1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/init.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/rsi.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <linux/sizes.h>
48 #include <asm/tlb.h>
49 #include <asm/alternative.h>
50 #include <asm/xen/swiotlb-xen.h>
51
52 /*
53 * We need to be able to catch inadvertent references to memstart_addr
54 * that occur (potentially in generic code) before arm64_memblock_init()
55 * executes, which assigns it its actual value. So use a default value
56 * that cannot be mistaken for a real physical address.
57 */
58 s64 memstart_addr __ro_after_init = -1;
59 EXPORT_SYMBOL(memstart_addr);
60
61 /*
62 * If the corresponding config options are enabled, we create both ZONE_DMA
63 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66 * otherwise it is empty.
67 */
68 phys_addr_t __ro_after_init arm64_dma_phys_limit;
69
70 /*
71 * To make optimal use of block mappings when laying out the linear
72 * mapping, round down the base of physical memory to a size that can
73 * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74 * (64k granule), or a multiple that can be mapped using contiguous bits
75 * in the page tables: 32 * PMD_SIZE (16k granule)
76 */
77 #if defined(CONFIG_ARM64_4K_PAGES)
78 #define ARM64_MEMSTART_SHIFT PUD_SHIFT
79 #elif defined(CONFIG_ARM64_16K_PAGES)
80 #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT
81 #else
82 #define ARM64_MEMSTART_SHIFT PMD_SHIFT
83 #endif
84
85 /*
86 * sparsemem vmemmap imposes an additional requirement on the alignment of
87 * memstart_addr, due to the fact that the base of the vmemmap region
88 * has a direct correspondence, and needs to appear sufficiently aligned
89 * in the virtual address space.
90 */
91 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92 #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS)
93 #else
94 #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT)
95 #endif
96
arch_reserve_crashkernel(void)97 static void __init arch_reserve_crashkernel(void)
98 {
99 unsigned long long low_size = 0;
100 unsigned long long crash_base, crash_size;
101 bool high = false;
102 int ret;
103
104 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105 return;
106
107 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
108 &crash_size, &crash_base,
109 &low_size, &high);
110 if (ret)
111 return;
112
113 reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
114 }
115
max_zone_phys(phys_addr_t zone_limit)116 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
117 {
118 return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
119 }
120
zone_sizes_init(void)121 static void __init zone_sizes_init(void)
122 {
123 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
124 phys_addr_t __maybe_unused acpi_zone_dma_limit;
125 phys_addr_t __maybe_unused dt_zone_dma_limit;
126 phys_addr_t __maybe_unused dma32_phys_limit =
127 max_zone_phys(DMA_BIT_MASK(32));
128
129 #ifdef CONFIG_ZONE_DMA
130 acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
131 dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
132 zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
133 /*
134 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
135 * bus constraints. Devices using DMA might have their own limitations.
136 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
137 * DMA zone on platforms that have RAM there.
138 */
139 if (memblock_start_of_DRAM() < U32_MAX)
140 zone_dma_limit = min(zone_dma_limit, U32_MAX);
141 arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
142 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
143 #endif
144 #ifdef CONFIG_ZONE_DMA32
145 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
146 if (!arm64_dma_phys_limit)
147 arm64_dma_phys_limit = dma32_phys_limit;
148 #endif
149 if (!arm64_dma_phys_limit)
150 arm64_dma_phys_limit = PHYS_MASK + 1;
151 max_zone_pfns[ZONE_NORMAL] = max_pfn;
152
153 free_area_init(max_zone_pfns);
154 }
155
pfn_is_map_memory(unsigned long pfn)156 int pfn_is_map_memory(unsigned long pfn)
157 {
158 phys_addr_t addr = PFN_PHYS(pfn);
159
160 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
161 if (PHYS_PFN(addr) != pfn)
162 return 0;
163
164 return memblock_is_map_memory(addr);
165 }
166 EXPORT_SYMBOL(pfn_is_map_memory);
167
168 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
169
170 /*
171 * Limit the memory size that was specified via FDT.
172 */
early_mem(char * p)173 static int __init early_mem(char *p)
174 {
175 if (!p)
176 return 1;
177
178 memory_limit = memparse(p, &p) & PAGE_MASK;
179 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
180
181 return 0;
182 }
183 early_param("mem", early_mem);
184
arm64_memblock_init(void)185 void __init arm64_memblock_init(void)
186 {
187 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
188
189 /*
190 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
191 * be limited in their ability to support a linear map that exceeds 51
192 * bits of VA space, depending on the placement of the ID map. Given
193 * that the placement of the ID map may be randomized, let's simply
194 * limit the kernel's linear map to 51 bits as well if we detect this
195 * configuration.
196 */
197 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
198 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
199 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
200 linear_region_size = min_t(u64, linear_region_size, BIT(51));
201 }
202
203 /* Remove memory above our supported physical address size */
204 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
205
206 /*
207 * Select a suitable value for the base of physical memory.
208 */
209 memstart_addr = round_down(memblock_start_of_DRAM(),
210 ARM64_MEMSTART_ALIGN);
211
212 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
213 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
214
215 /*
216 * Remove the memory that we will not be able to cover with the
217 * linear mapping. Take care not to clip the kernel which may be
218 * high in memory.
219 */
220 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
221 __pa_symbol(_end)), ULLONG_MAX);
222 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
223 /* ensure that memstart_addr remains sufficiently aligned */
224 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
225 ARM64_MEMSTART_ALIGN);
226 memblock_remove(0, memstart_addr);
227 }
228
229 /*
230 * If we are running with a 52-bit kernel VA config on a system that
231 * does not support it, we have to place the available physical
232 * memory in the 48-bit addressable part of the linear region, i.e.,
233 * we have to move it upward. Since memstart_addr represents the
234 * physical address of PAGE_OFFSET, we have to *subtract* from it.
235 */
236 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
237 memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
238
239 /*
240 * Apply the memory limit if it was set. Since the kernel may be loaded
241 * high up in memory, add back the kernel region that must be accessible
242 * via the linear mapping.
243 */
244 if (memory_limit != PHYS_ADDR_MAX) {
245 memblock_mem_limit_remove_map(memory_limit);
246 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
247 }
248
249 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
250 /*
251 * Add back the memory we just removed if it results in the
252 * initrd to become inaccessible via the linear mapping.
253 * Otherwise, this is a no-op
254 */
255 u64 base = phys_initrd_start & PAGE_MASK;
256 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
257
258 /*
259 * We can only add back the initrd memory if we don't end up
260 * with more memory than we can address via the linear mapping.
261 * It is up to the bootloader to position the kernel and the
262 * initrd reasonably close to each other (i.e., within 32 GB of
263 * each other) so that all granule/#levels combinations can
264 * always access both.
265 */
266 if (WARN(base < memblock_start_of_DRAM() ||
267 base + size > memblock_start_of_DRAM() +
268 linear_region_size,
269 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
270 phys_initrd_size = 0;
271 } else {
272 memblock_add(base, size);
273 memblock_clear_nomap(base, size);
274 memblock_reserve(base, size);
275 }
276 }
277
278 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
279 extern u16 memstart_offset_seed;
280 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
281 int parange = cpuid_feature_extract_unsigned_field(
282 mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
283 s64 range = linear_region_size -
284 BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
285
286 /*
287 * If the size of the linear region exceeds, by a sufficient
288 * margin, the size of the region that the physical memory can
289 * span, randomize the linear region as well.
290 */
291 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
292 range /= ARM64_MEMSTART_ALIGN;
293 memstart_addr -= ARM64_MEMSTART_ALIGN *
294 ((range * memstart_offset_seed) >> 16);
295 }
296 }
297
298 /*
299 * Register the kernel text, kernel data, initrd, and initial
300 * pagetables with memblock.
301 */
302 memblock_reserve(__pa_symbol(_stext), _end - _stext);
303 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
304 /* the generic initrd code expects virtual addresses */
305 initrd_start = __phys_to_virt(phys_initrd_start);
306 initrd_end = initrd_start + phys_initrd_size;
307 }
308
309 early_init_fdt_scan_reserved_mem();
310 }
311
bootmem_init(void)312 void __init bootmem_init(void)
313 {
314 unsigned long min, max;
315
316 min = PFN_UP(memblock_start_of_DRAM());
317 max = PFN_DOWN(memblock_end_of_DRAM());
318
319 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
320
321 max_pfn = max_low_pfn = max;
322 min_low_pfn = min;
323
324 arch_numa_init();
325
326 /*
327 * must be done after arch_numa_init() which calls numa_init() to
328 * initialize node_online_map that gets used in hugetlb_cma_reserve()
329 * while allocating required CMA size across online nodes.
330 */
331 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
332 arm64_hugetlb_cma_reserve();
333 #endif
334
335 kvm_hyp_reserve();
336
337 /*
338 * sparse_init() tries to allocate memory from memblock, so must be
339 * done after the fixed reservations
340 */
341 sparse_init();
342 zone_sizes_init();
343
344 /*
345 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
346 */
347 dma_contiguous_reserve(arm64_dma_phys_limit);
348
349 /*
350 * request_standard_resources() depends on crashkernel's memory being
351 * reserved, so do it here.
352 */
353 arch_reserve_crashkernel();
354
355 memblock_dump_all();
356 }
357
arch_mm_preinit(void)358 void __init arch_mm_preinit(void)
359 {
360 unsigned int flags = SWIOTLB_VERBOSE;
361 bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
362
363 if (is_realm_world()) {
364 swiotlb = true;
365 flags |= SWIOTLB_FORCE;
366 }
367
368 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
369 /*
370 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
371 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
372 */
373 unsigned long size =
374 DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
375 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
376 swiotlb = true;
377 }
378
379 swiotlb_init(swiotlb, flags);
380 swiotlb_update_mem_attributes();
381
382 /*
383 * Check boundaries twice: Some fundamental inconsistencies can be
384 * detected at build time already.
385 */
386 #ifdef CONFIG_COMPAT
387 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
388 #endif
389
390 /*
391 * Selected page table levels should match when derived from
392 * scratch using the virtual address range and page size.
393 */
394 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
395 CONFIG_PGTABLE_LEVELS);
396
397 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
398 extern int sysctl_overcommit_memory;
399 /*
400 * On a machine this small we won't get anywhere without
401 * overcommit, so turn it on by default.
402 */
403 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
404 }
405 }
406
free_initmem(void)407 void free_initmem(void)
408 {
409 void *lm_init_begin = lm_alias(__init_begin);
410 void *lm_init_end = lm_alias(__init_end);
411
412 WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
413 WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
414
415 /* Delete __init region from memblock.reserved. */
416 memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
417
418 free_reserved_area(lm_init_begin, lm_init_end,
419 POISON_FREE_INITMEM, "unused kernel");
420 /*
421 * Unmap the __init region but leave the VM area in place. This
422 * prevents the region from being reused for kernel modules, which
423 * is not supported by kallsyms.
424 */
425 vunmap_range((u64)__init_begin, (u64)__init_end);
426 }
427
dump_mem_limit(void)428 void dump_mem_limit(void)
429 {
430 if (memory_limit != PHYS_ADDR_MAX) {
431 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
432 } else {
433 pr_emerg("Memory Limit: none\n");
434 }
435 }
436
437 #ifdef CONFIG_EXECMEM
438 static u64 module_direct_base __ro_after_init = 0;
439 static u64 module_plt_base __ro_after_init = 0;
440
441 /*
442 * Choose a random page-aligned base address for a window of 'size' bytes which
443 * entirely contains the interval [start, end - 1].
444 */
random_bounding_box(u64 size,u64 start,u64 end)445 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
446 {
447 u64 max_pgoff, pgoff;
448
449 if ((end - start) >= size)
450 return 0;
451
452 max_pgoff = (size - (end - start)) / PAGE_SIZE;
453 pgoff = get_random_u32_inclusive(0, max_pgoff);
454
455 return start - pgoff * PAGE_SIZE;
456 }
457
458 /*
459 * Modules may directly reference data and text anywhere within the kernel
460 * image and other modules. References using PREL32 relocations have a +/-2G
461 * range, and so we need to ensure that the entire kernel image and all modules
462 * fall within a 2G window such that these are always within range.
463 *
464 * Modules may directly branch to functions and code within the kernel text,
465 * and to functions and code within other modules. These branches will use
466 * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
467 * that the entire kernel text and all module text falls within a 128M window
468 * such that these are always within range. With PLTs, we can expand this to a
469 * 2G window.
470 *
471 * We chose the 128M region to surround the entire kernel image (rather than
472 * just the text) as using the same bounds for the 128M and 2G regions ensures
473 * by construction that we never select a 128M region that is not a subset of
474 * the 2G region. For very large and unusual kernel configurations this means
475 * we may fall back to PLTs where they could have been avoided, but this keeps
476 * the logic significantly simpler.
477 */
module_init_limits(void)478 static int __init module_init_limits(void)
479 {
480 u64 kernel_end = (u64)_end;
481 u64 kernel_start = (u64)_text;
482 u64 kernel_size = kernel_end - kernel_start;
483
484 /*
485 * The default modules region is placed immediately below the kernel
486 * image, and is large enough to use the full 2G relocation range.
487 */
488 BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
489 BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
490
491 if (!kaslr_enabled()) {
492 if (kernel_size < SZ_128M)
493 module_direct_base = kernel_end - SZ_128M;
494 if (kernel_size < SZ_2G)
495 module_plt_base = kernel_end - SZ_2G;
496 } else {
497 u64 min = kernel_start;
498 u64 max = kernel_end;
499
500 if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
501 pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
502 } else {
503 module_direct_base = random_bounding_box(SZ_128M, min, max);
504 if (module_direct_base) {
505 min = module_direct_base;
506 max = module_direct_base + SZ_128M;
507 }
508 }
509
510 module_plt_base = random_bounding_box(SZ_2G, min, max);
511 }
512
513 pr_info("%llu pages in range for non-PLT usage",
514 module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
515 pr_info("%llu pages in range for PLT usage",
516 module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
517
518 return 0;
519 }
520
521 static struct execmem_info execmem_info __ro_after_init;
522
execmem_arch_setup(void)523 struct execmem_info __init *execmem_arch_setup(void)
524 {
525 unsigned long fallback_start = 0, fallback_end = 0;
526 unsigned long start = 0, end = 0;
527
528 module_init_limits();
529
530 /*
531 * Where possible, prefer to allocate within direct branch range of the
532 * kernel such that no PLTs are necessary.
533 */
534 if (module_direct_base) {
535 start = module_direct_base;
536 end = module_direct_base + SZ_128M;
537
538 if (module_plt_base) {
539 fallback_start = module_plt_base;
540 fallback_end = module_plt_base + SZ_2G;
541 }
542 } else if (module_plt_base) {
543 start = module_plt_base;
544 end = module_plt_base + SZ_2G;
545 }
546
547 execmem_info = (struct execmem_info){
548 .ranges = {
549 [EXECMEM_DEFAULT] = {
550 .start = start,
551 .end = end,
552 .pgprot = PAGE_KERNEL,
553 .alignment = 1,
554 .fallback_start = fallback_start,
555 .fallback_end = fallback_end,
556 },
557 [EXECMEM_KPROBES] = {
558 .start = VMALLOC_START,
559 .end = VMALLOC_END,
560 .pgprot = PAGE_KERNEL_ROX,
561 .alignment = 1,
562 },
563 [EXECMEM_BPF] = {
564 .start = VMALLOC_START,
565 .end = VMALLOC_END,
566 .pgprot = PAGE_KERNEL,
567 .alignment = 1,
568 },
569 },
570 };
571
572 return &execmem_info;
573 }
574 #endif /* CONFIG_EXECMEM */
575