1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/rsi.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <linux/sizes.h>
48 #include <asm/tlb.h>
49 #include <asm/alternative.h>
50 #include <asm/xen/swiotlb-xen.h>
51 
52 /*
53  * We need to be able to catch inadvertent references to memstart_addr
54  * that occur (potentially in generic code) before arm64_memblock_init()
55  * executes, which assigns it its actual value. So use a default value
56  * that cannot be mistaken for a real physical address.
57  */
58 s64 memstart_addr __ro_after_init = -1;
59 EXPORT_SYMBOL(memstart_addr);
60 
61 /*
62  * If the corresponding config options are enabled, we create both ZONE_DMA
63  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66  * otherwise it is empty.
67  */
68 phys_addr_t __ro_after_init arm64_dma_phys_limit;
69 
70 /*
71  * To make optimal use of block mappings when laying out the linear
72  * mapping, round down the base of physical memory to a size that can
73  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74  * (64k granule), or a multiple that can be mapped using contiguous bits
75  * in the page tables: 32 * PMD_SIZE (16k granule)
76  */
77 #if defined(CONFIG_ARM64_4K_PAGES)
78 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
79 #elif defined(CONFIG_ARM64_16K_PAGES)
80 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
81 #else
82 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
83 #endif
84 
85 /*
86  * sparsemem vmemmap imposes an additional requirement on the alignment of
87  * memstart_addr, due to the fact that the base of the vmemmap region
88  * has a direct correspondence, and needs to appear sufficiently aligned
89  * in the virtual address space.
90  */
91 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
93 #else
94 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
95 #endif
96 
arch_reserve_crashkernel(void)97 static void __init arch_reserve_crashkernel(void)
98 {
99 	unsigned long long low_size = 0;
100 	unsigned long long crash_base, crash_size;
101 	bool high = false;
102 	int ret;
103 
104 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105 		return;
106 
107 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
108 				&crash_size, &crash_base,
109 				&low_size, &high);
110 	if (ret)
111 		return;
112 
113 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
114 }
115 
max_zone_phys(phys_addr_t zone_limit)116 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
117 {
118 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
119 }
120 
zone_sizes_init(void)121 static void __init zone_sizes_init(void)
122 {
123 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
124 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
125 	phys_addr_t __maybe_unused dt_zone_dma_limit;
126 	phys_addr_t __maybe_unused dma32_phys_limit =
127 		max_zone_phys(DMA_BIT_MASK(32));
128 
129 #ifdef CONFIG_ZONE_DMA
130 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
131 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
132 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
133 	/*
134 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
135 	 * bus constraints. Devices using DMA might have their own limitations.
136 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
137 	 * DMA zone on platforms that have RAM there.
138 	 */
139 	if (memblock_start_of_DRAM() < U32_MAX)
140 		zone_dma_limit = min(zone_dma_limit, U32_MAX);
141 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
142 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
143 #endif
144 #ifdef CONFIG_ZONE_DMA32
145 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
146 	if (!arm64_dma_phys_limit)
147 		arm64_dma_phys_limit = dma32_phys_limit;
148 #endif
149 	if (!arm64_dma_phys_limit)
150 		arm64_dma_phys_limit = PHYS_MASK + 1;
151 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
152 
153 	free_area_init(max_zone_pfns);
154 }
155 
pfn_is_map_memory(unsigned long pfn)156 int pfn_is_map_memory(unsigned long pfn)
157 {
158 	phys_addr_t addr = PFN_PHYS(pfn);
159 
160 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
161 	if (PHYS_PFN(addr) != pfn)
162 		return 0;
163 
164 	return memblock_is_map_memory(addr);
165 }
166 EXPORT_SYMBOL(pfn_is_map_memory);
167 
168 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
169 
170 /*
171  * Limit the memory size that was specified via FDT.
172  */
early_mem(char * p)173 static int __init early_mem(char *p)
174 {
175 	if (!p)
176 		return 1;
177 
178 	memory_limit = memparse(p, &p) & PAGE_MASK;
179 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
180 
181 	return 0;
182 }
183 early_param("mem", early_mem);
184 
arm64_memblock_init(void)185 void __init arm64_memblock_init(void)
186 {
187 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
188 
189 	/*
190 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
191 	 * be limited in their ability to support a linear map that exceeds 51
192 	 * bits of VA space, depending on the placement of the ID map. Given
193 	 * that the placement of the ID map may be randomized, let's simply
194 	 * limit the kernel's linear map to 51 bits as well if we detect this
195 	 * configuration.
196 	 */
197 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
198 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
199 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
200 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
201 	}
202 
203 	/* Remove memory above our supported physical address size */
204 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
205 
206 	/*
207 	 * Select a suitable value for the base of physical memory.
208 	 */
209 	memstart_addr = round_down(memblock_start_of_DRAM(),
210 				   ARM64_MEMSTART_ALIGN);
211 
212 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
213 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
214 
215 	/*
216 	 * Remove the memory that we will not be able to cover with the
217 	 * linear mapping. Take care not to clip the kernel which may be
218 	 * high in memory.
219 	 */
220 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
221 			__pa_symbol(_end)), ULLONG_MAX);
222 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
223 		/* ensure that memstart_addr remains sufficiently aligned */
224 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
225 					 ARM64_MEMSTART_ALIGN);
226 		memblock_remove(0, memstart_addr);
227 	}
228 
229 	/*
230 	 * If we are running with a 52-bit kernel VA config on a system that
231 	 * does not support it, we have to place the available physical
232 	 * memory in the 48-bit addressable part of the linear region, i.e.,
233 	 * we have to move it upward. Since memstart_addr represents the
234 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
235 	 */
236 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
237 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
238 
239 	/*
240 	 * Apply the memory limit if it was set. Since the kernel may be loaded
241 	 * high up in memory, add back the kernel region that must be accessible
242 	 * via the linear mapping.
243 	 */
244 	if (memory_limit != PHYS_ADDR_MAX) {
245 		memblock_mem_limit_remove_map(memory_limit);
246 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
247 	}
248 
249 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
250 		/*
251 		 * Add back the memory we just removed if it results in the
252 		 * initrd to become inaccessible via the linear mapping.
253 		 * Otherwise, this is a no-op
254 		 */
255 		u64 base = phys_initrd_start & PAGE_MASK;
256 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
257 
258 		/*
259 		 * We can only add back the initrd memory if we don't end up
260 		 * with more memory than we can address via the linear mapping.
261 		 * It is up to the bootloader to position the kernel and the
262 		 * initrd reasonably close to each other (i.e., within 32 GB of
263 		 * each other) so that all granule/#levels combinations can
264 		 * always access both.
265 		 */
266 		if (WARN(base < memblock_start_of_DRAM() ||
267 			 base + size > memblock_start_of_DRAM() +
268 				       linear_region_size,
269 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
270 			phys_initrd_size = 0;
271 		} else {
272 			memblock_add(base, size);
273 			memblock_clear_nomap(base, size);
274 			memblock_reserve(base, size);
275 		}
276 	}
277 
278 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
279 		extern u16 memstart_offset_seed;
280 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
281 		int parange = cpuid_feature_extract_unsigned_field(
282 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
283 		s64 range = linear_region_size -
284 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
285 
286 		/*
287 		 * If the size of the linear region exceeds, by a sufficient
288 		 * margin, the size of the region that the physical memory can
289 		 * span, randomize the linear region as well.
290 		 */
291 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
292 			range /= ARM64_MEMSTART_ALIGN;
293 			memstart_addr -= ARM64_MEMSTART_ALIGN *
294 					 ((range * memstart_offset_seed) >> 16);
295 		}
296 	}
297 
298 	/*
299 	 * Register the kernel text, kernel data, initrd, and initial
300 	 * pagetables with memblock.
301 	 */
302 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
303 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
304 		/* the generic initrd code expects virtual addresses */
305 		initrd_start = __phys_to_virt(phys_initrd_start);
306 		initrd_end = initrd_start + phys_initrd_size;
307 	}
308 
309 	early_init_fdt_scan_reserved_mem();
310 }
311 
bootmem_init(void)312 void __init bootmem_init(void)
313 {
314 	unsigned long min, max;
315 
316 	min = PFN_UP(memblock_start_of_DRAM());
317 	max = PFN_DOWN(memblock_end_of_DRAM());
318 
319 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
320 
321 	max_pfn = max_low_pfn = max;
322 	min_low_pfn = min;
323 
324 	arch_numa_init();
325 
326 	/*
327 	 * must be done after arch_numa_init() which calls numa_init() to
328 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
329 	 * while allocating required CMA size across online nodes.
330 	 */
331 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
332 	arm64_hugetlb_cma_reserve();
333 #endif
334 
335 	kvm_hyp_reserve();
336 
337 	/*
338 	 * sparse_init() tries to allocate memory from memblock, so must be
339 	 * done after the fixed reservations
340 	 */
341 	sparse_init();
342 	zone_sizes_init();
343 
344 	/*
345 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
346 	 */
347 	dma_contiguous_reserve(arm64_dma_phys_limit);
348 
349 	/*
350 	 * request_standard_resources() depends on crashkernel's memory being
351 	 * reserved, so do it here.
352 	 */
353 	arch_reserve_crashkernel();
354 
355 	memblock_dump_all();
356 }
357 
arch_mm_preinit(void)358 void __init arch_mm_preinit(void)
359 {
360 	unsigned int flags = SWIOTLB_VERBOSE;
361 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
362 
363 	if (is_realm_world()) {
364 		swiotlb = true;
365 		flags |= SWIOTLB_FORCE;
366 	}
367 
368 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
369 		/*
370 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
371 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
372 		 */
373 		unsigned long size =
374 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
375 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
376 		swiotlb = true;
377 	}
378 
379 	swiotlb_init(swiotlb, flags);
380 	swiotlb_update_mem_attributes();
381 
382 	/*
383 	 * Check boundaries twice: Some fundamental inconsistencies can be
384 	 * detected at build time already.
385 	 */
386 #ifdef CONFIG_COMPAT
387 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
388 #endif
389 
390 	/*
391 	 * Selected page table levels should match when derived from
392 	 * scratch using the virtual address range and page size.
393 	 */
394 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
395 		     CONFIG_PGTABLE_LEVELS);
396 
397 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
398 		extern int sysctl_overcommit_memory;
399 		/*
400 		 * On a machine this small we won't get anywhere without
401 		 * overcommit, so turn it on by default.
402 		 */
403 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
404 	}
405 }
406 
free_initmem(void)407 void free_initmem(void)
408 {
409 	void *lm_init_begin = lm_alias(__init_begin);
410 	void *lm_init_end = lm_alias(__init_end);
411 
412 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
413 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
414 
415 	/* Delete __init region from memblock.reserved. */
416 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
417 
418 	free_reserved_area(lm_init_begin, lm_init_end,
419 			   POISON_FREE_INITMEM, "unused kernel");
420 	/*
421 	 * Unmap the __init region but leave the VM area in place. This
422 	 * prevents the region from being reused for kernel modules, which
423 	 * is not supported by kallsyms.
424 	 */
425 	vunmap_range((u64)__init_begin, (u64)__init_end);
426 }
427 
dump_mem_limit(void)428 void dump_mem_limit(void)
429 {
430 	if (memory_limit != PHYS_ADDR_MAX) {
431 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
432 	} else {
433 		pr_emerg("Memory Limit: none\n");
434 	}
435 }
436 
437 #ifdef CONFIG_EXECMEM
438 static u64 module_direct_base __ro_after_init = 0;
439 static u64 module_plt_base __ro_after_init = 0;
440 
441 /*
442  * Choose a random page-aligned base address for a window of 'size' bytes which
443  * entirely contains the interval [start, end - 1].
444  */
random_bounding_box(u64 size,u64 start,u64 end)445 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
446 {
447 	u64 max_pgoff, pgoff;
448 
449 	if ((end - start) >= size)
450 		return 0;
451 
452 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
453 	pgoff = get_random_u32_inclusive(0, max_pgoff);
454 
455 	return start - pgoff * PAGE_SIZE;
456 }
457 
458 /*
459  * Modules may directly reference data and text anywhere within the kernel
460  * image and other modules. References using PREL32 relocations have a +/-2G
461  * range, and so we need to ensure that the entire kernel image and all modules
462  * fall within a 2G window such that these are always within range.
463  *
464  * Modules may directly branch to functions and code within the kernel text,
465  * and to functions and code within other modules. These branches will use
466  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
467  * that the entire kernel text and all module text falls within a 128M window
468  * such that these are always within range. With PLTs, we can expand this to a
469  * 2G window.
470  *
471  * We chose the 128M region to surround the entire kernel image (rather than
472  * just the text) as using the same bounds for the 128M and 2G regions ensures
473  * by construction that we never select a 128M region that is not a subset of
474  * the 2G region. For very large and unusual kernel configurations this means
475  * we may fall back to PLTs where they could have been avoided, but this keeps
476  * the logic significantly simpler.
477  */
module_init_limits(void)478 static int __init module_init_limits(void)
479 {
480 	u64 kernel_end = (u64)_end;
481 	u64 kernel_start = (u64)_text;
482 	u64 kernel_size = kernel_end - kernel_start;
483 
484 	/*
485 	 * The default modules region is placed immediately below the kernel
486 	 * image, and is large enough to use the full 2G relocation range.
487 	 */
488 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
489 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
490 
491 	if (!kaslr_enabled()) {
492 		if (kernel_size < SZ_128M)
493 			module_direct_base = kernel_end - SZ_128M;
494 		if (kernel_size < SZ_2G)
495 			module_plt_base = kernel_end - SZ_2G;
496 	} else {
497 		u64 min = kernel_start;
498 		u64 max = kernel_end;
499 
500 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
501 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
502 		} else {
503 			module_direct_base = random_bounding_box(SZ_128M, min, max);
504 			if (module_direct_base) {
505 				min = module_direct_base;
506 				max = module_direct_base + SZ_128M;
507 			}
508 		}
509 
510 		module_plt_base = random_bounding_box(SZ_2G, min, max);
511 	}
512 
513 	pr_info("%llu pages in range for non-PLT usage",
514 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
515 	pr_info("%llu pages in range for PLT usage",
516 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
517 
518 	return 0;
519 }
520 
521 static struct execmem_info execmem_info __ro_after_init;
522 
execmem_arch_setup(void)523 struct execmem_info __init *execmem_arch_setup(void)
524 {
525 	unsigned long fallback_start = 0, fallback_end = 0;
526 	unsigned long start = 0, end = 0;
527 
528 	module_init_limits();
529 
530 	/*
531 	 * Where possible, prefer to allocate within direct branch range of the
532 	 * kernel such that no PLTs are necessary.
533 	 */
534 	if (module_direct_base) {
535 		start = module_direct_base;
536 		end = module_direct_base + SZ_128M;
537 
538 		if (module_plt_base) {
539 			fallback_start = module_plt_base;
540 			fallback_end = module_plt_base + SZ_2G;
541 		}
542 	} else if (module_plt_base) {
543 		start = module_plt_base;
544 		end = module_plt_base + SZ_2G;
545 	}
546 
547 	execmem_info = (struct execmem_info){
548 		.ranges = {
549 			[EXECMEM_DEFAULT] = {
550 				.start	= start,
551 				.end	= end,
552 				.pgprot	= PAGE_KERNEL,
553 				.alignment = 1,
554 				.fallback_start	= fallback_start,
555 				.fallback_end	= fallback_end,
556 			},
557 			[EXECMEM_KPROBES] = {
558 				.start	= VMALLOC_START,
559 				.end	= VMALLOC_END,
560 				.pgprot	= PAGE_KERNEL_ROX,
561 				.alignment = 1,
562 			},
563 			[EXECMEM_BPF] = {
564 				.start	= VMALLOC_START,
565 				.end	= VMALLOC_END,
566 				.pgprot	= PAGE_KERNEL,
567 				.alignment = 1,
568 			},
569 		},
570 	};
571 
572 	return &execmem_info;
573 }
574 #endif /* CONFIG_EXECMEM */
575