1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21
22 struct sidtab_str_cache {
23 struct rcu_head rcu_member;
24 struct list_head lru_member;
25 struct sidtab_entry *parent;
26 u32 len;
27 char str[];
28 };
29
30 #define index_to_sid(index) (index + SECINITSID_NUM + 1)
31 #define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
32
sidtab_init(struct sidtab * s)33 int sidtab_init(struct sidtab *s)
34 {
35 u32 i;
36
37 memset(s->roots, 0, sizeof(s->roots));
38
39 for (i = 0; i < SECINITSID_NUM; i++)
40 s->isids[i].set = 0;
41
42 s->count = 0;
43 s->convert = NULL;
44 hash_init(s->context_to_sid);
45
46 spin_lock_init(&s->lock);
47
48 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
49 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
50 INIT_LIST_HEAD(&s->cache_lru_list);
51 spin_lock_init(&s->cache_lock);
52 #endif
53
54 return 0;
55 }
56
context_to_sid(struct sidtab * s,struct context * context,u32 hash)57 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
58 {
59 struct sidtab_entry *entry;
60 u32 sid = 0;
61
62 rcu_read_lock();
63 hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
64 if (entry->hash != hash)
65 continue;
66 if (context_cmp(&entry->context, context)) {
67 sid = entry->sid;
68 break;
69 }
70 }
71 rcu_read_unlock();
72 return sid;
73 }
74
sidtab_set_initial(struct sidtab * s,u32 sid,struct context * context)75 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
76 {
77 struct sidtab_isid_entry *isid;
78 u32 hash;
79 int rc;
80
81 if (sid == 0 || sid > SECINITSID_NUM)
82 return -EINVAL;
83
84 isid = &s->isids[sid - 1];
85
86 rc = context_cpy(&isid->entry.context, context);
87 if (rc)
88 return rc;
89
90 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
91 isid->entry.cache = NULL;
92 #endif
93 isid->set = 1;
94
95 hash = context_compute_hash(context);
96
97 /*
98 * Multiple initial sids may map to the same context. Check that this
99 * context is not already represented in the context_to_sid hashtable
100 * to avoid duplicate entries and long linked lists upon hash
101 * collision.
102 */
103 if (!context_to_sid(s, context, hash)) {
104 isid->entry.sid = sid;
105 isid->entry.hash = hash;
106 hash_add(s->context_to_sid, &isid->entry.list, hash);
107 }
108
109 return 0;
110 }
111
sidtab_hash_stats(struct sidtab * sidtab,char * page)112 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
113 {
114 int i;
115 int chain_len = 0;
116 int slots_used = 0;
117 int entries = 0;
118 int max_chain_len = 0;
119 int cur_bucket = 0;
120 struct sidtab_entry *entry;
121
122 rcu_read_lock();
123 hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
124 entries++;
125 if (i == cur_bucket) {
126 chain_len++;
127 if (chain_len == 1)
128 slots_used++;
129 } else {
130 cur_bucket = i;
131 if (chain_len > max_chain_len)
132 max_chain_len = chain_len;
133 chain_len = 0;
134 }
135 }
136 rcu_read_unlock();
137
138 if (chain_len > max_chain_len)
139 max_chain_len = chain_len;
140
141 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
142 "longest chain: %d\n", entries,
143 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
144 }
145
sidtab_level_from_count(u32 count)146 static u32 sidtab_level_from_count(u32 count)
147 {
148 u32 capacity = SIDTAB_LEAF_ENTRIES;
149 u32 level = 0;
150
151 while (count > capacity) {
152 capacity <<= SIDTAB_INNER_SHIFT;
153 ++level;
154 }
155 return level;
156 }
157
sidtab_alloc_roots(struct sidtab * s,u32 level)158 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
159 {
160 u32 l;
161
162 if (!s->roots[0].ptr_leaf) {
163 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
164 GFP_ATOMIC);
165 if (!s->roots[0].ptr_leaf)
166 return -ENOMEM;
167 }
168 for (l = 1; l <= level; ++l)
169 if (!s->roots[l].ptr_inner) {
170 s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
171 GFP_ATOMIC);
172 if (!s->roots[l].ptr_inner)
173 return -ENOMEM;
174 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
175 }
176 return 0;
177 }
178
sidtab_do_lookup(struct sidtab * s,u32 index,int alloc)179 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
180 int alloc)
181 {
182 union sidtab_entry_inner *entry;
183 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
184
185 /* find the level of the subtree we need */
186 level = sidtab_level_from_count(index + 1);
187 capacity_shift = level * SIDTAB_INNER_SHIFT;
188
189 /* allocate roots if needed */
190 if (alloc && sidtab_alloc_roots(s, level) != 0)
191 return NULL;
192
193 /* lookup inside the subtree */
194 entry = &s->roots[level];
195 while (level != 0) {
196 capacity_shift -= SIDTAB_INNER_SHIFT;
197 --level;
198
199 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
200 leaf_index &= ((u32)1 << capacity_shift) - 1;
201
202 if (!entry->ptr_inner) {
203 if (alloc)
204 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
205 GFP_ATOMIC);
206 if (!entry->ptr_inner)
207 return NULL;
208 }
209 }
210 if (!entry->ptr_leaf) {
211 if (alloc)
212 entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
213 GFP_ATOMIC);
214 if (!entry->ptr_leaf)
215 return NULL;
216 }
217 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
218 }
219
sidtab_lookup(struct sidtab * s,u32 index)220 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
221 {
222 /* read entries only after reading count */
223 u32 count = smp_load_acquire(&s->count);
224
225 if (index >= count)
226 return NULL;
227
228 return sidtab_do_lookup(s, index, 0);
229 }
230
sidtab_lookup_initial(struct sidtab * s,u32 sid)231 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
232 {
233 return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
234 }
235
sidtab_search_core(struct sidtab * s,u32 sid,int force)236 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
237 int force)
238 {
239 if (sid != 0) {
240 struct sidtab_entry *entry;
241
242 if (sid > SECINITSID_NUM)
243 entry = sidtab_lookup(s, sid_to_index(sid));
244 else
245 entry = sidtab_lookup_initial(s, sid);
246 if (entry && (!entry->context.len || force))
247 return entry;
248 }
249
250 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
251 }
252
sidtab_search_entry(struct sidtab * s,u32 sid)253 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
254 {
255 return sidtab_search_core(s, sid, 0);
256 }
257
sidtab_search_entry_force(struct sidtab * s,u32 sid)258 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
259 {
260 return sidtab_search_core(s, sid, 1);
261 }
262
sidtab_context_to_sid(struct sidtab * s,struct context * context,u32 * sid)263 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
264 u32 *sid)
265 {
266 unsigned long flags;
267 u32 count, hash = context_compute_hash(context);
268 struct sidtab_convert_params *convert;
269 struct sidtab_entry *dst, *dst_convert;
270 int rc;
271
272 *sid = context_to_sid(s, context, hash);
273 if (*sid)
274 return 0;
275
276 /* lock-free search failed: lock, re-search, and insert if not found */
277 spin_lock_irqsave(&s->lock, flags);
278
279 rc = 0;
280 *sid = context_to_sid(s, context, hash);
281 if (*sid)
282 goto out_unlock;
283
284 count = s->count;
285 convert = s->convert;
286
287 /* bail out if we already reached max entries */
288 rc = -EOVERFLOW;
289 if (count >= SIDTAB_MAX)
290 goto out_unlock;
291
292 /* insert context into new entry */
293 rc = -ENOMEM;
294 dst = sidtab_do_lookup(s, count, 1);
295 if (!dst)
296 goto out_unlock;
297
298 dst->sid = index_to_sid(count);
299 dst->hash = hash;
300
301 rc = context_cpy(&dst->context, context);
302 if (rc)
303 goto out_unlock;
304
305 /*
306 * if we are building a new sidtab, we need to convert the context
307 * and insert it there as well
308 */
309 if (convert) {
310 rc = -ENOMEM;
311 dst_convert = sidtab_do_lookup(convert->target, count, 1);
312 if (!dst_convert) {
313 context_destroy(&dst->context);
314 goto out_unlock;
315 }
316
317 rc = convert->func(context, &dst_convert->context,
318 convert->args);
319 if (rc) {
320 context_destroy(&dst->context);
321 goto out_unlock;
322 }
323 dst_convert->sid = index_to_sid(count);
324 dst_convert->hash = context_compute_hash(&dst_convert->context);
325 convert->target->count = count + 1;
326
327 hash_add_rcu(convert->target->context_to_sid,
328 &dst_convert->list, dst_convert->hash);
329 }
330
331 if (context->len)
332 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
333 context->str);
334
335 *sid = index_to_sid(count);
336
337 /* write entries before updating count */
338 smp_store_release(&s->count, count + 1);
339 hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
340
341 rc = 0;
342 out_unlock:
343 spin_unlock_irqrestore(&s->lock, flags);
344 return rc;
345 }
346
sidtab_convert_hashtable(struct sidtab * s,u32 count)347 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
348 {
349 struct sidtab_entry *entry;
350 u32 i;
351
352 for (i = 0; i < count; i++) {
353 entry = sidtab_do_lookup(s, i, 0);
354 entry->sid = index_to_sid(i);
355 entry->hash = context_compute_hash(&entry->context);
356
357 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
358 }
359 }
360
sidtab_convert_tree(union sidtab_entry_inner * edst,union sidtab_entry_inner * esrc,u32 * pos,u32 count,u32 level,struct sidtab_convert_params * convert)361 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
362 union sidtab_entry_inner *esrc,
363 u32 *pos, u32 count, u32 level,
364 struct sidtab_convert_params *convert)
365 {
366 int rc;
367 u32 i;
368
369 if (level != 0) {
370 if (!edst->ptr_inner) {
371 edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
372 GFP_KERNEL);
373 if (!edst->ptr_inner)
374 return -ENOMEM;
375 }
376 i = 0;
377 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
378 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
379 &esrc->ptr_inner->entries[i],
380 pos, count, level - 1,
381 convert);
382 if (rc)
383 return rc;
384 i++;
385 }
386 } else {
387 if (!edst->ptr_leaf) {
388 edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
389 GFP_KERNEL);
390 if (!edst->ptr_leaf)
391 return -ENOMEM;
392 }
393 i = 0;
394 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
395 rc = convert->func(&esrc->ptr_leaf->entries[i].context,
396 &edst->ptr_leaf->entries[i].context,
397 convert->args);
398 if (rc)
399 return rc;
400 (*pos)++;
401 i++;
402 }
403 cond_resched();
404 }
405 return 0;
406 }
407
sidtab_convert(struct sidtab * s,struct sidtab_convert_params * params)408 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
409 {
410 unsigned long flags;
411 u32 count, level, pos;
412 int rc;
413
414 spin_lock_irqsave(&s->lock, flags);
415
416 /* concurrent policy loads are not allowed */
417 if (s->convert) {
418 spin_unlock_irqrestore(&s->lock, flags);
419 return -EBUSY;
420 }
421
422 count = s->count;
423 level = sidtab_level_from_count(count);
424
425 /* allocate last leaf in the new sidtab (to avoid race with
426 * live convert)
427 */
428 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
429 if (rc) {
430 spin_unlock_irqrestore(&s->lock, flags);
431 return rc;
432 }
433
434 /* set count in case no new entries are added during conversion */
435 params->target->count = count;
436
437 /* enable live convert of new entries */
438 s->convert = params;
439
440 /* we can safely convert the tree outside the lock */
441 spin_unlock_irqrestore(&s->lock, flags);
442
443 pr_info("SELinux: Converting %u SID table entries...\n", count);
444
445 /* convert all entries not covered by live convert */
446 pos = 0;
447 rc = sidtab_convert_tree(¶ms->target->roots[level],
448 &s->roots[level], &pos, count, level, params);
449 if (rc) {
450 /* we need to keep the old table - disable live convert */
451 spin_lock_irqsave(&s->lock, flags);
452 s->convert = NULL;
453 spin_unlock_irqrestore(&s->lock, flags);
454 return rc;
455 }
456 /*
457 * The hashtable can also be modified in sidtab_context_to_sid()
458 * so we must re-acquire the lock here.
459 */
460 spin_lock_irqsave(&s->lock, flags);
461 sidtab_convert_hashtable(params->target, count);
462 spin_unlock_irqrestore(&s->lock, flags);
463
464 return 0;
465 }
466
sidtab_cancel_convert(struct sidtab * s)467 void sidtab_cancel_convert(struct sidtab *s)
468 {
469 unsigned long flags;
470
471 /* cancelling policy load - disable live convert of sidtab */
472 spin_lock_irqsave(&s->lock, flags);
473 s->convert = NULL;
474 spin_unlock_irqrestore(&s->lock, flags);
475 }
476
sidtab_destroy_entry(struct sidtab_entry * entry)477 static void sidtab_destroy_entry(struct sidtab_entry *entry)
478 {
479 context_destroy(&entry->context);
480 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
481 kfree(rcu_dereference_raw(entry->cache));
482 #endif
483 }
484
sidtab_destroy_tree(union sidtab_entry_inner entry,u32 level)485 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
486 {
487 u32 i;
488
489 if (level != 0) {
490 struct sidtab_node_inner *node = entry.ptr_inner;
491
492 if (!node)
493 return;
494
495 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
496 sidtab_destroy_tree(node->entries[i], level - 1);
497 kfree(node);
498 } else {
499 struct sidtab_node_leaf *node = entry.ptr_leaf;
500
501 if (!node)
502 return;
503
504 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
505 sidtab_destroy_entry(&node->entries[i]);
506 kfree(node);
507 }
508 }
509
sidtab_destroy(struct sidtab * s)510 void sidtab_destroy(struct sidtab *s)
511 {
512 u32 i, level;
513
514 for (i = 0; i < SECINITSID_NUM; i++)
515 if (s->isids[i].set)
516 sidtab_destroy_entry(&s->isids[i].entry);
517
518 level = SIDTAB_MAX_LEVEL;
519 while (level && !s->roots[level].ptr_inner)
520 --level;
521
522 sidtab_destroy_tree(s->roots[level], level);
523 /*
524 * The context_to_sid hashtable's objects are all shared
525 * with the isids array and context tree, and so don't need
526 * to be cleaned up here.
527 */
528 }
529
530 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
531
sidtab_sid2str_put(struct sidtab * s,struct sidtab_entry * entry,const char * str,u32 str_len)532 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
533 const char *str, u32 str_len)
534 {
535 struct sidtab_str_cache *cache, *victim = NULL;
536 unsigned long flags;
537
538 /* do not cache invalid contexts */
539 if (entry->context.len)
540 return;
541
542 spin_lock_irqsave(&s->cache_lock, flags);
543
544 cache = rcu_dereference_protected(entry->cache,
545 lockdep_is_held(&s->cache_lock));
546 if (cache) {
547 /* entry in cache - just bump to the head of LRU list */
548 list_move(&cache->lru_member, &s->cache_lru_list);
549 goto out_unlock;
550 }
551
552 cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
553 if (!cache)
554 goto out_unlock;
555
556 if (s->cache_free_slots == 0) {
557 /* pop a cache entry from the tail and free it */
558 victim = container_of(s->cache_lru_list.prev,
559 struct sidtab_str_cache, lru_member);
560 list_del(&victim->lru_member);
561 rcu_assign_pointer(victim->parent->cache, NULL);
562 } else {
563 s->cache_free_slots--;
564 }
565 cache->parent = entry;
566 cache->len = str_len;
567 memcpy(cache->str, str, str_len);
568 list_add(&cache->lru_member, &s->cache_lru_list);
569
570 rcu_assign_pointer(entry->cache, cache);
571
572 out_unlock:
573 spin_unlock_irqrestore(&s->cache_lock, flags);
574 kfree_rcu(victim, rcu_member);
575 }
576
sidtab_sid2str_get(struct sidtab * s,struct sidtab_entry * entry,char ** out,u32 * out_len)577 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
578 char **out, u32 *out_len)
579 {
580 struct sidtab_str_cache *cache;
581 int rc = 0;
582
583 if (entry->context.len)
584 return -ENOENT; /* do not cache invalid contexts */
585
586 rcu_read_lock();
587
588 cache = rcu_dereference(entry->cache);
589 if (!cache) {
590 rc = -ENOENT;
591 } else {
592 *out_len = cache->len;
593 if (out) {
594 *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
595 if (!*out)
596 rc = -ENOMEM;
597 }
598 }
599
600 rcu_read_unlock();
601
602 if (!rc && out)
603 sidtab_sid2str_put(s, entry, *out, *out_len);
604 return rc;
605 }
606
607 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
608