1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23 #define VMALLOC_START (MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END (VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30
31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33 #ifndef __ASSEMBLY__
34
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end) \
48 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end) \
50 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52
53 /*
54 * Outside of a few very special situations (e.g. hibernation), we always
55 * use broadcast TLB invalidation instructions, therefore a spurious page
56 * fault on one CPU which has been handled concurrently by another CPU
57 * does not need to perform additional invalidation.
58 */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60
61 /*
62 * ZERO_PAGE is a global shared page that is always zero: used
63 * for zero-mapped memory areas etc..
64 */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
67
68 #define pte_ERROR(e) \
69 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70
71 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)72 static inline phys_addr_t __pte_to_phys(pte_t pte)
73 {
74 pte_val(pte) &= ~PTE_MAYBE_SHARED;
75 return (pte_val(pte) & PTE_ADDR_LOW) |
76 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
77 }
__phys_to_pte_val(phys_addr_t phys)78 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
79 {
80 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
81 }
82 #else
__pte_to_phys(pte_t pte)83 static inline phys_addr_t __pte_to_phys(pte_t pte)
84 {
85 return pte_val(pte) & PTE_ADDR_LOW;
86 }
87
__phys_to_pte_val(phys_addr_t phys)88 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
89 {
90 return phys;
91 }
92 #endif
93
94 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
95 #define pfn_pte(pfn,prot) \
96 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
97
98 #define pte_none(pte) (!pte_val(pte))
99 #define __pte_clear(mm, addr, ptep) \
100 __set_pte(ptep, __pte(0))
101 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
102
103 /*
104 * The following only work if pte_present(). Undefined behaviour otherwise.
105 */
106 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
107 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
108 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
109 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
110 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
111 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
112 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
113 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
114 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
115 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
116 PTE_ATTRINDX(MT_NORMAL_TAGGED))
117
118 #define pte_cont_addr_end(addr, end) \
119 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
120 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
121 })
122
123 #define pmd_cont_addr_end(addr, end) \
124 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
125 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
126 })
127
128 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
129 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
130 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
131
132 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
133 #define pte_present_invalid(pte) \
134 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
135 /*
136 * Execute-only user mappings do not have the PTE_USER bit set. All valid
137 * kernel mappings have the PTE_UXN bit set.
138 */
139 #define pte_valid_not_user(pte) \
140 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
141 /*
142 * Returns true if the pte is valid and has the contiguous bit set.
143 */
144 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
145 /*
146 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
147 * so that we don't erroneously return false for pages that have been
148 * remapped as PROT_NONE but are yet to be flushed from the TLB.
149 * Note that we can't make any assumptions based on the state of the access
150 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
151 * TLB.
152 */
153 #define pte_accessible(mm, pte) \
154 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
155
por_el0_allows_pkey(u8 pkey,bool write,bool execute)156 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
157 {
158 u64 por;
159
160 if (!system_supports_poe())
161 return true;
162
163 por = read_sysreg_s(SYS_POR_EL0);
164
165 if (write)
166 return por_elx_allows_write(por, pkey);
167
168 if (execute)
169 return por_elx_allows_exec(por, pkey);
170
171 return por_elx_allows_read(por, pkey);
172 }
173
174 /*
175 * p??_access_permitted() is true for valid user mappings (PTE_USER
176 * bit set, subject to the write permission check). For execute-only
177 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
178 * not set) must return false. PROT_NONE mappings do not have the
179 * PTE_VALID bit set.
180 */
181 #define pte_access_permitted_no_overlay(pte, write) \
182 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
183 #define pte_access_permitted(pte, write) \
184 (pte_access_permitted_no_overlay(pte, write) && \
185 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
186 #define pmd_access_permitted(pmd, write) \
187 (pte_access_permitted(pmd_pte(pmd), (write)))
188 #define pud_access_permitted(pud, write) \
189 (pte_access_permitted(pud_pte(pud), (write)))
190
clear_pte_bit(pte_t pte,pgprot_t prot)191 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
192 {
193 pte_val(pte) &= ~pgprot_val(prot);
194 return pte;
195 }
196
set_pte_bit(pte_t pte,pgprot_t prot)197 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
198 {
199 pte_val(pte) |= pgprot_val(prot);
200 return pte;
201 }
202
clear_pmd_bit(pmd_t pmd,pgprot_t prot)203 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
204 {
205 pmd_val(pmd) &= ~pgprot_val(prot);
206 return pmd;
207 }
208
set_pmd_bit(pmd_t pmd,pgprot_t prot)209 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
210 {
211 pmd_val(pmd) |= pgprot_val(prot);
212 return pmd;
213 }
214
pte_mkwrite_novma(pte_t pte)215 static inline pte_t pte_mkwrite_novma(pte_t pte)
216 {
217 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
218 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
219 return pte;
220 }
221
pte_mkclean(pte_t pte)222 static inline pte_t pte_mkclean(pte_t pte)
223 {
224 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
225 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
226
227 return pte;
228 }
229
pte_mkdirty(pte_t pte)230 static inline pte_t pte_mkdirty(pte_t pte)
231 {
232 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
233
234 if (pte_write(pte))
235 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
236
237 return pte;
238 }
239
pte_wrprotect(pte_t pte)240 static inline pte_t pte_wrprotect(pte_t pte)
241 {
242 /*
243 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
244 * clear), set the PTE_DIRTY bit.
245 */
246 if (pte_hw_dirty(pte))
247 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
248
249 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
250 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
251 return pte;
252 }
253
pte_mkold(pte_t pte)254 static inline pte_t pte_mkold(pte_t pte)
255 {
256 return clear_pte_bit(pte, __pgprot(PTE_AF));
257 }
258
pte_mkyoung(pte_t pte)259 static inline pte_t pte_mkyoung(pte_t pte)
260 {
261 return set_pte_bit(pte, __pgprot(PTE_AF));
262 }
263
pte_mkspecial(pte_t pte)264 static inline pte_t pte_mkspecial(pte_t pte)
265 {
266 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
267 }
268
pte_mkcont(pte_t pte)269 static inline pte_t pte_mkcont(pte_t pte)
270 {
271 return set_pte_bit(pte, __pgprot(PTE_CONT));
272 }
273
pte_mknoncont(pte_t pte)274 static inline pte_t pte_mknoncont(pte_t pte)
275 {
276 return clear_pte_bit(pte, __pgprot(PTE_CONT));
277 }
278
pte_mkvalid(pte_t pte)279 static inline pte_t pte_mkvalid(pte_t pte)
280 {
281 return set_pte_bit(pte, __pgprot(PTE_VALID));
282 }
283
pte_mkinvalid(pte_t pte)284 static inline pte_t pte_mkinvalid(pte_t pte)
285 {
286 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
287 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
288 return pte;
289 }
290
pmd_mkcont(pmd_t pmd)291 static inline pmd_t pmd_mkcont(pmd_t pmd)
292 {
293 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
294 }
295
pte_mkdevmap(pte_t pte)296 static inline pte_t pte_mkdevmap(pte_t pte)
297 {
298 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
299 }
300
301 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)302 static inline int pte_uffd_wp(pte_t pte)
303 {
304 return !!(pte_val(pte) & PTE_UFFD_WP);
305 }
306
pte_mkuffd_wp(pte_t pte)307 static inline pte_t pte_mkuffd_wp(pte_t pte)
308 {
309 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
310 }
311
pte_clear_uffd_wp(pte_t pte)312 static inline pte_t pte_clear_uffd_wp(pte_t pte)
313 {
314 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
315 }
316 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
317
__set_pte_nosync(pte_t * ptep,pte_t pte)318 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
319 {
320 WRITE_ONCE(*ptep, pte);
321 }
322
__set_pte(pte_t * ptep,pte_t pte)323 static inline void __set_pte(pte_t *ptep, pte_t pte)
324 {
325 __set_pte_nosync(ptep, pte);
326
327 /*
328 * Only if the new pte is valid and kernel, otherwise TLB maintenance
329 * or update_mmu_cache() have the necessary barriers.
330 */
331 if (pte_valid_not_user(pte)) {
332 dsb(ishst);
333 isb();
334 }
335 }
336
__ptep_get(pte_t * ptep)337 static inline pte_t __ptep_get(pte_t *ptep)
338 {
339 return READ_ONCE(*ptep);
340 }
341
342 extern void __sync_icache_dcache(pte_t pteval);
343 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
344
345 /*
346 * PTE bits configuration in the presence of hardware Dirty Bit Management
347 * (PTE_WRITE == PTE_DBM):
348 *
349 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
350 * 0 0 | 1 0 0
351 * 0 1 | 1 1 0
352 * 1 0 | 1 0 1
353 * 1 1 | 0 1 x
354 *
355 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
356 * the page fault mechanism. Checking the dirty status of a pte becomes:
357 *
358 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
359 */
360
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)361 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
362 pte_t pte)
363 {
364 pte_t old_pte;
365
366 if (!IS_ENABLED(CONFIG_DEBUG_VM))
367 return;
368
369 old_pte = __ptep_get(ptep);
370
371 if (!pte_valid(old_pte) || !pte_valid(pte))
372 return;
373 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
374 return;
375
376 /*
377 * Check for potential race with hardware updates of the pte
378 * (__ptep_set_access_flags safely changes valid ptes without going
379 * through an invalid entry).
380 */
381 VM_WARN_ONCE(!pte_young(pte),
382 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
383 __func__, pte_val(old_pte), pte_val(pte));
384 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
385 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
386 __func__, pte_val(old_pte), pte_val(pte));
387 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
388 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
389 __func__, pte_val(old_pte), pte_val(pte));
390 }
391
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)392 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
393 {
394 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
395 __sync_icache_dcache(pte);
396
397 /*
398 * If the PTE would provide user space access to the tags associated
399 * with it then ensure that the MTE tags are synchronised. Although
400 * pte_access_permitted_no_overlay() returns false for exec only
401 * mappings, they don't expose tags (instruction fetches don't check
402 * tags).
403 */
404 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
405 !pte_special(pte) && pte_tagged(pte))
406 mte_sync_tags(pte, nr_pages);
407 }
408
409 /*
410 * Select all bits except the pfn
411 */
412 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)413 static inline pgprot_t pte_pgprot(pte_t pte)
414 {
415 unsigned long pfn = pte_pfn(pte);
416
417 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
418 }
419
420 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)421 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
422 {
423 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
424 }
425
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)426 static inline void __set_ptes(struct mm_struct *mm,
427 unsigned long __always_unused addr,
428 pte_t *ptep, pte_t pte, unsigned int nr)
429 {
430 page_table_check_ptes_set(mm, ptep, pte, nr);
431 __sync_cache_and_tags(pte, nr);
432
433 for (;;) {
434 __check_safe_pte_update(mm, ptep, pte);
435 __set_pte(ptep, pte);
436 if (--nr == 0)
437 break;
438 ptep++;
439 pte = pte_advance_pfn(pte, 1);
440 }
441 }
442
443 /*
444 * Hugetlb definitions.
445 */
446 #define HUGE_MAX_HSTATE 4
447 #define HPAGE_SHIFT PMD_SHIFT
448 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
449 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
450 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
451
pgd_pte(pgd_t pgd)452 static inline pte_t pgd_pte(pgd_t pgd)
453 {
454 return __pte(pgd_val(pgd));
455 }
456
p4d_pte(p4d_t p4d)457 static inline pte_t p4d_pte(p4d_t p4d)
458 {
459 return __pte(p4d_val(p4d));
460 }
461
pud_pte(pud_t pud)462 static inline pte_t pud_pte(pud_t pud)
463 {
464 return __pte(pud_val(pud));
465 }
466
pte_pud(pte_t pte)467 static inline pud_t pte_pud(pte_t pte)
468 {
469 return __pud(pte_val(pte));
470 }
471
pud_pmd(pud_t pud)472 static inline pmd_t pud_pmd(pud_t pud)
473 {
474 return __pmd(pud_val(pud));
475 }
476
pmd_pte(pmd_t pmd)477 static inline pte_t pmd_pte(pmd_t pmd)
478 {
479 return __pte(pmd_val(pmd));
480 }
481
pte_pmd(pte_t pte)482 static inline pmd_t pte_pmd(pte_t pte)
483 {
484 return __pmd(pte_val(pte));
485 }
486
mk_pud_sect_prot(pgprot_t prot)487 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
488 {
489 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
490 }
491
mk_pmd_sect_prot(pgprot_t prot)492 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
493 {
494 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
495 }
496
pte_swp_mkexclusive(pte_t pte)497 static inline pte_t pte_swp_mkexclusive(pte_t pte)
498 {
499 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
500 }
501
pte_swp_exclusive(pte_t pte)502 static inline int pte_swp_exclusive(pte_t pte)
503 {
504 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
505 }
506
pte_swp_clear_exclusive(pte_t pte)507 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
508 {
509 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
510 }
511
512 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)513 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
514 {
515 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
516 }
517
pte_swp_uffd_wp(pte_t pte)518 static inline int pte_swp_uffd_wp(pte_t pte)
519 {
520 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
521 }
522
pte_swp_clear_uffd_wp(pte_t pte)523 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
524 {
525 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
526 }
527 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
528
529 #ifdef CONFIG_NUMA_BALANCING
530 /*
531 * See the comment in include/linux/pgtable.h
532 */
pte_protnone(pte_t pte)533 static inline int pte_protnone(pte_t pte)
534 {
535 /*
536 * pte_present_invalid() tells us that the pte is invalid from HW
537 * perspective but present from SW perspective, so the fields are to be
538 * interpretted as per the HW layout. The second 2 checks are the unique
539 * encoding that we use for PROT_NONE. It is insufficient to only use
540 * the first check because we share the same encoding scheme with pmds
541 * which support pmd_mkinvalid(), so can be present-invalid without
542 * being PROT_NONE.
543 */
544 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
545 }
546
pmd_protnone(pmd_t pmd)547 static inline int pmd_protnone(pmd_t pmd)
548 {
549 return pte_protnone(pmd_pte(pmd));
550 }
551 #endif
552
553 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
554 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
555 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
556 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
557 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
558 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
559 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
560 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
561 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
562 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
563 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
564 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
565 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
566 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
567 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
568 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
569 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
570 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
571 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
572 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
573 #define pmd_swp_clear_uffd_wp(pmd) \
574 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
575 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
576
577 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
578
pmd_mkhuge(pmd_t pmd)579 static inline pmd_t pmd_mkhuge(pmd_t pmd)
580 {
581 /*
582 * It's possible that the pmd is present-invalid on entry
583 * and in that case it needs to remain present-invalid on
584 * exit. So ensure the VALID bit does not get modified.
585 */
586 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
587 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
588
589 return __pmd((pmd_val(pmd) & ~mask) | val);
590 }
591
592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
593 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
594 #endif
pmd_mkdevmap(pmd_t pmd)595 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
596 {
597 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
598 }
599
600 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
601 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)602 static inline pmd_t pmd_mkspecial(pmd_t pmd)
603 {
604 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
605 }
606 #endif
607
608 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
609 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
610 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
611 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
612 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
613
614 #define pud_young(pud) pte_young(pud_pte(pud))
615 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
616 #define pud_write(pud) pte_write(pud_pte(pud))
617
pud_mkhuge(pud_t pud)618 static inline pud_t pud_mkhuge(pud_t pud)
619 {
620 /*
621 * It's possible that the pud is present-invalid on entry
622 * and in that case it needs to remain present-invalid on
623 * exit. So ensure the VALID bit does not get modified.
624 */
625 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
626 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
627
628 return __pud((pud_val(pud) & ~mask) | val);
629 }
630
631 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
632 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
633 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
634 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
635
636 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)637 static inline pgprot_t pmd_pgprot(pmd_t pmd)
638 {
639 unsigned long pfn = pmd_pfn(pmd);
640
641 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
642 }
643
644 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)645 static inline pgprot_t pud_pgprot(pud_t pud)
646 {
647 unsigned long pfn = pud_pfn(pud);
648
649 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
650 }
651
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)652 static inline void __set_pte_at(struct mm_struct *mm,
653 unsigned long __always_unused addr,
654 pte_t *ptep, pte_t pte, unsigned int nr)
655 {
656 __sync_cache_and_tags(pte, nr);
657 __check_safe_pte_update(mm, ptep, pte);
658 __set_pte(ptep, pte);
659 }
660
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)661 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
662 pmd_t *pmdp, pmd_t pmd)
663 {
664 page_table_check_pmd_set(mm, pmdp, pmd);
665 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
666 PMD_SIZE >> PAGE_SHIFT);
667 }
668
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)669 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
670 pud_t *pudp, pud_t pud)
671 {
672 page_table_check_pud_set(mm, pudp, pud);
673 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
674 PUD_SIZE >> PAGE_SHIFT);
675 }
676
677 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
678 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
679
680 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
681 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
682
683 #define __pgprot_modify(prot,mask,bits) \
684 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
685
686 #define pgprot_nx(prot) \
687 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
688
689 #define pgprot_decrypted(prot) \
690 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
691 #define pgprot_encrypted(prot) \
692 __pgprot_modify(prot, PROT_NS_SHARED, 0)
693
694 /*
695 * Mark the prot value as uncacheable and unbufferable.
696 */
697 #define pgprot_noncached(prot) \
698 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
699 #define pgprot_writecombine(prot) \
700 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
701 #define pgprot_device(prot) \
702 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
703 #define pgprot_tagged(prot) \
704 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
705 #define pgprot_mhp pgprot_tagged
706 /*
707 * DMA allocations for non-coherent devices use what the Arm architecture calls
708 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
709 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
710 * is intended for MMIO and thus forbids speculation, preserves access size,
711 * requires strict alignment and can also force write responses to come from the
712 * endpoint.
713 */
714 #define pgprot_dmacoherent(prot) \
715 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
716 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
717
718 #define __HAVE_PHYS_MEM_ACCESS_PROT
719 struct file;
720 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
721 unsigned long size, pgprot_t vma_prot);
722
723 #define pmd_none(pmd) (!pmd_val(pmd))
724
725 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
726 PMD_TYPE_TABLE)
727 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
728 PMD_TYPE_SECT)
729 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
730 #define pmd_bad(pmd) (!pmd_table(pmd))
731
732 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
733 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
734
735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)736 static inline int pmd_trans_huge(pmd_t pmd)
737 {
738 /*
739 * If pmd is present-invalid, pmd_table() won't detect it
740 * as a table, so force the valid bit for the comparison.
741 */
742 return pmd_val(pmd) && pmd_present(pmd) &&
743 !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
744 }
745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
746
747 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)748 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)749 static inline bool pud_table(pud_t pud) { return true; }
750 #else
751 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
752 PUD_TYPE_SECT)
753 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
754 PUD_TYPE_TABLE)
755 #endif
756
757 extern pgd_t init_pg_dir[];
758 extern pgd_t init_pg_end[];
759 extern pgd_t swapper_pg_dir[];
760 extern pgd_t idmap_pg_dir[];
761 extern pgd_t tramp_pg_dir[];
762 extern pgd_t reserved_pg_dir[];
763
764 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
765
in_swapper_pgdir(void * addr)766 static inline bool in_swapper_pgdir(void *addr)
767 {
768 return ((unsigned long)addr & PAGE_MASK) ==
769 ((unsigned long)swapper_pg_dir & PAGE_MASK);
770 }
771
set_pmd(pmd_t * pmdp,pmd_t pmd)772 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
773 {
774 #ifdef __PAGETABLE_PMD_FOLDED
775 if (in_swapper_pgdir(pmdp)) {
776 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
777 return;
778 }
779 #endif /* __PAGETABLE_PMD_FOLDED */
780
781 WRITE_ONCE(*pmdp, pmd);
782
783 if (pmd_valid(pmd)) {
784 dsb(ishst);
785 isb();
786 }
787 }
788
pmd_clear(pmd_t * pmdp)789 static inline void pmd_clear(pmd_t *pmdp)
790 {
791 set_pmd(pmdp, __pmd(0));
792 }
793
pmd_page_paddr(pmd_t pmd)794 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
795 {
796 return __pmd_to_phys(pmd);
797 }
798
pmd_page_vaddr(pmd_t pmd)799 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
800 {
801 return (unsigned long)__va(pmd_page_paddr(pmd));
802 }
803
804 /* Find an entry in the third-level page table. */
805 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
806
807 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
808 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
809 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
810
811 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
812
813 /* use ONLY for statically allocated translation tables */
814 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
815
816 /*
817 * Conversion functions: convert a page and protection to a page entry,
818 * and a page entry and page directory to the page they refer to.
819 */
820 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
821
822 #if CONFIG_PGTABLE_LEVELS > 2
823
824 #define pmd_ERROR(e) \
825 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
826
827 #define pud_none(pud) (!pud_val(pud))
828 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \
829 PUD_TYPE_TABLE)
830 #define pud_present(pud) pte_present(pud_pte(pud))
831 #ifndef __PAGETABLE_PMD_FOLDED
832 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
833 #else
834 #define pud_leaf(pud) false
835 #endif
836 #define pud_valid(pud) pte_valid(pud_pte(pud))
837 #define pud_user(pud) pte_user(pud_pte(pud))
838 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
839
840 static inline bool pgtable_l4_enabled(void);
841
set_pud(pud_t * pudp,pud_t pud)842 static inline void set_pud(pud_t *pudp, pud_t pud)
843 {
844 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
845 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
846 return;
847 }
848
849 WRITE_ONCE(*pudp, pud);
850
851 if (pud_valid(pud)) {
852 dsb(ishst);
853 isb();
854 }
855 }
856
pud_clear(pud_t * pudp)857 static inline void pud_clear(pud_t *pudp)
858 {
859 set_pud(pudp, __pud(0));
860 }
861
pud_page_paddr(pud_t pud)862 static inline phys_addr_t pud_page_paddr(pud_t pud)
863 {
864 return __pud_to_phys(pud);
865 }
866
pud_pgtable(pud_t pud)867 static inline pmd_t *pud_pgtable(pud_t pud)
868 {
869 return (pmd_t *)__va(pud_page_paddr(pud));
870 }
871
872 /* Find an entry in the second-level page table. */
873 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
874
875 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
876 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
877 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
878
879 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
880
881 /* use ONLY for statically allocated translation tables */
882 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
883
884 #else
885
886 #define pud_valid(pud) false
887 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
888 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
889
890 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
891 #define pmd_set_fixmap(addr) NULL
892 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
893 #define pmd_clear_fixmap()
894
895 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
896
897 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
898
899 #if CONFIG_PGTABLE_LEVELS > 3
900
pgtable_l4_enabled(void)901 static __always_inline bool pgtable_l4_enabled(void)
902 {
903 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
904 return true;
905 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
906 return vabits_actual == VA_BITS;
907 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
908 }
909
mm_pud_folded(const struct mm_struct * mm)910 static inline bool mm_pud_folded(const struct mm_struct *mm)
911 {
912 return !pgtable_l4_enabled();
913 }
914 #define mm_pud_folded mm_pud_folded
915
916 #define pud_ERROR(e) \
917 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
918
919 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
920 #define p4d_bad(p4d) (pgtable_l4_enabled() && \
921 ((p4d_val(p4d) & P4D_TYPE_MASK) != \
922 P4D_TYPE_TABLE))
923 #define p4d_present(p4d) (!p4d_none(p4d))
924
set_p4d(p4d_t * p4dp,p4d_t p4d)925 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
926 {
927 if (in_swapper_pgdir(p4dp)) {
928 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
929 return;
930 }
931
932 WRITE_ONCE(*p4dp, p4d);
933 dsb(ishst);
934 isb();
935 }
936
p4d_clear(p4d_t * p4dp)937 static inline void p4d_clear(p4d_t *p4dp)
938 {
939 if (pgtable_l4_enabled())
940 set_p4d(p4dp, __p4d(0));
941 }
942
p4d_page_paddr(p4d_t p4d)943 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
944 {
945 return __p4d_to_phys(p4d);
946 }
947
948 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
949
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)950 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
951 {
952 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
953 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
954
955 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
956 }
957
p4d_pgtable(p4d_t p4d)958 static inline pud_t *p4d_pgtable(p4d_t p4d)
959 {
960 return (pud_t *)__va(p4d_page_paddr(p4d));
961 }
962
pud_offset_phys(p4d_t * p4dp,unsigned long addr)963 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
964 {
965 BUG_ON(!pgtable_l4_enabled());
966
967 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
968 }
969
970 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)971 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
972 {
973 if (!pgtable_l4_enabled())
974 return p4d_to_folded_pud(p4dp, addr);
975 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
976 }
977 #define pud_offset_lockless pud_offset_lockless
978
pud_offset(p4d_t * p4dp,unsigned long addr)979 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
980 {
981 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
982 }
983 #define pud_offset pud_offset
984
pud_set_fixmap(unsigned long addr)985 static inline pud_t *pud_set_fixmap(unsigned long addr)
986 {
987 if (!pgtable_l4_enabled())
988 return NULL;
989 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
990 }
991
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)992 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
993 {
994 if (!pgtable_l4_enabled())
995 return p4d_to_folded_pud(p4dp, addr);
996 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
997 }
998
pud_clear_fixmap(void)999 static inline void pud_clear_fixmap(void)
1000 {
1001 if (pgtable_l4_enabled())
1002 clear_fixmap(FIX_PUD);
1003 }
1004
1005 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1006 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1007 {
1008 if (!pgtable_l4_enabled())
1009 return p4d_to_folded_pud(p4dp, addr);
1010 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1011 }
1012
1013 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1014
1015 #else
1016
pgtable_l4_enabled(void)1017 static inline bool pgtable_l4_enabled(void) { return false; }
1018
1019 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
1020
1021 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1022 #define pud_set_fixmap(addr) NULL
1023 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1024 #define pud_clear_fixmap()
1025
1026 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1027
1028 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1029
1030 #if CONFIG_PGTABLE_LEVELS > 4
1031
pgtable_l5_enabled(void)1032 static __always_inline bool pgtable_l5_enabled(void)
1033 {
1034 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1035 return vabits_actual == VA_BITS;
1036 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1037 }
1038
mm_p4d_folded(const struct mm_struct * mm)1039 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1040 {
1041 return !pgtable_l5_enabled();
1042 }
1043 #define mm_p4d_folded mm_p4d_folded
1044
1045 #define p4d_ERROR(e) \
1046 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1047
1048 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1049 #define pgd_bad(pgd) (pgtable_l5_enabled() && \
1050 ((pgd_val(pgd) & PGD_TYPE_MASK) != \
1051 PGD_TYPE_TABLE))
1052 #define pgd_present(pgd) (!pgd_none(pgd))
1053
set_pgd(pgd_t * pgdp,pgd_t pgd)1054 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1055 {
1056 if (in_swapper_pgdir(pgdp)) {
1057 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1058 return;
1059 }
1060
1061 WRITE_ONCE(*pgdp, pgd);
1062 dsb(ishst);
1063 isb();
1064 }
1065
pgd_clear(pgd_t * pgdp)1066 static inline void pgd_clear(pgd_t *pgdp)
1067 {
1068 if (pgtable_l5_enabled())
1069 set_pgd(pgdp, __pgd(0));
1070 }
1071
pgd_page_paddr(pgd_t pgd)1072 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1073 {
1074 return __pgd_to_phys(pgd);
1075 }
1076
1077 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1078
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1079 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1080 {
1081 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1082 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1083
1084 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1085 }
1086
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1087 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1088 {
1089 BUG_ON(!pgtable_l5_enabled());
1090
1091 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1092 }
1093
1094 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1095 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1096 {
1097 if (!pgtable_l5_enabled())
1098 return pgd_to_folded_p4d(pgdp, addr);
1099 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1100 }
1101 #define p4d_offset_lockless p4d_offset_lockless
1102
p4d_offset(pgd_t * pgdp,unsigned long addr)1103 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1104 {
1105 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1106 }
1107
p4d_set_fixmap(unsigned long addr)1108 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1109 {
1110 if (!pgtable_l5_enabled())
1111 return NULL;
1112 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1113 }
1114
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1115 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1116 {
1117 if (!pgtable_l5_enabled())
1118 return pgd_to_folded_p4d(pgdp, addr);
1119 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1120 }
1121
p4d_clear_fixmap(void)1122 static inline void p4d_clear_fixmap(void)
1123 {
1124 if (pgtable_l5_enabled())
1125 clear_fixmap(FIX_P4D);
1126 }
1127
1128 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1129 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1130 {
1131 if (!pgtable_l5_enabled())
1132 return pgd_to_folded_p4d(pgdp, addr);
1133 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1134 }
1135
1136 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1137
1138 #else
1139
pgtable_l5_enabled(void)1140 static inline bool pgtable_l5_enabled(void) { return false; }
1141
1142 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1143
1144 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1145 #define p4d_set_fixmap(addr) NULL
1146 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1147 #define p4d_clear_fixmap()
1148
1149 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1150
1151 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1152 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1153 {
1154 /*
1155 * With runtime folding of the pud, pud_offset_lockless() passes
1156 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1157 * will offset the pointer assuming that it points into
1158 * a page-table page. However, the fast GUP path passes us a
1159 * pgd_t allocated on the stack and so we must use the original
1160 * pointer in 'pgdp' to construct the p4d pointer instead of
1161 * using the generic p4d_offset_lockless() implementation.
1162 *
1163 * Note: reusing the original pointer means that we may
1164 * dereference the same (live) page-table entry multiple times.
1165 * This is safe because it is still only loaded once in the
1166 * context of each level and the CPU guarantees same-address
1167 * read-after-read ordering.
1168 */
1169 return p4d_offset(pgdp, addr);
1170 }
1171 #define p4d_offset_lockless p4d_offset_lockless_folded
1172
1173 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1174
1175 #define pgd_ERROR(e) \
1176 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1177
1178 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1179 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1180
pte_modify(pte_t pte,pgprot_t newprot)1181 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1182 {
1183 /*
1184 * Normal and Normal-Tagged are two different memory types and indices
1185 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1186 */
1187 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1188 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1189 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1190
1191 /* preserve the hardware dirty information */
1192 if (pte_hw_dirty(pte))
1193 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1194
1195 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1196 /*
1197 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1198 * dirtiness again.
1199 */
1200 if (pte_sw_dirty(pte))
1201 pte = pte_mkdirty(pte);
1202 return pte;
1203 }
1204
pmd_modify(pmd_t pmd,pgprot_t newprot)1205 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1206 {
1207 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1208 }
1209
1210 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1211 unsigned long address, pte_t *ptep,
1212 pte_t entry, int dirty);
1213
1214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1215 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1216 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1217 unsigned long address, pmd_t *pmdp,
1218 pmd_t entry, int dirty)
1219 {
1220 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1221 pmd_pte(entry), dirty);
1222 }
1223
pud_devmap(pud_t pud)1224 static inline int pud_devmap(pud_t pud)
1225 {
1226 return 0;
1227 }
1228
pgd_devmap(pgd_t pgd)1229 static inline int pgd_devmap(pgd_t pgd)
1230 {
1231 return 0;
1232 }
1233 #endif
1234
1235 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1236 static inline bool pte_user_accessible_page(pte_t pte)
1237 {
1238 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1239 }
1240
pmd_user_accessible_page(pmd_t pmd)1241 static inline bool pmd_user_accessible_page(pmd_t pmd)
1242 {
1243 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1244 }
1245
pud_user_accessible_page(pud_t pud)1246 static inline bool pud_user_accessible_page(pud_t pud)
1247 {
1248 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1249 }
1250 #endif
1251
1252 /*
1253 * Atomic pte/pmd modifications.
1254 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1255 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1256 unsigned long address,
1257 pte_t *ptep)
1258 {
1259 pte_t old_pte, pte;
1260
1261 pte = __ptep_get(ptep);
1262 do {
1263 old_pte = pte;
1264 pte = pte_mkold(pte);
1265 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1266 pte_val(old_pte), pte_val(pte));
1267 } while (pte_val(pte) != pte_val(old_pte));
1268
1269 return pte_young(pte);
1270 }
1271
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1272 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1273 unsigned long address, pte_t *ptep)
1274 {
1275 int young = __ptep_test_and_clear_young(vma, address, ptep);
1276
1277 if (young) {
1278 /*
1279 * We can elide the trailing DSB here since the worst that can
1280 * happen is that a CPU continues to use the young entry in its
1281 * TLB and we mistakenly reclaim the associated page. The
1282 * window for such an event is bounded by the next
1283 * context-switch, which provides a DSB to complete the TLB
1284 * invalidation.
1285 */
1286 flush_tlb_page_nosync(vma, address);
1287 }
1288
1289 return young;
1290 }
1291
1292 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1293 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1294 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1295 unsigned long address,
1296 pmd_t *pmdp)
1297 {
1298 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1299 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1300 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1301 }
1302 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1303
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1304 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1305 unsigned long address, pte_t *ptep)
1306 {
1307 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1308
1309 page_table_check_pte_clear(mm, pte);
1310
1311 return pte;
1312 }
1313
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1314 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1315 pte_t *ptep, unsigned int nr, int full)
1316 {
1317 for (;;) {
1318 __ptep_get_and_clear(mm, addr, ptep);
1319 if (--nr == 0)
1320 break;
1321 ptep++;
1322 addr += PAGE_SIZE;
1323 }
1324 }
1325
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1326 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1327 unsigned long addr, pte_t *ptep,
1328 unsigned int nr, int full)
1329 {
1330 pte_t pte, tmp_pte;
1331
1332 pte = __ptep_get_and_clear(mm, addr, ptep);
1333 while (--nr) {
1334 ptep++;
1335 addr += PAGE_SIZE;
1336 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1337 if (pte_dirty(tmp_pte))
1338 pte = pte_mkdirty(pte);
1339 if (pte_young(tmp_pte))
1340 pte = pte_mkyoung(pte);
1341 }
1342 return pte;
1343 }
1344
1345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1347 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1348 unsigned long address, pmd_t *pmdp)
1349 {
1350 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1351
1352 page_table_check_pmd_clear(mm, pmd);
1353
1354 return pmd;
1355 }
1356 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1357
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1358 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1359 unsigned long address, pte_t *ptep,
1360 pte_t pte)
1361 {
1362 pte_t old_pte;
1363
1364 do {
1365 old_pte = pte;
1366 pte = pte_wrprotect(pte);
1367 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1368 pte_val(old_pte), pte_val(pte));
1369 } while (pte_val(pte) != pte_val(old_pte));
1370 }
1371
1372 /*
1373 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1374 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1375 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1376 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1377 unsigned long address, pte_t *ptep)
1378 {
1379 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1380 }
1381
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1382 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1383 pte_t *ptep, unsigned int nr)
1384 {
1385 unsigned int i;
1386
1387 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1388 __ptep_set_wrprotect(mm, address, ptep);
1389 }
1390
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1391 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1392 unsigned long addr, pte_t *ptep,
1393 pte_t pte, cydp_t flags)
1394 {
1395 pte_t old_pte;
1396
1397 do {
1398 old_pte = pte;
1399
1400 if (flags & CYDP_CLEAR_YOUNG)
1401 pte = pte_mkold(pte);
1402 if (flags & CYDP_CLEAR_DIRTY)
1403 pte = pte_mkclean(pte);
1404
1405 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1406 pte_val(old_pte), pte_val(pte));
1407 } while (pte_val(pte) != pte_val(old_pte));
1408 }
1409
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1410 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1411 unsigned long addr, pte_t *ptep,
1412 unsigned int nr, cydp_t flags)
1413 {
1414 pte_t pte;
1415
1416 for (;;) {
1417 pte = __ptep_get(ptep);
1418
1419 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1420 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1421 else
1422 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1423
1424 if (--nr == 0)
1425 break;
1426 ptep++;
1427 addr += PAGE_SIZE;
1428 }
1429 }
1430
1431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1432 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1433 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1434 unsigned long address, pmd_t *pmdp)
1435 {
1436 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1437 }
1438
1439 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1440 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1441 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1442 {
1443 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1444 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1445 }
1446 #endif
1447
1448 /*
1449 * Encode and decode a swap entry:
1450 * bits 0-1: present (must be zero)
1451 * bits 2: remember PG_anon_exclusive
1452 * bit 3: remember uffd-wp state
1453 * bits 6-10: swap type
1454 * bit 11: PTE_PRESENT_INVALID (must be zero)
1455 * bits 12-61: swap offset
1456 */
1457 #define __SWP_TYPE_SHIFT 6
1458 #define __SWP_TYPE_BITS 5
1459 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1460 #define __SWP_OFFSET_SHIFT 12
1461 #define __SWP_OFFSET_BITS 50
1462 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1463
1464 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1465 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1466 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1467
1468 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1469 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1470
1471 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1472 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1473 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1474 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1475
1476 /*
1477 * Ensure that there are not more swap files than can be encoded in the kernel
1478 * PTEs.
1479 */
1480 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1481
1482 #ifdef CONFIG_ARM64_MTE
1483
1484 #define __HAVE_ARCH_PREPARE_TO_SWAP
1485 extern int arch_prepare_to_swap(struct folio *folio);
1486
1487 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1488 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1489 {
1490 if (system_supports_mte())
1491 mte_invalidate_tags(type, offset);
1492 }
1493
arch_swap_invalidate_area(int type)1494 static inline void arch_swap_invalidate_area(int type)
1495 {
1496 if (system_supports_mte())
1497 mte_invalidate_tags_area(type);
1498 }
1499
1500 #define __HAVE_ARCH_SWAP_RESTORE
1501 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1502
1503 #endif /* CONFIG_ARM64_MTE */
1504
1505 /*
1506 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1507 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1508 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1509 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1510 unsigned int nr)
1511 {
1512 /*
1513 * We don't do anything here, so there's a very small chance of
1514 * us retaking a user fault which we just fixed up. The alternative
1515 * is doing a dsb(ishst), but that penalises the fastpath.
1516 */
1517 }
1518
1519 #define update_mmu_cache(vma, addr, ptep) \
1520 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1521 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1522
1523 #ifdef CONFIG_ARM64_PA_BITS_52
1524 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1525 #else
1526 #define phys_to_ttbr(addr) (addr)
1527 #endif
1528
1529 /*
1530 * On arm64 without hardware Access Flag, copying from user will fail because
1531 * the pte is old and cannot be marked young. So we always end up with zeroed
1532 * page after fork() + CoW for pfn mappings. We don't always have a
1533 * hardware-managed access flag on arm64.
1534 */
1535 #define arch_has_hw_pte_young cpu_has_hw_af
1536
1537 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1538 #define arch_has_hw_nonleaf_pmd_young system_supports_haft
1539 #endif
1540
1541 /*
1542 * Experimentally, it's cheap to set the access flag in hardware and we
1543 * benefit from prefaulting mappings as 'old' to start with.
1544 */
1545 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1546
pud_sect_supported(void)1547 static inline bool pud_sect_supported(void)
1548 {
1549 return PAGE_SIZE == SZ_4K;
1550 }
1551
1552
1553 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1554 #define ptep_modify_prot_start ptep_modify_prot_start
1555 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1556 unsigned long addr, pte_t *ptep);
1557
1558 #define ptep_modify_prot_commit ptep_modify_prot_commit
1559 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1560 unsigned long addr, pte_t *ptep,
1561 pte_t old_pte, pte_t new_pte);
1562
1563 #ifdef CONFIG_ARM64_CONTPTE
1564
1565 /*
1566 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1567 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1568 * a private implementation detail of the public ptep API (see below).
1569 */
1570 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1571 pte_t *ptep, pte_t pte);
1572 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1573 pte_t *ptep, pte_t pte);
1574 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1575 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1576 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1577 pte_t *ptep, pte_t pte, unsigned int nr);
1578 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1579 pte_t *ptep, unsigned int nr, int full);
1580 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1581 unsigned long addr, pte_t *ptep,
1582 unsigned int nr, int full);
1583 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1584 unsigned long addr, pte_t *ptep);
1585 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1586 unsigned long addr, pte_t *ptep);
1587 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1588 pte_t *ptep, unsigned int nr);
1589 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1590 unsigned long addr, pte_t *ptep,
1591 pte_t entry, int dirty);
1592 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1593 unsigned long addr, pte_t *ptep,
1594 unsigned int nr, cydp_t flags);
1595
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1596 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1597 unsigned long addr, pte_t *ptep, pte_t pte)
1598 {
1599 /*
1600 * Only bother trying if both the virtual and physical addresses are
1601 * aligned and correspond to the last entry in a contig range. The core
1602 * code mostly modifies ranges from low to high, so this is the likely
1603 * the last modification in the contig range, so a good time to fold.
1604 * We can't fold special mappings, because there is no associated folio.
1605 */
1606
1607 const unsigned long contmask = CONT_PTES - 1;
1608 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1609
1610 if (unlikely(valign)) {
1611 bool palign = (pte_pfn(pte) & contmask) == contmask;
1612
1613 if (unlikely(palign &&
1614 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1615 __contpte_try_fold(mm, addr, ptep, pte);
1616 }
1617 }
1618
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1619 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1620 unsigned long addr, pte_t *ptep, pte_t pte)
1621 {
1622 if (unlikely(pte_valid_cont(pte)))
1623 __contpte_try_unfold(mm, addr, ptep, pte);
1624 }
1625
1626 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1627 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1628 {
1629 if (!pte_valid_cont(pte))
1630 return 1;
1631
1632 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1633 }
1634
1635 /*
1636 * The below functions constitute the public API that arm64 presents to the
1637 * core-mm to manipulate PTE entries within their page tables (or at least this
1638 * is the subset of the API that arm64 needs to implement). These public
1639 * versions will automatically and transparently apply the contiguous bit where
1640 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1641 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1642 * private versions, which are prefixed with double underscore. All of these
1643 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1644 * held. Although the contiguous bit is considered private to the
1645 * implementation, it is deliberately allowed to leak through the getters (e.g.
1646 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1647 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1648 * its possible a pte will be passed to a setter with the contiguous bit set, so
1649 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1650 * setting it in the pgtable.
1651 */
1652
1653 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1654 static inline pte_t ptep_get(pte_t *ptep)
1655 {
1656 pte_t pte = __ptep_get(ptep);
1657
1658 if (likely(!pte_valid_cont(pte)))
1659 return pte;
1660
1661 return contpte_ptep_get(ptep, pte);
1662 }
1663
1664 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1665 static inline pte_t ptep_get_lockless(pte_t *ptep)
1666 {
1667 pte_t pte = __ptep_get(ptep);
1668
1669 if (likely(!pte_valid_cont(pte)))
1670 return pte;
1671
1672 return contpte_ptep_get_lockless(ptep);
1673 }
1674
set_pte(pte_t * ptep,pte_t pte)1675 static inline void set_pte(pte_t *ptep, pte_t pte)
1676 {
1677 /*
1678 * We don't have the mm or vaddr so cannot unfold contig entries (since
1679 * it requires tlb maintenance). set_pte() is not used in core code, so
1680 * this should never even be called. Regardless do our best to service
1681 * any call and emit a warning if there is any attempt to set a pte on
1682 * top of an existing contig range.
1683 */
1684 pte_t orig_pte = __ptep_get(ptep);
1685
1686 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1687 __set_pte(ptep, pte_mknoncont(pte));
1688 }
1689
1690 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1691 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1692 pte_t *ptep, pte_t pte, unsigned int nr)
1693 {
1694 pte = pte_mknoncont(pte);
1695
1696 if (likely(nr == 1)) {
1697 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1698 __set_ptes(mm, addr, ptep, pte, 1);
1699 contpte_try_fold(mm, addr, ptep, pte);
1700 } else {
1701 contpte_set_ptes(mm, addr, ptep, pte, nr);
1702 }
1703 }
1704
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1705 static inline void pte_clear(struct mm_struct *mm,
1706 unsigned long addr, pte_t *ptep)
1707 {
1708 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1709 __pte_clear(mm, addr, ptep);
1710 }
1711
1712 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1713 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1714 pte_t *ptep, unsigned int nr, int full)
1715 {
1716 if (likely(nr == 1)) {
1717 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1718 __clear_full_ptes(mm, addr, ptep, nr, full);
1719 } else {
1720 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1721 }
1722 }
1723
1724 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1725 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1726 unsigned long addr, pte_t *ptep,
1727 unsigned int nr, int full)
1728 {
1729 pte_t pte;
1730
1731 if (likely(nr == 1)) {
1732 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1733 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1734 } else {
1735 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1736 }
1737
1738 return pte;
1739 }
1740
1741 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1742 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1743 unsigned long addr, pte_t *ptep)
1744 {
1745 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1746 return __ptep_get_and_clear(mm, addr, ptep);
1747 }
1748
1749 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1750 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1751 unsigned long addr, pte_t *ptep)
1752 {
1753 pte_t orig_pte = __ptep_get(ptep);
1754
1755 if (likely(!pte_valid_cont(orig_pte)))
1756 return __ptep_test_and_clear_young(vma, addr, ptep);
1757
1758 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1759 }
1760
1761 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1762 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1763 unsigned long addr, pte_t *ptep)
1764 {
1765 pte_t orig_pte = __ptep_get(ptep);
1766
1767 if (likely(!pte_valid_cont(orig_pte)))
1768 return __ptep_clear_flush_young(vma, addr, ptep);
1769
1770 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1771 }
1772
1773 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1774 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1775 unsigned long addr, pte_t *ptep, unsigned int nr)
1776 {
1777 if (likely(nr == 1)) {
1778 /*
1779 * Optimization: wrprotect_ptes() can only be called for present
1780 * ptes so we only need to check contig bit as condition for
1781 * unfold, and we can remove the contig bit from the pte we read
1782 * to avoid re-reading. This speeds up fork() which is sensitive
1783 * for order-0 folios. Equivalent to contpte_try_unfold().
1784 */
1785 pte_t orig_pte = __ptep_get(ptep);
1786
1787 if (unlikely(pte_cont(orig_pte))) {
1788 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1789 orig_pte = pte_mknoncont(orig_pte);
1790 }
1791 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1792 } else {
1793 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1794 }
1795 }
1796
1797 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1798 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1799 unsigned long addr, pte_t *ptep)
1800 {
1801 wrprotect_ptes(mm, addr, ptep, 1);
1802 }
1803
1804 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1805 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1806 unsigned long addr, pte_t *ptep,
1807 pte_t entry, int dirty)
1808 {
1809 pte_t orig_pte = __ptep_get(ptep);
1810
1811 entry = pte_mknoncont(entry);
1812
1813 if (likely(!pte_valid_cont(orig_pte)))
1814 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1815
1816 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1817 }
1818
1819 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1820 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1821 unsigned long addr, pte_t *ptep,
1822 unsigned int nr, cydp_t flags)
1823 {
1824 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1825 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1826 else
1827 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1828 }
1829
1830 #else /* CONFIG_ARM64_CONTPTE */
1831
1832 #define ptep_get __ptep_get
1833 #define set_pte __set_pte
1834 #define set_ptes __set_ptes
1835 #define pte_clear __pte_clear
1836 #define clear_full_ptes __clear_full_ptes
1837 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1838 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1839 #define ptep_get_and_clear __ptep_get_and_clear
1840 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1841 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1842 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1843 #define ptep_clear_flush_young __ptep_clear_flush_young
1844 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1845 #define ptep_set_wrprotect __ptep_set_wrprotect
1846 #define wrprotect_ptes __wrprotect_ptes
1847 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1848 #define ptep_set_access_flags __ptep_set_access_flags
1849 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1850
1851 #endif /* CONFIG_ARM64_CONTPTE */
1852
1853 #endif /* !__ASSEMBLY__ */
1854
1855 #endif /* __ASM_PGTABLE_H */
1856