1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49 #include <linux/types.h>
50 #include <linux/mm.h>
51 #include <linux/capability.h>
52 #include <linux/fcntl.h>
53 #include <linux/socket.h>
54 #include <linux/in.h>
55 #include <linux/inet.h>
56 #include <linux/netdevice.h>
57 #include <linux/if_packet.h>
58 #include <linux/wireless.h>
59 #include <linux/kernel.h>
60 #include <linux/kmod.h>
61 #include <linux/slab.h>
62 #include <linux/vmalloc.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/errno.h>
69 #include <linux/timer.h>
70 #include <linux/uaccess.h>
71 #include <asm/ioctls.h>
72 #include <asm/page.h>
73 #include <asm/cacheflush.h>
74 #include <asm/io.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/poll.h>
78 #include <linux/module.h>
79 #include <linux/init.h>
80 #include <linux/mutex.h>
81 #include <linux/if_vlan.h>
82 #include <linux/virtio_net.h>
83 #include <linux/errqueue.h>
84 #include <linux/net_tstamp.h>
85 #include <linux/percpu.h>
86 #ifdef CONFIG_INET
87 #include <net/inet_common.h>
88 #endif
89 #include <linux/bpf.h>
90 #include <net/compat.h>
91
92 #include "internal.h"
93
94 /*
95 Assumptions:
96 - If the device has no dev->header_ops->create, there is no LL header
97 visible above the device. In this case, its hard_header_len should be 0.
98 The device may prepend its own header internally. In this case, its
99 needed_headroom should be set to the space needed for it to add its
100 internal header.
101 For example, a WiFi driver pretending to be an Ethernet driver should
102 set its hard_header_len to be the Ethernet header length, and set its
103 needed_headroom to be (the real WiFi header length - the fake Ethernet
104 header length).
105 - packet socket receives packets with pulled ll header,
106 so that SOCK_RAW should push it back.
107
108 On receive:
109 -----------
110
111 Incoming, dev_has_header(dev) == true
112 mac_header -> ll header
113 data -> data
114
115 Outgoing, dev_has_header(dev) == true
116 mac_header -> ll header
117 data -> ll header
118
119 Incoming, dev_has_header(dev) == false
120 mac_header -> data
121 However drivers often make it point to the ll header.
122 This is incorrect because the ll header should be invisible to us.
123 data -> data
124
125 Outgoing, dev_has_header(dev) == false
126 mac_header -> data. ll header is invisible to us.
127 data -> data
128
129 Resume
130 If dev_has_header(dev) == false we are unable to restore the ll header,
131 because it is invisible to us.
132
133
134 On transmit:
135 ------------
136
137 dev->header_ops != NULL
138 mac_header -> ll header
139 data -> ll header
140
141 dev->header_ops == NULL (ll header is invisible to us)
142 mac_header -> data
143 data -> data
144
145 We should set network_header on output to the correct position,
146 packet classifier depends on it.
147 */
148
149 /* Private packet socket structures. */
150
151 /* identical to struct packet_mreq except it has
152 * a longer address field.
153 */
154 struct packet_mreq_max {
155 int mr_ifindex;
156 unsigned short mr_type;
157 unsigned short mr_alen;
158 unsigned char mr_address[MAX_ADDR_LEN];
159 };
160
161 union tpacket_uhdr {
162 struct tpacket_hdr *h1;
163 struct tpacket2_hdr *h2;
164 struct tpacket3_hdr *h3;
165 void *raw;
166 };
167
168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
169 int closing, int tx_ring);
170
171 #define V3_ALIGNMENT (8)
172
173 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
174
175 #define BLK_PLUS_PRIV(sz_of_priv) \
176 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
177
178 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
179 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
180 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
181 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
182 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
183 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
184
185 struct packet_sock;
186 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
187 struct packet_type *pt, struct net_device *orig_dev);
188
189 static void *packet_previous_frame(struct packet_sock *po,
190 struct packet_ring_buffer *rb,
191 int status);
192 static void packet_increment_head(struct packet_ring_buffer *buff);
193 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
194 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
195 struct packet_sock *);
196 static void prb_retire_current_block(struct tpacket_kbdq_core *,
197 struct packet_sock *, unsigned int status);
198 static int prb_queue_frozen(struct tpacket_kbdq_core *);
199 static void prb_open_block(struct tpacket_kbdq_core *,
200 struct tpacket_block_desc *);
201 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
202 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
203 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
204 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
205 struct tpacket3_hdr *);
206 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
207 struct tpacket3_hdr *);
208 static void packet_flush_mclist(struct sock *sk);
209 static u16 packet_pick_tx_queue(struct sk_buff *skb);
210
211 struct packet_skb_cb {
212 union {
213 struct sockaddr_pkt pkt;
214 union {
215 /* Trick: alias skb original length with
216 * ll.sll_family and ll.protocol in order
217 * to save room.
218 */
219 unsigned int origlen;
220 struct sockaddr_ll ll;
221 };
222 } sa;
223 };
224
225 #define vio_le() virtio_legacy_is_little_endian()
226
227 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
228
229 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
230 #define GET_PBLOCK_DESC(x, bid) \
231 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
232 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
233 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
234 #define GET_NEXT_PRB_BLK_NUM(x) \
235 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
236 ((x)->kactive_blk_num+1) : 0)
237
238 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
239 static void __fanout_link(struct sock *sk, struct packet_sock *po);
240
packet_direct_xmit(struct sk_buff * skb)241 static int packet_direct_xmit(struct sk_buff *skb)
242 {
243 return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
244 }
245
packet_cached_dev_get(struct packet_sock * po)246 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
247 {
248 struct net_device *dev;
249
250 rcu_read_lock();
251 dev = rcu_dereference(po->cached_dev);
252 if (likely(dev))
253 dev_hold(dev);
254 rcu_read_unlock();
255
256 return dev;
257 }
258
packet_cached_dev_assign(struct packet_sock * po,struct net_device * dev)259 static void packet_cached_dev_assign(struct packet_sock *po,
260 struct net_device *dev)
261 {
262 rcu_assign_pointer(po->cached_dev, dev);
263 }
264
packet_cached_dev_reset(struct packet_sock * po)265 static void packet_cached_dev_reset(struct packet_sock *po)
266 {
267 RCU_INIT_POINTER(po->cached_dev, NULL);
268 }
269
packet_use_direct_xmit(const struct packet_sock * po)270 static bool packet_use_direct_xmit(const struct packet_sock *po)
271 {
272 return po->xmit == packet_direct_xmit;
273 }
274
packet_pick_tx_queue(struct sk_buff * skb)275 static u16 packet_pick_tx_queue(struct sk_buff *skb)
276 {
277 struct net_device *dev = skb->dev;
278 const struct net_device_ops *ops = dev->netdev_ops;
279 int cpu = raw_smp_processor_id();
280 u16 queue_index;
281
282 #ifdef CONFIG_XPS
283 skb->sender_cpu = cpu + 1;
284 #endif
285 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
286 if (ops->ndo_select_queue) {
287 queue_index = ops->ndo_select_queue(dev, skb, NULL);
288 queue_index = netdev_cap_txqueue(dev, queue_index);
289 } else {
290 queue_index = netdev_pick_tx(dev, skb, NULL);
291 }
292
293 return queue_index;
294 }
295
296 /* __register_prot_hook must be invoked through register_prot_hook
297 * or from a context in which asynchronous accesses to the packet
298 * socket is not possible (packet_create()).
299 */
__register_prot_hook(struct sock * sk)300 static void __register_prot_hook(struct sock *sk)
301 {
302 struct packet_sock *po = pkt_sk(sk);
303
304 if (!po->running) {
305 if (po->fanout)
306 __fanout_link(sk, po);
307 else
308 dev_add_pack(&po->prot_hook);
309
310 sock_hold(sk);
311 po->running = 1;
312 }
313 }
314
register_prot_hook(struct sock * sk)315 static void register_prot_hook(struct sock *sk)
316 {
317 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
318 __register_prot_hook(sk);
319 }
320
321 /* If the sync parameter is true, we will temporarily drop
322 * the po->bind_lock and do a synchronize_net to make sure no
323 * asynchronous packet processing paths still refer to the elements
324 * of po->prot_hook. If the sync parameter is false, it is the
325 * callers responsibility to take care of this.
326 */
__unregister_prot_hook(struct sock * sk,bool sync)327 static void __unregister_prot_hook(struct sock *sk, bool sync)
328 {
329 struct packet_sock *po = pkt_sk(sk);
330
331 lockdep_assert_held_once(&po->bind_lock);
332
333 po->running = 0;
334
335 if (po->fanout)
336 __fanout_unlink(sk, po);
337 else
338 __dev_remove_pack(&po->prot_hook);
339
340 __sock_put(sk);
341
342 if (sync) {
343 spin_unlock(&po->bind_lock);
344 synchronize_net();
345 spin_lock(&po->bind_lock);
346 }
347 }
348
unregister_prot_hook(struct sock * sk,bool sync)349 static void unregister_prot_hook(struct sock *sk, bool sync)
350 {
351 struct packet_sock *po = pkt_sk(sk);
352
353 if (po->running)
354 __unregister_prot_hook(sk, sync);
355 }
356
pgv_to_page(void * addr)357 static inline struct page * __pure pgv_to_page(void *addr)
358 {
359 if (is_vmalloc_addr(addr))
360 return vmalloc_to_page(addr);
361 return virt_to_page(addr);
362 }
363
__packet_set_status(struct packet_sock * po,void * frame,int status)364 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
365 {
366 union tpacket_uhdr h;
367
368 h.raw = frame;
369 switch (po->tp_version) {
370 case TPACKET_V1:
371 h.h1->tp_status = status;
372 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
373 break;
374 case TPACKET_V2:
375 h.h2->tp_status = status;
376 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
377 break;
378 case TPACKET_V3:
379 h.h3->tp_status = status;
380 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
381 break;
382 default:
383 WARN(1, "TPACKET version not supported.\n");
384 BUG();
385 }
386
387 smp_wmb();
388 }
389
__packet_get_status(const struct packet_sock * po,void * frame)390 static int __packet_get_status(const struct packet_sock *po, void *frame)
391 {
392 union tpacket_uhdr h;
393
394 smp_rmb();
395
396 h.raw = frame;
397 switch (po->tp_version) {
398 case TPACKET_V1:
399 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
400 return h.h1->tp_status;
401 case TPACKET_V2:
402 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
403 return h.h2->tp_status;
404 case TPACKET_V3:
405 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
406 return h.h3->tp_status;
407 default:
408 WARN(1, "TPACKET version not supported.\n");
409 BUG();
410 return 0;
411 }
412 }
413
tpacket_get_timestamp(struct sk_buff * skb,struct timespec64 * ts,unsigned int flags)414 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
415 unsigned int flags)
416 {
417 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
418
419 if (shhwtstamps &&
420 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
421 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
422 return TP_STATUS_TS_RAW_HARDWARE;
423
424 if (ktime_to_timespec64_cond(skb->tstamp, ts))
425 return TP_STATUS_TS_SOFTWARE;
426
427 return 0;
428 }
429
__packet_set_timestamp(struct packet_sock * po,void * frame,struct sk_buff * skb)430 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
431 struct sk_buff *skb)
432 {
433 union tpacket_uhdr h;
434 struct timespec64 ts;
435 __u32 ts_status;
436
437 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
438 return 0;
439
440 h.raw = frame;
441 /*
442 * versions 1 through 3 overflow the timestamps in y2106, since they
443 * all store the seconds in a 32-bit unsigned integer.
444 * If we create a version 4, that should have a 64-bit timestamp,
445 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
446 * nanoseconds.
447 */
448 switch (po->tp_version) {
449 case TPACKET_V1:
450 h.h1->tp_sec = ts.tv_sec;
451 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
452 break;
453 case TPACKET_V2:
454 h.h2->tp_sec = ts.tv_sec;
455 h.h2->tp_nsec = ts.tv_nsec;
456 break;
457 case TPACKET_V3:
458 h.h3->tp_sec = ts.tv_sec;
459 h.h3->tp_nsec = ts.tv_nsec;
460 break;
461 default:
462 WARN(1, "TPACKET version not supported.\n");
463 BUG();
464 }
465
466 /* one flush is safe, as both fields always lie on the same cacheline */
467 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
468 smp_wmb();
469
470 return ts_status;
471 }
472
packet_lookup_frame(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int position,int status)473 static void *packet_lookup_frame(const struct packet_sock *po,
474 const struct packet_ring_buffer *rb,
475 unsigned int position,
476 int status)
477 {
478 unsigned int pg_vec_pos, frame_offset;
479 union tpacket_uhdr h;
480
481 pg_vec_pos = position / rb->frames_per_block;
482 frame_offset = position % rb->frames_per_block;
483
484 h.raw = rb->pg_vec[pg_vec_pos].buffer +
485 (frame_offset * rb->frame_size);
486
487 if (status != __packet_get_status(po, h.raw))
488 return NULL;
489
490 return h.raw;
491 }
492
packet_current_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)493 static void *packet_current_frame(struct packet_sock *po,
494 struct packet_ring_buffer *rb,
495 int status)
496 {
497 return packet_lookup_frame(po, rb, rb->head, status);
498 }
499
prb_del_retire_blk_timer(struct tpacket_kbdq_core * pkc)500 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
501 {
502 del_timer_sync(&pkc->retire_blk_timer);
503 }
504
prb_shutdown_retire_blk_timer(struct packet_sock * po,struct sk_buff_head * rb_queue)505 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
506 struct sk_buff_head *rb_queue)
507 {
508 struct tpacket_kbdq_core *pkc;
509
510 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
511
512 spin_lock_bh(&rb_queue->lock);
513 pkc->delete_blk_timer = 1;
514 spin_unlock_bh(&rb_queue->lock);
515
516 prb_del_retire_blk_timer(pkc);
517 }
518
prb_setup_retire_blk_timer(struct packet_sock * po)519 static void prb_setup_retire_blk_timer(struct packet_sock *po)
520 {
521 struct tpacket_kbdq_core *pkc;
522
523 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
524 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
525 0);
526 pkc->retire_blk_timer.expires = jiffies;
527 }
528
prb_calc_retire_blk_tmo(struct packet_sock * po,int blk_size_in_bytes)529 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
530 int blk_size_in_bytes)
531 {
532 struct net_device *dev;
533 unsigned int mbits, div;
534 struct ethtool_link_ksettings ecmd;
535 int err;
536
537 rtnl_lock();
538 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
539 if (unlikely(!dev)) {
540 rtnl_unlock();
541 return DEFAULT_PRB_RETIRE_TOV;
542 }
543 err = __ethtool_get_link_ksettings(dev, &ecmd);
544 rtnl_unlock();
545 if (err)
546 return DEFAULT_PRB_RETIRE_TOV;
547
548 /* If the link speed is so slow you don't really
549 * need to worry about perf anyways
550 */
551 if (ecmd.base.speed < SPEED_1000 ||
552 ecmd.base.speed == SPEED_UNKNOWN)
553 return DEFAULT_PRB_RETIRE_TOV;
554
555 div = ecmd.base.speed / 1000;
556 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
557
558 if (div)
559 mbits /= div;
560
561 if (div)
562 return mbits + 1;
563 return mbits;
564 }
565
prb_init_ft_ops(struct tpacket_kbdq_core * p1,union tpacket_req_u * req_u)566 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
567 union tpacket_req_u *req_u)
568 {
569 p1->feature_req_word = req_u->req3.tp_feature_req_word;
570 }
571
init_prb_bdqc(struct packet_sock * po,struct packet_ring_buffer * rb,struct pgv * pg_vec,union tpacket_req_u * req_u)572 static void init_prb_bdqc(struct packet_sock *po,
573 struct packet_ring_buffer *rb,
574 struct pgv *pg_vec,
575 union tpacket_req_u *req_u)
576 {
577 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
578 struct tpacket_block_desc *pbd;
579
580 memset(p1, 0x0, sizeof(*p1));
581
582 p1->knxt_seq_num = 1;
583 p1->pkbdq = pg_vec;
584 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
585 p1->pkblk_start = pg_vec[0].buffer;
586 p1->kblk_size = req_u->req3.tp_block_size;
587 p1->knum_blocks = req_u->req3.tp_block_nr;
588 p1->hdrlen = po->tp_hdrlen;
589 p1->version = po->tp_version;
590 p1->last_kactive_blk_num = 0;
591 po->stats.stats3.tp_freeze_q_cnt = 0;
592 if (req_u->req3.tp_retire_blk_tov)
593 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
594 else
595 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
596 req_u->req3.tp_block_size);
597 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
598 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
599 rwlock_init(&p1->blk_fill_in_prog_lock);
600
601 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
602 prb_init_ft_ops(p1, req_u);
603 prb_setup_retire_blk_timer(po);
604 prb_open_block(p1, pbd);
605 }
606
607 /* Do NOT update the last_blk_num first.
608 * Assumes sk_buff_head lock is held.
609 */
_prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core * pkc)610 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
611 {
612 mod_timer(&pkc->retire_blk_timer,
613 jiffies + pkc->tov_in_jiffies);
614 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
615 }
616
617 /*
618 * Timer logic:
619 * 1) We refresh the timer only when we open a block.
620 * By doing this we don't waste cycles refreshing the timer
621 * on packet-by-packet basis.
622 *
623 * With a 1MB block-size, on a 1Gbps line, it will take
624 * i) ~8 ms to fill a block + ii) memcpy etc.
625 * In this cut we are not accounting for the memcpy time.
626 *
627 * So, if the user sets the 'tmo' to 10ms then the timer
628 * will never fire while the block is still getting filled
629 * (which is what we want). However, the user could choose
630 * to close a block early and that's fine.
631 *
632 * But when the timer does fire, we check whether or not to refresh it.
633 * Since the tmo granularity is in msecs, it is not too expensive
634 * to refresh the timer, lets say every '8' msecs.
635 * Either the user can set the 'tmo' or we can derive it based on
636 * a) line-speed and b) block-size.
637 * prb_calc_retire_blk_tmo() calculates the tmo.
638 *
639 */
prb_retire_rx_blk_timer_expired(struct timer_list * t)640 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
641 {
642 struct packet_sock *po =
643 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
644 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
645 unsigned int frozen;
646 struct tpacket_block_desc *pbd;
647
648 spin_lock(&po->sk.sk_receive_queue.lock);
649
650 frozen = prb_queue_frozen(pkc);
651 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
652
653 if (unlikely(pkc->delete_blk_timer))
654 goto out;
655
656 /* We only need to plug the race when the block is partially filled.
657 * tpacket_rcv:
658 * lock(); increment BLOCK_NUM_PKTS; unlock()
659 * copy_bits() is in progress ...
660 * timer fires on other cpu:
661 * we can't retire the current block because copy_bits
662 * is in progress.
663 *
664 */
665 if (BLOCK_NUM_PKTS(pbd)) {
666 /* Waiting for skb_copy_bits to finish... */
667 write_lock(&pkc->blk_fill_in_prog_lock);
668 write_unlock(&pkc->blk_fill_in_prog_lock);
669 }
670
671 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
672 if (!frozen) {
673 if (!BLOCK_NUM_PKTS(pbd)) {
674 /* An empty block. Just refresh the timer. */
675 goto refresh_timer;
676 }
677 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
678 if (!prb_dispatch_next_block(pkc, po))
679 goto refresh_timer;
680 else
681 goto out;
682 } else {
683 /* Case 1. Queue was frozen because user-space was
684 * lagging behind.
685 */
686 if (prb_curr_blk_in_use(pbd)) {
687 /*
688 * Ok, user-space is still behind.
689 * So just refresh the timer.
690 */
691 goto refresh_timer;
692 } else {
693 /* Case 2. queue was frozen,user-space caught up,
694 * now the link went idle && the timer fired.
695 * We don't have a block to close.So we open this
696 * block and restart the timer.
697 * opening a block thaws the queue,restarts timer
698 * Thawing/timer-refresh is a side effect.
699 */
700 prb_open_block(pkc, pbd);
701 goto out;
702 }
703 }
704 }
705
706 refresh_timer:
707 _prb_refresh_rx_retire_blk_timer(pkc);
708
709 out:
710 spin_unlock(&po->sk.sk_receive_queue.lock);
711 }
712
prb_flush_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,__u32 status)713 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
714 struct tpacket_block_desc *pbd1, __u32 status)
715 {
716 /* Flush everything minus the block header */
717
718 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
719 u8 *start, *end;
720
721 start = (u8 *)pbd1;
722
723 /* Skip the block header(we know header WILL fit in 4K) */
724 start += PAGE_SIZE;
725
726 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
727 for (; start < end; start += PAGE_SIZE)
728 flush_dcache_page(pgv_to_page(start));
729
730 smp_wmb();
731 #endif
732
733 /* Now update the block status. */
734
735 BLOCK_STATUS(pbd1) = status;
736
737 /* Flush the block header */
738
739 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
740 start = (u8 *)pbd1;
741 flush_dcache_page(pgv_to_page(start));
742
743 smp_wmb();
744 #endif
745 }
746
747 /*
748 * Side effect:
749 *
750 * 1) flush the block
751 * 2) Increment active_blk_num
752 *
753 * Note:We DONT refresh the timer on purpose.
754 * Because almost always the next block will be opened.
755 */
prb_close_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,struct packet_sock * po,unsigned int stat)756 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
757 struct tpacket_block_desc *pbd1,
758 struct packet_sock *po, unsigned int stat)
759 {
760 __u32 status = TP_STATUS_USER | stat;
761
762 struct tpacket3_hdr *last_pkt;
763 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
764 struct sock *sk = &po->sk;
765
766 if (atomic_read(&po->tp_drops))
767 status |= TP_STATUS_LOSING;
768
769 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
770 last_pkt->tp_next_offset = 0;
771
772 /* Get the ts of the last pkt */
773 if (BLOCK_NUM_PKTS(pbd1)) {
774 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
775 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
776 } else {
777 /* Ok, we tmo'd - so get the current time.
778 *
779 * It shouldn't really happen as we don't close empty
780 * blocks. See prb_retire_rx_blk_timer_expired().
781 */
782 struct timespec64 ts;
783 ktime_get_real_ts64(&ts);
784 h1->ts_last_pkt.ts_sec = ts.tv_sec;
785 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
786 }
787
788 smp_wmb();
789
790 /* Flush the block */
791 prb_flush_block(pkc1, pbd1, status);
792
793 sk->sk_data_ready(sk);
794
795 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
796 }
797
prb_thaw_queue(struct tpacket_kbdq_core * pkc)798 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
799 {
800 pkc->reset_pending_on_curr_blk = 0;
801 }
802
803 /*
804 * Side effect of opening a block:
805 *
806 * 1) prb_queue is thawed.
807 * 2) retire_blk_timer is refreshed.
808 *
809 */
prb_open_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1)810 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
811 struct tpacket_block_desc *pbd1)
812 {
813 struct timespec64 ts;
814 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
815
816 smp_rmb();
817
818 /* We could have just memset this but we will lose the
819 * flexibility of making the priv area sticky
820 */
821
822 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
823 BLOCK_NUM_PKTS(pbd1) = 0;
824 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
825
826 ktime_get_real_ts64(&ts);
827
828 h1->ts_first_pkt.ts_sec = ts.tv_sec;
829 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
830
831 pkc1->pkblk_start = (char *)pbd1;
832 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
833
834 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
835 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
836
837 pbd1->version = pkc1->version;
838 pkc1->prev = pkc1->nxt_offset;
839 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
840
841 prb_thaw_queue(pkc1);
842 _prb_refresh_rx_retire_blk_timer(pkc1);
843
844 smp_wmb();
845 }
846
847 /*
848 * Queue freeze logic:
849 * 1) Assume tp_block_nr = 8 blocks.
850 * 2) At time 't0', user opens Rx ring.
851 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
852 * 4) user-space is either sleeping or processing block '0'.
853 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
854 * it will close block-7,loop around and try to fill block '0'.
855 * call-flow:
856 * __packet_lookup_frame_in_block
857 * prb_retire_current_block()
858 * prb_dispatch_next_block()
859 * |->(BLOCK_STATUS == USER) evaluates to true
860 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
861 * 6) Now there are two cases:
862 * 6.1) Link goes idle right after the queue is frozen.
863 * But remember, the last open_block() refreshed the timer.
864 * When this timer expires,it will refresh itself so that we can
865 * re-open block-0 in near future.
866 * 6.2) Link is busy and keeps on receiving packets. This is a simple
867 * case and __packet_lookup_frame_in_block will check if block-0
868 * is free and can now be re-used.
869 */
prb_freeze_queue(struct tpacket_kbdq_core * pkc,struct packet_sock * po)870 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
871 struct packet_sock *po)
872 {
873 pkc->reset_pending_on_curr_blk = 1;
874 po->stats.stats3.tp_freeze_q_cnt++;
875 }
876
877 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
878
879 /*
880 * If the next block is free then we will dispatch it
881 * and return a good offset.
882 * Else, we will freeze the queue.
883 * So, caller must check the return value.
884 */
prb_dispatch_next_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po)885 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
886 struct packet_sock *po)
887 {
888 struct tpacket_block_desc *pbd;
889
890 smp_rmb();
891
892 /* 1. Get current block num */
893 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
894
895 /* 2. If this block is currently in_use then freeze the queue */
896 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
897 prb_freeze_queue(pkc, po);
898 return NULL;
899 }
900
901 /*
902 * 3.
903 * open this block and return the offset where the first packet
904 * needs to get stored.
905 */
906 prb_open_block(pkc, pbd);
907 return (void *)pkc->nxt_offset;
908 }
909
prb_retire_current_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po,unsigned int status)910 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
911 struct packet_sock *po, unsigned int status)
912 {
913 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
914
915 /* retire/close the current block */
916 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
917 /*
918 * Plug the case where copy_bits() is in progress on
919 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
920 * have space to copy the pkt in the current block and
921 * called prb_retire_current_block()
922 *
923 * We don't need to worry about the TMO case because
924 * the timer-handler already handled this case.
925 */
926 if (!(status & TP_STATUS_BLK_TMO)) {
927 /* Waiting for skb_copy_bits to finish... */
928 write_lock(&pkc->blk_fill_in_prog_lock);
929 write_unlock(&pkc->blk_fill_in_prog_lock);
930 }
931 prb_close_block(pkc, pbd, po, status);
932 return;
933 }
934 }
935
prb_curr_blk_in_use(struct tpacket_block_desc * pbd)936 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
937 {
938 return TP_STATUS_USER & BLOCK_STATUS(pbd);
939 }
940
prb_queue_frozen(struct tpacket_kbdq_core * pkc)941 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
942 {
943 return pkc->reset_pending_on_curr_blk;
944 }
945
prb_clear_blk_fill_status(struct packet_ring_buffer * rb)946 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
947 __releases(&pkc->blk_fill_in_prog_lock)
948 {
949 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
950
951 read_unlock(&pkc->blk_fill_in_prog_lock);
952 }
953
prb_fill_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)954 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
955 struct tpacket3_hdr *ppd)
956 {
957 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
958 }
959
prb_clear_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)960 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
961 struct tpacket3_hdr *ppd)
962 {
963 ppd->hv1.tp_rxhash = 0;
964 }
965
prb_fill_vlan_info(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)966 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
967 struct tpacket3_hdr *ppd)
968 {
969 if (skb_vlan_tag_present(pkc->skb)) {
970 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
971 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
972 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
973 } else {
974 ppd->hv1.tp_vlan_tci = 0;
975 ppd->hv1.tp_vlan_tpid = 0;
976 ppd->tp_status = TP_STATUS_AVAILABLE;
977 }
978 }
979
prb_run_all_ft_ops(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)980 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
981 struct tpacket3_hdr *ppd)
982 {
983 ppd->hv1.tp_padding = 0;
984 prb_fill_vlan_info(pkc, ppd);
985
986 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
987 prb_fill_rxhash(pkc, ppd);
988 else
989 prb_clear_rxhash(pkc, ppd);
990 }
991
prb_fill_curr_block(char * curr,struct tpacket_kbdq_core * pkc,struct tpacket_block_desc * pbd,unsigned int len)992 static void prb_fill_curr_block(char *curr,
993 struct tpacket_kbdq_core *pkc,
994 struct tpacket_block_desc *pbd,
995 unsigned int len)
996 __acquires(&pkc->blk_fill_in_prog_lock)
997 {
998 struct tpacket3_hdr *ppd;
999
1000 ppd = (struct tpacket3_hdr *)curr;
1001 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1002 pkc->prev = curr;
1003 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1004 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1005 BLOCK_NUM_PKTS(pbd) += 1;
1006 read_lock(&pkc->blk_fill_in_prog_lock);
1007 prb_run_all_ft_ops(pkc, ppd);
1008 }
1009
1010 /* Assumes caller has the sk->rx_queue.lock */
__packet_lookup_frame_in_block(struct packet_sock * po,struct sk_buff * skb,unsigned int len)1011 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1012 struct sk_buff *skb,
1013 unsigned int len
1014 )
1015 {
1016 struct tpacket_kbdq_core *pkc;
1017 struct tpacket_block_desc *pbd;
1018 char *curr, *end;
1019
1020 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1021 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1022
1023 /* Queue is frozen when user space is lagging behind */
1024 if (prb_queue_frozen(pkc)) {
1025 /*
1026 * Check if that last block which caused the queue to freeze,
1027 * is still in_use by user-space.
1028 */
1029 if (prb_curr_blk_in_use(pbd)) {
1030 /* Can't record this packet */
1031 return NULL;
1032 } else {
1033 /*
1034 * Ok, the block was released by user-space.
1035 * Now let's open that block.
1036 * opening a block also thaws the queue.
1037 * Thawing is a side effect.
1038 */
1039 prb_open_block(pkc, pbd);
1040 }
1041 }
1042
1043 smp_mb();
1044 curr = pkc->nxt_offset;
1045 pkc->skb = skb;
1046 end = (char *)pbd + pkc->kblk_size;
1047
1048 /* first try the current block */
1049 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1050 prb_fill_curr_block(curr, pkc, pbd, len);
1051 return (void *)curr;
1052 }
1053
1054 /* Ok, close the current block */
1055 prb_retire_current_block(pkc, po, 0);
1056
1057 /* Now, try to dispatch the next block */
1058 curr = (char *)prb_dispatch_next_block(pkc, po);
1059 if (curr) {
1060 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1061 prb_fill_curr_block(curr, pkc, pbd, len);
1062 return (void *)curr;
1063 }
1064
1065 /*
1066 * No free blocks are available.user_space hasn't caught up yet.
1067 * Queue was just frozen and now this packet will get dropped.
1068 */
1069 return NULL;
1070 }
1071
packet_current_rx_frame(struct packet_sock * po,struct sk_buff * skb,int status,unsigned int len)1072 static void *packet_current_rx_frame(struct packet_sock *po,
1073 struct sk_buff *skb,
1074 int status, unsigned int len)
1075 {
1076 char *curr = NULL;
1077 switch (po->tp_version) {
1078 case TPACKET_V1:
1079 case TPACKET_V2:
1080 curr = packet_lookup_frame(po, &po->rx_ring,
1081 po->rx_ring.head, status);
1082 return curr;
1083 case TPACKET_V3:
1084 return __packet_lookup_frame_in_block(po, skb, len);
1085 default:
1086 WARN(1, "TPACKET version not supported\n");
1087 BUG();
1088 return NULL;
1089 }
1090 }
1091
prb_lookup_block(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int idx,int status)1092 static void *prb_lookup_block(const struct packet_sock *po,
1093 const struct packet_ring_buffer *rb,
1094 unsigned int idx,
1095 int status)
1096 {
1097 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1098 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1099
1100 if (status != BLOCK_STATUS(pbd))
1101 return NULL;
1102 return pbd;
1103 }
1104
prb_previous_blk_num(struct packet_ring_buffer * rb)1105 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1106 {
1107 unsigned int prev;
1108 if (rb->prb_bdqc.kactive_blk_num)
1109 prev = rb->prb_bdqc.kactive_blk_num-1;
1110 else
1111 prev = rb->prb_bdqc.knum_blocks-1;
1112 return prev;
1113 }
1114
1115 /* Assumes caller has held the rx_queue.lock */
__prb_previous_block(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1116 static void *__prb_previous_block(struct packet_sock *po,
1117 struct packet_ring_buffer *rb,
1118 int status)
1119 {
1120 unsigned int previous = prb_previous_blk_num(rb);
1121 return prb_lookup_block(po, rb, previous, status);
1122 }
1123
packet_previous_rx_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1124 static void *packet_previous_rx_frame(struct packet_sock *po,
1125 struct packet_ring_buffer *rb,
1126 int status)
1127 {
1128 if (po->tp_version <= TPACKET_V2)
1129 return packet_previous_frame(po, rb, status);
1130
1131 return __prb_previous_block(po, rb, status);
1132 }
1133
packet_increment_rx_head(struct packet_sock * po,struct packet_ring_buffer * rb)1134 static void packet_increment_rx_head(struct packet_sock *po,
1135 struct packet_ring_buffer *rb)
1136 {
1137 switch (po->tp_version) {
1138 case TPACKET_V1:
1139 case TPACKET_V2:
1140 return packet_increment_head(rb);
1141 case TPACKET_V3:
1142 default:
1143 WARN(1, "TPACKET version not supported.\n");
1144 BUG();
1145 return;
1146 }
1147 }
1148
packet_previous_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1149 static void *packet_previous_frame(struct packet_sock *po,
1150 struct packet_ring_buffer *rb,
1151 int status)
1152 {
1153 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1154 return packet_lookup_frame(po, rb, previous, status);
1155 }
1156
packet_increment_head(struct packet_ring_buffer * buff)1157 static void packet_increment_head(struct packet_ring_buffer *buff)
1158 {
1159 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1160 }
1161
packet_inc_pending(struct packet_ring_buffer * rb)1162 static void packet_inc_pending(struct packet_ring_buffer *rb)
1163 {
1164 this_cpu_inc(*rb->pending_refcnt);
1165 }
1166
packet_dec_pending(struct packet_ring_buffer * rb)1167 static void packet_dec_pending(struct packet_ring_buffer *rb)
1168 {
1169 this_cpu_dec(*rb->pending_refcnt);
1170 }
1171
packet_read_pending(const struct packet_ring_buffer * rb)1172 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1173 {
1174 unsigned int refcnt = 0;
1175 int cpu;
1176
1177 /* We don't use pending refcount in rx_ring. */
1178 if (rb->pending_refcnt == NULL)
1179 return 0;
1180
1181 for_each_possible_cpu(cpu)
1182 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1183
1184 return refcnt;
1185 }
1186
packet_alloc_pending(struct packet_sock * po)1187 static int packet_alloc_pending(struct packet_sock *po)
1188 {
1189 po->rx_ring.pending_refcnt = NULL;
1190
1191 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1192 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1193 return -ENOBUFS;
1194
1195 return 0;
1196 }
1197
packet_free_pending(struct packet_sock * po)1198 static void packet_free_pending(struct packet_sock *po)
1199 {
1200 free_percpu(po->tx_ring.pending_refcnt);
1201 }
1202
1203 #define ROOM_POW_OFF 2
1204 #define ROOM_NONE 0x0
1205 #define ROOM_LOW 0x1
1206 #define ROOM_NORMAL 0x2
1207
__tpacket_has_room(const struct packet_sock * po,int pow_off)1208 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1209 {
1210 int idx, len;
1211
1212 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1213 idx = READ_ONCE(po->rx_ring.head);
1214 if (pow_off)
1215 idx += len >> pow_off;
1216 if (idx >= len)
1217 idx -= len;
1218 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1219 }
1220
__tpacket_v3_has_room(const struct packet_sock * po,int pow_off)1221 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1222 {
1223 int idx, len;
1224
1225 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1226 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1227 if (pow_off)
1228 idx += len >> pow_off;
1229 if (idx >= len)
1230 idx -= len;
1231 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1232 }
1233
__packet_rcv_has_room(const struct packet_sock * po,const struct sk_buff * skb)1234 static int __packet_rcv_has_room(const struct packet_sock *po,
1235 const struct sk_buff *skb)
1236 {
1237 const struct sock *sk = &po->sk;
1238 int ret = ROOM_NONE;
1239
1240 if (po->prot_hook.func != tpacket_rcv) {
1241 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1242 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1243 - (skb ? skb->truesize : 0);
1244
1245 if (avail > (rcvbuf >> ROOM_POW_OFF))
1246 return ROOM_NORMAL;
1247 else if (avail > 0)
1248 return ROOM_LOW;
1249 else
1250 return ROOM_NONE;
1251 }
1252
1253 if (po->tp_version == TPACKET_V3) {
1254 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1255 ret = ROOM_NORMAL;
1256 else if (__tpacket_v3_has_room(po, 0))
1257 ret = ROOM_LOW;
1258 } else {
1259 if (__tpacket_has_room(po, ROOM_POW_OFF))
1260 ret = ROOM_NORMAL;
1261 else if (__tpacket_has_room(po, 0))
1262 ret = ROOM_LOW;
1263 }
1264
1265 return ret;
1266 }
1267
packet_rcv_has_room(struct packet_sock * po,struct sk_buff * skb)1268 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1269 {
1270 int pressure, ret;
1271
1272 ret = __packet_rcv_has_room(po, skb);
1273 pressure = ret != ROOM_NORMAL;
1274
1275 if (READ_ONCE(po->pressure) != pressure)
1276 WRITE_ONCE(po->pressure, pressure);
1277
1278 return ret;
1279 }
1280
packet_rcv_try_clear_pressure(struct packet_sock * po)1281 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1282 {
1283 if (READ_ONCE(po->pressure) &&
1284 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1285 WRITE_ONCE(po->pressure, 0);
1286 }
1287
packet_sock_destruct(struct sock * sk)1288 static void packet_sock_destruct(struct sock *sk)
1289 {
1290 skb_queue_purge(&sk->sk_error_queue);
1291
1292 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1293 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1294
1295 if (!sock_flag(sk, SOCK_DEAD)) {
1296 pr_err("Attempt to release alive packet socket: %p\n", sk);
1297 return;
1298 }
1299
1300 sk_refcnt_debug_dec(sk);
1301 }
1302
fanout_flow_is_huge(struct packet_sock * po,struct sk_buff * skb)1303 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1304 {
1305 u32 *history = po->rollover->history;
1306 u32 victim, rxhash;
1307 int i, count = 0;
1308
1309 rxhash = skb_get_hash(skb);
1310 for (i = 0; i < ROLLOVER_HLEN; i++)
1311 if (READ_ONCE(history[i]) == rxhash)
1312 count++;
1313
1314 victim = prandom_u32() % ROLLOVER_HLEN;
1315
1316 /* Avoid dirtying the cache line if possible */
1317 if (READ_ONCE(history[victim]) != rxhash)
1318 WRITE_ONCE(history[victim], rxhash);
1319
1320 return count > (ROLLOVER_HLEN >> 1);
1321 }
1322
fanout_demux_hash(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1323 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1324 struct sk_buff *skb,
1325 unsigned int num)
1326 {
1327 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1328 }
1329
fanout_demux_lb(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1330 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1331 struct sk_buff *skb,
1332 unsigned int num)
1333 {
1334 unsigned int val = atomic_inc_return(&f->rr_cur);
1335
1336 return val % num;
1337 }
1338
fanout_demux_cpu(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1339 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1340 struct sk_buff *skb,
1341 unsigned int num)
1342 {
1343 return smp_processor_id() % num;
1344 }
1345
fanout_demux_rnd(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1346 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 return prandom_u32_max(num);
1351 }
1352
fanout_demux_rollover(struct packet_fanout * f,struct sk_buff * skb,unsigned int idx,bool try_self,unsigned int num)1353 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1354 struct sk_buff *skb,
1355 unsigned int idx, bool try_self,
1356 unsigned int num)
1357 {
1358 struct packet_sock *po, *po_next, *po_skip = NULL;
1359 unsigned int i, j, room = ROOM_NONE;
1360
1361 po = pkt_sk(f->arr[idx]);
1362
1363 if (try_self) {
1364 room = packet_rcv_has_room(po, skb);
1365 if (room == ROOM_NORMAL ||
1366 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1367 return idx;
1368 po_skip = po;
1369 }
1370
1371 i = j = min_t(int, po->rollover->sock, num - 1);
1372 do {
1373 po_next = pkt_sk(f->arr[i]);
1374 if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1375 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1376 if (i != j)
1377 po->rollover->sock = i;
1378 atomic_long_inc(&po->rollover->num);
1379 if (room == ROOM_LOW)
1380 atomic_long_inc(&po->rollover->num_huge);
1381 return i;
1382 }
1383
1384 if (++i == num)
1385 i = 0;
1386 } while (i != j);
1387
1388 atomic_long_inc(&po->rollover->num_failed);
1389 return idx;
1390 }
1391
fanout_demux_qm(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1392 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1393 struct sk_buff *skb,
1394 unsigned int num)
1395 {
1396 return skb_get_queue_mapping(skb) % num;
1397 }
1398
fanout_demux_bpf(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1399 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1400 struct sk_buff *skb,
1401 unsigned int num)
1402 {
1403 struct bpf_prog *prog;
1404 unsigned int ret = 0;
1405
1406 rcu_read_lock();
1407 prog = rcu_dereference(f->bpf_prog);
1408 if (prog)
1409 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1410 rcu_read_unlock();
1411
1412 return ret;
1413 }
1414
fanout_has_flag(struct packet_fanout * f,u16 flag)1415 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1416 {
1417 return f->flags & (flag >> 8);
1418 }
1419
packet_rcv_fanout(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1420 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1421 struct packet_type *pt, struct net_device *orig_dev)
1422 {
1423 struct packet_fanout *f = pt->af_packet_priv;
1424 unsigned int num = READ_ONCE(f->num_members);
1425 struct net *net = read_pnet(&f->net);
1426 struct packet_sock *po;
1427 unsigned int idx;
1428
1429 if (!net_eq(dev_net(dev), net) || !num) {
1430 kfree_skb(skb);
1431 return 0;
1432 }
1433
1434 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1435 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1436 if (!skb)
1437 return 0;
1438 }
1439 switch (f->type) {
1440 case PACKET_FANOUT_HASH:
1441 default:
1442 idx = fanout_demux_hash(f, skb, num);
1443 break;
1444 case PACKET_FANOUT_LB:
1445 idx = fanout_demux_lb(f, skb, num);
1446 break;
1447 case PACKET_FANOUT_CPU:
1448 idx = fanout_demux_cpu(f, skb, num);
1449 break;
1450 case PACKET_FANOUT_RND:
1451 idx = fanout_demux_rnd(f, skb, num);
1452 break;
1453 case PACKET_FANOUT_QM:
1454 idx = fanout_demux_qm(f, skb, num);
1455 break;
1456 case PACKET_FANOUT_ROLLOVER:
1457 idx = fanout_demux_rollover(f, skb, 0, false, num);
1458 break;
1459 case PACKET_FANOUT_CBPF:
1460 case PACKET_FANOUT_EBPF:
1461 idx = fanout_demux_bpf(f, skb, num);
1462 break;
1463 }
1464
1465 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1466 idx = fanout_demux_rollover(f, skb, idx, true, num);
1467
1468 po = pkt_sk(f->arr[idx]);
1469 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1470 }
1471
1472 DEFINE_MUTEX(fanout_mutex);
1473 EXPORT_SYMBOL_GPL(fanout_mutex);
1474 static LIST_HEAD(fanout_list);
1475 static u16 fanout_next_id;
1476
__fanout_link(struct sock * sk,struct packet_sock * po)1477 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1478 {
1479 struct packet_fanout *f = po->fanout;
1480
1481 spin_lock(&f->lock);
1482 f->arr[f->num_members] = sk;
1483 smp_wmb();
1484 f->num_members++;
1485 if (f->num_members == 1)
1486 dev_add_pack(&f->prot_hook);
1487 spin_unlock(&f->lock);
1488 }
1489
__fanout_unlink(struct sock * sk,struct packet_sock * po)1490 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1491 {
1492 struct packet_fanout *f = po->fanout;
1493 int i;
1494
1495 spin_lock(&f->lock);
1496 for (i = 0; i < f->num_members; i++) {
1497 if (f->arr[i] == sk)
1498 break;
1499 }
1500 BUG_ON(i >= f->num_members);
1501 f->arr[i] = f->arr[f->num_members - 1];
1502 f->num_members--;
1503 if (f->num_members == 0)
1504 __dev_remove_pack(&f->prot_hook);
1505 spin_unlock(&f->lock);
1506 }
1507
match_fanout_group(struct packet_type * ptype,struct sock * sk)1508 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1509 {
1510 if (sk->sk_family != PF_PACKET)
1511 return false;
1512
1513 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1514 }
1515
fanout_init_data(struct packet_fanout * f)1516 static void fanout_init_data(struct packet_fanout *f)
1517 {
1518 switch (f->type) {
1519 case PACKET_FANOUT_LB:
1520 atomic_set(&f->rr_cur, 0);
1521 break;
1522 case PACKET_FANOUT_CBPF:
1523 case PACKET_FANOUT_EBPF:
1524 RCU_INIT_POINTER(f->bpf_prog, NULL);
1525 break;
1526 }
1527 }
1528
__fanout_set_data_bpf(struct packet_fanout * f,struct bpf_prog * new)1529 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1530 {
1531 struct bpf_prog *old;
1532
1533 spin_lock(&f->lock);
1534 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1535 rcu_assign_pointer(f->bpf_prog, new);
1536 spin_unlock(&f->lock);
1537
1538 if (old) {
1539 synchronize_net();
1540 bpf_prog_destroy(old);
1541 }
1542 }
1543
fanout_set_data_cbpf(struct packet_sock * po,sockptr_t data,unsigned int len)1544 static int fanout_set_data_cbpf(struct packet_sock *po, sockptr_t data,
1545 unsigned int len)
1546 {
1547 struct bpf_prog *new;
1548 struct sock_fprog fprog;
1549 int ret;
1550
1551 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1552 return -EPERM;
1553
1554 ret = copy_bpf_fprog_from_user(&fprog, data, len);
1555 if (ret)
1556 return ret;
1557
1558 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1559 if (ret)
1560 return ret;
1561
1562 __fanout_set_data_bpf(po->fanout, new);
1563 return 0;
1564 }
1565
fanout_set_data_ebpf(struct packet_sock * po,sockptr_t data,unsigned int len)1566 static int fanout_set_data_ebpf(struct packet_sock *po, sockptr_t data,
1567 unsigned int len)
1568 {
1569 struct bpf_prog *new;
1570 u32 fd;
1571
1572 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1573 return -EPERM;
1574 if (len != sizeof(fd))
1575 return -EINVAL;
1576 if (copy_from_sockptr(&fd, data, len))
1577 return -EFAULT;
1578
1579 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1580 if (IS_ERR(new))
1581 return PTR_ERR(new);
1582
1583 __fanout_set_data_bpf(po->fanout, new);
1584 return 0;
1585 }
1586
fanout_set_data(struct packet_sock * po,sockptr_t data,unsigned int len)1587 static int fanout_set_data(struct packet_sock *po, sockptr_t data,
1588 unsigned int len)
1589 {
1590 switch (po->fanout->type) {
1591 case PACKET_FANOUT_CBPF:
1592 return fanout_set_data_cbpf(po, data, len);
1593 case PACKET_FANOUT_EBPF:
1594 return fanout_set_data_ebpf(po, data, len);
1595 default:
1596 return -EINVAL;
1597 }
1598 }
1599
fanout_release_data(struct packet_fanout * f)1600 static void fanout_release_data(struct packet_fanout *f)
1601 {
1602 switch (f->type) {
1603 case PACKET_FANOUT_CBPF:
1604 case PACKET_FANOUT_EBPF:
1605 __fanout_set_data_bpf(f, NULL);
1606 }
1607 }
1608
__fanout_id_is_free(struct sock * sk,u16 candidate_id)1609 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1610 {
1611 struct packet_fanout *f;
1612
1613 list_for_each_entry(f, &fanout_list, list) {
1614 if (f->id == candidate_id &&
1615 read_pnet(&f->net) == sock_net(sk)) {
1616 return false;
1617 }
1618 }
1619 return true;
1620 }
1621
fanout_find_new_id(struct sock * sk,u16 * new_id)1622 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1623 {
1624 u16 id = fanout_next_id;
1625
1626 do {
1627 if (__fanout_id_is_free(sk, id)) {
1628 *new_id = id;
1629 fanout_next_id = id + 1;
1630 return true;
1631 }
1632
1633 id++;
1634 } while (id != fanout_next_id);
1635
1636 return false;
1637 }
1638
fanout_add(struct sock * sk,u16 id,u16 type_flags)1639 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1640 {
1641 struct packet_rollover *rollover = NULL;
1642 struct packet_sock *po = pkt_sk(sk);
1643 struct packet_fanout *f, *match;
1644 u8 type = type_flags & 0xff;
1645 u8 flags = type_flags >> 8;
1646 int err;
1647
1648 switch (type) {
1649 case PACKET_FANOUT_ROLLOVER:
1650 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1651 return -EINVAL;
1652 case PACKET_FANOUT_HASH:
1653 case PACKET_FANOUT_LB:
1654 case PACKET_FANOUT_CPU:
1655 case PACKET_FANOUT_RND:
1656 case PACKET_FANOUT_QM:
1657 case PACKET_FANOUT_CBPF:
1658 case PACKET_FANOUT_EBPF:
1659 break;
1660 default:
1661 return -EINVAL;
1662 }
1663
1664 mutex_lock(&fanout_mutex);
1665
1666 err = -EALREADY;
1667 if (po->fanout)
1668 goto out;
1669
1670 if (type == PACKET_FANOUT_ROLLOVER ||
1671 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1672 err = -ENOMEM;
1673 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1674 if (!rollover)
1675 goto out;
1676 atomic_long_set(&rollover->num, 0);
1677 atomic_long_set(&rollover->num_huge, 0);
1678 atomic_long_set(&rollover->num_failed, 0);
1679 }
1680
1681 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1682 if (id != 0) {
1683 err = -EINVAL;
1684 goto out;
1685 }
1686 if (!fanout_find_new_id(sk, &id)) {
1687 err = -ENOMEM;
1688 goto out;
1689 }
1690 /* ephemeral flag for the first socket in the group: drop it */
1691 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1692 }
1693
1694 match = NULL;
1695 list_for_each_entry(f, &fanout_list, list) {
1696 if (f->id == id &&
1697 read_pnet(&f->net) == sock_net(sk)) {
1698 match = f;
1699 break;
1700 }
1701 }
1702 err = -EINVAL;
1703 if (match && match->flags != flags)
1704 goto out;
1705 if (!match) {
1706 err = -ENOMEM;
1707 match = kzalloc(sizeof(*match), GFP_KERNEL);
1708 if (!match)
1709 goto out;
1710 write_pnet(&match->net, sock_net(sk));
1711 match->id = id;
1712 match->type = type;
1713 match->flags = flags;
1714 INIT_LIST_HEAD(&match->list);
1715 spin_lock_init(&match->lock);
1716 refcount_set(&match->sk_ref, 0);
1717 fanout_init_data(match);
1718 match->prot_hook.type = po->prot_hook.type;
1719 match->prot_hook.dev = po->prot_hook.dev;
1720 match->prot_hook.func = packet_rcv_fanout;
1721 match->prot_hook.af_packet_priv = match;
1722 match->prot_hook.id_match = match_fanout_group;
1723 list_add(&match->list, &fanout_list);
1724 }
1725 err = -EINVAL;
1726
1727 spin_lock(&po->bind_lock);
1728 if (po->running &&
1729 match->type == type &&
1730 match->prot_hook.type == po->prot_hook.type &&
1731 match->prot_hook.dev == po->prot_hook.dev) {
1732 err = -ENOSPC;
1733 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1734 __dev_remove_pack(&po->prot_hook);
1735 po->fanout = match;
1736 po->rollover = rollover;
1737 rollover = NULL;
1738 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1739 __fanout_link(sk, po);
1740 err = 0;
1741 }
1742 }
1743 spin_unlock(&po->bind_lock);
1744
1745 if (err && !refcount_read(&match->sk_ref)) {
1746 list_del(&match->list);
1747 kfree(match);
1748 }
1749
1750 out:
1751 kfree(rollover);
1752 mutex_unlock(&fanout_mutex);
1753 return err;
1754 }
1755
1756 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1757 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1758 * It is the responsibility of the caller to call fanout_release_data() and
1759 * free the returned packet_fanout (after synchronize_net())
1760 */
fanout_release(struct sock * sk)1761 static struct packet_fanout *fanout_release(struct sock *sk)
1762 {
1763 struct packet_sock *po = pkt_sk(sk);
1764 struct packet_fanout *f;
1765
1766 mutex_lock(&fanout_mutex);
1767 f = po->fanout;
1768 if (f) {
1769 po->fanout = NULL;
1770
1771 if (refcount_dec_and_test(&f->sk_ref))
1772 list_del(&f->list);
1773 else
1774 f = NULL;
1775 }
1776 mutex_unlock(&fanout_mutex);
1777
1778 return f;
1779 }
1780
packet_extra_vlan_len_allowed(const struct net_device * dev,struct sk_buff * skb)1781 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1782 struct sk_buff *skb)
1783 {
1784 /* Earlier code assumed this would be a VLAN pkt, double-check
1785 * this now that we have the actual packet in hand. We can only
1786 * do this check on Ethernet devices.
1787 */
1788 if (unlikely(dev->type != ARPHRD_ETHER))
1789 return false;
1790
1791 skb_reset_mac_header(skb);
1792 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1793 }
1794
1795 static const struct proto_ops packet_ops;
1796
1797 static const struct proto_ops packet_ops_spkt;
1798
packet_rcv_spkt(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1799 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1800 struct packet_type *pt, struct net_device *orig_dev)
1801 {
1802 struct sock *sk;
1803 struct sockaddr_pkt *spkt;
1804
1805 /*
1806 * When we registered the protocol we saved the socket in the data
1807 * field for just this event.
1808 */
1809
1810 sk = pt->af_packet_priv;
1811
1812 /*
1813 * Yank back the headers [hope the device set this
1814 * right or kerboom...]
1815 *
1816 * Incoming packets have ll header pulled,
1817 * push it back.
1818 *
1819 * For outgoing ones skb->data == skb_mac_header(skb)
1820 * so that this procedure is noop.
1821 */
1822
1823 if (skb->pkt_type == PACKET_LOOPBACK)
1824 goto out;
1825
1826 if (!net_eq(dev_net(dev), sock_net(sk)))
1827 goto out;
1828
1829 skb = skb_share_check(skb, GFP_ATOMIC);
1830 if (skb == NULL)
1831 goto oom;
1832
1833 /* drop any routing info */
1834 skb_dst_drop(skb);
1835
1836 /* drop conntrack reference */
1837 nf_reset_ct(skb);
1838
1839 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1840
1841 skb_push(skb, skb->data - skb_mac_header(skb));
1842
1843 /*
1844 * The SOCK_PACKET socket receives _all_ frames.
1845 */
1846
1847 spkt->spkt_family = dev->type;
1848 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1849 spkt->spkt_protocol = skb->protocol;
1850
1851 /*
1852 * Charge the memory to the socket. This is done specifically
1853 * to prevent sockets using all the memory up.
1854 */
1855
1856 if (sock_queue_rcv_skb(sk, skb) == 0)
1857 return 0;
1858
1859 out:
1860 kfree_skb(skb);
1861 oom:
1862 return 0;
1863 }
1864
packet_parse_headers(struct sk_buff * skb,struct socket * sock)1865 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1866 {
1867 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1868 sock->type == SOCK_RAW) {
1869 skb_reset_mac_header(skb);
1870 skb->protocol = dev_parse_header_protocol(skb);
1871 }
1872
1873 skb_probe_transport_header(skb);
1874 }
1875
1876 /*
1877 * Output a raw packet to a device layer. This bypasses all the other
1878 * protocol layers and you must therefore supply it with a complete frame
1879 */
1880
packet_sendmsg_spkt(struct socket * sock,struct msghdr * msg,size_t len)1881 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1882 size_t len)
1883 {
1884 struct sock *sk = sock->sk;
1885 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1886 struct sk_buff *skb = NULL;
1887 struct net_device *dev;
1888 struct sockcm_cookie sockc;
1889 __be16 proto = 0;
1890 int err;
1891 int extra_len = 0;
1892
1893 /*
1894 * Get and verify the address.
1895 */
1896
1897 if (saddr) {
1898 if (msg->msg_namelen < sizeof(struct sockaddr))
1899 return -EINVAL;
1900 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1901 proto = saddr->spkt_protocol;
1902 } else
1903 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1904
1905 /*
1906 * Find the device first to size check it
1907 */
1908
1909 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1910 retry:
1911 rcu_read_lock();
1912 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1913 err = -ENODEV;
1914 if (dev == NULL)
1915 goto out_unlock;
1916
1917 err = -ENETDOWN;
1918 if (!(dev->flags & IFF_UP))
1919 goto out_unlock;
1920
1921 /*
1922 * You may not queue a frame bigger than the mtu. This is the lowest level
1923 * raw protocol and you must do your own fragmentation at this level.
1924 */
1925
1926 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1927 if (!netif_supports_nofcs(dev)) {
1928 err = -EPROTONOSUPPORT;
1929 goto out_unlock;
1930 }
1931 extra_len = 4; /* We're doing our own CRC */
1932 }
1933
1934 err = -EMSGSIZE;
1935 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1936 goto out_unlock;
1937
1938 if (!skb) {
1939 size_t reserved = LL_RESERVED_SPACE(dev);
1940 int tlen = dev->needed_tailroom;
1941 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1942
1943 rcu_read_unlock();
1944 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1945 if (skb == NULL)
1946 return -ENOBUFS;
1947 /* FIXME: Save some space for broken drivers that write a hard
1948 * header at transmission time by themselves. PPP is the notable
1949 * one here. This should really be fixed at the driver level.
1950 */
1951 skb_reserve(skb, reserved);
1952 skb_reset_network_header(skb);
1953
1954 /* Try to align data part correctly */
1955 if (hhlen) {
1956 skb->data -= hhlen;
1957 skb->tail -= hhlen;
1958 if (len < hhlen)
1959 skb_reset_network_header(skb);
1960 }
1961 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1962 if (err)
1963 goto out_free;
1964 goto retry;
1965 }
1966
1967 if (!dev_validate_header(dev, skb->data, len)) {
1968 err = -EINVAL;
1969 goto out_unlock;
1970 }
1971 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1972 !packet_extra_vlan_len_allowed(dev, skb)) {
1973 err = -EMSGSIZE;
1974 goto out_unlock;
1975 }
1976
1977 sockcm_init(&sockc, sk);
1978 if (msg->msg_controllen) {
1979 err = sock_cmsg_send(sk, msg, &sockc);
1980 if (unlikely(err))
1981 goto out_unlock;
1982 }
1983
1984 skb->protocol = proto;
1985 skb->dev = dev;
1986 skb->priority = sk->sk_priority;
1987 skb->mark = sk->sk_mark;
1988 skb->tstamp = sockc.transmit_time;
1989
1990 skb_setup_tx_timestamp(skb, sockc.tsflags);
1991
1992 if (unlikely(extra_len == 4))
1993 skb->no_fcs = 1;
1994
1995 packet_parse_headers(skb, sock);
1996
1997 dev_queue_xmit(skb);
1998 rcu_read_unlock();
1999 return len;
2000
2001 out_unlock:
2002 rcu_read_unlock();
2003 out_free:
2004 kfree_skb(skb);
2005 return err;
2006 }
2007
run_filter(struct sk_buff * skb,const struct sock * sk,unsigned int res)2008 static unsigned int run_filter(struct sk_buff *skb,
2009 const struct sock *sk,
2010 unsigned int res)
2011 {
2012 struct sk_filter *filter;
2013
2014 rcu_read_lock();
2015 filter = rcu_dereference(sk->sk_filter);
2016 if (filter != NULL)
2017 res = bpf_prog_run_clear_cb(filter->prog, skb);
2018 rcu_read_unlock();
2019
2020 return res;
2021 }
2022
packet_rcv_vnet(struct msghdr * msg,const struct sk_buff * skb,size_t * len)2023 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2024 size_t *len)
2025 {
2026 struct virtio_net_hdr vnet_hdr;
2027
2028 if (*len < sizeof(vnet_hdr))
2029 return -EINVAL;
2030 *len -= sizeof(vnet_hdr);
2031
2032 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2033 return -EINVAL;
2034
2035 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2036 }
2037
2038 /*
2039 * This function makes lazy skb cloning in hope that most of packets
2040 * are discarded by BPF.
2041 *
2042 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2043 * and skb->cb are mangled. It works because (and until) packets
2044 * falling here are owned by current CPU. Output packets are cloned
2045 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2046 * sequencially, so that if we return skb to original state on exit,
2047 * we will not harm anyone.
2048 */
2049
packet_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2050 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2051 struct packet_type *pt, struct net_device *orig_dev)
2052 {
2053 struct sock *sk;
2054 struct sockaddr_ll *sll;
2055 struct packet_sock *po;
2056 u8 *skb_head = skb->data;
2057 int skb_len = skb->len;
2058 unsigned int snaplen, res;
2059 bool is_drop_n_account = false;
2060
2061 if (skb->pkt_type == PACKET_LOOPBACK)
2062 goto drop;
2063
2064 sk = pt->af_packet_priv;
2065 po = pkt_sk(sk);
2066
2067 if (!net_eq(dev_net(dev), sock_net(sk)))
2068 goto drop;
2069
2070 skb->dev = dev;
2071
2072 if (dev_has_header(dev)) {
2073 /* The device has an explicit notion of ll header,
2074 * exported to higher levels.
2075 *
2076 * Otherwise, the device hides details of its frame
2077 * structure, so that corresponding packet head is
2078 * never delivered to user.
2079 */
2080 if (sk->sk_type != SOCK_DGRAM)
2081 skb_push(skb, skb->data - skb_mac_header(skb));
2082 else if (skb->pkt_type == PACKET_OUTGOING) {
2083 /* Special case: outgoing packets have ll header at head */
2084 skb_pull(skb, skb_network_offset(skb));
2085 }
2086 }
2087
2088 snaplen = skb->len;
2089
2090 res = run_filter(skb, sk, snaplen);
2091 if (!res)
2092 goto drop_n_restore;
2093 if (snaplen > res)
2094 snaplen = res;
2095
2096 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2097 goto drop_n_acct;
2098
2099 if (skb_shared(skb)) {
2100 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2101 if (nskb == NULL)
2102 goto drop_n_acct;
2103
2104 if (skb_head != skb->data) {
2105 skb->data = skb_head;
2106 skb->len = skb_len;
2107 }
2108 consume_skb(skb);
2109 skb = nskb;
2110 }
2111
2112 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2113
2114 sll = &PACKET_SKB_CB(skb)->sa.ll;
2115 sll->sll_hatype = dev->type;
2116 sll->sll_pkttype = skb->pkt_type;
2117 if (unlikely(po->origdev))
2118 sll->sll_ifindex = orig_dev->ifindex;
2119 else
2120 sll->sll_ifindex = dev->ifindex;
2121
2122 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2123
2124 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2125 * Use their space for storing the original skb length.
2126 */
2127 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2128
2129 if (pskb_trim(skb, snaplen))
2130 goto drop_n_acct;
2131
2132 skb_set_owner_r(skb, sk);
2133 skb->dev = NULL;
2134 skb_dst_drop(skb);
2135
2136 /* drop conntrack reference */
2137 nf_reset_ct(skb);
2138
2139 spin_lock(&sk->sk_receive_queue.lock);
2140 po->stats.stats1.tp_packets++;
2141 sock_skb_set_dropcount(sk, skb);
2142 __skb_queue_tail(&sk->sk_receive_queue, skb);
2143 spin_unlock(&sk->sk_receive_queue.lock);
2144 sk->sk_data_ready(sk);
2145 return 0;
2146
2147 drop_n_acct:
2148 is_drop_n_account = true;
2149 atomic_inc(&po->tp_drops);
2150 atomic_inc(&sk->sk_drops);
2151
2152 drop_n_restore:
2153 if (skb_head != skb->data && skb_shared(skb)) {
2154 skb->data = skb_head;
2155 skb->len = skb_len;
2156 }
2157 drop:
2158 if (!is_drop_n_account)
2159 consume_skb(skb);
2160 else
2161 kfree_skb(skb);
2162 return 0;
2163 }
2164
tpacket_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2165 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2166 struct packet_type *pt, struct net_device *orig_dev)
2167 {
2168 struct sock *sk;
2169 struct packet_sock *po;
2170 struct sockaddr_ll *sll;
2171 union tpacket_uhdr h;
2172 u8 *skb_head = skb->data;
2173 int skb_len = skb->len;
2174 unsigned int snaplen, res;
2175 unsigned long status = TP_STATUS_USER;
2176 unsigned short macoff, hdrlen;
2177 unsigned int netoff;
2178 struct sk_buff *copy_skb = NULL;
2179 struct timespec64 ts;
2180 __u32 ts_status;
2181 bool is_drop_n_account = false;
2182 unsigned int slot_id = 0;
2183 bool do_vnet = false;
2184
2185 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2186 * We may add members to them until current aligned size without forcing
2187 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2188 */
2189 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2190 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2191
2192 if (skb->pkt_type == PACKET_LOOPBACK)
2193 goto drop;
2194
2195 sk = pt->af_packet_priv;
2196 po = pkt_sk(sk);
2197
2198 if (!net_eq(dev_net(dev), sock_net(sk)))
2199 goto drop;
2200
2201 if (dev_has_header(dev)) {
2202 if (sk->sk_type != SOCK_DGRAM)
2203 skb_push(skb, skb->data - skb_mac_header(skb));
2204 else if (skb->pkt_type == PACKET_OUTGOING) {
2205 /* Special case: outgoing packets have ll header at head */
2206 skb_pull(skb, skb_network_offset(skb));
2207 }
2208 }
2209
2210 snaplen = skb->len;
2211
2212 res = run_filter(skb, sk, snaplen);
2213 if (!res)
2214 goto drop_n_restore;
2215
2216 /* If we are flooded, just give up */
2217 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2218 atomic_inc(&po->tp_drops);
2219 goto drop_n_restore;
2220 }
2221
2222 if (skb->ip_summed == CHECKSUM_PARTIAL)
2223 status |= TP_STATUS_CSUMNOTREADY;
2224 else if (skb->pkt_type != PACKET_OUTGOING &&
2225 (skb->ip_summed == CHECKSUM_COMPLETE ||
2226 skb_csum_unnecessary(skb)))
2227 status |= TP_STATUS_CSUM_VALID;
2228
2229 if (snaplen > res)
2230 snaplen = res;
2231
2232 if (sk->sk_type == SOCK_DGRAM) {
2233 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2234 po->tp_reserve;
2235 } else {
2236 unsigned int maclen = skb_network_offset(skb);
2237 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2238 (maclen < 16 ? 16 : maclen)) +
2239 po->tp_reserve;
2240 if (po->has_vnet_hdr) {
2241 netoff += sizeof(struct virtio_net_hdr);
2242 do_vnet = true;
2243 }
2244 macoff = netoff - maclen;
2245 }
2246 if (netoff > USHRT_MAX) {
2247 atomic_inc(&po->tp_drops);
2248 goto drop_n_restore;
2249 }
2250 if (po->tp_version <= TPACKET_V2) {
2251 if (macoff + snaplen > po->rx_ring.frame_size) {
2252 if (po->copy_thresh &&
2253 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2254 if (skb_shared(skb)) {
2255 copy_skb = skb_clone(skb, GFP_ATOMIC);
2256 } else {
2257 copy_skb = skb_get(skb);
2258 skb_head = skb->data;
2259 }
2260 if (copy_skb)
2261 skb_set_owner_r(copy_skb, sk);
2262 }
2263 snaplen = po->rx_ring.frame_size - macoff;
2264 if ((int)snaplen < 0) {
2265 snaplen = 0;
2266 do_vnet = false;
2267 }
2268 }
2269 } else if (unlikely(macoff + snaplen >
2270 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2271 u32 nval;
2272
2273 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2274 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2275 snaplen, nval, macoff);
2276 snaplen = nval;
2277 if (unlikely((int)snaplen < 0)) {
2278 snaplen = 0;
2279 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2280 do_vnet = false;
2281 }
2282 }
2283 spin_lock(&sk->sk_receive_queue.lock);
2284 h.raw = packet_current_rx_frame(po, skb,
2285 TP_STATUS_KERNEL, (macoff+snaplen));
2286 if (!h.raw)
2287 goto drop_n_account;
2288
2289 if (po->tp_version <= TPACKET_V2) {
2290 slot_id = po->rx_ring.head;
2291 if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2292 goto drop_n_account;
2293 __set_bit(slot_id, po->rx_ring.rx_owner_map);
2294 }
2295
2296 if (do_vnet &&
2297 virtio_net_hdr_from_skb(skb, h.raw + macoff -
2298 sizeof(struct virtio_net_hdr),
2299 vio_le(), true, 0)) {
2300 if (po->tp_version == TPACKET_V3)
2301 prb_clear_blk_fill_status(&po->rx_ring);
2302 goto drop_n_account;
2303 }
2304
2305 if (po->tp_version <= TPACKET_V2) {
2306 packet_increment_rx_head(po, &po->rx_ring);
2307 /*
2308 * LOSING will be reported till you read the stats,
2309 * because it's COR - Clear On Read.
2310 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2311 * at packet level.
2312 */
2313 if (atomic_read(&po->tp_drops))
2314 status |= TP_STATUS_LOSING;
2315 }
2316
2317 po->stats.stats1.tp_packets++;
2318 if (copy_skb) {
2319 status |= TP_STATUS_COPY;
2320 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2321 }
2322 spin_unlock(&sk->sk_receive_queue.lock);
2323
2324 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2325
2326 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2327 ktime_get_real_ts64(&ts);
2328
2329 status |= ts_status;
2330
2331 switch (po->tp_version) {
2332 case TPACKET_V1:
2333 h.h1->tp_len = skb->len;
2334 h.h1->tp_snaplen = snaplen;
2335 h.h1->tp_mac = macoff;
2336 h.h1->tp_net = netoff;
2337 h.h1->tp_sec = ts.tv_sec;
2338 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2339 hdrlen = sizeof(*h.h1);
2340 break;
2341 case TPACKET_V2:
2342 h.h2->tp_len = skb->len;
2343 h.h2->tp_snaplen = snaplen;
2344 h.h2->tp_mac = macoff;
2345 h.h2->tp_net = netoff;
2346 h.h2->tp_sec = ts.tv_sec;
2347 h.h2->tp_nsec = ts.tv_nsec;
2348 if (skb_vlan_tag_present(skb)) {
2349 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2350 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2351 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2352 } else {
2353 h.h2->tp_vlan_tci = 0;
2354 h.h2->tp_vlan_tpid = 0;
2355 }
2356 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2357 hdrlen = sizeof(*h.h2);
2358 break;
2359 case TPACKET_V3:
2360 /* tp_nxt_offset,vlan are already populated above.
2361 * So DONT clear those fields here
2362 */
2363 h.h3->tp_status |= status;
2364 h.h3->tp_len = skb->len;
2365 h.h3->tp_snaplen = snaplen;
2366 h.h3->tp_mac = macoff;
2367 h.h3->tp_net = netoff;
2368 h.h3->tp_sec = ts.tv_sec;
2369 h.h3->tp_nsec = ts.tv_nsec;
2370 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2371 hdrlen = sizeof(*h.h3);
2372 break;
2373 default:
2374 BUG();
2375 }
2376
2377 sll = h.raw + TPACKET_ALIGN(hdrlen);
2378 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2379 sll->sll_family = AF_PACKET;
2380 sll->sll_hatype = dev->type;
2381 sll->sll_protocol = skb->protocol;
2382 sll->sll_pkttype = skb->pkt_type;
2383 if (unlikely(po->origdev))
2384 sll->sll_ifindex = orig_dev->ifindex;
2385 else
2386 sll->sll_ifindex = dev->ifindex;
2387
2388 smp_mb();
2389
2390 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2391 if (po->tp_version <= TPACKET_V2) {
2392 u8 *start, *end;
2393
2394 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2395 macoff + snaplen);
2396
2397 for (start = h.raw; start < end; start += PAGE_SIZE)
2398 flush_dcache_page(pgv_to_page(start));
2399 }
2400 smp_wmb();
2401 #endif
2402
2403 if (po->tp_version <= TPACKET_V2) {
2404 spin_lock(&sk->sk_receive_queue.lock);
2405 __packet_set_status(po, h.raw, status);
2406 __clear_bit(slot_id, po->rx_ring.rx_owner_map);
2407 spin_unlock(&sk->sk_receive_queue.lock);
2408 sk->sk_data_ready(sk);
2409 } else if (po->tp_version == TPACKET_V3) {
2410 prb_clear_blk_fill_status(&po->rx_ring);
2411 }
2412
2413 drop_n_restore:
2414 if (skb_head != skb->data && skb_shared(skb)) {
2415 skb->data = skb_head;
2416 skb->len = skb_len;
2417 }
2418 drop:
2419 if (!is_drop_n_account)
2420 consume_skb(skb);
2421 else
2422 kfree_skb(skb);
2423 return 0;
2424
2425 drop_n_account:
2426 spin_unlock(&sk->sk_receive_queue.lock);
2427 atomic_inc(&po->tp_drops);
2428 is_drop_n_account = true;
2429
2430 sk->sk_data_ready(sk);
2431 kfree_skb(copy_skb);
2432 goto drop_n_restore;
2433 }
2434
tpacket_destruct_skb(struct sk_buff * skb)2435 static void tpacket_destruct_skb(struct sk_buff *skb)
2436 {
2437 struct packet_sock *po = pkt_sk(skb->sk);
2438
2439 if (likely(po->tx_ring.pg_vec)) {
2440 void *ph;
2441 __u32 ts;
2442
2443 ph = skb_zcopy_get_nouarg(skb);
2444 packet_dec_pending(&po->tx_ring);
2445
2446 ts = __packet_set_timestamp(po, ph, skb);
2447 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2448
2449 if (!packet_read_pending(&po->tx_ring))
2450 complete(&po->skb_completion);
2451 }
2452
2453 sock_wfree(skb);
2454 }
2455
__packet_snd_vnet_parse(struct virtio_net_hdr * vnet_hdr,size_t len)2456 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2457 {
2458 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2459 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2460 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2461 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2462 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2463 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2464 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2465
2466 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2467 return -EINVAL;
2468
2469 return 0;
2470 }
2471
packet_snd_vnet_parse(struct msghdr * msg,size_t * len,struct virtio_net_hdr * vnet_hdr)2472 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2473 struct virtio_net_hdr *vnet_hdr)
2474 {
2475 if (*len < sizeof(*vnet_hdr))
2476 return -EINVAL;
2477 *len -= sizeof(*vnet_hdr);
2478
2479 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2480 return -EFAULT;
2481
2482 return __packet_snd_vnet_parse(vnet_hdr, *len);
2483 }
2484
tpacket_fill_skb(struct packet_sock * po,struct sk_buff * skb,void * frame,struct net_device * dev,void * data,int tp_len,__be16 proto,unsigned char * addr,int hlen,int copylen,const struct sockcm_cookie * sockc)2485 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2486 void *frame, struct net_device *dev, void *data, int tp_len,
2487 __be16 proto, unsigned char *addr, int hlen, int copylen,
2488 const struct sockcm_cookie *sockc)
2489 {
2490 union tpacket_uhdr ph;
2491 int to_write, offset, len, nr_frags, len_max;
2492 struct socket *sock = po->sk.sk_socket;
2493 struct page *page;
2494 int err;
2495
2496 ph.raw = frame;
2497
2498 skb->protocol = proto;
2499 skb->dev = dev;
2500 skb->priority = po->sk.sk_priority;
2501 skb->mark = po->sk.sk_mark;
2502 skb->tstamp = sockc->transmit_time;
2503 skb_setup_tx_timestamp(skb, sockc->tsflags);
2504 skb_zcopy_set_nouarg(skb, ph.raw);
2505
2506 skb_reserve(skb, hlen);
2507 skb_reset_network_header(skb);
2508
2509 to_write = tp_len;
2510
2511 if (sock->type == SOCK_DGRAM) {
2512 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2513 NULL, tp_len);
2514 if (unlikely(err < 0))
2515 return -EINVAL;
2516 } else if (copylen) {
2517 int hdrlen = min_t(int, copylen, tp_len);
2518
2519 skb_push(skb, dev->hard_header_len);
2520 skb_put(skb, copylen - dev->hard_header_len);
2521 err = skb_store_bits(skb, 0, data, hdrlen);
2522 if (unlikely(err))
2523 return err;
2524 if (!dev_validate_header(dev, skb->data, hdrlen))
2525 return -EINVAL;
2526
2527 data += hdrlen;
2528 to_write -= hdrlen;
2529 }
2530
2531 offset = offset_in_page(data);
2532 len_max = PAGE_SIZE - offset;
2533 len = ((to_write > len_max) ? len_max : to_write);
2534
2535 skb->data_len = to_write;
2536 skb->len += to_write;
2537 skb->truesize += to_write;
2538 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2539
2540 while (likely(to_write)) {
2541 nr_frags = skb_shinfo(skb)->nr_frags;
2542
2543 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2544 pr_err("Packet exceed the number of skb frags(%lu)\n",
2545 MAX_SKB_FRAGS);
2546 return -EFAULT;
2547 }
2548
2549 page = pgv_to_page(data);
2550 data += len;
2551 flush_dcache_page(page);
2552 get_page(page);
2553 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2554 to_write -= len;
2555 offset = 0;
2556 len_max = PAGE_SIZE;
2557 len = ((to_write > len_max) ? len_max : to_write);
2558 }
2559
2560 packet_parse_headers(skb, sock);
2561
2562 return tp_len;
2563 }
2564
tpacket_parse_header(struct packet_sock * po,void * frame,int size_max,void ** data)2565 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2566 int size_max, void **data)
2567 {
2568 union tpacket_uhdr ph;
2569 int tp_len, off;
2570
2571 ph.raw = frame;
2572
2573 switch (po->tp_version) {
2574 case TPACKET_V3:
2575 if (ph.h3->tp_next_offset != 0) {
2576 pr_warn_once("variable sized slot not supported");
2577 return -EINVAL;
2578 }
2579 tp_len = ph.h3->tp_len;
2580 break;
2581 case TPACKET_V2:
2582 tp_len = ph.h2->tp_len;
2583 break;
2584 default:
2585 tp_len = ph.h1->tp_len;
2586 break;
2587 }
2588 if (unlikely(tp_len > size_max)) {
2589 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2590 return -EMSGSIZE;
2591 }
2592
2593 if (unlikely(po->tp_tx_has_off)) {
2594 int off_min, off_max;
2595
2596 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2597 off_max = po->tx_ring.frame_size - tp_len;
2598 if (po->sk.sk_type == SOCK_DGRAM) {
2599 switch (po->tp_version) {
2600 case TPACKET_V3:
2601 off = ph.h3->tp_net;
2602 break;
2603 case TPACKET_V2:
2604 off = ph.h2->tp_net;
2605 break;
2606 default:
2607 off = ph.h1->tp_net;
2608 break;
2609 }
2610 } else {
2611 switch (po->tp_version) {
2612 case TPACKET_V3:
2613 off = ph.h3->tp_mac;
2614 break;
2615 case TPACKET_V2:
2616 off = ph.h2->tp_mac;
2617 break;
2618 default:
2619 off = ph.h1->tp_mac;
2620 break;
2621 }
2622 }
2623 if (unlikely((off < off_min) || (off_max < off)))
2624 return -EINVAL;
2625 } else {
2626 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2627 }
2628
2629 *data = frame + off;
2630 return tp_len;
2631 }
2632
tpacket_snd(struct packet_sock * po,struct msghdr * msg)2633 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2634 {
2635 struct sk_buff *skb = NULL;
2636 struct net_device *dev;
2637 struct virtio_net_hdr *vnet_hdr = NULL;
2638 struct sockcm_cookie sockc;
2639 __be16 proto;
2640 int err, reserve = 0;
2641 void *ph;
2642 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2643 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2644 unsigned char *addr = NULL;
2645 int tp_len, size_max;
2646 void *data;
2647 int len_sum = 0;
2648 int status = TP_STATUS_AVAILABLE;
2649 int hlen, tlen, copylen = 0;
2650 long timeo = 0;
2651
2652 mutex_lock(&po->pg_vec_lock);
2653
2654 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2655 * we need to confirm it under protection of pg_vec_lock.
2656 */
2657 if (unlikely(!po->tx_ring.pg_vec)) {
2658 err = -EBUSY;
2659 goto out;
2660 }
2661 if (likely(saddr == NULL)) {
2662 dev = packet_cached_dev_get(po);
2663 proto = po->num;
2664 } else {
2665 err = -EINVAL;
2666 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2667 goto out;
2668 if (msg->msg_namelen < (saddr->sll_halen
2669 + offsetof(struct sockaddr_ll,
2670 sll_addr)))
2671 goto out;
2672 proto = saddr->sll_protocol;
2673 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2674 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2675 if (dev && msg->msg_namelen < dev->addr_len +
2676 offsetof(struct sockaddr_ll, sll_addr))
2677 goto out_put;
2678 addr = saddr->sll_addr;
2679 }
2680 }
2681
2682 err = -ENXIO;
2683 if (unlikely(dev == NULL))
2684 goto out;
2685 err = -ENETDOWN;
2686 if (unlikely(!(dev->flags & IFF_UP)))
2687 goto out_put;
2688
2689 sockcm_init(&sockc, &po->sk);
2690 if (msg->msg_controllen) {
2691 err = sock_cmsg_send(&po->sk, msg, &sockc);
2692 if (unlikely(err))
2693 goto out_put;
2694 }
2695
2696 if (po->sk.sk_socket->type == SOCK_RAW)
2697 reserve = dev->hard_header_len;
2698 size_max = po->tx_ring.frame_size
2699 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2700
2701 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2702 size_max = dev->mtu + reserve + VLAN_HLEN;
2703
2704 reinit_completion(&po->skb_completion);
2705
2706 do {
2707 ph = packet_current_frame(po, &po->tx_ring,
2708 TP_STATUS_SEND_REQUEST);
2709 if (unlikely(ph == NULL)) {
2710 if (need_wait && skb) {
2711 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2712 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2713 if (timeo <= 0) {
2714 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2715 goto out_put;
2716 }
2717 }
2718 /* check for additional frames */
2719 continue;
2720 }
2721
2722 skb = NULL;
2723 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2724 if (tp_len < 0)
2725 goto tpacket_error;
2726
2727 status = TP_STATUS_SEND_REQUEST;
2728 hlen = LL_RESERVED_SPACE(dev);
2729 tlen = dev->needed_tailroom;
2730 if (po->has_vnet_hdr) {
2731 vnet_hdr = data;
2732 data += sizeof(*vnet_hdr);
2733 tp_len -= sizeof(*vnet_hdr);
2734 if (tp_len < 0 ||
2735 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2736 tp_len = -EINVAL;
2737 goto tpacket_error;
2738 }
2739 copylen = __virtio16_to_cpu(vio_le(),
2740 vnet_hdr->hdr_len);
2741 }
2742 copylen = max_t(int, copylen, dev->hard_header_len);
2743 skb = sock_alloc_send_skb(&po->sk,
2744 hlen + tlen + sizeof(struct sockaddr_ll) +
2745 (copylen - dev->hard_header_len),
2746 !need_wait, &err);
2747
2748 if (unlikely(skb == NULL)) {
2749 /* we assume the socket was initially writeable ... */
2750 if (likely(len_sum > 0))
2751 err = len_sum;
2752 goto out_status;
2753 }
2754 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2755 addr, hlen, copylen, &sockc);
2756 if (likely(tp_len >= 0) &&
2757 tp_len > dev->mtu + reserve &&
2758 !po->has_vnet_hdr &&
2759 !packet_extra_vlan_len_allowed(dev, skb))
2760 tp_len = -EMSGSIZE;
2761
2762 if (unlikely(tp_len < 0)) {
2763 tpacket_error:
2764 if (po->tp_loss) {
2765 __packet_set_status(po, ph,
2766 TP_STATUS_AVAILABLE);
2767 packet_increment_head(&po->tx_ring);
2768 kfree_skb(skb);
2769 continue;
2770 } else {
2771 status = TP_STATUS_WRONG_FORMAT;
2772 err = tp_len;
2773 goto out_status;
2774 }
2775 }
2776
2777 if (po->has_vnet_hdr) {
2778 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2779 tp_len = -EINVAL;
2780 goto tpacket_error;
2781 }
2782 virtio_net_hdr_set_proto(skb, vnet_hdr);
2783 }
2784
2785 skb->destructor = tpacket_destruct_skb;
2786 __packet_set_status(po, ph, TP_STATUS_SENDING);
2787 packet_inc_pending(&po->tx_ring);
2788
2789 status = TP_STATUS_SEND_REQUEST;
2790 err = po->xmit(skb);
2791 if (unlikely(err > 0)) {
2792 err = net_xmit_errno(err);
2793 if (err && __packet_get_status(po, ph) ==
2794 TP_STATUS_AVAILABLE) {
2795 /* skb was destructed already */
2796 skb = NULL;
2797 goto out_status;
2798 }
2799 /*
2800 * skb was dropped but not destructed yet;
2801 * let's treat it like congestion or err < 0
2802 */
2803 err = 0;
2804 }
2805 packet_increment_head(&po->tx_ring);
2806 len_sum += tp_len;
2807 } while (likely((ph != NULL) ||
2808 /* Note: packet_read_pending() might be slow if we have
2809 * to call it as it's per_cpu variable, but in fast-path
2810 * we already short-circuit the loop with the first
2811 * condition, and luckily don't have to go that path
2812 * anyway.
2813 */
2814 (need_wait && packet_read_pending(&po->tx_ring))));
2815
2816 err = len_sum;
2817 goto out_put;
2818
2819 out_status:
2820 __packet_set_status(po, ph, status);
2821 kfree_skb(skb);
2822 out_put:
2823 dev_put(dev);
2824 out:
2825 mutex_unlock(&po->pg_vec_lock);
2826 return err;
2827 }
2828
packet_alloc_skb(struct sock * sk,size_t prepad,size_t reserve,size_t len,size_t linear,int noblock,int * err)2829 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2830 size_t reserve, size_t len,
2831 size_t linear, int noblock,
2832 int *err)
2833 {
2834 struct sk_buff *skb;
2835
2836 /* Under a page? Don't bother with paged skb. */
2837 if (prepad + len < PAGE_SIZE || !linear)
2838 linear = len;
2839
2840 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2841 err, 0);
2842 if (!skb)
2843 return NULL;
2844
2845 skb_reserve(skb, reserve);
2846 skb_put(skb, linear);
2847 skb->data_len = len - linear;
2848 skb->len += len - linear;
2849
2850 return skb;
2851 }
2852
packet_snd(struct socket * sock,struct msghdr * msg,size_t len)2853 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2854 {
2855 struct sock *sk = sock->sk;
2856 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2857 struct sk_buff *skb;
2858 struct net_device *dev;
2859 __be16 proto;
2860 unsigned char *addr = NULL;
2861 int err, reserve = 0;
2862 struct sockcm_cookie sockc;
2863 struct virtio_net_hdr vnet_hdr = { 0 };
2864 int offset = 0;
2865 struct packet_sock *po = pkt_sk(sk);
2866 bool has_vnet_hdr = false;
2867 int hlen, tlen, linear;
2868 int extra_len = 0;
2869
2870 /*
2871 * Get and verify the address.
2872 */
2873
2874 if (likely(saddr == NULL)) {
2875 dev = packet_cached_dev_get(po);
2876 proto = po->num;
2877 } else {
2878 err = -EINVAL;
2879 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2880 goto out;
2881 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2882 goto out;
2883 proto = saddr->sll_protocol;
2884 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2885 if (sock->type == SOCK_DGRAM) {
2886 if (dev && msg->msg_namelen < dev->addr_len +
2887 offsetof(struct sockaddr_ll, sll_addr))
2888 goto out_unlock;
2889 addr = saddr->sll_addr;
2890 }
2891 }
2892
2893 err = -ENXIO;
2894 if (unlikely(dev == NULL))
2895 goto out_unlock;
2896 err = -ENETDOWN;
2897 if (unlikely(!(dev->flags & IFF_UP)))
2898 goto out_unlock;
2899
2900 sockcm_init(&sockc, sk);
2901 sockc.mark = sk->sk_mark;
2902 if (msg->msg_controllen) {
2903 err = sock_cmsg_send(sk, msg, &sockc);
2904 if (unlikely(err))
2905 goto out_unlock;
2906 }
2907
2908 if (sock->type == SOCK_RAW)
2909 reserve = dev->hard_header_len;
2910 if (po->has_vnet_hdr) {
2911 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2912 if (err)
2913 goto out_unlock;
2914 has_vnet_hdr = true;
2915 }
2916
2917 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2918 if (!netif_supports_nofcs(dev)) {
2919 err = -EPROTONOSUPPORT;
2920 goto out_unlock;
2921 }
2922 extra_len = 4; /* We're doing our own CRC */
2923 }
2924
2925 err = -EMSGSIZE;
2926 if (!vnet_hdr.gso_type &&
2927 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2928 goto out_unlock;
2929
2930 err = -ENOBUFS;
2931 hlen = LL_RESERVED_SPACE(dev);
2932 tlen = dev->needed_tailroom;
2933 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2934 linear = max(linear, min_t(int, len, dev->hard_header_len));
2935 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2936 msg->msg_flags & MSG_DONTWAIT, &err);
2937 if (skb == NULL)
2938 goto out_unlock;
2939
2940 skb_reset_network_header(skb);
2941
2942 err = -EINVAL;
2943 if (sock->type == SOCK_DGRAM) {
2944 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2945 if (unlikely(offset < 0))
2946 goto out_free;
2947 } else if (reserve) {
2948 skb_reserve(skb, -reserve);
2949 if (len < reserve + sizeof(struct ipv6hdr) &&
2950 dev->min_header_len != dev->hard_header_len)
2951 skb_reset_network_header(skb);
2952 }
2953
2954 /* Returns -EFAULT on error */
2955 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2956 if (err)
2957 goto out_free;
2958
2959 if (sock->type == SOCK_RAW &&
2960 !dev_validate_header(dev, skb->data, len)) {
2961 err = -EINVAL;
2962 goto out_free;
2963 }
2964
2965 skb_setup_tx_timestamp(skb, sockc.tsflags);
2966
2967 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2968 !packet_extra_vlan_len_allowed(dev, skb)) {
2969 err = -EMSGSIZE;
2970 goto out_free;
2971 }
2972
2973 skb->protocol = proto;
2974 skb->dev = dev;
2975 skb->priority = sk->sk_priority;
2976 skb->mark = sockc.mark;
2977 skb->tstamp = sockc.transmit_time;
2978
2979 if (has_vnet_hdr) {
2980 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2981 if (err)
2982 goto out_free;
2983 len += sizeof(vnet_hdr);
2984 virtio_net_hdr_set_proto(skb, &vnet_hdr);
2985 }
2986
2987 packet_parse_headers(skb, sock);
2988
2989 if (unlikely(extra_len == 4))
2990 skb->no_fcs = 1;
2991
2992 err = po->xmit(skb);
2993 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2994 goto out_unlock;
2995
2996 dev_put(dev);
2997
2998 return len;
2999
3000 out_free:
3001 kfree_skb(skb);
3002 out_unlock:
3003 if (dev)
3004 dev_put(dev);
3005 out:
3006 return err;
3007 }
3008
packet_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)3009 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
3010 {
3011 struct sock *sk = sock->sk;
3012 struct packet_sock *po = pkt_sk(sk);
3013
3014 if (po->tx_ring.pg_vec)
3015 return tpacket_snd(po, msg);
3016 else
3017 return packet_snd(sock, msg, len);
3018 }
3019
3020 /*
3021 * Close a PACKET socket. This is fairly simple. We immediately go
3022 * to 'closed' state and remove our protocol entry in the device list.
3023 */
3024
packet_release(struct socket * sock)3025 static int packet_release(struct socket *sock)
3026 {
3027 struct sock *sk = sock->sk;
3028 struct packet_sock *po;
3029 struct packet_fanout *f;
3030 struct net *net;
3031 union tpacket_req_u req_u;
3032
3033 if (!sk)
3034 return 0;
3035
3036 net = sock_net(sk);
3037 po = pkt_sk(sk);
3038
3039 mutex_lock(&net->packet.sklist_lock);
3040 sk_del_node_init_rcu(sk);
3041 mutex_unlock(&net->packet.sklist_lock);
3042
3043 preempt_disable();
3044 sock_prot_inuse_add(net, sk->sk_prot, -1);
3045 preempt_enable();
3046
3047 spin_lock(&po->bind_lock);
3048 unregister_prot_hook(sk, false);
3049 packet_cached_dev_reset(po);
3050
3051 if (po->prot_hook.dev) {
3052 dev_put(po->prot_hook.dev);
3053 po->prot_hook.dev = NULL;
3054 }
3055 spin_unlock(&po->bind_lock);
3056
3057 packet_flush_mclist(sk);
3058
3059 lock_sock(sk);
3060 if (po->rx_ring.pg_vec) {
3061 memset(&req_u, 0, sizeof(req_u));
3062 packet_set_ring(sk, &req_u, 1, 0);
3063 }
3064
3065 if (po->tx_ring.pg_vec) {
3066 memset(&req_u, 0, sizeof(req_u));
3067 packet_set_ring(sk, &req_u, 1, 1);
3068 }
3069 release_sock(sk);
3070
3071 f = fanout_release(sk);
3072
3073 synchronize_net();
3074
3075 kfree(po->rollover);
3076 if (f) {
3077 fanout_release_data(f);
3078 kfree(f);
3079 }
3080 /*
3081 * Now the socket is dead. No more input will appear.
3082 */
3083 sock_orphan(sk);
3084 sock->sk = NULL;
3085
3086 /* Purge queues */
3087
3088 skb_queue_purge(&sk->sk_receive_queue);
3089 packet_free_pending(po);
3090 sk_refcnt_debug_release(sk);
3091
3092 sock_put(sk);
3093 return 0;
3094 }
3095
3096 /*
3097 * Attach a packet hook.
3098 */
3099
packet_do_bind(struct sock * sk,const char * name,int ifindex,__be16 proto)3100 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3101 __be16 proto)
3102 {
3103 struct packet_sock *po = pkt_sk(sk);
3104 struct net_device *dev_curr;
3105 __be16 proto_curr;
3106 bool need_rehook;
3107 struct net_device *dev = NULL;
3108 int ret = 0;
3109 bool unlisted = false;
3110
3111 lock_sock(sk);
3112 spin_lock(&po->bind_lock);
3113 rcu_read_lock();
3114
3115 if (po->fanout) {
3116 ret = -EINVAL;
3117 goto out_unlock;
3118 }
3119
3120 if (name) {
3121 dev = dev_get_by_name_rcu(sock_net(sk), name);
3122 if (!dev) {
3123 ret = -ENODEV;
3124 goto out_unlock;
3125 }
3126 } else if (ifindex) {
3127 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3128 if (!dev) {
3129 ret = -ENODEV;
3130 goto out_unlock;
3131 }
3132 }
3133
3134 if (dev)
3135 dev_hold(dev);
3136
3137 proto_curr = po->prot_hook.type;
3138 dev_curr = po->prot_hook.dev;
3139
3140 need_rehook = proto_curr != proto || dev_curr != dev;
3141
3142 if (need_rehook) {
3143 if (po->running) {
3144 rcu_read_unlock();
3145 /* prevents packet_notifier() from calling
3146 * register_prot_hook()
3147 */
3148 po->num = 0;
3149 __unregister_prot_hook(sk, true);
3150 rcu_read_lock();
3151 dev_curr = po->prot_hook.dev;
3152 if (dev)
3153 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3154 dev->ifindex);
3155 }
3156
3157 BUG_ON(po->running);
3158 po->num = proto;
3159 po->prot_hook.type = proto;
3160
3161 if (unlikely(unlisted)) {
3162 dev_put(dev);
3163 po->prot_hook.dev = NULL;
3164 po->ifindex = -1;
3165 packet_cached_dev_reset(po);
3166 } else {
3167 po->prot_hook.dev = dev;
3168 po->ifindex = dev ? dev->ifindex : 0;
3169 packet_cached_dev_assign(po, dev);
3170 }
3171 }
3172 if (dev_curr)
3173 dev_put(dev_curr);
3174
3175 if (proto == 0 || !need_rehook)
3176 goto out_unlock;
3177
3178 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3179 register_prot_hook(sk);
3180 } else {
3181 sk->sk_err = ENETDOWN;
3182 if (!sock_flag(sk, SOCK_DEAD))
3183 sk->sk_error_report(sk);
3184 }
3185
3186 out_unlock:
3187 rcu_read_unlock();
3188 spin_unlock(&po->bind_lock);
3189 release_sock(sk);
3190 return ret;
3191 }
3192
3193 /*
3194 * Bind a packet socket to a device
3195 */
3196
packet_bind_spkt(struct socket * sock,struct sockaddr * uaddr,int addr_len)3197 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3198 int addr_len)
3199 {
3200 struct sock *sk = sock->sk;
3201 char name[sizeof(uaddr->sa_data) + 1];
3202
3203 /*
3204 * Check legality
3205 */
3206
3207 if (addr_len != sizeof(struct sockaddr))
3208 return -EINVAL;
3209 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3210 * zero-terminated.
3211 */
3212 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3213 name[sizeof(uaddr->sa_data)] = 0;
3214
3215 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3216 }
3217
packet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3218 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3219 {
3220 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3221 struct sock *sk = sock->sk;
3222
3223 /*
3224 * Check legality
3225 */
3226
3227 if (addr_len < sizeof(struct sockaddr_ll))
3228 return -EINVAL;
3229 if (sll->sll_family != AF_PACKET)
3230 return -EINVAL;
3231
3232 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3233 sll->sll_protocol ? : pkt_sk(sk)->num);
3234 }
3235
3236 static struct proto packet_proto = {
3237 .name = "PACKET",
3238 .owner = THIS_MODULE,
3239 .obj_size = sizeof(struct packet_sock),
3240 };
3241
3242 /*
3243 * Create a packet of type SOCK_PACKET.
3244 */
3245
packet_create(struct net * net,struct socket * sock,int protocol,int kern)3246 static int packet_create(struct net *net, struct socket *sock, int protocol,
3247 int kern)
3248 {
3249 struct sock *sk;
3250 struct packet_sock *po;
3251 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3252 int err;
3253
3254 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3255 return -EPERM;
3256 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3257 sock->type != SOCK_PACKET)
3258 return -ESOCKTNOSUPPORT;
3259
3260 sock->state = SS_UNCONNECTED;
3261
3262 err = -ENOBUFS;
3263 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3264 if (sk == NULL)
3265 goto out;
3266
3267 sock->ops = &packet_ops;
3268 if (sock->type == SOCK_PACKET)
3269 sock->ops = &packet_ops_spkt;
3270
3271 sock_init_data(sock, sk);
3272
3273 po = pkt_sk(sk);
3274 init_completion(&po->skb_completion);
3275 sk->sk_family = PF_PACKET;
3276 po->num = proto;
3277 po->xmit = dev_queue_xmit;
3278
3279 err = packet_alloc_pending(po);
3280 if (err)
3281 goto out2;
3282
3283 packet_cached_dev_reset(po);
3284
3285 sk->sk_destruct = packet_sock_destruct;
3286 sk_refcnt_debug_inc(sk);
3287
3288 /*
3289 * Attach a protocol block
3290 */
3291
3292 spin_lock_init(&po->bind_lock);
3293 mutex_init(&po->pg_vec_lock);
3294 po->rollover = NULL;
3295 po->prot_hook.func = packet_rcv;
3296
3297 if (sock->type == SOCK_PACKET)
3298 po->prot_hook.func = packet_rcv_spkt;
3299
3300 po->prot_hook.af_packet_priv = sk;
3301
3302 if (proto) {
3303 po->prot_hook.type = proto;
3304 __register_prot_hook(sk);
3305 }
3306
3307 mutex_lock(&net->packet.sklist_lock);
3308 sk_add_node_tail_rcu(sk, &net->packet.sklist);
3309 mutex_unlock(&net->packet.sklist_lock);
3310
3311 preempt_disable();
3312 sock_prot_inuse_add(net, &packet_proto, 1);
3313 preempt_enable();
3314
3315 return 0;
3316 out2:
3317 sk_free(sk);
3318 out:
3319 return err;
3320 }
3321
3322 /*
3323 * Pull a packet from our receive queue and hand it to the user.
3324 * If necessary we block.
3325 */
3326
packet_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)3327 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3328 int flags)
3329 {
3330 struct sock *sk = sock->sk;
3331 struct sk_buff *skb;
3332 int copied, err;
3333 int vnet_hdr_len = 0;
3334 unsigned int origlen = 0;
3335
3336 err = -EINVAL;
3337 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3338 goto out;
3339
3340 #if 0
3341 /* What error should we return now? EUNATTACH? */
3342 if (pkt_sk(sk)->ifindex < 0)
3343 return -ENODEV;
3344 #endif
3345
3346 if (flags & MSG_ERRQUEUE) {
3347 err = sock_recv_errqueue(sk, msg, len,
3348 SOL_PACKET, PACKET_TX_TIMESTAMP);
3349 goto out;
3350 }
3351
3352 /*
3353 * Call the generic datagram receiver. This handles all sorts
3354 * of horrible races and re-entrancy so we can forget about it
3355 * in the protocol layers.
3356 *
3357 * Now it will return ENETDOWN, if device have just gone down,
3358 * but then it will block.
3359 */
3360
3361 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3362
3363 /*
3364 * An error occurred so return it. Because skb_recv_datagram()
3365 * handles the blocking we don't see and worry about blocking
3366 * retries.
3367 */
3368
3369 if (skb == NULL)
3370 goto out;
3371
3372 packet_rcv_try_clear_pressure(pkt_sk(sk));
3373
3374 if (pkt_sk(sk)->has_vnet_hdr) {
3375 err = packet_rcv_vnet(msg, skb, &len);
3376 if (err)
3377 goto out_free;
3378 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3379 }
3380
3381 /* You lose any data beyond the buffer you gave. If it worries
3382 * a user program they can ask the device for its MTU
3383 * anyway.
3384 */
3385 copied = skb->len;
3386 if (copied > len) {
3387 copied = len;
3388 msg->msg_flags |= MSG_TRUNC;
3389 }
3390
3391 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3392 if (err)
3393 goto out_free;
3394
3395 if (sock->type != SOCK_PACKET) {
3396 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3397
3398 /* Original length was stored in sockaddr_ll fields */
3399 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3400 sll->sll_family = AF_PACKET;
3401 sll->sll_protocol = skb->protocol;
3402 }
3403
3404 sock_recv_ts_and_drops(msg, sk, skb);
3405
3406 if (msg->msg_name) {
3407 int copy_len;
3408
3409 /* If the address length field is there to be filled
3410 * in, we fill it in now.
3411 */
3412 if (sock->type == SOCK_PACKET) {
3413 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3414 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3415 copy_len = msg->msg_namelen;
3416 } else {
3417 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3418
3419 msg->msg_namelen = sll->sll_halen +
3420 offsetof(struct sockaddr_ll, sll_addr);
3421 copy_len = msg->msg_namelen;
3422 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3423 memset(msg->msg_name +
3424 offsetof(struct sockaddr_ll, sll_addr),
3425 0, sizeof(sll->sll_addr));
3426 msg->msg_namelen = sizeof(struct sockaddr_ll);
3427 }
3428 }
3429 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3430 }
3431
3432 if (pkt_sk(sk)->auxdata) {
3433 struct tpacket_auxdata aux;
3434
3435 aux.tp_status = TP_STATUS_USER;
3436 if (skb->ip_summed == CHECKSUM_PARTIAL)
3437 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3438 else if (skb->pkt_type != PACKET_OUTGOING &&
3439 (skb->ip_summed == CHECKSUM_COMPLETE ||
3440 skb_csum_unnecessary(skb)))
3441 aux.tp_status |= TP_STATUS_CSUM_VALID;
3442
3443 aux.tp_len = origlen;
3444 aux.tp_snaplen = skb->len;
3445 aux.tp_mac = 0;
3446 aux.tp_net = skb_network_offset(skb);
3447 if (skb_vlan_tag_present(skb)) {
3448 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3449 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3450 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3451 } else {
3452 aux.tp_vlan_tci = 0;
3453 aux.tp_vlan_tpid = 0;
3454 }
3455 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3456 }
3457
3458 /*
3459 * Free or return the buffer as appropriate. Again this
3460 * hides all the races and re-entrancy issues from us.
3461 */
3462 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3463
3464 out_free:
3465 skb_free_datagram(sk, skb);
3466 out:
3467 return err;
3468 }
3469
packet_getname_spkt(struct socket * sock,struct sockaddr * uaddr,int peer)3470 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3471 int peer)
3472 {
3473 struct net_device *dev;
3474 struct sock *sk = sock->sk;
3475
3476 if (peer)
3477 return -EOPNOTSUPP;
3478
3479 uaddr->sa_family = AF_PACKET;
3480 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3481 rcu_read_lock();
3482 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3483 if (dev)
3484 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3485 rcu_read_unlock();
3486
3487 return sizeof(*uaddr);
3488 }
3489
packet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)3490 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3491 int peer)
3492 {
3493 struct net_device *dev;
3494 struct sock *sk = sock->sk;
3495 struct packet_sock *po = pkt_sk(sk);
3496 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3497
3498 if (peer)
3499 return -EOPNOTSUPP;
3500
3501 sll->sll_family = AF_PACKET;
3502 sll->sll_ifindex = po->ifindex;
3503 sll->sll_protocol = po->num;
3504 sll->sll_pkttype = 0;
3505 rcu_read_lock();
3506 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3507 if (dev) {
3508 sll->sll_hatype = dev->type;
3509 sll->sll_halen = dev->addr_len;
3510 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3511 } else {
3512 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3513 sll->sll_halen = 0;
3514 }
3515 rcu_read_unlock();
3516
3517 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3518 }
3519
packet_dev_mc(struct net_device * dev,struct packet_mclist * i,int what)3520 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3521 int what)
3522 {
3523 switch (i->type) {
3524 case PACKET_MR_MULTICAST:
3525 if (i->alen != dev->addr_len)
3526 return -EINVAL;
3527 if (what > 0)
3528 return dev_mc_add(dev, i->addr);
3529 else
3530 return dev_mc_del(dev, i->addr);
3531 break;
3532 case PACKET_MR_PROMISC:
3533 return dev_set_promiscuity(dev, what);
3534 case PACKET_MR_ALLMULTI:
3535 return dev_set_allmulti(dev, what);
3536 case PACKET_MR_UNICAST:
3537 if (i->alen != dev->addr_len)
3538 return -EINVAL;
3539 if (what > 0)
3540 return dev_uc_add(dev, i->addr);
3541 else
3542 return dev_uc_del(dev, i->addr);
3543 break;
3544 default:
3545 break;
3546 }
3547 return 0;
3548 }
3549
packet_dev_mclist_delete(struct net_device * dev,struct packet_mclist ** mlp)3550 static void packet_dev_mclist_delete(struct net_device *dev,
3551 struct packet_mclist **mlp)
3552 {
3553 struct packet_mclist *ml;
3554
3555 while ((ml = *mlp) != NULL) {
3556 if (ml->ifindex == dev->ifindex) {
3557 packet_dev_mc(dev, ml, -1);
3558 *mlp = ml->next;
3559 kfree(ml);
3560 } else
3561 mlp = &ml->next;
3562 }
3563 }
3564
packet_mc_add(struct sock * sk,struct packet_mreq_max * mreq)3565 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3566 {
3567 struct packet_sock *po = pkt_sk(sk);
3568 struct packet_mclist *ml, *i;
3569 struct net_device *dev;
3570 int err;
3571
3572 rtnl_lock();
3573
3574 err = -ENODEV;
3575 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3576 if (!dev)
3577 goto done;
3578
3579 err = -EINVAL;
3580 if (mreq->mr_alen > dev->addr_len)
3581 goto done;
3582
3583 err = -ENOBUFS;
3584 i = kmalloc(sizeof(*i), GFP_KERNEL);
3585 if (i == NULL)
3586 goto done;
3587
3588 err = 0;
3589 for (ml = po->mclist; ml; ml = ml->next) {
3590 if (ml->ifindex == mreq->mr_ifindex &&
3591 ml->type == mreq->mr_type &&
3592 ml->alen == mreq->mr_alen &&
3593 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3594 ml->count++;
3595 /* Free the new element ... */
3596 kfree(i);
3597 goto done;
3598 }
3599 }
3600
3601 i->type = mreq->mr_type;
3602 i->ifindex = mreq->mr_ifindex;
3603 i->alen = mreq->mr_alen;
3604 memcpy(i->addr, mreq->mr_address, i->alen);
3605 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3606 i->count = 1;
3607 i->next = po->mclist;
3608 po->mclist = i;
3609 err = packet_dev_mc(dev, i, 1);
3610 if (err) {
3611 po->mclist = i->next;
3612 kfree(i);
3613 }
3614
3615 done:
3616 rtnl_unlock();
3617 return err;
3618 }
3619
packet_mc_drop(struct sock * sk,struct packet_mreq_max * mreq)3620 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3621 {
3622 struct packet_mclist *ml, **mlp;
3623
3624 rtnl_lock();
3625
3626 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3627 if (ml->ifindex == mreq->mr_ifindex &&
3628 ml->type == mreq->mr_type &&
3629 ml->alen == mreq->mr_alen &&
3630 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3631 if (--ml->count == 0) {
3632 struct net_device *dev;
3633 *mlp = ml->next;
3634 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3635 if (dev)
3636 packet_dev_mc(dev, ml, -1);
3637 kfree(ml);
3638 }
3639 break;
3640 }
3641 }
3642 rtnl_unlock();
3643 return 0;
3644 }
3645
packet_flush_mclist(struct sock * sk)3646 static void packet_flush_mclist(struct sock *sk)
3647 {
3648 struct packet_sock *po = pkt_sk(sk);
3649 struct packet_mclist *ml;
3650
3651 if (!po->mclist)
3652 return;
3653
3654 rtnl_lock();
3655 while ((ml = po->mclist) != NULL) {
3656 struct net_device *dev;
3657
3658 po->mclist = ml->next;
3659 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3660 if (dev != NULL)
3661 packet_dev_mc(dev, ml, -1);
3662 kfree(ml);
3663 }
3664 rtnl_unlock();
3665 }
3666
3667 static int
packet_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3668 packet_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval,
3669 unsigned int optlen)
3670 {
3671 struct sock *sk = sock->sk;
3672 struct packet_sock *po = pkt_sk(sk);
3673 int ret;
3674
3675 if (level != SOL_PACKET)
3676 return -ENOPROTOOPT;
3677
3678 switch (optname) {
3679 case PACKET_ADD_MEMBERSHIP:
3680 case PACKET_DROP_MEMBERSHIP:
3681 {
3682 struct packet_mreq_max mreq;
3683 int len = optlen;
3684 memset(&mreq, 0, sizeof(mreq));
3685 if (len < sizeof(struct packet_mreq))
3686 return -EINVAL;
3687 if (len > sizeof(mreq))
3688 len = sizeof(mreq);
3689 if (copy_from_sockptr(&mreq, optval, len))
3690 return -EFAULT;
3691 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3692 return -EINVAL;
3693 if (optname == PACKET_ADD_MEMBERSHIP)
3694 ret = packet_mc_add(sk, &mreq);
3695 else
3696 ret = packet_mc_drop(sk, &mreq);
3697 return ret;
3698 }
3699
3700 case PACKET_RX_RING:
3701 case PACKET_TX_RING:
3702 {
3703 union tpacket_req_u req_u;
3704 int len;
3705
3706 lock_sock(sk);
3707 switch (po->tp_version) {
3708 case TPACKET_V1:
3709 case TPACKET_V2:
3710 len = sizeof(req_u.req);
3711 break;
3712 case TPACKET_V3:
3713 default:
3714 len = sizeof(req_u.req3);
3715 break;
3716 }
3717 if (optlen < len) {
3718 ret = -EINVAL;
3719 } else {
3720 if (copy_from_sockptr(&req_u.req, optval, len))
3721 ret = -EFAULT;
3722 else
3723 ret = packet_set_ring(sk, &req_u, 0,
3724 optname == PACKET_TX_RING);
3725 }
3726 release_sock(sk);
3727 return ret;
3728 }
3729 case PACKET_COPY_THRESH:
3730 {
3731 int val;
3732
3733 if (optlen != sizeof(val))
3734 return -EINVAL;
3735 if (copy_from_sockptr(&val, optval, sizeof(val)))
3736 return -EFAULT;
3737
3738 pkt_sk(sk)->copy_thresh = val;
3739 return 0;
3740 }
3741 case PACKET_VERSION:
3742 {
3743 int val;
3744
3745 if (optlen != sizeof(val))
3746 return -EINVAL;
3747 if (copy_from_sockptr(&val, optval, sizeof(val)))
3748 return -EFAULT;
3749 switch (val) {
3750 case TPACKET_V1:
3751 case TPACKET_V2:
3752 case TPACKET_V3:
3753 break;
3754 default:
3755 return -EINVAL;
3756 }
3757 lock_sock(sk);
3758 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3759 ret = -EBUSY;
3760 } else {
3761 po->tp_version = val;
3762 ret = 0;
3763 }
3764 release_sock(sk);
3765 return ret;
3766 }
3767 case PACKET_RESERVE:
3768 {
3769 unsigned int val;
3770
3771 if (optlen != sizeof(val))
3772 return -EINVAL;
3773 if (copy_from_sockptr(&val, optval, sizeof(val)))
3774 return -EFAULT;
3775 if (val > INT_MAX)
3776 return -EINVAL;
3777 lock_sock(sk);
3778 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3779 ret = -EBUSY;
3780 } else {
3781 po->tp_reserve = val;
3782 ret = 0;
3783 }
3784 release_sock(sk);
3785 return ret;
3786 }
3787 case PACKET_LOSS:
3788 {
3789 unsigned int val;
3790
3791 if (optlen != sizeof(val))
3792 return -EINVAL;
3793 if (copy_from_sockptr(&val, optval, sizeof(val)))
3794 return -EFAULT;
3795
3796 lock_sock(sk);
3797 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3798 ret = -EBUSY;
3799 } else {
3800 po->tp_loss = !!val;
3801 ret = 0;
3802 }
3803 release_sock(sk);
3804 return ret;
3805 }
3806 case PACKET_AUXDATA:
3807 {
3808 int val;
3809
3810 if (optlen < sizeof(val))
3811 return -EINVAL;
3812 if (copy_from_sockptr(&val, optval, sizeof(val)))
3813 return -EFAULT;
3814
3815 lock_sock(sk);
3816 po->auxdata = !!val;
3817 release_sock(sk);
3818 return 0;
3819 }
3820 case PACKET_ORIGDEV:
3821 {
3822 int val;
3823
3824 if (optlen < sizeof(val))
3825 return -EINVAL;
3826 if (copy_from_sockptr(&val, optval, sizeof(val)))
3827 return -EFAULT;
3828
3829 lock_sock(sk);
3830 po->origdev = !!val;
3831 release_sock(sk);
3832 return 0;
3833 }
3834 case PACKET_VNET_HDR:
3835 {
3836 int val;
3837
3838 if (sock->type != SOCK_RAW)
3839 return -EINVAL;
3840 if (optlen < sizeof(val))
3841 return -EINVAL;
3842 if (copy_from_sockptr(&val, optval, sizeof(val)))
3843 return -EFAULT;
3844
3845 lock_sock(sk);
3846 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3847 ret = -EBUSY;
3848 } else {
3849 po->has_vnet_hdr = !!val;
3850 ret = 0;
3851 }
3852 release_sock(sk);
3853 return ret;
3854 }
3855 case PACKET_TIMESTAMP:
3856 {
3857 int val;
3858
3859 if (optlen != sizeof(val))
3860 return -EINVAL;
3861 if (copy_from_sockptr(&val, optval, sizeof(val)))
3862 return -EFAULT;
3863
3864 po->tp_tstamp = val;
3865 return 0;
3866 }
3867 case PACKET_FANOUT:
3868 {
3869 int val;
3870
3871 if (optlen != sizeof(val))
3872 return -EINVAL;
3873 if (copy_from_sockptr(&val, optval, sizeof(val)))
3874 return -EFAULT;
3875
3876 return fanout_add(sk, val & 0xffff, val >> 16);
3877 }
3878 case PACKET_FANOUT_DATA:
3879 {
3880 if (!po->fanout)
3881 return -EINVAL;
3882
3883 return fanout_set_data(po, optval, optlen);
3884 }
3885 case PACKET_IGNORE_OUTGOING:
3886 {
3887 int val;
3888
3889 if (optlen != sizeof(val))
3890 return -EINVAL;
3891 if (copy_from_sockptr(&val, optval, sizeof(val)))
3892 return -EFAULT;
3893 if (val < 0 || val > 1)
3894 return -EINVAL;
3895
3896 po->prot_hook.ignore_outgoing = !!val;
3897 return 0;
3898 }
3899 case PACKET_TX_HAS_OFF:
3900 {
3901 unsigned int val;
3902
3903 if (optlen != sizeof(val))
3904 return -EINVAL;
3905 if (copy_from_sockptr(&val, optval, sizeof(val)))
3906 return -EFAULT;
3907
3908 lock_sock(sk);
3909 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3910 ret = -EBUSY;
3911 } else {
3912 po->tp_tx_has_off = !!val;
3913 ret = 0;
3914 }
3915 release_sock(sk);
3916 return 0;
3917 }
3918 case PACKET_QDISC_BYPASS:
3919 {
3920 int val;
3921
3922 if (optlen != sizeof(val))
3923 return -EINVAL;
3924 if (copy_from_sockptr(&val, optval, sizeof(val)))
3925 return -EFAULT;
3926
3927 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3928 return 0;
3929 }
3930 default:
3931 return -ENOPROTOOPT;
3932 }
3933 }
3934
packet_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3935 static int packet_getsockopt(struct socket *sock, int level, int optname,
3936 char __user *optval, int __user *optlen)
3937 {
3938 int len;
3939 int val, lv = sizeof(val);
3940 struct sock *sk = sock->sk;
3941 struct packet_sock *po = pkt_sk(sk);
3942 void *data = &val;
3943 union tpacket_stats_u st;
3944 struct tpacket_rollover_stats rstats;
3945 int drops;
3946
3947 if (level != SOL_PACKET)
3948 return -ENOPROTOOPT;
3949
3950 if (get_user(len, optlen))
3951 return -EFAULT;
3952
3953 if (len < 0)
3954 return -EINVAL;
3955
3956 switch (optname) {
3957 case PACKET_STATISTICS:
3958 spin_lock_bh(&sk->sk_receive_queue.lock);
3959 memcpy(&st, &po->stats, sizeof(st));
3960 memset(&po->stats, 0, sizeof(po->stats));
3961 spin_unlock_bh(&sk->sk_receive_queue.lock);
3962 drops = atomic_xchg(&po->tp_drops, 0);
3963
3964 if (po->tp_version == TPACKET_V3) {
3965 lv = sizeof(struct tpacket_stats_v3);
3966 st.stats3.tp_drops = drops;
3967 st.stats3.tp_packets += drops;
3968 data = &st.stats3;
3969 } else {
3970 lv = sizeof(struct tpacket_stats);
3971 st.stats1.tp_drops = drops;
3972 st.stats1.tp_packets += drops;
3973 data = &st.stats1;
3974 }
3975
3976 break;
3977 case PACKET_AUXDATA:
3978 val = po->auxdata;
3979 break;
3980 case PACKET_ORIGDEV:
3981 val = po->origdev;
3982 break;
3983 case PACKET_VNET_HDR:
3984 val = po->has_vnet_hdr;
3985 break;
3986 case PACKET_VERSION:
3987 val = po->tp_version;
3988 break;
3989 case PACKET_HDRLEN:
3990 if (len > sizeof(int))
3991 len = sizeof(int);
3992 if (len < sizeof(int))
3993 return -EINVAL;
3994 if (copy_from_user(&val, optval, len))
3995 return -EFAULT;
3996 switch (val) {
3997 case TPACKET_V1:
3998 val = sizeof(struct tpacket_hdr);
3999 break;
4000 case TPACKET_V2:
4001 val = sizeof(struct tpacket2_hdr);
4002 break;
4003 case TPACKET_V3:
4004 val = sizeof(struct tpacket3_hdr);
4005 break;
4006 default:
4007 return -EINVAL;
4008 }
4009 break;
4010 case PACKET_RESERVE:
4011 val = po->tp_reserve;
4012 break;
4013 case PACKET_LOSS:
4014 val = po->tp_loss;
4015 break;
4016 case PACKET_TIMESTAMP:
4017 val = po->tp_tstamp;
4018 break;
4019 case PACKET_FANOUT:
4020 val = (po->fanout ?
4021 ((u32)po->fanout->id |
4022 ((u32)po->fanout->type << 16) |
4023 ((u32)po->fanout->flags << 24)) :
4024 0);
4025 break;
4026 case PACKET_IGNORE_OUTGOING:
4027 val = po->prot_hook.ignore_outgoing;
4028 break;
4029 case PACKET_ROLLOVER_STATS:
4030 if (!po->rollover)
4031 return -EINVAL;
4032 rstats.tp_all = atomic_long_read(&po->rollover->num);
4033 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4034 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4035 data = &rstats;
4036 lv = sizeof(rstats);
4037 break;
4038 case PACKET_TX_HAS_OFF:
4039 val = po->tp_tx_has_off;
4040 break;
4041 case PACKET_QDISC_BYPASS:
4042 val = packet_use_direct_xmit(po);
4043 break;
4044 default:
4045 return -ENOPROTOOPT;
4046 }
4047
4048 if (len > lv)
4049 len = lv;
4050 if (put_user(len, optlen))
4051 return -EFAULT;
4052 if (copy_to_user(optval, data, len))
4053 return -EFAULT;
4054 return 0;
4055 }
4056
packet_notifier(struct notifier_block * this,unsigned long msg,void * ptr)4057 static int packet_notifier(struct notifier_block *this,
4058 unsigned long msg, void *ptr)
4059 {
4060 struct sock *sk;
4061 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4062 struct net *net = dev_net(dev);
4063
4064 rcu_read_lock();
4065 sk_for_each_rcu(sk, &net->packet.sklist) {
4066 struct packet_sock *po = pkt_sk(sk);
4067
4068 switch (msg) {
4069 case NETDEV_UNREGISTER:
4070 if (po->mclist)
4071 packet_dev_mclist_delete(dev, &po->mclist);
4072 fallthrough;
4073
4074 case NETDEV_DOWN:
4075 if (dev->ifindex == po->ifindex) {
4076 spin_lock(&po->bind_lock);
4077 if (po->running) {
4078 __unregister_prot_hook(sk, false);
4079 sk->sk_err = ENETDOWN;
4080 if (!sock_flag(sk, SOCK_DEAD))
4081 sk->sk_error_report(sk);
4082 }
4083 if (msg == NETDEV_UNREGISTER) {
4084 packet_cached_dev_reset(po);
4085 po->ifindex = -1;
4086 if (po->prot_hook.dev)
4087 dev_put(po->prot_hook.dev);
4088 po->prot_hook.dev = NULL;
4089 }
4090 spin_unlock(&po->bind_lock);
4091 }
4092 break;
4093 case NETDEV_UP:
4094 if (dev->ifindex == po->ifindex) {
4095 spin_lock(&po->bind_lock);
4096 if (po->num)
4097 register_prot_hook(sk);
4098 spin_unlock(&po->bind_lock);
4099 }
4100 break;
4101 }
4102 }
4103 rcu_read_unlock();
4104 return NOTIFY_DONE;
4105 }
4106
4107
packet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)4108 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4109 unsigned long arg)
4110 {
4111 struct sock *sk = sock->sk;
4112
4113 switch (cmd) {
4114 case SIOCOUTQ:
4115 {
4116 int amount = sk_wmem_alloc_get(sk);
4117
4118 return put_user(amount, (int __user *)arg);
4119 }
4120 case SIOCINQ:
4121 {
4122 struct sk_buff *skb;
4123 int amount = 0;
4124
4125 spin_lock_bh(&sk->sk_receive_queue.lock);
4126 skb = skb_peek(&sk->sk_receive_queue);
4127 if (skb)
4128 amount = skb->len;
4129 spin_unlock_bh(&sk->sk_receive_queue.lock);
4130 return put_user(amount, (int __user *)arg);
4131 }
4132 #ifdef CONFIG_INET
4133 case SIOCADDRT:
4134 case SIOCDELRT:
4135 case SIOCDARP:
4136 case SIOCGARP:
4137 case SIOCSARP:
4138 case SIOCGIFADDR:
4139 case SIOCSIFADDR:
4140 case SIOCGIFBRDADDR:
4141 case SIOCSIFBRDADDR:
4142 case SIOCGIFNETMASK:
4143 case SIOCSIFNETMASK:
4144 case SIOCGIFDSTADDR:
4145 case SIOCSIFDSTADDR:
4146 case SIOCSIFFLAGS:
4147 return inet_dgram_ops.ioctl(sock, cmd, arg);
4148 #endif
4149
4150 default:
4151 return -ENOIOCTLCMD;
4152 }
4153 return 0;
4154 }
4155
packet_poll(struct file * file,struct socket * sock,poll_table * wait)4156 static __poll_t packet_poll(struct file *file, struct socket *sock,
4157 poll_table *wait)
4158 {
4159 struct sock *sk = sock->sk;
4160 struct packet_sock *po = pkt_sk(sk);
4161 __poll_t mask = datagram_poll(file, sock, wait);
4162
4163 spin_lock_bh(&sk->sk_receive_queue.lock);
4164 if (po->rx_ring.pg_vec) {
4165 if (!packet_previous_rx_frame(po, &po->rx_ring,
4166 TP_STATUS_KERNEL))
4167 mask |= EPOLLIN | EPOLLRDNORM;
4168 }
4169 packet_rcv_try_clear_pressure(po);
4170 spin_unlock_bh(&sk->sk_receive_queue.lock);
4171 spin_lock_bh(&sk->sk_write_queue.lock);
4172 if (po->tx_ring.pg_vec) {
4173 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4174 mask |= EPOLLOUT | EPOLLWRNORM;
4175 }
4176 spin_unlock_bh(&sk->sk_write_queue.lock);
4177 return mask;
4178 }
4179
4180
4181 /* Dirty? Well, I still did not learn better way to account
4182 * for user mmaps.
4183 */
4184
packet_mm_open(struct vm_area_struct * vma)4185 static void packet_mm_open(struct vm_area_struct *vma)
4186 {
4187 struct file *file = vma->vm_file;
4188 struct socket *sock = file->private_data;
4189 struct sock *sk = sock->sk;
4190
4191 if (sk)
4192 atomic_inc(&pkt_sk(sk)->mapped);
4193 }
4194
packet_mm_close(struct vm_area_struct * vma)4195 static void packet_mm_close(struct vm_area_struct *vma)
4196 {
4197 struct file *file = vma->vm_file;
4198 struct socket *sock = file->private_data;
4199 struct sock *sk = sock->sk;
4200
4201 if (sk)
4202 atomic_dec(&pkt_sk(sk)->mapped);
4203 }
4204
4205 static const struct vm_operations_struct packet_mmap_ops = {
4206 .open = packet_mm_open,
4207 .close = packet_mm_close,
4208 };
4209
free_pg_vec(struct pgv * pg_vec,unsigned int order,unsigned int len)4210 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4211 unsigned int len)
4212 {
4213 int i;
4214
4215 for (i = 0; i < len; i++) {
4216 if (likely(pg_vec[i].buffer)) {
4217 if (is_vmalloc_addr(pg_vec[i].buffer))
4218 vfree(pg_vec[i].buffer);
4219 else
4220 free_pages((unsigned long)pg_vec[i].buffer,
4221 order);
4222 pg_vec[i].buffer = NULL;
4223 }
4224 }
4225 kfree(pg_vec);
4226 }
4227
alloc_one_pg_vec_page(unsigned long order)4228 static char *alloc_one_pg_vec_page(unsigned long order)
4229 {
4230 char *buffer;
4231 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4232 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4233
4234 buffer = (char *) __get_free_pages(gfp_flags, order);
4235 if (buffer)
4236 return buffer;
4237
4238 /* __get_free_pages failed, fall back to vmalloc */
4239 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4240 if (buffer)
4241 return buffer;
4242
4243 /* vmalloc failed, lets dig into swap here */
4244 gfp_flags &= ~__GFP_NORETRY;
4245 buffer = (char *) __get_free_pages(gfp_flags, order);
4246 if (buffer)
4247 return buffer;
4248
4249 /* complete and utter failure */
4250 return NULL;
4251 }
4252
alloc_pg_vec(struct tpacket_req * req,int order)4253 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4254 {
4255 unsigned int block_nr = req->tp_block_nr;
4256 struct pgv *pg_vec;
4257 int i;
4258
4259 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4260 if (unlikely(!pg_vec))
4261 goto out;
4262
4263 for (i = 0; i < block_nr; i++) {
4264 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4265 if (unlikely(!pg_vec[i].buffer))
4266 goto out_free_pgvec;
4267 }
4268
4269 out:
4270 return pg_vec;
4271
4272 out_free_pgvec:
4273 free_pg_vec(pg_vec, order, block_nr);
4274 pg_vec = NULL;
4275 goto out;
4276 }
4277
packet_set_ring(struct sock * sk,union tpacket_req_u * req_u,int closing,int tx_ring)4278 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4279 int closing, int tx_ring)
4280 {
4281 struct pgv *pg_vec = NULL;
4282 struct packet_sock *po = pkt_sk(sk);
4283 unsigned long *rx_owner_map = NULL;
4284 int was_running, order = 0;
4285 struct packet_ring_buffer *rb;
4286 struct sk_buff_head *rb_queue;
4287 __be16 num;
4288 int err;
4289 /* Added to avoid minimal code churn */
4290 struct tpacket_req *req = &req_u->req;
4291
4292 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4293 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4294
4295 err = -EBUSY;
4296 if (!closing) {
4297 if (atomic_read(&po->mapped))
4298 goto out;
4299 if (packet_read_pending(rb))
4300 goto out;
4301 }
4302
4303 if (req->tp_block_nr) {
4304 unsigned int min_frame_size;
4305
4306 /* Sanity tests and some calculations */
4307 err = -EBUSY;
4308 if (unlikely(rb->pg_vec))
4309 goto out;
4310
4311 switch (po->tp_version) {
4312 case TPACKET_V1:
4313 po->tp_hdrlen = TPACKET_HDRLEN;
4314 break;
4315 case TPACKET_V2:
4316 po->tp_hdrlen = TPACKET2_HDRLEN;
4317 break;
4318 case TPACKET_V3:
4319 po->tp_hdrlen = TPACKET3_HDRLEN;
4320 break;
4321 }
4322
4323 err = -EINVAL;
4324 if (unlikely((int)req->tp_block_size <= 0))
4325 goto out;
4326 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4327 goto out;
4328 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4329 if (po->tp_version >= TPACKET_V3 &&
4330 req->tp_block_size <
4331 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4332 goto out;
4333 if (unlikely(req->tp_frame_size < min_frame_size))
4334 goto out;
4335 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4336 goto out;
4337
4338 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4339 if (unlikely(rb->frames_per_block == 0))
4340 goto out;
4341 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4342 goto out;
4343 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4344 req->tp_frame_nr))
4345 goto out;
4346
4347 err = -ENOMEM;
4348 order = get_order(req->tp_block_size);
4349 pg_vec = alloc_pg_vec(req, order);
4350 if (unlikely(!pg_vec))
4351 goto out;
4352 switch (po->tp_version) {
4353 case TPACKET_V3:
4354 /* Block transmit is not supported yet */
4355 if (!tx_ring) {
4356 init_prb_bdqc(po, rb, pg_vec, req_u);
4357 } else {
4358 struct tpacket_req3 *req3 = &req_u->req3;
4359
4360 if (req3->tp_retire_blk_tov ||
4361 req3->tp_sizeof_priv ||
4362 req3->tp_feature_req_word) {
4363 err = -EINVAL;
4364 goto out_free_pg_vec;
4365 }
4366 }
4367 break;
4368 default:
4369 if (!tx_ring) {
4370 rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4371 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4372 if (!rx_owner_map)
4373 goto out_free_pg_vec;
4374 }
4375 break;
4376 }
4377 }
4378 /* Done */
4379 else {
4380 err = -EINVAL;
4381 if (unlikely(req->tp_frame_nr))
4382 goto out;
4383 }
4384
4385
4386 /* Detach socket from network */
4387 spin_lock(&po->bind_lock);
4388 was_running = po->running;
4389 num = po->num;
4390 if (was_running) {
4391 po->num = 0;
4392 __unregister_prot_hook(sk, false);
4393 }
4394 spin_unlock(&po->bind_lock);
4395
4396 synchronize_net();
4397
4398 err = -EBUSY;
4399 mutex_lock(&po->pg_vec_lock);
4400 if (closing || atomic_read(&po->mapped) == 0) {
4401 err = 0;
4402 spin_lock_bh(&rb_queue->lock);
4403 swap(rb->pg_vec, pg_vec);
4404 if (po->tp_version <= TPACKET_V2)
4405 swap(rb->rx_owner_map, rx_owner_map);
4406 rb->frame_max = (req->tp_frame_nr - 1);
4407 rb->head = 0;
4408 rb->frame_size = req->tp_frame_size;
4409 spin_unlock_bh(&rb_queue->lock);
4410
4411 swap(rb->pg_vec_order, order);
4412 swap(rb->pg_vec_len, req->tp_block_nr);
4413
4414 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4415 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4416 tpacket_rcv : packet_rcv;
4417 skb_queue_purge(rb_queue);
4418 if (atomic_read(&po->mapped))
4419 pr_err("packet_mmap: vma is busy: %d\n",
4420 atomic_read(&po->mapped));
4421 }
4422 mutex_unlock(&po->pg_vec_lock);
4423
4424 spin_lock(&po->bind_lock);
4425 if (was_running) {
4426 po->num = num;
4427 register_prot_hook(sk);
4428 }
4429 spin_unlock(&po->bind_lock);
4430 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4431 /* Because we don't support block-based V3 on tx-ring */
4432 if (!tx_ring)
4433 prb_shutdown_retire_blk_timer(po, rb_queue);
4434 }
4435
4436 out_free_pg_vec:
4437 bitmap_free(rx_owner_map);
4438 if (pg_vec)
4439 free_pg_vec(pg_vec, order, req->tp_block_nr);
4440 out:
4441 return err;
4442 }
4443
packet_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)4444 static int packet_mmap(struct file *file, struct socket *sock,
4445 struct vm_area_struct *vma)
4446 {
4447 struct sock *sk = sock->sk;
4448 struct packet_sock *po = pkt_sk(sk);
4449 unsigned long size, expected_size;
4450 struct packet_ring_buffer *rb;
4451 unsigned long start;
4452 int err = -EINVAL;
4453 int i;
4454
4455 if (vma->vm_pgoff)
4456 return -EINVAL;
4457
4458 mutex_lock(&po->pg_vec_lock);
4459
4460 expected_size = 0;
4461 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4462 if (rb->pg_vec) {
4463 expected_size += rb->pg_vec_len
4464 * rb->pg_vec_pages
4465 * PAGE_SIZE;
4466 }
4467 }
4468
4469 if (expected_size == 0)
4470 goto out;
4471
4472 size = vma->vm_end - vma->vm_start;
4473 if (size != expected_size)
4474 goto out;
4475
4476 start = vma->vm_start;
4477 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4478 if (rb->pg_vec == NULL)
4479 continue;
4480
4481 for (i = 0; i < rb->pg_vec_len; i++) {
4482 struct page *page;
4483 void *kaddr = rb->pg_vec[i].buffer;
4484 int pg_num;
4485
4486 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4487 page = pgv_to_page(kaddr);
4488 err = vm_insert_page(vma, start, page);
4489 if (unlikely(err))
4490 goto out;
4491 start += PAGE_SIZE;
4492 kaddr += PAGE_SIZE;
4493 }
4494 }
4495 }
4496
4497 atomic_inc(&po->mapped);
4498 vma->vm_ops = &packet_mmap_ops;
4499 err = 0;
4500
4501 out:
4502 mutex_unlock(&po->pg_vec_lock);
4503 return err;
4504 }
4505
4506 static const struct proto_ops packet_ops_spkt = {
4507 .family = PF_PACKET,
4508 .owner = THIS_MODULE,
4509 .release = packet_release,
4510 .bind = packet_bind_spkt,
4511 .connect = sock_no_connect,
4512 .socketpair = sock_no_socketpair,
4513 .accept = sock_no_accept,
4514 .getname = packet_getname_spkt,
4515 .poll = datagram_poll,
4516 .ioctl = packet_ioctl,
4517 .gettstamp = sock_gettstamp,
4518 .listen = sock_no_listen,
4519 .shutdown = sock_no_shutdown,
4520 .sendmsg = packet_sendmsg_spkt,
4521 .recvmsg = packet_recvmsg,
4522 .mmap = sock_no_mmap,
4523 .sendpage = sock_no_sendpage,
4524 };
4525
4526 static const struct proto_ops packet_ops = {
4527 .family = PF_PACKET,
4528 .owner = THIS_MODULE,
4529 .release = packet_release,
4530 .bind = packet_bind,
4531 .connect = sock_no_connect,
4532 .socketpair = sock_no_socketpair,
4533 .accept = sock_no_accept,
4534 .getname = packet_getname,
4535 .poll = packet_poll,
4536 .ioctl = packet_ioctl,
4537 .gettstamp = sock_gettstamp,
4538 .listen = sock_no_listen,
4539 .shutdown = sock_no_shutdown,
4540 .setsockopt = packet_setsockopt,
4541 .getsockopt = packet_getsockopt,
4542 .sendmsg = packet_sendmsg,
4543 .recvmsg = packet_recvmsg,
4544 .mmap = packet_mmap,
4545 .sendpage = sock_no_sendpage,
4546 };
4547
4548 static const struct net_proto_family packet_family_ops = {
4549 .family = PF_PACKET,
4550 .create = packet_create,
4551 .owner = THIS_MODULE,
4552 };
4553
4554 static struct notifier_block packet_netdev_notifier = {
4555 .notifier_call = packet_notifier,
4556 };
4557
4558 #ifdef CONFIG_PROC_FS
4559
packet_seq_start(struct seq_file * seq,loff_t * pos)4560 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4561 __acquires(RCU)
4562 {
4563 struct net *net = seq_file_net(seq);
4564
4565 rcu_read_lock();
4566 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4567 }
4568
packet_seq_next(struct seq_file * seq,void * v,loff_t * pos)4569 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4570 {
4571 struct net *net = seq_file_net(seq);
4572 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4573 }
4574
packet_seq_stop(struct seq_file * seq,void * v)4575 static void packet_seq_stop(struct seq_file *seq, void *v)
4576 __releases(RCU)
4577 {
4578 rcu_read_unlock();
4579 }
4580
packet_seq_show(struct seq_file * seq,void * v)4581 static int packet_seq_show(struct seq_file *seq, void *v)
4582 {
4583 if (v == SEQ_START_TOKEN)
4584 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4585 else {
4586 struct sock *s = sk_entry(v);
4587 const struct packet_sock *po = pkt_sk(s);
4588
4589 seq_printf(seq,
4590 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4591 s,
4592 refcount_read(&s->sk_refcnt),
4593 s->sk_type,
4594 ntohs(po->num),
4595 po->ifindex,
4596 po->running,
4597 atomic_read(&s->sk_rmem_alloc),
4598 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4599 sock_i_ino(s));
4600 }
4601
4602 return 0;
4603 }
4604
4605 static const struct seq_operations packet_seq_ops = {
4606 .start = packet_seq_start,
4607 .next = packet_seq_next,
4608 .stop = packet_seq_stop,
4609 .show = packet_seq_show,
4610 };
4611 #endif
4612
packet_net_init(struct net * net)4613 static int __net_init packet_net_init(struct net *net)
4614 {
4615 mutex_init(&net->packet.sklist_lock);
4616 INIT_HLIST_HEAD(&net->packet.sklist);
4617
4618 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4619 sizeof(struct seq_net_private)))
4620 return -ENOMEM;
4621
4622 return 0;
4623 }
4624
packet_net_exit(struct net * net)4625 static void __net_exit packet_net_exit(struct net *net)
4626 {
4627 remove_proc_entry("packet", net->proc_net);
4628 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4629 }
4630
4631 static struct pernet_operations packet_net_ops = {
4632 .init = packet_net_init,
4633 .exit = packet_net_exit,
4634 };
4635
4636
packet_exit(void)4637 static void __exit packet_exit(void)
4638 {
4639 unregister_netdevice_notifier(&packet_netdev_notifier);
4640 unregister_pernet_subsys(&packet_net_ops);
4641 sock_unregister(PF_PACKET);
4642 proto_unregister(&packet_proto);
4643 }
4644
packet_init(void)4645 static int __init packet_init(void)
4646 {
4647 int rc;
4648
4649 rc = proto_register(&packet_proto, 0);
4650 if (rc)
4651 goto out;
4652 rc = sock_register(&packet_family_ops);
4653 if (rc)
4654 goto out_proto;
4655 rc = register_pernet_subsys(&packet_net_ops);
4656 if (rc)
4657 goto out_sock;
4658 rc = register_netdevice_notifier(&packet_netdev_notifier);
4659 if (rc)
4660 goto out_pernet;
4661
4662 return 0;
4663
4664 out_pernet:
4665 unregister_pernet_subsys(&packet_net_ops);
4666 out_sock:
4667 sock_unregister(PF_PACKET);
4668 out_proto:
4669 proto_unregister(&packet_proto);
4670 out:
4671 return rc;
4672 }
4673
4674 module_init(packet_init);
4675 module_exit(packet_exit);
4676 MODULE_LICENSE("GPL");
4677 MODULE_ALIAS_NETPROTO(PF_PACKET);
4678