529 			goto gen_done;
530 		}
531 
532 		/* Barrier to ensure write to CPC command is complete */
533 		uasm_i_sync(&p, __SYNC_full);
534 		uasm_i_ehb(&p);
535 	}
536 
537 	if (state == CPS_PM_NC_WAIT) {
538 		/*
539 		 * At this point it is safe for all VPEs to proceed with
540 		 * execution. This VPE will set the top bit of ready_count
541 		 * to indicate to the other VPEs that they may continue.
542 		 */
543 		if (coupled_coherence)
544 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
545 					    lbl_set_cont);
546 
547 		/*
548 		 * VPEs which did not disable coherence will continue
549 		 * executing, after coherence has been disabled, from this
550 		 * point.
551 		 */
552 		uasm_build_label(&l, p, lbl_secondary_cont);
553 
554 		/* Now perform our wait */
555 		uasm_i_wait(&p, 0);
556 	}
557 
558 	/*
559 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
560 	 * will run this. The first will actually re-enable coherence & the
561 	 * rest will just be performing a rather unusual nop.
562 	 */
563 	uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3
564 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
565 				: CM3_GCR_Cx_COHERENCE_COHEN);
566 
567 	uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
568 	uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
569 
570 	/* Barrier to ensure write to coherence control is complete */
571 	uasm_i_sync(&p, __SYNC_full);
572 	uasm_i_ehb(&p);
573 
574 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
575 		/* Decrement ready_count */
576 		uasm_build_label(&l, p, lbl_decready);
577 		uasm_i_sync(&p, __SYNC_mb);
578 		uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
579 		uasm_i_addiu(&p, GPR_T2, GPR_T1, -1);
580 		uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
581 		uasm_il_beqz(&p, &r, GPR_T2, lbl_decready);
582 		uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1);
583 
584 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
585 		uasm_i_sync(&p, __SYNC_mb);
586 	}
587 
588 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
589 		/*
590 		 * At this point it is safe for all VPEs to proceed with
591 		 * execution. This VPE will set the top bit of ready_count
592 		 * to indicate to the other VPEs that they may continue.
593 		 */
594 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
595 
596 		/*
597 		 * This core will be reliant upon another core sending a
598 		 * power-up command to the CPC in order to resume operation.
599 		 * Thus an arbitrary VPE can't trigger the core leaving the
600 		 * idle state and the one that disables coherence might as well
601 		 * be the one to re-enable it. The rest will continue from here
602 		 * after that has been done.
603 		 */
604 		uasm_build_label(&l, p, lbl_secondary_cont);
605 
606 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
607 		uasm_i_sync(&p, __SYNC_mb);
608 	}
609 
610 	/* The core is coherent, time to return to C code */
611 	uasm_i_jr(&p, GPR_RA);
612 	uasm_i_nop(&p);
613 
614 gen_done:
615 	/* Ensure the code didn't exceed the resources allocated for it */
616 	BUG_ON((p - buf) > max_instrs);
617 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
618 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
619 
620 	/* Patch branch offsets */
621 	uasm_resolve_relocs(relocs, labels);
622 
623 	/* Flush the icache */
624 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
625 
626 	return buf;
627 out_err:
628 	kfree(buf);
629 	return NULL;
630 }
631 
cps_pm_online_cpu(unsigned int cpu)632 static int cps_pm_online_cpu(unsigned int cpu)
633 {
634 	unsigned int sibling, core;
635 	void *entry_fn, *core_rc;
636 	enum cps_pm_state state;
637 
638 	core = cpu_core(&cpu_data[cpu]);
639 
640 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
641 		if (per_cpu(nc_asm_enter, cpu)[state])
642 			continue;
643 		if (!test_bit(state, state_support))
644 			continue;
645 
646 		entry_fn = cps_gen_entry_code(cpu, state);
647 		if (!entry_fn) {
648 			pr_err("Failed to generate core %u state %u entry\n",
649 			       core, state);
650 			clear_bit(state, state_support);
651 		}
652 
653 		for_each_cpu(sibling, &cpu_sibling_map[cpu])
654 			per_cpu(nc_asm_enter, sibling)[state] = entry_fn;
655 	}
656 
657 	if (!per_cpu(ready_count, cpu)) {
658 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
659 		if (!core_rc) {
660 			pr_err("Failed allocate core %u ready_count\n", core);
661 			return -ENOMEM;
662 		}
663 
664 		for_each_cpu(sibling, &cpu_sibling_map[cpu])
665 			per_cpu(ready_count, sibling) = core_rc;
666 	}
667 
668 	return 0;
669 }
670 
cps_pm_power_notifier(struct notifier_block * this,unsigned long event,void * ptr)671 static int cps_pm_power_notifier(struct notifier_block *this,
672 				 unsigned long event, void *ptr)
673 {
674 	unsigned int stat;
675 
676 	switch (event) {
677 	case PM_SUSPEND_PREPARE:
678 		stat = read_cpc_cl_stat_conf();
679 		/*
680 		 * If we're attempting to suspend the system and power down all
681 		 * of the cores, the JTAG detect bit indicates that the CPC will
682 		 * instead put the cores into clock-off state. In this state
683 		 * a connected debugger can cause the CPU to attempt
684 		 * interactions with the powered down system. At best this will
685 		 * fail. At worst, it can hang the NoC, requiring a hard reset.
686 		 * To avoid this, just block system suspend if a JTAG probe
687 		 * is detected.
688 		 */
689 		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
690 			pr_warn("JTAG probe is connected - abort suspend\n");
691 			return NOTIFY_BAD;
692 		}
693 		return NOTIFY_DONE;
694 	default:
695 		return NOTIFY_DONE;
696 	}
697 }
698 
cps_pm_init(void)699 static int __init cps_pm_init(void)
700 {
701 	/* A CM is required for all non-coherent states */
702 	if (!mips_cm_present()) {
703 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
704 		return 0;
705 	}
706 
707 	/*
708 	 * If interrupts were enabled whilst running a wait instruction on a
709 	 * non-coherent core then the VPE may end up processing interrupts
710 	 * whilst non-coherent. That would be bad.
711 	 */
712 	if (cpu_wait == r4k_wait_irqoff)
713 		set_bit(CPS_PM_NC_WAIT, state_support);
714 	else
715 		pr_warn("pm-cps: non-coherent wait unavailable\n");
716 
717 	/* Detect whether a CPC is present */
718 	if (mips_cpc_present()) {
719 		/* Detect whether clock gating is implemented */
720 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
721 			set_bit(CPS_PM_CLOCK_GATED, state_support);
722 		else
723 			pr_warn("pm-cps: CPC does not support clock gating\n");
724 
725 		/* Power gating is available with CPS SMP & any CPC */
726 		if (mips_cps_smp_in_use())
727 			set_bit(CPS_PM_POWER_GATED, state_support);
728 		else
729 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
730 	} else {
731 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
732 	}
733 
734 	pm_notifier(cps_pm_power_notifier, 0);
735 
736 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
737 				 cps_pm_online_cpu, NULL);
738 }
739 arch_initcall(cps_pm_init);
740