1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  * Copyright (C) 2008 Cavium Networks
8  *
9  * Some parts of the code were originally released under BSD license:
10  *
11  * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12  * reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions are
16  * met:
17  *
18  *   * Redistributions of source code must retain the above copyright
19  *     notice, this list of conditions and the following disclaimer.
20  *
21  *   * Redistributions in binary form must reproduce the above
22  *     copyright notice, this list of conditions and the following
23  *     disclaimer in the documentation and/or other materials provided
24  *     with the distribution.
25  *
26  *   * Neither the name of Cavium Networks nor the names of
27  *     its contributors may be used to endorse or promote products
28  *     derived from this software without specific prior written
29  *     permission.
30  *
31  * This Software, including technical data, may be subject to U.S. export
32  * control laws, including the U.S. Export Administration Act and its associated
33  * regulations, and may be subject to export or import regulations in other
34  * countries.
35  *
36  * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37  * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38  * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39  * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40  * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41  * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42  * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43  * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44  * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45  * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46  */
47 
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/platform_device.h>
55 
56 #include <asm/octeon/octeon.h>
57 
58 #include "octeon-hcd.h"
59 
60 /**
61  * enum cvmx_usb_speed - the possible USB device speeds
62  *
63  * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
64  * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
65  * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
66  */
67 enum cvmx_usb_speed {
68 	CVMX_USB_SPEED_HIGH = 0,
69 	CVMX_USB_SPEED_FULL = 1,
70 	CVMX_USB_SPEED_LOW = 2,
71 };
72 
73 /**
74  * enum cvmx_usb_transfer - the possible USB transfer types
75  *
76  * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
77  *				   transfers
78  * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
79  *				   priority periodic transfers
80  * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
81  *				   transfers
82  * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
83  *				   periodic transfers
84  */
85 enum cvmx_usb_transfer {
86 	CVMX_USB_TRANSFER_CONTROL = 0,
87 	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
88 	CVMX_USB_TRANSFER_BULK = 2,
89 	CVMX_USB_TRANSFER_INTERRUPT = 3,
90 };
91 
92 /**
93  * enum cvmx_usb_direction - the transfer directions
94  *
95  * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
96  * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
97  */
98 enum cvmx_usb_direction {
99 	CVMX_USB_DIRECTION_OUT,
100 	CVMX_USB_DIRECTION_IN,
101 };
102 
103 /**
104  * enum cvmx_usb_status - possible callback function status codes
105  *
106  * @CVMX_USB_STATUS_OK:		  The transaction / operation finished without
107  *				  any errors
108  * @CVMX_USB_STATUS_SHORT:	  FIXME: This is currently not implemented
109  * @CVMX_USB_STATUS_CANCEL:	  The transaction was canceled while in flight
110  *				  by a user call to cvmx_usb_cancel
111  * @CVMX_USB_STATUS_ERROR:	  The transaction aborted with an unexpected
112  *				  error status
113  * @CVMX_USB_STATUS_STALL:	  The transaction received a USB STALL response
114  *				  from the device
115  * @CVMX_USB_STATUS_XACTERR:	  The transaction failed with an error from the
116  *				  device even after a number of retries
117  * @CVMX_USB_STATUS_DATATGLERR:	  The transaction failed with a data toggle
118  *				  error even after a number of retries
119  * @CVMX_USB_STATUS_BABBLEERR:	  The transaction failed with a babble error
120  * @CVMX_USB_STATUS_FRAMEERR:	  The transaction failed with a frame error
121  *				  even after a number of retries
122  */
123 enum cvmx_usb_status {
124 	CVMX_USB_STATUS_OK,
125 	CVMX_USB_STATUS_SHORT,
126 	CVMX_USB_STATUS_CANCEL,
127 	CVMX_USB_STATUS_ERROR,
128 	CVMX_USB_STATUS_STALL,
129 	CVMX_USB_STATUS_XACTERR,
130 	CVMX_USB_STATUS_DATATGLERR,
131 	CVMX_USB_STATUS_BABBLEERR,
132 	CVMX_USB_STATUS_FRAMEERR,
133 };
134 
135 /**
136  * struct cvmx_usb_port_status - the USB port status information
137  *
138  * @port_enabled:	1 = Usb port is enabled, 0 = disabled
139  * @port_over_current:	1 = Over current detected, 0 = Over current not
140  *			detected. Octeon doesn't support over current detection.
141  * @port_powered:	1 = Port power is being supplied to the device, 0 =
142  *			power is off. Octeon doesn't support turning port power
143  *			off.
144  * @port_speed:		Current port speed.
145  * @connected:		1 = A device is connected to the port, 0 = No device is
146  *			connected.
147  * @connect_change:	1 = Device connected state changed since the last set
148  *			status call.
149  */
150 struct cvmx_usb_port_status {
151 	u32 reserved			: 25;
152 	u32 port_enabled		: 1;
153 	u32 port_over_current		: 1;
154 	u32 port_powered		: 1;
155 	enum cvmx_usb_speed port_speed	: 2;
156 	u32 connected			: 1;
157 	u32 connect_change		: 1;
158 };
159 
160 /**
161  * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
162  *
163  * @offset:	This is the offset in bytes into the main buffer where this data
164  *		is stored.
165  * @length:	This is the length in bytes of the data.
166  * @status:	This is the status of this individual packet transfer.
167  */
168 struct cvmx_usb_iso_packet {
169 	int offset;
170 	int length;
171 	enum cvmx_usb_status status;
172 };
173 
174 /**
175  * enum cvmx_usb_initialize_flags - flags used by the initialization function
176  *
177  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
178  *					      as clock source at USB_XO and
179  *					      USB_XI.
180  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
181  *					      board clock source at USB_XO.
182  *					      USB_XI should be tied to GND.
183  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
184  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
185  *					      crystal
186  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
187  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
188  * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
189  *					      data transfer use for the USB
190  */
191 enum cvmx_usb_initialize_flags {
192 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
193 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
194 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
195 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
196 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
197 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
198 	/* Bits 3-4 used to encode the clock frequency */
199 	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
200 };
201 
202 /**
203  * enum cvmx_usb_pipe_flags - internal flags for a pipe.
204  *
205  * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
206  *				   actively using hardware.
207  * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
208  *				   pipe is in the ping state.
209  */
210 enum cvmx_usb_pipe_flags {
211 	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
212 	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
213 };
214 
215 /* Maximum number of times to retry failed transactions */
216 #define MAX_RETRIES		3
217 
218 /* Maximum number of hardware channels supported by the USB block */
219 #define MAX_CHANNELS		8
220 
221 /*
222  * The low level hardware can transfer a maximum of this number of bytes in each
223  * transfer. The field is 19 bits wide
224  */
225 #define MAX_TRANSFER_BYTES	((1 << 19) - 1)
226 
227 /*
228  * The low level hardware can transfer a maximum of this number of packets in
229  * each transfer. The field is 10 bits wide
230  */
231 #define MAX_TRANSFER_PACKETS	((1 << 10) - 1)
232 
233 /**
234  * Logical transactions may take numerous low level
235  * transactions, especially when splits are concerned. This
236  * enum represents all of the possible stages a transaction can
237  * be in. Note that split completes are always even. This is so
238  * the NAK handler can backup to the previous low level
239  * transaction with a simple clearing of bit 0.
240  */
241 enum cvmx_usb_stage {
242 	CVMX_USB_STAGE_NON_CONTROL,
243 	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
244 	CVMX_USB_STAGE_SETUP,
245 	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
246 	CVMX_USB_STAGE_DATA,
247 	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
248 	CVMX_USB_STAGE_STATUS,
249 	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
250 };
251 
252 /**
253  * struct cvmx_usb_transaction - describes each pending USB transaction
254  *				 regardless of type. These are linked together
255  *				 to form a list of pending requests for a pipe.
256  *
257  * @node:		List node for transactions in the pipe.
258  * @type:		Type of transaction, duplicated of the pipe.
259  * @flags:		State flags for this transaction.
260  * @buffer:		User's physical buffer address to read/write.
261  * @buffer_length:	Size of the user's buffer in bytes.
262  * @control_header:	For control transactions, physical address of the 8
263  *			byte standard header.
264  * @iso_start_frame:	For ISO transactions, the starting frame number.
265  * @iso_number_packets:	For ISO transactions, the number of packets in the
266  *			request.
267  * @iso_packets:	For ISO transactions, the sub packets in the request.
268  * @actual_bytes:	Actual bytes transfer for this transaction.
269  * @stage:		For control transactions, the current stage.
270  * @urb:		URB.
271  */
272 struct cvmx_usb_transaction {
273 	struct list_head node;
274 	enum cvmx_usb_transfer type;
275 	u64 buffer;
276 	int buffer_length;
277 	u64 control_header;
278 	int iso_start_frame;
279 	int iso_number_packets;
280 	struct cvmx_usb_iso_packet *iso_packets;
281 	int xfersize;
282 	int pktcnt;
283 	int retries;
284 	int actual_bytes;
285 	enum cvmx_usb_stage stage;
286 	struct urb *urb;
287 };
288 
289 /**
290  * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
291  *			  and some USB device. It contains a list of pending
292  *			  request to the device.
293  *
294  * @node:		List node for pipe list
295  * @next:		Pipe after this one in the list
296  * @transactions:	List of pending transactions
297  * @interval:		For periodic pipes, the interval between packets in
298  *			frames
299  * @next_tx_frame:	The next frame this pipe is allowed to transmit on
300  * @flags:		State flags for this pipe
301  * @device_speed:	Speed of device connected to this pipe
302  * @transfer_type:	Type of transaction supported by this pipe
303  * @transfer_dir:	IN or OUT. Ignored for Control
304  * @multi_count:	Max packet in a row for the device
305  * @max_packet:		The device's maximum packet size in bytes
306  * @device_addr:	USB device address at other end of pipe
307  * @endpoint_num:	USB endpoint number at other end of pipe
308  * @hub_device_addr:	Hub address this device is connected to
309  * @hub_port:		Hub port this device is connected to
310  * @pid_toggle:		This toggles between 0/1 on every packet send to track
311  *			the data pid needed
312  * @channel:		Hardware DMA channel for this pipe
313  * @split_sc_frame:	The low order bits of the frame number the split
314  *			complete should be sent on
315  */
316 struct cvmx_usb_pipe {
317 	struct list_head node;
318 	struct list_head transactions;
319 	u64 interval;
320 	u64 next_tx_frame;
321 	enum cvmx_usb_pipe_flags flags;
322 	enum cvmx_usb_speed device_speed;
323 	enum cvmx_usb_transfer transfer_type;
324 	enum cvmx_usb_direction transfer_dir;
325 	int multi_count;
326 	u16 max_packet;
327 	u8 device_addr;
328 	u8 endpoint_num;
329 	u8 hub_device_addr;
330 	u8 hub_port;
331 	u8 pid_toggle;
332 	u8 channel;
333 	s8 split_sc_frame;
334 };
335 
336 struct cvmx_usb_tx_fifo {
337 	struct {
338 		int channel;
339 		int size;
340 		u64 address;
341 	} entry[MAX_CHANNELS + 1];
342 	int head;
343 	int tail;
344 };
345 
346 /**
347  * struct octeon_hcd - the state of the USB block
348  *
349  * lock:		   Serialization lock.
350  * init_flags:		   Flags passed to initialize.
351  * index:		   Which USB block this is for.
352  * idle_hardware_channels: Bit set for every idle hardware channel.
353  * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
354  *			   determine splits.
355  * pipe_for_channel:	   Map channels to pipes.
356  * pipe:		   Storage for pipes.
357  * indent:		   Used by debug output to indent functions.
358  * port_status:		   Last port status used for change notification.
359  * idle_pipes:		   List of open pipes that have no transactions.
360  * active_pipes:	   Active pipes indexed by transfer type.
361  * frame_number:	   Increments every SOF interrupt for time keeping.
362  * active_split:	   Points to the current active split, or NULL.
363  */
364 struct octeon_hcd {
365 	spinlock_t lock; /* serialization lock */
366 	int init_flags;
367 	int index;
368 	int idle_hardware_channels;
369 	union cvmx_usbcx_hprt usbcx_hprt;
370 	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
371 	int indent;
372 	struct cvmx_usb_port_status port_status;
373 	struct list_head idle_pipes;
374 	struct list_head active_pipes[4];
375 	u64 frame_number;
376 	struct cvmx_usb_transaction *active_split;
377 	struct cvmx_usb_tx_fifo periodic;
378 	struct cvmx_usb_tx_fifo nonperiodic;
379 };
380 
381 /*
382  * This macro logically sets a single field in a CSR. It does the sequence
383  * read, modify, and write
384  */
385 #define USB_SET_FIELD32(address, _union, field, value)		\
386 	do {							\
387 		union _union c;					\
388 								\
389 		c.u32 = cvmx_usb_read_csr32(usb, address);	\
390 		c.s.field = value;				\
391 		cvmx_usb_write_csr32(usb, address, c.u32);	\
392 	} while (0)
393 
394 /* Returns the IO address to push/pop stuff data from the FIFOs */
395 #define USB_FIFO_ADDRESS(channel, usb_index) \
396 	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
397 
398 /**
399  * struct octeon_temp_buffer - a bounce buffer for USB transfers
400  * @orig_buffer: the original buffer passed by the USB stack
401  * @data:	 the newly allocated temporary buffer (excluding meta-data)
402  *
403  * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
404  * the buffer is too short, we need to allocate a temporary one, and this struct
405  * represents it.
406  */
407 struct octeon_temp_buffer {
408 	void *orig_buffer;
409 	u8 data[];
410 };
411 
octeon_to_hcd(struct octeon_hcd * p)412 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
413 {
414 	return container_of((void *)p, struct usb_hcd, hcd_priv);
415 }
416 
417 /**
418  * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
419  *                            (if needed)
420  * @urb:	URB.
421  * @mem_flags:	Memory allocation flags.
422  *
423  * This function allocates a temporary bounce buffer whenever it's needed
424  * due to HW limitations.
425  */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)426 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
427 {
428 	struct octeon_temp_buffer *temp;
429 
430 	if (urb->num_sgs || urb->sg ||
431 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
432 	    !(urb->transfer_buffer_length % sizeof(u32)))
433 		return 0;
434 
435 	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
436 		       sizeof(*temp), mem_flags);
437 	if (!temp)
438 		return -ENOMEM;
439 
440 	temp->orig_buffer = urb->transfer_buffer;
441 	if (usb_urb_dir_out(urb))
442 		memcpy(temp->data, urb->transfer_buffer,
443 		       urb->transfer_buffer_length);
444 	urb->transfer_buffer = temp->data;
445 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
446 
447 	return 0;
448 }
449 
450 /**
451  * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
452  * @urb: URB.
453  *
454  * Frees a buffer allocated by octeon_alloc_temp_buffer().
455  */
octeon_free_temp_buffer(struct urb * urb)456 static void octeon_free_temp_buffer(struct urb *urb)
457 {
458 	struct octeon_temp_buffer *temp;
459 	size_t length;
460 
461 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
462 		return;
463 
464 	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
465 			    data);
466 	if (usb_urb_dir_in(urb)) {
467 		if (usb_pipeisoc(urb->pipe))
468 			length = urb->transfer_buffer_length;
469 		else
470 			length = urb->actual_length;
471 
472 		memcpy(temp->orig_buffer, urb->transfer_buffer, length);
473 	}
474 	urb->transfer_buffer = temp->orig_buffer;
475 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
476 	kfree(temp);
477 }
478 
479 /**
480  * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
481  * @hcd:	USB HCD structure.
482  * @urb:	URB.
483  * @mem_flags:	Memory allocation flags.
484  */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)485 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
486 				  gfp_t mem_flags)
487 {
488 	int ret;
489 
490 	ret = octeon_alloc_temp_buffer(urb, mem_flags);
491 	if (ret)
492 		return ret;
493 
494 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
495 	if (ret)
496 		octeon_free_temp_buffer(urb);
497 
498 	return ret;
499 }
500 
501 /**
502  * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
503  * @hcd:	USB HCD structure.
504  * @urb:	URB.
505  */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)506 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
507 {
508 	usb_hcd_unmap_urb_for_dma(hcd, urb);
509 	octeon_free_temp_buffer(urb);
510 }
511 
512 /**
513  * Read a USB 32bit CSR. It performs the necessary address swizzle
514  * for 32bit CSRs and logs the value in a readable format if
515  * debugging is on.
516  *
517  * @usb:     USB block this access is for
518  * @address: 64bit address to read
519  *
520  * Returns: Result of the read
521  */
cvmx_usb_read_csr32(struct octeon_hcd * usb,u64 address)522 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
523 {
524 	return cvmx_read64_uint32(address ^ 4);
525 }
526 
527 /**
528  * Write a USB 32bit CSR. It performs the necessary address
529  * swizzle for 32bit CSRs and logs the value in a readable format
530  * if debugging is on.
531  *
532  * @usb:     USB block this access is for
533  * @address: 64bit address to write
534  * @value:   Value to write
535  */
cvmx_usb_write_csr32(struct octeon_hcd * usb,u64 address,u32 value)536 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
537 					u64 address, u32 value)
538 {
539 	cvmx_write64_uint32(address ^ 4, value);
540 	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
541 }
542 
543 /**
544  * Return non zero if this pipe connects to a non HIGH speed
545  * device through a high speed hub.
546  *
547  * @usb:    USB block this access is for
548  * @pipe:   Pipe to check
549  *
550  * Returns: Non zero if we need to do split transactions
551  */
cvmx_usb_pipe_needs_split(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)552 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
553 					    struct cvmx_usb_pipe *pipe)
554 {
555 	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
556 	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
557 }
558 
559 /**
560  * Trivial utility function to return the correct PID for a pipe
561  *
562  * @pipe:   pipe to check
563  *
564  * Returns: PID for pipe
565  */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)566 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
567 {
568 	if (pipe->pid_toggle)
569 		return 2; /* Data1 */
570 	return 0; /* Data0 */
571 }
572 
573 /* Loops through register until txfflsh or rxfflsh become zero.*/
cvmx_wait_tx_rx(struct octeon_hcd * usb,int fflsh_type)574 static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
575 {
576 	int result;
577 	u64 address = CVMX_USBCX_GRSTCTL(usb->index);
578 	u64 done = cvmx_get_cycle() + 100 *
579 		   (u64)octeon_get_clock_rate / 1000000;
580 	union cvmx_usbcx_grstctl c;
581 
582 	while (1) {
583 		c.u32 = cvmx_usb_read_csr32(usb, address);
584 		if (fflsh_type == 0 && c.s.txfflsh == 0) {
585 			result = 0;
586 			break;
587 		} else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
588 			result = 0;
589 			break;
590 		} else if (cvmx_get_cycle() > done) {
591 			result = -1;
592 			break;
593 		}
594 
595 		__delay(100);
596 	}
597 	return result;
598 }
599 
cvmx_fifo_setup(struct octeon_hcd * usb)600 static void cvmx_fifo_setup(struct octeon_hcd *usb)
601 {
602 	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
603 	union cvmx_usbcx_gnptxfsiz npsiz;
604 	union cvmx_usbcx_hptxfsiz psiz;
605 
606 	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
607 						CVMX_USBCX_GHWCFG3(usb->index));
608 
609 	/*
610 	 * Program the USBC_GRXFSIZ register to select the size of the receive
611 	 * FIFO (25%).
612 	 */
613 	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
614 			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
615 
616 	/*
617 	 * Program the USBC_GNPTXFSIZ register to select the size and the start
618 	 * address of the non-periodic transmit FIFO for nonperiodic
619 	 * transactions (50%).
620 	 */
621 	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
622 	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
623 	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
624 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
625 
626 	/*
627 	 * Program the USBC_HPTXFSIZ register to select the size and start
628 	 * address of the periodic transmit FIFO for periodic transactions
629 	 * (25%).
630 	 */
631 	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
632 	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
633 	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
634 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
635 
636 	/* Flush all FIFOs */
637 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
638 			cvmx_usbcx_grstctl, txfnum, 0x10);
639 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 			cvmx_usbcx_grstctl, txfflsh, 1);
641 	cvmx_wait_tx_rx(usb, 0);
642 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
643 			cvmx_usbcx_grstctl, rxfflsh, 1);
644 	cvmx_wait_tx_rx(usb, 1);
645 }
646 
647 /**
648  * Shutdown a USB port after a call to cvmx_usb_initialize().
649  * The port should be disabled with all pipes closed when this
650  * function is called.
651  *
652  * @usb: USB device state populated by cvmx_usb_initialize().
653  *
654  * Returns: 0 or a negative error code.
655  */
cvmx_usb_shutdown(struct octeon_hcd * usb)656 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
657 {
658 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
659 
660 	/* Make sure all pipes are closed */
661 	if (!list_empty(&usb->idle_pipes) ||
662 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
663 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
664 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
665 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
666 		return -EBUSY;
667 
668 	/* Disable the clocks and put them in power on reset */
669 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
670 	usbn_clk_ctl.s.enable = 1;
671 	usbn_clk_ctl.s.por = 1;
672 	usbn_clk_ctl.s.hclk_rst = 1;
673 	usbn_clk_ctl.s.prst = 0;
674 	usbn_clk_ctl.s.hrst = 0;
675 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
676 	return 0;
677 }
678 
679 /**
680  * Initialize a USB port for use. This must be called before any
681  * other access to the Octeon USB port is made. The port starts
682  * off in the disabled state.
683  *
684  * @dev:	 Pointer to struct device for logging purposes.
685  * @usb:	 Pointer to struct octeon_hcd.
686  *
687  * Returns: 0 or a negative error code.
688  */
cvmx_usb_initialize(struct device * dev,struct octeon_hcd * usb)689 static int cvmx_usb_initialize(struct device *dev,
690 			       struct octeon_hcd *usb)
691 {
692 	int channel;
693 	int divisor;
694 	int retries = 0;
695 	union cvmx_usbcx_hcfg usbcx_hcfg;
696 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
697 	union cvmx_usbcx_gintsts usbc_gintsts;
698 	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
699 	union cvmx_usbcx_gintmsk usbcx_gintmsk;
700 	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
701 	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
702 
703 retry:
704 	/*
705 	 * Power On Reset and PHY Initialization
706 	 *
707 	 * 1. Wait for DCOK to assert (nothing to do)
708 	 *
709 	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
710 	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
711 	 */
712 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
713 	usbn_clk_ctl.s.por = 1;
714 	usbn_clk_ctl.s.hrst = 0;
715 	usbn_clk_ctl.s.prst = 0;
716 	usbn_clk_ctl.s.hclk_rst = 0;
717 	usbn_clk_ctl.s.enable = 0;
718 	/*
719 	 * 2b. Select the USB reference clock/crystal parameters by writing
720 	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
721 	 */
722 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
723 		/*
724 		 * The USB port uses 12/24/48MHz 2.5V board clock
725 		 * source at USB_XO. USB_XI should be tied to GND.
726 		 * Most Octeon evaluation boards require this setting
727 		 */
728 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
729 		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
730 		    OCTEON_IS_MODEL(OCTEON_CN50XX))
731 			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
732 			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
733 		else
734 			/* From CN52XX manual */
735 			usbn_clk_ctl.s.p_rtype = 1;
736 
737 		switch (usb->init_flags &
738 			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
739 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
740 			usbn_clk_ctl.s.p_c_sel = 0;
741 			break;
742 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
743 			usbn_clk_ctl.s.p_c_sel = 1;
744 			break;
745 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
746 			usbn_clk_ctl.s.p_c_sel = 2;
747 			break;
748 		}
749 	} else {
750 		/*
751 		 * The USB port uses a 12MHz crystal as clock source
752 		 * at USB_XO and USB_XI
753 		 */
754 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
755 			/* From CN31XX,CN30XX manual */
756 			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
757 		else
758 			/* From CN56XX,CN52XX,CN50XX manuals. */
759 			usbn_clk_ctl.s.p_rtype = 0;
760 
761 		usbn_clk_ctl.s.p_c_sel = 0;
762 	}
763 	/*
764 	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
765 	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
766 	 *     such that USB is as close as possible to 125Mhz
767 	 */
768 	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
769 	/* Lower than 4 doesn't seem to work properly */
770 	if (divisor < 4)
771 		divisor = 4;
772 	usbn_clk_ctl.s.divide = divisor;
773 	usbn_clk_ctl.s.divide2 = 0;
774 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
775 
776 	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
777 	usbn_clk_ctl.s.hclk_rst = 1;
778 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
779 	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
780 	__delay(64);
781 	/*
782 	 * 3. Program the power-on reset field in the USBN clock-control
783 	 *    register:
784 	 *    USBN_CLK_CTL[POR] = 0
785 	 */
786 	usbn_clk_ctl.s.por = 0;
787 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
788 	/* 4. Wait 1 ms for PHY clock to start */
789 	mdelay(1);
790 	/*
791 	 * 5. Program the Reset input from automatic test equipment field in the
792 	 *    USBP control and status register:
793 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
794 	 */
795 	usbn_usbp_ctl_status.u64 =
796 		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
797 	usbn_usbp_ctl_status.s.ate_reset = 1;
798 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
799 			    usbn_usbp_ctl_status.u64);
800 	/* 6. Wait 10 cycles */
801 	__delay(10);
802 	/*
803 	 * 7. Clear ATE_RESET field in the USBN clock-control register:
804 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
805 	 */
806 	usbn_usbp_ctl_status.s.ate_reset = 0;
807 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
808 			    usbn_usbp_ctl_status.u64);
809 	/*
810 	 * 8. Program the PHY reset field in the USBN clock-control register:
811 	 *    USBN_CLK_CTL[PRST] = 1
812 	 */
813 	usbn_clk_ctl.s.prst = 1;
814 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
815 	/*
816 	 * 9. Program the USBP control and status register to select host or
817 	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
818 	 *    device
819 	 */
820 	usbn_usbp_ctl_status.s.hst_mode = 0;
821 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
822 			    usbn_usbp_ctl_status.u64);
823 	/* 10. Wait 1 us */
824 	udelay(1);
825 	/*
826 	 * 11. Program the hreset_n field in the USBN clock-control register:
827 	 *     USBN_CLK_CTL[HRST] = 1
828 	 */
829 	usbn_clk_ctl.s.hrst = 1;
830 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 	/* 12. Proceed to USB core initialization */
832 	usbn_clk_ctl.s.enable = 1;
833 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
834 	udelay(1);
835 
836 	/*
837 	 * USB Core Initialization
838 	 *
839 	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
840 	 *    determine USB core configuration parameters.
841 	 *
842 	 *    Nothing needed
843 	 *
844 	 * 2. Program the following fields in the global AHB configuration
845 	 *    register (USBC_GAHBCFG)
846 	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
847 	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
848 	 *    Nonperiodic TxFIFO empty level (slave mode only),
849 	 *    USBC_GAHBCFG[NPTXFEMPLVL]
850 	 *    Periodic TxFIFO empty level (slave mode only),
851 	 *    USBC_GAHBCFG[PTXFEMPLVL]
852 	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
853 	 */
854 	usbcx_gahbcfg.u32 = 0;
855 	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
856 				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
857 	usbcx_gahbcfg.s.hbstlen = 0;
858 	usbcx_gahbcfg.s.nptxfemplvl = 1;
859 	usbcx_gahbcfg.s.ptxfemplvl = 1;
860 	usbcx_gahbcfg.s.glblintrmsk = 1;
861 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
862 			     usbcx_gahbcfg.u32);
863 
864 	/*
865 	 * 3. Program the following fields in USBC_GUSBCFG register.
866 	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
867 	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
868 	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
869 	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
870 	 */
871 	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
872 						CVMX_USBCX_GUSBCFG(usb->index));
873 	usbcx_gusbcfg.s.toutcal = 0;
874 	usbcx_gusbcfg.s.ddrsel = 0;
875 	usbcx_gusbcfg.s.usbtrdtim = 0x5;
876 	usbcx_gusbcfg.s.phylpwrclksel = 0;
877 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
878 			     usbcx_gusbcfg.u32);
879 
880 	/*
881 	 * 4. The software must unmask the following bits in the USBC_GINTMSK
882 	 *    register.
883 	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
884 	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
885 	 */
886 	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
887 						CVMX_USBCX_GINTMSK(usb->index));
888 	usbcx_gintmsk.s.otgintmsk = 1;
889 	usbcx_gintmsk.s.modemismsk = 1;
890 	usbcx_gintmsk.s.hchintmsk = 1;
891 	usbcx_gintmsk.s.sofmsk = 0;
892 	/* We need RX FIFO interrupts if we don't have DMA */
893 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
894 		usbcx_gintmsk.s.rxflvlmsk = 1;
895 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
896 			     usbcx_gintmsk.u32);
897 
898 	/*
899 	 * Disable all channel interrupts. We'll enable them per channel later.
900 	 */
901 	for (channel = 0; channel < 8; channel++)
902 		cvmx_usb_write_csr32(usb,
903 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
904 				     0);
905 
906 	/*
907 	 * Host Port Initialization
908 	 *
909 	 * 1. Program the host-port interrupt-mask field to unmask,
910 	 *    USBC_GINTMSK[PRTINT] = 1
911 	 */
912 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
913 			cvmx_usbcx_gintmsk, prtintmsk, 1);
914 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915 			cvmx_usbcx_gintmsk, disconnintmsk, 1);
916 
917 	/*
918 	 * 2. Program the USBC_HCFG register to select full-speed host
919 	 *    or high-speed host.
920 	 */
921 	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
922 	usbcx_hcfg.s.fslssupp = 0;
923 	usbcx_hcfg.s.fslspclksel = 0;
924 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
925 
926 	cvmx_fifo_setup(usb);
927 
928 	/*
929 	 * If the controller is getting port events right after the reset, it
930 	 * means the initialization failed. Try resetting the controller again
931 	 * in such case. This is seen to happen after cold boot on DSR-1000N.
932 	 */
933 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
934 					       CVMX_USBCX_GINTSTS(usb->index));
935 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
936 			     usbc_gintsts.u32);
937 	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
938 	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
939 		return 0;
940 	if (retries++ >= 5)
941 		return -EAGAIN;
942 	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
943 		 (int)usbc_gintsts.u32);
944 	msleep(50);
945 	cvmx_usb_shutdown(usb);
946 	msleep(50);
947 	goto retry;
948 }
949 
950 /**
951  * Reset a USB port. After this call succeeds, the USB port is
952  * online and servicing requests.
953  *
954  * @usb: USB device state populated by cvmx_usb_initialize().
955  */
cvmx_usb_reset_port(struct octeon_hcd * usb)956 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
957 {
958 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
959 						  CVMX_USBCX_HPRT(usb->index));
960 
961 	/* Program the port reset bit to start the reset process */
962 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
963 			prtrst, 1);
964 
965 	/*
966 	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
967 	 * process to complete.
968 	 */
969 	mdelay(50);
970 
971 	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
972 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
973 			prtrst, 0);
974 
975 	/*
976 	 * Read the port speed field to get the enumerated speed,
977 	 * USBC_HPRT[PRTSPD].
978 	 */
979 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
980 						  CVMX_USBCX_HPRT(usb->index));
981 }
982 
983 /**
984  * Disable a USB port. After this call the USB port will not
985  * generate data transfers and will not generate events.
986  * Transactions in process will fail and call their
987  * associated callbacks.
988  *
989  * @usb: USB device state populated by cvmx_usb_initialize().
990  *
991  * Returns: 0 or a negative error code.
992  */
cvmx_usb_disable(struct octeon_hcd * usb)993 static int cvmx_usb_disable(struct octeon_hcd *usb)
994 {
995 	/* Disable the port */
996 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
997 			prtena, 1);
998 	return 0;
999 }
1000 
1001 /**
1002  * Get the current state of the USB port. Use this call to
1003  * determine if the usb port has anything connected, is enabled,
1004  * or has some sort of error condition. The return value of this
1005  * call has "changed" bits to signal of the value of some fields
1006  * have changed between calls.
1007  *
1008  * @usb: USB device state populated by cvmx_usb_initialize().
1009  *
1010  * Returns: Port status information
1011  */
cvmx_usb_get_status(struct octeon_hcd * usb)1012 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1013 {
1014 	union cvmx_usbcx_hprt usbc_hprt;
1015 	struct cvmx_usb_port_status result;
1016 
1017 	memset(&result, 0, sizeof(result));
1018 
1019 	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1020 	result.port_enabled = usbc_hprt.s.prtena;
1021 	result.port_over_current = usbc_hprt.s.prtovrcurract;
1022 	result.port_powered = usbc_hprt.s.prtpwr;
1023 	result.port_speed = usbc_hprt.s.prtspd;
1024 	result.connected = usbc_hprt.s.prtconnsts;
1025 	result.connect_change =
1026 		result.connected != usb->port_status.connected;
1027 
1028 	return result;
1029 }
1030 
1031 /**
1032  * Open a virtual pipe between the host and a USB device. A pipe
1033  * must be opened before data can be transferred between a device
1034  * and Octeon.
1035  *
1036  * @usb:	     USB device state populated by cvmx_usb_initialize().
1037  * @device_addr:
1038  *		     USB device address to open the pipe to
1039  *		     (0-127).
1040  * @endpoint_num:
1041  *		     USB endpoint number to open the pipe to
1042  *		     (0-15).
1043  * @device_speed:
1044  *		     The speed of the device the pipe is going
1045  *		     to. This must match the device's speed,
1046  *		     which may be different than the port speed.
1047  * @max_packet:	     The maximum packet length the device can
1048  *		     transmit/receive (low speed=0-8, full
1049  *		     speed=0-1023, high speed=0-1024). This value
1050  *		     comes from the standard endpoint descriptor
1051  *		     field wMaxPacketSize bits <10:0>.
1052  * @transfer_type:
1053  *		     The type of transfer this pipe is for.
1054  * @transfer_dir:
1055  *		     The direction the pipe is in. This is not
1056  *		     used for control pipes.
1057  * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1058  *		     this is how often the transfer is scheduled
1059  *		     for. All other transfers should specify
1060  *		     zero. The units are in frames (8000/sec at
1061  *		     high speed, 1000/sec for full speed).
1062  * @multi_count:
1063  *		     For high speed devices, this is the maximum
1064  *		     allowed number of packet per microframe.
1065  *		     Specify zero for non high speed devices. This
1066  *		     value comes from the standard endpoint descriptor
1067  *		     field wMaxPacketSize bits <12:11>.
1068  * @hub_device_addr:
1069  *		     Hub device address this device is connected
1070  *		     to. Devices connected directly to Octeon
1071  *		     use zero. This is only used when the device
1072  *		     is full/low speed behind a high speed hub.
1073  *		     The address will be of the high speed hub,
1074  *		     not and full speed hubs after it.
1075  * @hub_port:	     Which port on the hub the device is
1076  *		     connected. Use zero for devices connected
1077  *		     directly to Octeon. Like hub_device_addr,
1078  *		     this is only used for full/low speed
1079  *		     devices behind a high speed hub.
1080  *
1081  * Returns: A non-NULL value is a pipe. NULL means an error.
1082  */
cvmx_usb_open_pipe(struct octeon_hcd * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1083 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1084 						int device_addr,
1085 						int endpoint_num,
1086 						enum cvmx_usb_speed
1087 							device_speed,
1088 						int max_packet,
1089 						enum cvmx_usb_transfer
1090 							transfer_type,
1091 						enum cvmx_usb_direction
1092 							transfer_dir,
1093 						int interval, int multi_count,
1094 						int hub_device_addr,
1095 						int hub_port)
1096 {
1097 	struct cvmx_usb_pipe *pipe;
1098 
1099 	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1100 	if (!pipe)
1101 		return NULL;
1102 	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1103 	    (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1104 	    (transfer_type == CVMX_USB_TRANSFER_BULK))
1105 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1106 	pipe->device_addr = device_addr;
1107 	pipe->endpoint_num = endpoint_num;
1108 	pipe->device_speed = device_speed;
1109 	pipe->max_packet = max_packet;
1110 	pipe->transfer_type = transfer_type;
1111 	pipe->transfer_dir = transfer_dir;
1112 	INIT_LIST_HEAD(&pipe->transactions);
1113 
1114 	/*
1115 	 * All pipes use interval to rate limit NAK processing. Force an
1116 	 * interval if one wasn't supplied
1117 	 */
1118 	if (!interval)
1119 		interval = 1;
1120 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1121 		pipe->interval = interval * 8;
1122 		/* Force start splits to be schedule on uFrame 0 */
1123 		pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1124 					pipe->interval;
1125 	} else {
1126 		pipe->interval = interval;
1127 		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1128 	}
1129 	pipe->multi_count = multi_count;
1130 	pipe->hub_device_addr = hub_device_addr;
1131 	pipe->hub_port = hub_port;
1132 	pipe->pid_toggle = 0;
1133 	pipe->split_sc_frame = -1;
1134 	list_add_tail(&pipe->node, &usb->idle_pipes);
1135 
1136 	/*
1137 	 * We don't need to tell the hardware about this pipe yet since
1138 	 * it doesn't have any submitted requests
1139 	 */
1140 
1141 	return pipe;
1142 }
1143 
1144 /**
1145  * Poll the RX FIFOs and remove data as needed. This function is only used
1146  * in non DMA mode. It is very important that this function be called quickly
1147  * enough to prevent FIFO overflow.
1148  *
1149  * @usb:	USB device state populated by cvmx_usb_initialize().
1150  */
cvmx_usb_poll_rx_fifo(struct octeon_hcd * usb)1151 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1152 {
1153 	union cvmx_usbcx_grxstsph rx_status;
1154 	int channel;
1155 	int bytes;
1156 	u64 address;
1157 	u32 *ptr;
1158 
1159 	rx_status.u32 = cvmx_usb_read_csr32(usb,
1160 					    CVMX_USBCX_GRXSTSPH(usb->index));
1161 	/* Only read data if IN data is there */
1162 	if (rx_status.s.pktsts != 2)
1163 		return;
1164 	/* Check if no data is available */
1165 	if (!rx_status.s.bcnt)
1166 		return;
1167 
1168 	channel = rx_status.s.chnum;
1169 	bytes = rx_status.s.bcnt;
1170 	if (!bytes)
1171 		return;
1172 
1173 	/* Get where the DMA engine would have written this data */
1174 	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1175 				     channel * 8);
1176 
1177 	ptr = cvmx_phys_to_ptr(address);
1178 	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1179 			    address + bytes);
1180 
1181 	/* Loop writing the FIFO data for this packet into memory */
1182 	while (bytes > 0) {
1183 		*ptr++ = cvmx_usb_read_csr32(usb,
1184 					USB_FIFO_ADDRESS(channel, usb->index));
1185 		bytes -= 4;
1186 	}
1187 	CVMX_SYNCW;
1188 }
1189 
1190 /**
1191  * Fill the TX hardware fifo with data out of the software
1192  * fifos
1193  *
1194  * @usb:	    USB device state populated by cvmx_usb_initialize().
1195  * @fifo:	    Software fifo to use
1196  * @available:	    Amount of space in the hardware fifo
1197  *
1198  * Returns: Non zero if the hardware fifo was too small and needs
1199  *	    to be serviced again.
1200  */
cvmx_usb_fill_tx_hw(struct octeon_hcd * usb,struct cvmx_usb_tx_fifo * fifo,int available)1201 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1202 			       struct cvmx_usb_tx_fifo *fifo, int available)
1203 {
1204 	/*
1205 	 * We're done either when there isn't anymore space or the software FIFO
1206 	 * is empty
1207 	 */
1208 	while (available && (fifo->head != fifo->tail)) {
1209 		int i = fifo->tail;
1210 		const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1211 		u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1212 						   usb->index) ^ 4;
1213 		int words = available;
1214 
1215 		/* Limit the amount of data to what the SW fifo has */
1216 		if (fifo->entry[i].size <= available) {
1217 			words = fifo->entry[i].size;
1218 			fifo->tail++;
1219 			if (fifo->tail > MAX_CHANNELS)
1220 				fifo->tail = 0;
1221 		}
1222 
1223 		/* Update the next locations and counts */
1224 		available -= words;
1225 		fifo->entry[i].address += words * 4;
1226 		fifo->entry[i].size -= words;
1227 
1228 		/*
1229 		 * Write the HW fifo data. The read every three writes is due
1230 		 * to an errata on CN3XXX chips
1231 		 */
1232 		while (words > 3) {
1233 			cvmx_write64_uint32(csr_address, *ptr++);
1234 			cvmx_write64_uint32(csr_address, *ptr++);
1235 			cvmx_write64_uint32(csr_address, *ptr++);
1236 			cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1237 			words -= 3;
1238 		}
1239 		cvmx_write64_uint32(csr_address, *ptr++);
1240 		if (--words) {
1241 			cvmx_write64_uint32(csr_address, *ptr++);
1242 			if (--words)
1243 				cvmx_write64_uint32(csr_address, *ptr++);
1244 		}
1245 		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1246 	}
1247 	return fifo->head != fifo->tail;
1248 }
1249 
1250 /**
1251  * Check the hardware FIFOs and fill them as needed
1252  *
1253  * @usb:	USB device state populated by cvmx_usb_initialize().
1254  */
cvmx_usb_poll_tx_fifo(struct octeon_hcd * usb)1255 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1256 {
1257 	if (usb->periodic.head != usb->periodic.tail) {
1258 		union cvmx_usbcx_hptxsts tx_status;
1259 
1260 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1261 					CVMX_USBCX_HPTXSTS(usb->index));
1262 		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1263 					tx_status.s.ptxfspcavail))
1264 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1265 					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1266 		else
1267 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1268 					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1269 	}
1270 
1271 	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1272 		union cvmx_usbcx_gnptxsts tx_status;
1273 
1274 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1275 					CVMX_USBCX_GNPTXSTS(usb->index));
1276 		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1277 					tx_status.s.nptxfspcavail))
1278 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1279 					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1280 		else
1281 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1282 					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1283 	}
1284 }
1285 
1286 /**
1287  * Fill the TX FIFO with an outgoing packet
1288  *
1289  * @usb:	  USB device state populated by cvmx_usb_initialize().
1290  * @channel:	  Channel number to get packet from
1291  */
cvmx_usb_fill_tx_fifo(struct octeon_hcd * usb,int channel)1292 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1293 {
1294 	union cvmx_usbcx_hccharx hcchar;
1295 	union cvmx_usbcx_hcspltx usbc_hcsplt;
1296 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1297 	struct cvmx_usb_tx_fifo *fifo;
1298 
1299 	/* We only need to fill data on outbound channels */
1300 	hcchar.u32 = cvmx_usb_read_csr32(usb,
1301 			CVMX_USBCX_HCCHARX(channel, usb->index));
1302 	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1303 		return;
1304 
1305 	/* OUT Splits only have data on the start and not the complete */
1306 	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1307 				CVMX_USBCX_HCSPLTX(channel, usb->index));
1308 	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1309 		return;
1310 
1311 	/*
1312 	 * Find out how many bytes we need to fill and convert it into 32bit
1313 	 * words.
1314 	 */
1315 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1316 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1317 	if (!usbc_hctsiz.s.xfersize)
1318 		return;
1319 
1320 	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1321 	    (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1322 		fifo = &usb->periodic;
1323 	else
1324 		fifo = &usb->nonperiodic;
1325 
1326 	fifo->entry[fifo->head].channel = channel;
1327 	fifo->entry[fifo->head].address =
1328 		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1329 				   channel * 8);
1330 	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1331 	fifo->head++;
1332 	if (fifo->head > MAX_CHANNELS)
1333 		fifo->head = 0;
1334 
1335 	cvmx_usb_poll_tx_fifo(usb);
1336 }
1337 
1338 /**
1339  * Perform channel specific setup for Control transactions. All
1340  * the generic stuff will already have been done in cvmx_usb_start_channel().
1341  *
1342  * @usb:	  USB device state populated by cvmx_usb_initialize().
1343  * @channel:	  Channel to setup
1344  * @pipe:	  Pipe for control transaction
1345  */
cvmx_usb_start_channel_control(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1346 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1347 					   int channel,
1348 					   struct cvmx_usb_pipe *pipe)
1349 {
1350 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1351 	struct device *dev = hcd->self.controller;
1352 	struct cvmx_usb_transaction *transaction =
1353 		list_first_entry(&pipe->transactions, typeof(*transaction),
1354 				 node);
1355 	struct usb_ctrlrequest *header =
1356 		cvmx_phys_to_ptr(transaction->control_header);
1357 	int bytes_to_transfer = transaction->buffer_length -
1358 		transaction->actual_bytes;
1359 	int packets_to_transfer;
1360 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1361 
1362 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1363 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1364 
1365 	switch (transaction->stage) {
1366 	case CVMX_USB_STAGE_NON_CONTROL:
1367 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1368 		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1369 		break;
1370 	case CVMX_USB_STAGE_SETUP:
1371 		usbc_hctsiz.s.pid = 3; /* Setup */
1372 		bytes_to_transfer = sizeof(*header);
1373 		/* All Control operations start with a setup going OUT */
1374 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1375 				cvmx_usbcx_hccharx, epdir,
1376 				CVMX_USB_DIRECTION_OUT);
1377 		/*
1378 		 * Setup send the control header instead of the buffer data. The
1379 		 * buffer data will be used in the next stage
1380 		 */
1381 		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1382 					channel * 8,
1383 				    transaction->control_header);
1384 		break;
1385 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1386 		usbc_hctsiz.s.pid = 3; /* Setup */
1387 		bytes_to_transfer = 0;
1388 		/* All Control operations start with a setup going OUT */
1389 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1390 				cvmx_usbcx_hccharx, epdir,
1391 				CVMX_USB_DIRECTION_OUT);
1392 
1393 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1394 				cvmx_usbcx_hcspltx, compsplt, 1);
1395 		break;
1396 	case CVMX_USB_STAGE_DATA:
1397 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1398 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1399 			if (header->bRequestType & USB_DIR_IN)
1400 				bytes_to_transfer = 0;
1401 			else if (bytes_to_transfer > pipe->max_packet)
1402 				bytes_to_transfer = pipe->max_packet;
1403 		}
1404 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1405 				cvmx_usbcx_hccharx, epdir,
1406 				((header->bRequestType & USB_DIR_IN) ?
1407 					CVMX_USB_DIRECTION_IN :
1408 					CVMX_USB_DIRECTION_OUT));
1409 		break;
1410 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1411 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1412 		if (!(header->bRequestType & USB_DIR_IN))
1413 			bytes_to_transfer = 0;
1414 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1415 				cvmx_usbcx_hccharx, epdir,
1416 				((header->bRequestType & USB_DIR_IN) ?
1417 					CVMX_USB_DIRECTION_IN :
1418 					CVMX_USB_DIRECTION_OUT));
1419 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1420 				cvmx_usbcx_hcspltx, compsplt, 1);
1421 		break;
1422 	case CVMX_USB_STAGE_STATUS:
1423 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1424 		bytes_to_transfer = 0;
1425 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1426 				cvmx_usbcx_hccharx, epdir,
1427 				((header->bRequestType & USB_DIR_IN) ?
1428 					CVMX_USB_DIRECTION_OUT :
1429 					CVMX_USB_DIRECTION_IN));
1430 		break;
1431 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1432 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1433 		bytes_to_transfer = 0;
1434 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1435 				cvmx_usbcx_hccharx, epdir,
1436 				((header->bRequestType & USB_DIR_IN) ?
1437 					CVMX_USB_DIRECTION_OUT :
1438 					CVMX_USB_DIRECTION_IN));
1439 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1440 				cvmx_usbcx_hcspltx, compsplt, 1);
1441 		break;
1442 	}
1443 
1444 	/*
1445 	 * Make sure the transfer never exceeds the byte limit of the hardware.
1446 	 * Further bytes will be sent as continued transactions
1447 	 */
1448 	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1449 		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1450 		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1451 		bytes_to_transfer *= pipe->max_packet;
1452 	}
1453 
1454 	/*
1455 	 * Calculate the number of packets to transfer. If the length is zero
1456 	 * we still need to transfer one packet
1457 	 */
1458 	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1459 					   pipe->max_packet);
1460 	if (packets_to_transfer == 0) {
1461 		packets_to_transfer = 1;
1462 	} else if ((packets_to_transfer > 1) &&
1463 			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1464 		/*
1465 		 * Limit to one packet when not using DMA. Channels must be
1466 		 * restarted between every packet for IN transactions, so there
1467 		 * is no reason to do multiple packets in a row
1468 		 */
1469 		packets_to_transfer = 1;
1470 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1471 	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1472 		/*
1473 		 * Limit the number of packet and data transferred to what the
1474 		 * hardware can handle
1475 		 */
1476 		packets_to_transfer = MAX_TRANSFER_PACKETS;
1477 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1478 	}
1479 
1480 	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1481 	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1482 
1483 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1484 			     usbc_hctsiz.u32);
1485 }
1486 
1487 /**
1488  * Start a channel to perform the pipe's head transaction
1489  *
1490  * @usb:	  USB device state populated by cvmx_usb_initialize().
1491  * @channel:	  Channel to setup
1492  * @pipe:	  Pipe to start
1493  */
cvmx_usb_start_channel(struct octeon_hcd * usb,int channel,struct cvmx_usb_pipe * pipe)1494 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1495 				   struct cvmx_usb_pipe *pipe)
1496 {
1497 	struct cvmx_usb_transaction *transaction =
1498 		list_first_entry(&pipe->transactions, typeof(*transaction),
1499 				 node);
1500 
1501 	/* Make sure all writes to the DMA region get flushed */
1502 	CVMX_SYNCW;
1503 
1504 	/* Attach the channel to the pipe */
1505 	usb->pipe_for_channel[channel] = pipe;
1506 	pipe->channel = channel;
1507 	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1508 
1509 	/* Mark this channel as in use */
1510 	usb->idle_hardware_channels &= ~(1 << channel);
1511 
1512 	/* Enable the channel interrupt bits */
1513 	{
1514 		union cvmx_usbcx_hcintx usbc_hcint;
1515 		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1516 		union cvmx_usbcx_haintmsk usbc_haintmsk;
1517 
1518 		/* Clear all channel status bits */
1519 		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1520 					CVMX_USBCX_HCINTX(channel, usb->index));
1521 
1522 		cvmx_usb_write_csr32(usb,
1523 				     CVMX_USBCX_HCINTX(channel, usb->index),
1524 				     usbc_hcint.u32);
1525 
1526 		usbc_hcintmsk.u32 = 0;
1527 		usbc_hcintmsk.s.chhltdmsk = 1;
1528 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1529 			/*
1530 			 * Channels need these extra interrupts when we aren't
1531 			 * in DMA mode.
1532 			 */
1533 			usbc_hcintmsk.s.datatglerrmsk = 1;
1534 			usbc_hcintmsk.s.frmovrunmsk = 1;
1535 			usbc_hcintmsk.s.bblerrmsk = 1;
1536 			usbc_hcintmsk.s.xacterrmsk = 1;
1537 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1538 				/*
1539 				 * Splits don't generate xfercompl, so we need
1540 				 * ACK and NYET.
1541 				 */
1542 				usbc_hcintmsk.s.nyetmsk = 1;
1543 				usbc_hcintmsk.s.ackmsk = 1;
1544 			}
1545 			usbc_hcintmsk.s.nakmsk = 1;
1546 			usbc_hcintmsk.s.stallmsk = 1;
1547 			usbc_hcintmsk.s.xfercomplmsk = 1;
1548 		}
1549 		cvmx_usb_write_csr32(usb,
1550 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
1551 				     usbc_hcintmsk.u32);
1552 
1553 		/* Enable the channel interrupt to propagate */
1554 		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1555 					CVMX_USBCX_HAINTMSK(usb->index));
1556 		usbc_haintmsk.s.haintmsk |= 1 << channel;
1557 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1558 				     usbc_haintmsk.u32);
1559 	}
1560 
1561 	/* Setup the location the DMA engine uses. */
1562 	{
1563 		u64 reg;
1564 		u64 dma_address = transaction->buffer +
1565 				  transaction->actual_bytes;
1566 
1567 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1568 			dma_address = transaction->buffer +
1569 					transaction->iso_packets[0].offset +
1570 					transaction->actual_bytes;
1571 
1572 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1573 			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1574 		else
1575 			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1576 		cvmx_write64_uint64(reg + channel * 8, dma_address);
1577 	}
1578 
1579 	/* Setup both the size of the transfer and the SPLIT characteristics */
1580 	{
1581 		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1582 		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1583 		int packets_to_transfer;
1584 		int bytes_to_transfer = transaction->buffer_length -
1585 			transaction->actual_bytes;
1586 
1587 		/*
1588 		 * ISOCHRONOUS transactions store each individual transfer size
1589 		 * in the packet structure, not the global buffer_length
1590 		 */
1591 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1592 			bytes_to_transfer =
1593 				transaction->iso_packets[0].length -
1594 				transaction->actual_bytes;
1595 
1596 		/*
1597 		 * We need to do split transactions when we are talking to non
1598 		 * high speed devices that are behind a high speed hub
1599 		 */
1600 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1601 			/*
1602 			 * On the start split phase (stage is even) record the
1603 			 * frame number we will need to send the split complete.
1604 			 * We only store the lower two bits since the time ahead
1605 			 * can only be two frames
1606 			 */
1607 			if ((transaction->stage & 1) == 0) {
1608 				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1609 					pipe->split_sc_frame =
1610 						(usb->frame_number + 1) & 0x7f;
1611 				else
1612 					pipe->split_sc_frame =
1613 						(usb->frame_number + 2) & 0x7f;
1614 			} else {
1615 				pipe->split_sc_frame = -1;
1616 			}
1617 
1618 			usbc_hcsplt.s.spltena = 1;
1619 			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1620 			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1621 			usbc_hcsplt.s.compsplt = (transaction->stage ==
1622 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1623 
1624 			/*
1625 			 * SPLIT transactions can only ever transmit one data
1626 			 * packet so limit the transfer size to the max packet
1627 			 * size
1628 			 */
1629 			if (bytes_to_transfer > pipe->max_packet)
1630 				bytes_to_transfer = pipe->max_packet;
1631 
1632 			/*
1633 			 * ISOCHRONOUS OUT splits are unique in that they limit
1634 			 * data transfers to 188 byte chunks representing the
1635 			 * begin/middle/end of the data or all
1636 			 */
1637 			if (!usbc_hcsplt.s.compsplt &&
1638 			    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1639 			    (pipe->transfer_type ==
1640 			     CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1641 				/*
1642 				 * Clear the split complete frame number as
1643 				 * there isn't going to be a split complete
1644 				 */
1645 				pipe->split_sc_frame = -1;
1646 				/*
1647 				 * See if we've started this transfer and sent
1648 				 * data
1649 				 */
1650 				if (transaction->actual_bytes == 0) {
1651 					/*
1652 					 * Nothing sent yet, this is either a
1653 					 * begin or the entire payload
1654 					 */
1655 					if (bytes_to_transfer <= 188)
1656 						/* Entire payload in one go */
1657 						usbc_hcsplt.s.xactpos = 3;
1658 					else
1659 						/* First part of payload */
1660 						usbc_hcsplt.s.xactpos = 2;
1661 				} else {
1662 					/*
1663 					 * Continuing the previous data, we must
1664 					 * either be in the middle or at the end
1665 					 */
1666 					if (bytes_to_transfer <= 188)
1667 						/* End of payload */
1668 						usbc_hcsplt.s.xactpos = 1;
1669 					else
1670 						/* Middle of payload */
1671 						usbc_hcsplt.s.xactpos = 0;
1672 				}
1673 				/*
1674 				 * Again, the transfer size is limited to 188
1675 				 * bytes
1676 				 */
1677 				if (bytes_to_transfer > 188)
1678 					bytes_to_transfer = 188;
1679 			}
1680 		}
1681 
1682 		/*
1683 		 * Make sure the transfer never exceeds the byte limit of the
1684 		 * hardware. Further bytes will be sent as continued
1685 		 * transactions
1686 		 */
1687 		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1688 			/*
1689 			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1690 			 * size
1691 			 */
1692 			bytes_to_transfer = MAX_TRANSFER_BYTES /
1693 				pipe->max_packet;
1694 			bytes_to_transfer *= pipe->max_packet;
1695 		}
1696 
1697 		/*
1698 		 * Calculate the number of packets to transfer. If the length is
1699 		 * zero we still need to transfer one packet
1700 		 */
1701 		packets_to_transfer =
1702 			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1703 		if (packets_to_transfer == 0) {
1704 			packets_to_transfer = 1;
1705 		} else if ((packets_to_transfer > 1) &&
1706 			   (usb->init_flags &
1707 			    CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1708 			/*
1709 			 * Limit to one packet when not using DMA. Channels must
1710 			 * be restarted between every packet for IN
1711 			 * transactions, so there is no reason to do multiple
1712 			 * packets in a row
1713 			 */
1714 			packets_to_transfer = 1;
1715 			bytes_to_transfer = packets_to_transfer *
1716 				pipe->max_packet;
1717 		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1718 			/*
1719 			 * Limit the number of packet and data transferred to
1720 			 * what the hardware can handle
1721 			 */
1722 			packets_to_transfer = MAX_TRANSFER_PACKETS;
1723 			bytes_to_transfer = packets_to_transfer *
1724 				pipe->max_packet;
1725 		}
1726 
1727 		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1728 		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1729 
1730 		/* Update the DATA0/DATA1 toggle */
1731 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1732 		/*
1733 		 * High speed pipes may need a hardware ping before they start
1734 		 */
1735 		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1736 			usbc_hctsiz.s.dopng = 1;
1737 
1738 		cvmx_usb_write_csr32(usb,
1739 				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1740 				     usbc_hcsplt.u32);
1741 		cvmx_usb_write_csr32(usb,
1742 				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1743 				     usbc_hctsiz.u32);
1744 	}
1745 
1746 	/* Setup the Host Channel Characteristics Register */
1747 	{
1748 		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1749 
1750 		/*
1751 		 * Set the startframe odd/even properly. This is only used for
1752 		 * periodic
1753 		 */
1754 		usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1755 
1756 		/*
1757 		 * Set the number of back to back packets allowed by this
1758 		 * endpoint. Split transactions interpret "ec" as the number of
1759 		 * immediate retries of failure. These retries happen too
1760 		 * quickly, so we disable these entirely for splits
1761 		 */
1762 		if (cvmx_usb_pipe_needs_split(usb, pipe))
1763 			usbc_hcchar.s.ec = 1;
1764 		else if (pipe->multi_count < 1)
1765 			usbc_hcchar.s.ec = 1;
1766 		else if (pipe->multi_count > 3)
1767 			usbc_hcchar.s.ec = 3;
1768 		else
1769 			usbc_hcchar.s.ec = pipe->multi_count;
1770 
1771 		/* Set the rest of the endpoint specific settings */
1772 		usbc_hcchar.s.devaddr = pipe->device_addr;
1773 		usbc_hcchar.s.eptype = transaction->type;
1774 		usbc_hcchar.s.lspddev =
1775 			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1776 		usbc_hcchar.s.epdir = pipe->transfer_dir;
1777 		usbc_hcchar.s.epnum = pipe->endpoint_num;
1778 		usbc_hcchar.s.mps = pipe->max_packet;
1779 		cvmx_usb_write_csr32(usb,
1780 				     CVMX_USBCX_HCCHARX(channel, usb->index),
1781 				     usbc_hcchar.u32);
1782 	}
1783 
1784 	/* Do transaction type specific fixups as needed */
1785 	switch (transaction->type) {
1786 	case CVMX_USB_TRANSFER_CONTROL:
1787 		cvmx_usb_start_channel_control(usb, channel, pipe);
1788 		break;
1789 	case CVMX_USB_TRANSFER_BULK:
1790 	case CVMX_USB_TRANSFER_INTERRUPT:
1791 		break;
1792 	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1793 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1794 			/*
1795 			 * ISO transactions require different PIDs depending on
1796 			 * direction and how many packets are needed
1797 			 */
1798 			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1799 				if (pipe->multi_count < 2) /* Need DATA0 */
1800 					USB_SET_FIELD32(
1801 						CVMX_USBCX_HCTSIZX(channel,
1802 								   usb->index),
1803 						cvmx_usbcx_hctsizx, pid, 0);
1804 				else /* Need MDATA */
1805 					USB_SET_FIELD32(
1806 						CVMX_USBCX_HCTSIZX(channel,
1807 								   usb->index),
1808 						cvmx_usbcx_hctsizx, pid, 3);
1809 			}
1810 		}
1811 		break;
1812 	}
1813 	{
1814 		union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1815 			cvmx_usb_read_csr32(usb,
1816 					    CVMX_USBCX_HCTSIZX(channel,
1817 							       usb->index))
1818 		};
1819 		transaction->xfersize = usbc_hctsiz.s.xfersize;
1820 		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1821 	}
1822 	/* Remember when we start a split transaction */
1823 	if (cvmx_usb_pipe_needs_split(usb, pipe))
1824 		usb->active_split = transaction;
1825 	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1826 			cvmx_usbcx_hccharx, chena, 1);
1827 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1828 		cvmx_usb_fill_tx_fifo(usb, channel);
1829 }
1830 
1831 /**
1832  * Find a pipe that is ready to be scheduled to hardware.
1833  * @usb:	 USB device state populated by cvmx_usb_initialize().
1834  * @xfer_type:	 Transfer type
1835  *
1836  * Returns: Pipe or NULL if none are ready
1837  */
cvmx_usb_find_ready_pipe(struct octeon_hcd * usb,enum cvmx_usb_transfer xfer_type)1838 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
1839 		enum cvmx_usb_transfer xfer_type)
1840 {
1841 	struct list_head *list = usb->active_pipes + xfer_type;
1842 	u64 current_frame = usb->frame_number;
1843 	struct cvmx_usb_pipe *pipe;
1844 
1845 	list_for_each_entry(pipe, list, node) {
1846 		struct cvmx_usb_transaction *t =
1847 			list_first_entry(&pipe->transactions, typeof(*t),
1848 					 node);
1849 		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1850 		    (pipe->next_tx_frame <= current_frame) &&
1851 		    ((pipe->split_sc_frame == -1) ||
1852 		     ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1853 		      0x40)) &&
1854 		    (!usb->active_split || (usb->active_split == t))) {
1855 			prefetch(t);
1856 			return pipe;
1857 		}
1858 	}
1859 	return NULL;
1860 }
1861 
cvmx_usb_next_pipe(struct octeon_hcd * usb,int is_sof)1862 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1863 						int is_sof)
1864 {
1865 	struct cvmx_usb_pipe *pipe;
1866 
1867 	/* Find a pipe needing service. */
1868 	if (is_sof) {
1869 		/*
1870 		 * Only process periodic pipes on SOF interrupts. This way we
1871 		 * are sure that the periodic data is sent in the beginning of
1872 		 * the frame.
1873 		 */
1874 		pipe = cvmx_usb_find_ready_pipe(usb,
1875 						CVMX_USB_TRANSFER_ISOCHRONOUS);
1876 		if (pipe)
1877 			return pipe;
1878 		pipe = cvmx_usb_find_ready_pipe(usb,
1879 						CVMX_USB_TRANSFER_INTERRUPT);
1880 		if (pipe)
1881 			return pipe;
1882 	}
1883 	pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1884 	if (pipe)
1885 		return pipe;
1886 	return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1887 }
1888 
1889 /**
1890  * Called whenever a pipe might need to be scheduled to the
1891  * hardware.
1892  *
1893  * @usb:	 USB device state populated by cvmx_usb_initialize().
1894  * @is_sof:	 True if this schedule was called on a SOF interrupt.
1895  */
cvmx_usb_schedule(struct octeon_hcd * usb,int is_sof)1896 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1897 {
1898 	int channel;
1899 	struct cvmx_usb_pipe *pipe;
1900 	int need_sof;
1901 	enum cvmx_usb_transfer ttype;
1902 
1903 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1904 		/*
1905 		 * Without DMA we need to be careful to not schedule something
1906 		 * at the end of a frame and cause an overrun.
1907 		 */
1908 		union cvmx_usbcx_hfnum hfnum = {
1909 			.u32 = cvmx_usb_read_csr32(usb,
1910 						CVMX_USBCX_HFNUM(usb->index))
1911 		};
1912 
1913 		union cvmx_usbcx_hfir hfir = {
1914 			.u32 = cvmx_usb_read_csr32(usb,
1915 						CVMX_USBCX_HFIR(usb->index))
1916 		};
1917 
1918 		if (hfnum.s.frrem < hfir.s.frint / 4)
1919 			goto done;
1920 	}
1921 
1922 	while (usb->idle_hardware_channels) {
1923 		/* Find an idle channel */
1924 		channel = __fls(usb->idle_hardware_channels);
1925 		if (unlikely(channel > 7))
1926 			break;
1927 
1928 		pipe = cvmx_usb_next_pipe(usb, is_sof);
1929 		if (!pipe)
1930 			break;
1931 
1932 		cvmx_usb_start_channel(usb, channel, pipe);
1933 	}
1934 
1935 done:
1936 	/*
1937 	 * Only enable SOF interrupts when we have transactions pending in the
1938 	 * future that might need to be scheduled
1939 	 */
1940 	need_sof = 0;
1941 	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1942 	     ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1943 		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1944 			if (pipe->next_tx_frame > usb->frame_number) {
1945 				need_sof = 1;
1946 				break;
1947 			}
1948 		}
1949 	}
1950 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1951 			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1952 }
1953 
octeon_usb_urb_complete_callback(struct octeon_hcd * usb,enum cvmx_usb_status status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1954 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1955 					     enum cvmx_usb_status status,
1956 					     struct cvmx_usb_pipe *pipe,
1957 					     struct cvmx_usb_transaction
1958 						*transaction,
1959 					     int bytes_transferred,
1960 					     struct urb *urb)
1961 {
1962 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1963 	struct device *dev = hcd->self.controller;
1964 
1965 	if (likely(status == CVMX_USB_STATUS_OK))
1966 		urb->actual_length = bytes_transferred;
1967 	else
1968 		urb->actual_length = 0;
1969 
1970 	urb->hcpriv = NULL;
1971 
1972 	/* For Isochronous transactions we need to update the URB packet status
1973 	 * list from data in our private copy
1974 	 */
1975 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1976 		int i;
1977 		/*
1978 		 * The pointer to the private list is stored in the setup_packet
1979 		 * field.
1980 		 */
1981 		struct cvmx_usb_iso_packet *iso_packet =
1982 			(struct cvmx_usb_iso_packet *)urb->setup_packet;
1983 		/* Recalculate the transfer size by adding up each packet */
1984 		urb->actual_length = 0;
1985 		for (i = 0; i < urb->number_of_packets; i++) {
1986 			if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1987 				urb->iso_frame_desc[i].status = 0;
1988 				urb->iso_frame_desc[i].actual_length =
1989 					iso_packet[i].length;
1990 				urb->actual_length +=
1991 					urb->iso_frame_desc[i].actual_length;
1992 			} else {
1993 				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1994 					i, urb->number_of_packets,
1995 					iso_packet[i].status, pipe,
1996 					transaction, iso_packet[i].length);
1997 				urb->iso_frame_desc[i].status = -EREMOTEIO;
1998 			}
1999 		}
2000 		/* Free the private list now that we don't need it anymore */
2001 		kfree(iso_packet);
2002 		urb->setup_packet = NULL;
2003 	}
2004 
2005 	switch (status) {
2006 	case CVMX_USB_STATUS_OK:
2007 		urb->status = 0;
2008 		break;
2009 	case CVMX_USB_STATUS_CANCEL:
2010 		if (urb->status == 0)
2011 			urb->status = -ENOENT;
2012 		break;
2013 	case CVMX_USB_STATUS_STALL:
2014 		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2015 			pipe, transaction, bytes_transferred);
2016 		urb->status = -EPIPE;
2017 		break;
2018 	case CVMX_USB_STATUS_BABBLEERR:
2019 		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2020 			pipe, transaction, bytes_transferred);
2021 		urb->status = -EPIPE;
2022 		break;
2023 	case CVMX_USB_STATUS_SHORT:
2024 		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2025 			pipe, transaction, bytes_transferred);
2026 		urb->status = -EREMOTEIO;
2027 		break;
2028 	case CVMX_USB_STATUS_ERROR:
2029 	case CVMX_USB_STATUS_XACTERR:
2030 	case CVMX_USB_STATUS_DATATGLERR:
2031 	case CVMX_USB_STATUS_FRAMEERR:
2032 		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2033 			status, pipe, transaction, bytes_transferred);
2034 		urb->status = -EPROTO;
2035 		break;
2036 	}
2037 	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2038 	spin_unlock(&usb->lock);
2039 	usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2040 	spin_lock(&usb->lock);
2041 }
2042 
2043 /**
2044  * Signal the completion of a transaction and free it. The
2045  * transaction will be removed from the pipe transaction list.
2046  *
2047  * @usb:	 USB device state populated by cvmx_usb_initialize().
2048  * @pipe:	 Pipe the transaction is on
2049  * @transaction:
2050  *		 Transaction that completed
2051  * @complete_code:
2052  *		 Completion code
2053  */
cvmx_usb_complete(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_status complete_code)2054 static void cvmx_usb_complete(struct octeon_hcd *usb,
2055 			      struct cvmx_usb_pipe *pipe,
2056 			      struct cvmx_usb_transaction *transaction,
2057 			      enum cvmx_usb_status complete_code)
2058 {
2059 	/* If this was a split then clear our split in progress marker */
2060 	if (usb->active_split == transaction)
2061 		usb->active_split = NULL;
2062 
2063 	/*
2064 	 * Isochronous transactions need extra processing as they might not be
2065 	 * done after a single data transfer
2066 	 */
2067 	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2068 		/* Update the number of bytes transferred in this ISO packet */
2069 		transaction->iso_packets[0].length = transaction->actual_bytes;
2070 		transaction->iso_packets[0].status = complete_code;
2071 
2072 		/*
2073 		 * If there are more ISOs pending and we succeeded, schedule the
2074 		 * next one
2075 		 */
2076 		if ((transaction->iso_number_packets > 1) &&
2077 		    (complete_code == CVMX_USB_STATUS_OK)) {
2078 			/* No bytes transferred for this packet as of yet */
2079 			transaction->actual_bytes = 0;
2080 			/* One less ISO waiting to transfer */
2081 			transaction->iso_number_packets--;
2082 			/* Increment to the next location in our packet array */
2083 			transaction->iso_packets++;
2084 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2085 			return;
2086 		}
2087 	}
2088 
2089 	/* Remove the transaction from the pipe list */
2090 	list_del(&transaction->node);
2091 	if (list_empty(&pipe->transactions))
2092 		list_move_tail(&pipe->node, &usb->idle_pipes);
2093 	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2094 					 transaction,
2095 					 transaction->actual_bytes,
2096 					 transaction->urb);
2097 	kfree(transaction);
2098 }
2099 
2100 /**
2101  * Submit a usb transaction to a pipe. Called for all types
2102  * of transactions.
2103  *
2104  * @usb:
2105  * @pipe:	    Which pipe to submit to.
2106  * @type:	    Transaction type
2107  * @buffer:	    User buffer for the transaction
2108  * @buffer_length:
2109  *		    User buffer's length in bytes
2110  * @control_header:
2111  *		    For control transactions, the 8 byte standard header
2112  * @iso_start_frame:
2113  *		    For ISO transactions, the start frame
2114  * @iso_number_packets:
2115  *		    For ISO, the number of packet in the transaction.
2116  * @iso_packets:
2117  *		    A description of each ISO packet
2118  * @urb:	    URB for the callback
2119  *
2120  * Returns: Transaction or NULL on failure.
2121  */
cvmx_usb_submit_transaction(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,u64 buffer,int buffer_length,u64 control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2122 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2123 				struct octeon_hcd *usb,
2124 				struct cvmx_usb_pipe *pipe,
2125 				enum cvmx_usb_transfer type,
2126 				u64 buffer,
2127 				int buffer_length,
2128 				u64 control_header,
2129 				int iso_start_frame,
2130 				int iso_number_packets,
2131 				struct cvmx_usb_iso_packet *iso_packets,
2132 				struct urb *urb)
2133 {
2134 	struct cvmx_usb_transaction *transaction;
2135 
2136 	if (unlikely(pipe->transfer_type != type))
2137 		return NULL;
2138 
2139 	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2140 	if (unlikely(!transaction))
2141 		return NULL;
2142 
2143 	transaction->type = type;
2144 	transaction->buffer = buffer;
2145 	transaction->buffer_length = buffer_length;
2146 	transaction->control_header = control_header;
2147 	/* FIXME: This is not used, implement it. */
2148 	transaction->iso_start_frame = iso_start_frame;
2149 	transaction->iso_number_packets = iso_number_packets;
2150 	transaction->iso_packets = iso_packets;
2151 	transaction->urb = urb;
2152 	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2153 		transaction->stage = CVMX_USB_STAGE_SETUP;
2154 	else
2155 		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2156 
2157 	if (!list_empty(&pipe->transactions)) {
2158 		list_add_tail(&transaction->node, &pipe->transactions);
2159 	} else {
2160 		list_add_tail(&transaction->node, &pipe->transactions);
2161 		list_move_tail(&pipe->node,
2162 			       &usb->active_pipes[pipe->transfer_type]);
2163 
2164 		/*
2165 		 * We may need to schedule the pipe if this was the head of the
2166 		 * pipe.
2167 		 */
2168 		cvmx_usb_schedule(usb, 0);
2169 	}
2170 
2171 	return transaction;
2172 }
2173 
2174 /**
2175  * Call to submit a USB Bulk transfer to a pipe.
2176  *
2177  * @usb:	    USB device state populated by cvmx_usb_initialize().
2178  * @pipe:	    Handle to the pipe for the transfer.
2179  * @urb:	    URB.
2180  *
2181  * Returns: A submitted transaction or NULL on failure.
2182  */
cvmx_usb_submit_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2183 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2184 						struct octeon_hcd *usb,
2185 						struct cvmx_usb_pipe *pipe,
2186 						struct urb *urb)
2187 {
2188 	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2189 					   urb->transfer_dma,
2190 					   urb->transfer_buffer_length,
2191 					   0, /* control_header */
2192 					   0, /* iso_start_frame */
2193 					   0, /* iso_number_packets */
2194 					   NULL, /* iso_packets */
2195 					   urb);
2196 }
2197 
2198 /**
2199  * Call to submit a USB Interrupt transfer to a pipe.
2200  *
2201  * @usb:	    USB device state populated by cvmx_usb_initialize().
2202  * @pipe:	    Handle to the pipe for the transfer.
2203  * @urb:	    URB returned when the callback is called.
2204  *
2205  * Returns: A submitted transaction or NULL on failure.
2206  */
cvmx_usb_submit_interrupt(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2207 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2208 						struct octeon_hcd *usb,
2209 						struct cvmx_usb_pipe *pipe,
2210 						struct urb *urb)
2211 {
2212 	return cvmx_usb_submit_transaction(usb, pipe,
2213 					   CVMX_USB_TRANSFER_INTERRUPT,
2214 					   urb->transfer_dma,
2215 					   urb->transfer_buffer_length,
2216 					   0, /* control_header */
2217 					   0, /* iso_start_frame */
2218 					   0, /* iso_number_packets */
2219 					   NULL, /* iso_packets */
2220 					   urb);
2221 }
2222 
2223 /**
2224  * Call to submit a USB Control transfer to a pipe.
2225  *
2226  * @usb:	    USB device state populated by cvmx_usb_initialize().
2227  * @pipe:	    Handle to the pipe for the transfer.
2228  * @urb:	    URB.
2229  *
2230  * Returns: A submitted transaction or NULL on failure.
2231  */
cvmx_usb_submit_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2232 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2233 						struct octeon_hcd *usb,
2234 						struct cvmx_usb_pipe *pipe,
2235 						struct urb *urb)
2236 {
2237 	int buffer_length = urb->transfer_buffer_length;
2238 	u64 control_header = urb->setup_dma;
2239 	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2240 
2241 	if ((header->bRequestType & USB_DIR_IN) == 0)
2242 		buffer_length = le16_to_cpu(header->wLength);
2243 
2244 	return cvmx_usb_submit_transaction(usb, pipe,
2245 					   CVMX_USB_TRANSFER_CONTROL,
2246 					   urb->transfer_dma, buffer_length,
2247 					   control_header,
2248 					   0, /* iso_start_frame */
2249 					   0, /* iso_number_packets */
2250 					   NULL, /* iso_packets */
2251 					   urb);
2252 }
2253 
2254 /**
2255  * Call to submit a USB Isochronous transfer to a pipe.
2256  *
2257  * @usb:	    USB device state populated by cvmx_usb_initialize().
2258  * @pipe:	    Handle to the pipe for the transfer.
2259  * @urb:	    URB returned when the callback is called.
2260  *
2261  * Returns: A submitted transaction or NULL on failure.
2262  */
cvmx_usb_submit_isochronous(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2263 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2264 						struct octeon_hcd *usb,
2265 						struct cvmx_usb_pipe *pipe,
2266 						struct urb *urb)
2267 {
2268 	struct cvmx_usb_iso_packet *packets;
2269 
2270 	packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2271 	return cvmx_usb_submit_transaction(usb, pipe,
2272 					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2273 					   urb->transfer_dma,
2274 					   urb->transfer_buffer_length,
2275 					   0, /* control_header */
2276 					   urb->start_frame,
2277 					   urb->number_of_packets,
2278 					   packets, urb);
2279 }
2280 
2281 /**
2282  * Cancel one outstanding request in a pipe. Canceling a request
2283  * can fail if the transaction has already completed before cancel
2284  * is called. Even after a successful cancel call, it may take
2285  * a frame or two for the cvmx_usb_poll() function to call the
2286  * associated callback.
2287  *
2288  * @usb:	 USB device state populated by cvmx_usb_initialize().
2289  * @pipe:	 Pipe to cancel requests in.
2290  * @transaction: Transaction to cancel, returned by the submit function.
2291  *
2292  * Returns: 0 or a negative error code.
2293  */
cvmx_usb_cancel(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2294 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2295 			   struct cvmx_usb_pipe *pipe,
2296 			   struct cvmx_usb_transaction *transaction)
2297 {
2298 	/*
2299 	 * If the transaction is the HEAD of the queue and scheduled. We need to
2300 	 * treat it special
2301 	 */
2302 	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2303 	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2304 		union cvmx_usbcx_hccharx usbc_hcchar;
2305 
2306 		usb->pipe_for_channel[pipe->channel] = NULL;
2307 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2308 
2309 		CVMX_SYNCW;
2310 
2311 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2312 				CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2313 		/*
2314 		 * If the channel isn't enabled then the transaction already
2315 		 * completed.
2316 		 */
2317 		if (usbc_hcchar.s.chena) {
2318 			usbc_hcchar.s.chdis = 1;
2319 			cvmx_usb_write_csr32(usb,
2320 					     CVMX_USBCX_HCCHARX(pipe->channel,
2321 								usb->index),
2322 					     usbc_hcchar.u32);
2323 		}
2324 	}
2325 	cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2326 	return 0;
2327 }
2328 
2329 /**
2330  * Cancel all outstanding requests in a pipe. Logically all this
2331  * does is call cvmx_usb_cancel() in a loop.
2332  *
2333  * @usb:	 USB device state populated by cvmx_usb_initialize().
2334  * @pipe:	 Pipe to cancel requests in.
2335  *
2336  * Returns: 0 or a negative error code.
2337  */
cvmx_usb_cancel_all(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2338 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2339 			       struct cvmx_usb_pipe *pipe)
2340 {
2341 	struct cvmx_usb_transaction *transaction, *next;
2342 
2343 	/* Simply loop through and attempt to cancel each transaction */
2344 	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2345 		int result = cvmx_usb_cancel(usb, pipe, transaction);
2346 
2347 		if (unlikely(result != 0))
2348 			return result;
2349 	}
2350 	return 0;
2351 }
2352 
2353 /**
2354  * Close a pipe created with cvmx_usb_open_pipe().
2355  *
2356  * @usb:	 USB device state populated by cvmx_usb_initialize().
2357  * @pipe:	 Pipe to close.
2358  *
2359  * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2360  *	    outstanding transfers.
2361  */
cvmx_usb_close_pipe(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe)2362 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2363 			       struct cvmx_usb_pipe *pipe)
2364 {
2365 	/* Fail if the pipe has pending transactions */
2366 	if (!list_empty(&pipe->transactions))
2367 		return -EBUSY;
2368 
2369 	list_del(&pipe->node);
2370 	kfree(pipe);
2371 
2372 	return 0;
2373 }
2374 
2375 /**
2376  * Get the current USB protocol level frame number. The frame
2377  * number is always in the range of 0-0x7ff.
2378  *
2379  * @usb: USB device state populated by cvmx_usb_initialize().
2380  *
2381  * Returns: USB frame number
2382  */
cvmx_usb_get_frame_number(struct octeon_hcd * usb)2383 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2384 {
2385 	union cvmx_usbcx_hfnum usbc_hfnum;
2386 
2387 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2388 
2389 	return usbc_hfnum.s.frnum;
2390 }
2391 
cvmx_usb_transfer_control(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hccharx usbc_hcchar,int buffer_space_left,int bytes_in_last_packet)2392 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2393 				      struct cvmx_usb_pipe *pipe,
2394 				      struct cvmx_usb_transaction *transaction,
2395 				      union cvmx_usbcx_hccharx usbc_hcchar,
2396 				      int buffer_space_left,
2397 				      int bytes_in_last_packet)
2398 {
2399 	switch (transaction->stage) {
2400 	case CVMX_USB_STAGE_NON_CONTROL:
2401 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2402 		/* This should be impossible */
2403 		cvmx_usb_complete(usb, pipe, transaction,
2404 				  CVMX_USB_STATUS_ERROR);
2405 		break;
2406 	case CVMX_USB_STAGE_SETUP:
2407 		pipe->pid_toggle = 1;
2408 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2409 			transaction->stage =
2410 				CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2411 		} else {
2412 			struct usb_ctrlrequest *header =
2413 				cvmx_phys_to_ptr(transaction->control_header);
2414 			if (header->wLength)
2415 				transaction->stage = CVMX_USB_STAGE_DATA;
2416 			else
2417 				transaction->stage = CVMX_USB_STAGE_STATUS;
2418 		}
2419 		break;
2420 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2421 		{
2422 			struct usb_ctrlrequest *header =
2423 				cvmx_phys_to_ptr(transaction->control_header);
2424 			if (header->wLength)
2425 				transaction->stage = CVMX_USB_STAGE_DATA;
2426 			else
2427 				transaction->stage = CVMX_USB_STAGE_STATUS;
2428 		}
2429 		break;
2430 	case CVMX_USB_STAGE_DATA:
2431 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2432 			transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2433 			/*
2434 			 * For setup OUT data that are splits,
2435 			 * the hardware doesn't appear to count
2436 			 * transferred data. Here we manually
2437 			 * update the data transferred
2438 			 */
2439 			if (!usbc_hcchar.s.epdir) {
2440 				if (buffer_space_left < pipe->max_packet)
2441 					transaction->actual_bytes +=
2442 						buffer_space_left;
2443 				else
2444 					transaction->actual_bytes +=
2445 						pipe->max_packet;
2446 			}
2447 		} else if ((buffer_space_left == 0) ||
2448 			   (bytes_in_last_packet < pipe->max_packet)) {
2449 			pipe->pid_toggle = 1;
2450 			transaction->stage = CVMX_USB_STAGE_STATUS;
2451 		}
2452 		break;
2453 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2454 		if ((buffer_space_left == 0) ||
2455 		    (bytes_in_last_packet < pipe->max_packet)) {
2456 			pipe->pid_toggle = 1;
2457 			transaction->stage = CVMX_USB_STAGE_STATUS;
2458 		} else {
2459 			transaction->stage = CVMX_USB_STAGE_DATA;
2460 		}
2461 		break;
2462 	case CVMX_USB_STAGE_STATUS:
2463 		if (cvmx_usb_pipe_needs_split(usb, pipe))
2464 			transaction->stage =
2465 				CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2466 		else
2467 			cvmx_usb_complete(usb, pipe, transaction,
2468 					  CVMX_USB_STATUS_OK);
2469 		break;
2470 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2471 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2472 		break;
2473 	}
2474 }
2475 
cvmx_usb_transfer_bulk(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,union cvmx_usbcx_hcintx usbc_hcint,int buffer_space_left,int bytes_in_last_packet)2476 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2477 				   struct cvmx_usb_pipe *pipe,
2478 				   struct cvmx_usb_transaction *transaction,
2479 				   union cvmx_usbcx_hcintx usbc_hcint,
2480 				   int buffer_space_left,
2481 				   int bytes_in_last_packet)
2482 {
2483 	/*
2484 	 * The only time a bulk transfer isn't complete when it finishes with
2485 	 * an ACK is during a split transaction. For splits we need to continue
2486 	 * the transfer if more data is needed.
2487 	 */
2488 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2489 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2490 			transaction->stage =
2491 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2492 		else if (buffer_space_left &&
2493 			 (bytes_in_last_packet == pipe->max_packet))
2494 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2495 		else
2496 			cvmx_usb_complete(usb, pipe, transaction,
2497 					  CVMX_USB_STATUS_OK);
2498 	} else {
2499 		if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2500 		    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2501 		    (usbc_hcint.s.nak))
2502 			pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2503 		if (!buffer_space_left ||
2504 		    (bytes_in_last_packet < pipe->max_packet))
2505 			cvmx_usb_complete(usb, pipe, transaction,
2506 					  CVMX_USB_STATUS_OK);
2507 	}
2508 }
2509 
cvmx_usb_transfer_intr(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet)2510 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2511 				   struct cvmx_usb_pipe *pipe,
2512 				   struct cvmx_usb_transaction *transaction,
2513 				   int buffer_space_left,
2514 				   int bytes_in_last_packet)
2515 {
2516 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2517 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2518 			transaction->stage =
2519 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2520 		} else if (buffer_space_left &&
2521 			   (bytes_in_last_packet == pipe->max_packet)) {
2522 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2523 		} else {
2524 			pipe->next_tx_frame += pipe->interval;
2525 			cvmx_usb_complete(usb, pipe, transaction,
2526 					  CVMX_USB_STATUS_OK);
2527 		}
2528 	} else if (!buffer_space_left ||
2529 		   (bytes_in_last_packet < pipe->max_packet)) {
2530 		pipe->next_tx_frame += pipe->interval;
2531 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2532 	}
2533 }
2534 
cvmx_usb_transfer_isoc(struct octeon_hcd * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int buffer_space_left,int bytes_in_last_packet,int bytes_this_transfer)2535 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2536 				   struct cvmx_usb_pipe *pipe,
2537 				   struct cvmx_usb_transaction *transaction,
2538 				   int buffer_space_left,
2539 				   int bytes_in_last_packet,
2540 				   int bytes_this_transfer)
2541 {
2542 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2543 		/*
2544 		 * ISOCHRONOUS OUT splits don't require a complete split stage.
2545 		 * Instead they use a sequence of begin OUT splits to transfer
2546 		 * the data 188 bytes at a time. Once the transfer is complete,
2547 		 * the pipe sleeps until the next schedule interval.
2548 		 */
2549 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2550 			/*
2551 			 * If no space left or this wasn't a max size packet
2552 			 * then this transfer is complete. Otherwise start it
2553 			 * again to send the next 188 bytes
2554 			 */
2555 			if (!buffer_space_left || (bytes_this_transfer < 188)) {
2556 				pipe->next_tx_frame += pipe->interval;
2557 				cvmx_usb_complete(usb, pipe, transaction,
2558 						  CVMX_USB_STATUS_OK);
2559 			}
2560 			return;
2561 		}
2562 		if (transaction->stage ==
2563 		    CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2564 			/*
2565 			 * We are in the incoming data phase. Keep getting data
2566 			 * until we run out of space or get a small packet
2567 			 */
2568 			if ((buffer_space_left == 0) ||
2569 			    (bytes_in_last_packet < pipe->max_packet)) {
2570 				pipe->next_tx_frame += pipe->interval;
2571 				cvmx_usb_complete(usb, pipe, transaction,
2572 						  CVMX_USB_STATUS_OK);
2573 			}
2574 		} else {
2575 			transaction->stage =
2576 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2577 		}
2578 	} else {
2579 		pipe->next_tx_frame += pipe->interval;
2580 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2581 	}
2582 }
2583 
2584 /**
2585  * Poll a channel for status
2586  *
2587  * @usb:     USB device
2588  * @channel: Channel to poll
2589  *
2590  * Returns: Zero on success
2591  */
cvmx_usb_poll_channel(struct octeon_hcd * usb,int channel)2592 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2593 {
2594 	struct usb_hcd *hcd = octeon_to_hcd(usb);
2595 	struct device *dev = hcd->self.controller;
2596 	union cvmx_usbcx_hcintx usbc_hcint;
2597 	union cvmx_usbcx_hctsizx usbc_hctsiz;
2598 	union cvmx_usbcx_hccharx usbc_hcchar;
2599 	struct cvmx_usb_pipe *pipe;
2600 	struct cvmx_usb_transaction *transaction;
2601 	int bytes_this_transfer;
2602 	int bytes_in_last_packet;
2603 	int packets_processed;
2604 	int buffer_space_left;
2605 
2606 	/* Read the interrupt status bits for the channel */
2607 	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2608 				CVMX_USBCX_HCINTX(channel, usb->index));
2609 
2610 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2611 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2612 				CVMX_USBCX_HCCHARX(channel, usb->index));
2613 
2614 		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2615 			/*
2616 			 * There seems to be a bug in CN31XX which can cause
2617 			 * interrupt IN transfers to get stuck until we do a
2618 			 * write of HCCHARX without changing things
2619 			 */
2620 			cvmx_usb_write_csr32(usb,
2621 					     CVMX_USBCX_HCCHARX(channel,
2622 								usb->index),
2623 					     usbc_hcchar.u32);
2624 			return 0;
2625 		}
2626 
2627 		/*
2628 		 * In non DMA mode the channels don't halt themselves. We need
2629 		 * to manually disable channels that are left running
2630 		 */
2631 		if (!usbc_hcint.s.chhltd) {
2632 			if (usbc_hcchar.s.chena) {
2633 				union cvmx_usbcx_hcintmskx hcintmsk;
2634 				/* Disable all interrupts except CHHLTD */
2635 				hcintmsk.u32 = 0;
2636 				hcintmsk.s.chhltdmsk = 1;
2637 				cvmx_usb_write_csr32(usb,
2638 						     CVMX_USBCX_HCINTMSKX(channel, usb->index),
2639 						     hcintmsk.u32);
2640 				usbc_hcchar.s.chdis = 1;
2641 				cvmx_usb_write_csr32(usb,
2642 						     CVMX_USBCX_HCCHARX(channel, usb->index),
2643 						     usbc_hcchar.u32);
2644 				return 0;
2645 			} else if (usbc_hcint.s.xfercompl) {
2646 				/*
2647 				 * Successful IN/OUT with transfer complete.
2648 				 * Channel halt isn't needed.
2649 				 */
2650 			} else {
2651 				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2652 					usb->index, channel);
2653 				return 0;
2654 			}
2655 		}
2656 	} else {
2657 		/*
2658 		 * There is are no interrupts that we need to process when the
2659 		 * channel is still running
2660 		 */
2661 		if (!usbc_hcint.s.chhltd)
2662 			return 0;
2663 	}
2664 
2665 	/* Disable the channel interrupts now that it is done */
2666 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2667 	usb->idle_hardware_channels |= (1 << channel);
2668 
2669 	/* Make sure this channel is tied to a valid pipe */
2670 	pipe = usb->pipe_for_channel[channel];
2671 	prefetch(pipe);
2672 	if (!pipe)
2673 		return 0;
2674 	transaction = list_first_entry(&pipe->transactions,
2675 				       typeof(*transaction),
2676 				       node);
2677 	prefetch(transaction);
2678 
2679 	/*
2680 	 * Disconnect this pipe from the HW channel. Later the schedule
2681 	 * function will figure out which pipe needs to go
2682 	 */
2683 	usb->pipe_for_channel[channel] = NULL;
2684 	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2685 
2686 	/*
2687 	 * Read the channel config info so we can figure out how much data
2688 	 * transferred
2689 	 */
2690 	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2691 			CVMX_USBCX_HCCHARX(channel, usb->index));
2692 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2693 			CVMX_USBCX_HCTSIZX(channel, usb->index));
2694 
2695 	/*
2696 	 * Calculating the number of bytes successfully transferred is dependent
2697 	 * on the transfer direction
2698 	 */
2699 	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2700 	if (usbc_hcchar.s.epdir) {
2701 		/*
2702 		 * IN transactions are easy. For every byte received the
2703 		 * hardware decrements xfersize. All we need to do is subtract
2704 		 * the current value of xfersize from its starting value and we
2705 		 * know how many bytes were written to the buffer
2706 		 */
2707 		bytes_this_transfer = transaction->xfersize -
2708 			usbc_hctsiz.s.xfersize;
2709 	} else {
2710 		/*
2711 		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2712 		 * decremented on every successful packet send. The hardware
2713 		 * does this when it receives an ACK, or NYET. If it doesn't
2714 		 * receive one of these responses pktcnt doesn't change
2715 		 */
2716 		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2717 		/*
2718 		 * The last packet may not be a full transfer if we didn't have
2719 		 * enough data
2720 		 */
2721 		if (bytes_this_transfer > transaction->xfersize)
2722 			bytes_this_transfer = transaction->xfersize;
2723 	}
2724 	/* Figure out how many bytes were in the last packet of the transfer */
2725 	if (packets_processed)
2726 		bytes_in_last_packet = bytes_this_transfer -
2727 			(packets_processed - 1) * usbc_hcchar.s.mps;
2728 	else
2729 		bytes_in_last_packet = bytes_this_transfer;
2730 
2731 	/*
2732 	 * As a special case, setup transactions output the setup header, not
2733 	 * the user's data. For this reason we don't count setup data as bytes
2734 	 * transferred
2735 	 */
2736 	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2737 	    (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2738 		bytes_this_transfer = 0;
2739 
2740 	/*
2741 	 * Add the bytes transferred to the running total. It is important that
2742 	 * bytes_this_transfer doesn't count any data that needs to be
2743 	 * retransmitted
2744 	 */
2745 	transaction->actual_bytes += bytes_this_transfer;
2746 	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2747 		buffer_space_left = transaction->iso_packets[0].length -
2748 			transaction->actual_bytes;
2749 	else
2750 		buffer_space_left = transaction->buffer_length -
2751 			transaction->actual_bytes;
2752 
2753 	/*
2754 	 * We need to remember the PID toggle state for the next transaction.
2755 	 * The hardware already updated it for the next transaction
2756 	 */
2757 	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2758 
2759 	/*
2760 	 * For high speed bulk out, assume the next transaction will need to do
2761 	 * a ping before proceeding. If this isn't true the ACK processing below
2762 	 * will clear this flag
2763 	 */
2764 	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2765 	    (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2766 	    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2767 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2768 
2769 	if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2770 		/*
2771 		 * In some rare cases the DMA engine seems to get stuck and
2772 		 * keeps substracting same byte count over and over again. In
2773 		 * such case we just need to fail every transaction.
2774 		 */
2775 		cvmx_usb_complete(usb, pipe, transaction,
2776 				  CVMX_USB_STATUS_ERROR);
2777 		return 0;
2778 	}
2779 
2780 	if (usbc_hcint.s.stall) {
2781 		/*
2782 		 * STALL as a response means this transaction cannot be
2783 		 * completed because the device can't process transactions. Tell
2784 		 * the user. Any data that was transferred will be counted on
2785 		 * the actual bytes transferred
2786 		 */
2787 		pipe->pid_toggle = 0;
2788 		cvmx_usb_complete(usb, pipe, transaction,
2789 				  CVMX_USB_STATUS_STALL);
2790 	} else if (usbc_hcint.s.xacterr) {
2791 		/*
2792 		 * XactErr as a response means the device signaled
2793 		 * something wrong with the transfer. For example, PID
2794 		 * toggle errors cause these.
2795 		 */
2796 		cvmx_usb_complete(usb, pipe, transaction,
2797 				  CVMX_USB_STATUS_XACTERR);
2798 	} else if (usbc_hcint.s.bblerr) {
2799 		/* Babble Error (BblErr) */
2800 		cvmx_usb_complete(usb, pipe, transaction,
2801 				  CVMX_USB_STATUS_BABBLEERR);
2802 	} else if (usbc_hcint.s.datatglerr) {
2803 		/* Data toggle error */
2804 		cvmx_usb_complete(usb, pipe, transaction,
2805 				  CVMX_USB_STATUS_DATATGLERR);
2806 	} else if (usbc_hcint.s.nyet) {
2807 		/*
2808 		 * NYET as a response is only allowed in three cases: as a
2809 		 * response to a ping, as a response to a split transaction, and
2810 		 * as a response to a bulk out. The ping case is handled by
2811 		 * hardware, so we only have splits and bulk out
2812 		 */
2813 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2814 			transaction->retries = 0;
2815 			/*
2816 			 * If there is more data to go then we need to try
2817 			 * again. Otherwise this transaction is complete
2818 			 */
2819 			if ((buffer_space_left == 0) ||
2820 			    (bytes_in_last_packet < pipe->max_packet))
2821 				cvmx_usb_complete(usb, pipe,
2822 						  transaction,
2823 						  CVMX_USB_STATUS_OK);
2824 		} else {
2825 			/*
2826 			 * Split transactions retry the split complete 4 times
2827 			 * then rewind to the start split and do the entire
2828 			 * transactions again
2829 			 */
2830 			transaction->retries++;
2831 			if ((transaction->retries & 0x3) == 0) {
2832 				/*
2833 				 * Rewind to the beginning of the transaction by
2834 				 * anding off the split complete bit
2835 				 */
2836 				transaction->stage &= ~1;
2837 				pipe->split_sc_frame = -1;
2838 			}
2839 		}
2840 	} else if (usbc_hcint.s.ack) {
2841 		transaction->retries = 0;
2842 		/*
2843 		 * The ACK bit can only be checked after the other error bits.
2844 		 * This is because a multi packet transfer may succeed in a
2845 		 * number of packets and then get a different response on the
2846 		 * last packet. In this case both ACK and the last response bit
2847 		 * will be set. If none of the other response bits is set, then
2848 		 * the last packet must have been an ACK
2849 		 *
2850 		 * Since we got an ACK, we know we don't need to do a ping on
2851 		 * this pipe
2852 		 */
2853 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2854 
2855 		switch (transaction->type) {
2856 		case CVMX_USB_TRANSFER_CONTROL:
2857 			cvmx_usb_transfer_control(usb, pipe, transaction,
2858 						  usbc_hcchar,
2859 						  buffer_space_left,
2860 						  bytes_in_last_packet);
2861 			break;
2862 		case CVMX_USB_TRANSFER_BULK:
2863 			cvmx_usb_transfer_bulk(usb, pipe, transaction,
2864 					       usbc_hcint, buffer_space_left,
2865 					       bytes_in_last_packet);
2866 			break;
2867 		case CVMX_USB_TRANSFER_INTERRUPT:
2868 			cvmx_usb_transfer_intr(usb, pipe, transaction,
2869 					       buffer_space_left,
2870 					       bytes_in_last_packet);
2871 			break;
2872 		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2873 			cvmx_usb_transfer_isoc(usb, pipe, transaction,
2874 					       buffer_space_left,
2875 					       bytes_in_last_packet,
2876 					       bytes_this_transfer);
2877 			break;
2878 		}
2879 	} else if (usbc_hcint.s.nak) {
2880 		/*
2881 		 * If this was a split then clear our split in progress marker.
2882 		 */
2883 		if (usb->active_split == transaction)
2884 			usb->active_split = NULL;
2885 		/*
2886 		 * NAK as a response means the device couldn't accept the
2887 		 * transaction, but it should be retried in the future. Rewind
2888 		 * to the beginning of the transaction by anding off the split
2889 		 * complete bit. Retry in the next interval
2890 		 */
2891 		transaction->retries = 0;
2892 		transaction->stage &= ~1;
2893 		pipe->next_tx_frame += pipe->interval;
2894 		if (pipe->next_tx_frame < usb->frame_number)
2895 			pipe->next_tx_frame = usb->frame_number +
2896 				pipe->interval -
2897 				(usb->frame_number - pipe->next_tx_frame) %
2898 				pipe->interval;
2899 	} else {
2900 		struct cvmx_usb_port_status port;
2901 
2902 		port = cvmx_usb_get_status(usb);
2903 		if (port.port_enabled) {
2904 			/* We'll retry the exact same transaction again */
2905 			transaction->retries++;
2906 		} else {
2907 			/*
2908 			 * We get channel halted interrupts with no result bits
2909 			 * sets when the cable is unplugged
2910 			 */
2911 			cvmx_usb_complete(usb, pipe, transaction,
2912 					  CVMX_USB_STATUS_ERROR);
2913 		}
2914 	}
2915 	return 0;
2916 }
2917 
octeon_usb_port_callback(struct octeon_hcd * usb)2918 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2919 {
2920 	spin_unlock(&usb->lock);
2921 	usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2922 	spin_lock(&usb->lock);
2923 }
2924 
2925 /**
2926  * Poll the USB block for status and call all needed callback
2927  * handlers. This function is meant to be called in the interrupt
2928  * handler for the USB controller. It can also be called
2929  * periodically in a loop for non-interrupt based operation.
2930  *
2931  * @usb: USB device state populated by cvmx_usb_initialize().
2932  *
2933  * Returns: 0 or a negative error code.
2934  */
cvmx_usb_poll(struct octeon_hcd * usb)2935 static int cvmx_usb_poll(struct octeon_hcd *usb)
2936 {
2937 	union cvmx_usbcx_hfnum usbc_hfnum;
2938 	union cvmx_usbcx_gintsts usbc_gintsts;
2939 
2940 	prefetch_range(usb, sizeof(*usb));
2941 
2942 	/* Update the frame counter */
2943 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2944 	if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2945 		usb->frame_number += 0x4000;
2946 	usb->frame_number &= ~0x3fffull;
2947 	usb->frame_number |= usbc_hfnum.s.frnum;
2948 
2949 	/* Read the pending interrupts */
2950 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2951 					       CVMX_USBCX_GINTSTS(usb->index));
2952 
2953 	/* Clear the interrupts now that we know about them */
2954 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2955 			     usbc_gintsts.u32);
2956 
2957 	if (usbc_gintsts.s.rxflvl) {
2958 		/*
2959 		 * RxFIFO Non-Empty (RxFLvl)
2960 		 * Indicates that there is at least one packet pending to be
2961 		 * read from the RxFIFO.
2962 		 *
2963 		 * In DMA mode this is handled by hardware
2964 		 */
2965 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2966 			cvmx_usb_poll_rx_fifo(usb);
2967 	}
2968 	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2969 		/* Fill the Tx FIFOs when not in DMA mode */
2970 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2971 			cvmx_usb_poll_tx_fifo(usb);
2972 	}
2973 	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2974 		union cvmx_usbcx_hprt usbc_hprt;
2975 		/*
2976 		 * Disconnect Detected Interrupt (DisconnInt)
2977 		 * Asserted when a device disconnect is detected.
2978 		 *
2979 		 * Host Port Interrupt (PrtInt)
2980 		 * The core sets this bit to indicate a change in port status of
2981 		 * one of the O2P USB core ports in Host mode. The application
2982 		 * must read the Host Port Control and Status (HPRT) register to
2983 		 * determine the exact event that caused this interrupt. The
2984 		 * application must clear the appropriate status bit in the Host
2985 		 * Port Control and Status register to clear this bit.
2986 		 *
2987 		 * Call the user's port callback
2988 		 */
2989 		octeon_usb_port_callback(usb);
2990 		/* Clear the port change bits */
2991 		usbc_hprt.u32 =
2992 			cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2993 		usbc_hprt.s.prtena = 0;
2994 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2995 				     usbc_hprt.u32);
2996 	}
2997 	if (usbc_gintsts.s.hchint) {
2998 		/*
2999 		 * Host Channels Interrupt (HChInt)
3000 		 * The core sets this bit to indicate that an interrupt is
3001 		 * pending on one of the channels of the core (in Host mode).
3002 		 * The application must read the Host All Channels Interrupt
3003 		 * (HAINT) register to determine the exact number of the channel
3004 		 * on which the interrupt occurred, and then read the
3005 		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3006 		 * determine the exact cause of the interrupt. The application
3007 		 * must clear the appropriate status bit in the HCINTn register
3008 		 * to clear this bit.
3009 		 */
3010 		union cvmx_usbcx_haint usbc_haint;
3011 
3012 		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3013 					CVMX_USBCX_HAINT(usb->index));
3014 		while (usbc_haint.u32) {
3015 			int channel;
3016 
3017 			channel = __fls(usbc_haint.u32);
3018 			cvmx_usb_poll_channel(usb, channel);
3019 			usbc_haint.u32 ^= 1 << channel;
3020 		}
3021 	}
3022 
3023 	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3024 
3025 	return 0;
3026 }
3027 
3028 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3029 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3030 {
3031 	return (struct octeon_hcd *)(hcd->hcd_priv);
3032 }
3033 
octeon_usb_irq(struct usb_hcd * hcd)3034 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3035 {
3036 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3037 	unsigned long flags;
3038 
3039 	spin_lock_irqsave(&usb->lock, flags);
3040 	cvmx_usb_poll(usb);
3041 	spin_unlock_irqrestore(&usb->lock, flags);
3042 	return IRQ_HANDLED;
3043 }
3044 
octeon_usb_start(struct usb_hcd * hcd)3045 static int octeon_usb_start(struct usb_hcd *hcd)
3046 {
3047 	hcd->state = HC_STATE_RUNNING;
3048 	return 0;
3049 }
3050 
octeon_usb_stop(struct usb_hcd * hcd)3051 static void octeon_usb_stop(struct usb_hcd *hcd)
3052 {
3053 	hcd->state = HC_STATE_HALT;
3054 }
3055 
octeon_usb_get_frame_number(struct usb_hcd * hcd)3056 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3057 {
3058 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3059 
3060 	return cvmx_usb_get_frame_number(usb);
3061 }
3062 
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3063 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3064 				  struct urb *urb,
3065 				  gfp_t mem_flags)
3066 {
3067 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3068 	struct device *dev = hcd->self.controller;
3069 	struct cvmx_usb_transaction *transaction = NULL;
3070 	struct cvmx_usb_pipe *pipe;
3071 	unsigned long flags;
3072 	struct cvmx_usb_iso_packet *iso_packet;
3073 	struct usb_host_endpoint *ep = urb->ep;
3074 	int rc;
3075 
3076 	urb->status = 0;
3077 	spin_lock_irqsave(&usb->lock, flags);
3078 
3079 	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3080 	if (rc) {
3081 		spin_unlock_irqrestore(&usb->lock, flags);
3082 		return rc;
3083 	}
3084 
3085 	if (!ep->hcpriv) {
3086 		enum cvmx_usb_transfer transfer_type;
3087 		enum cvmx_usb_speed speed;
3088 		int split_device = 0;
3089 		int split_port = 0;
3090 
3091 		switch (usb_pipetype(urb->pipe)) {
3092 		case PIPE_ISOCHRONOUS:
3093 			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3094 			break;
3095 		case PIPE_INTERRUPT:
3096 			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3097 			break;
3098 		case PIPE_CONTROL:
3099 			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3100 			break;
3101 		default:
3102 			transfer_type = CVMX_USB_TRANSFER_BULK;
3103 			break;
3104 		}
3105 		switch (urb->dev->speed) {
3106 		case USB_SPEED_LOW:
3107 			speed = CVMX_USB_SPEED_LOW;
3108 			break;
3109 		case USB_SPEED_FULL:
3110 			speed = CVMX_USB_SPEED_FULL;
3111 			break;
3112 		default:
3113 			speed = CVMX_USB_SPEED_HIGH;
3114 			break;
3115 		}
3116 		/*
3117 		 * For slow devices on high speed ports we need to find the hub
3118 		 * that does the speed translation so we know where to send the
3119 		 * split transactions.
3120 		 */
3121 		if (speed != CVMX_USB_SPEED_HIGH) {
3122 			/*
3123 			 * Start at this device and work our way up the usb
3124 			 * tree.
3125 			 */
3126 			struct usb_device *dev = urb->dev;
3127 
3128 			while (dev->parent) {
3129 				/*
3130 				 * If our parent is high speed then he'll
3131 				 * receive the splits.
3132 				 */
3133 				if (dev->parent->speed == USB_SPEED_HIGH) {
3134 					split_device = dev->parent->devnum;
3135 					split_port = dev->portnum;
3136 					break;
3137 				}
3138 				/*
3139 				 * Move up the tree one level. If we make it all
3140 				 * the way up the tree, then the port must not
3141 				 * be in high speed mode and we don't need a
3142 				 * split.
3143 				 */
3144 				dev = dev->parent;
3145 			}
3146 		}
3147 		pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3148 					  usb_pipeendpoint(urb->pipe), speed,
3149 					  le16_to_cpu(ep->desc.wMaxPacketSize)
3150 					  & 0x7ff,
3151 					  transfer_type,
3152 					  usb_pipein(urb->pipe) ?
3153 						CVMX_USB_DIRECTION_IN :
3154 						CVMX_USB_DIRECTION_OUT,
3155 					  urb->interval,
3156 					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3157 					   >> 11) & 0x3,
3158 					  split_device, split_port);
3159 		if (!pipe) {
3160 			usb_hcd_unlink_urb_from_ep(hcd, urb);
3161 			spin_unlock_irqrestore(&usb->lock, flags);
3162 			dev_dbg(dev, "Failed to create pipe\n");
3163 			return -ENOMEM;
3164 		}
3165 		ep->hcpriv = pipe;
3166 	} else {
3167 		pipe = ep->hcpriv;
3168 	}
3169 
3170 	switch (usb_pipetype(urb->pipe)) {
3171 	case PIPE_ISOCHRONOUS:
3172 		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3173 			usb_pipedevice(urb->pipe),
3174 			usb_pipeendpoint(urb->pipe));
3175 		/*
3176 		 * Allocate a structure to use for our private list of
3177 		 * isochronous packets.
3178 		 */
3179 		iso_packet = kmalloc_array(urb->number_of_packets,
3180 					   sizeof(struct cvmx_usb_iso_packet),
3181 					   GFP_ATOMIC);
3182 		if (iso_packet) {
3183 			int i;
3184 			/* Fill the list with the data from the URB */
3185 			for (i = 0; i < urb->number_of_packets; i++) {
3186 				iso_packet[i].offset =
3187 					urb->iso_frame_desc[i].offset;
3188 				iso_packet[i].length =
3189 					urb->iso_frame_desc[i].length;
3190 				iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3191 			}
3192 			/*
3193 			 * Store a pointer to the list in the URB setup_packet
3194 			 * field. We know this currently isn't being used and
3195 			 * this saves us a bunch of logic.
3196 			 */
3197 			urb->setup_packet = (char *)iso_packet;
3198 			transaction = cvmx_usb_submit_isochronous(usb,
3199 								  pipe, urb);
3200 			/*
3201 			 * If submit failed we need to free our private packet
3202 			 * list.
3203 			 */
3204 			if (!transaction) {
3205 				urb->setup_packet = NULL;
3206 				kfree(iso_packet);
3207 			}
3208 		}
3209 		break;
3210 	case PIPE_INTERRUPT:
3211 		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3212 			usb_pipedevice(urb->pipe),
3213 			usb_pipeendpoint(urb->pipe));
3214 		transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3215 		break;
3216 	case PIPE_CONTROL:
3217 		dev_dbg(dev, "Submit control to %d.%d\n",
3218 			usb_pipedevice(urb->pipe),
3219 			usb_pipeendpoint(urb->pipe));
3220 		transaction = cvmx_usb_submit_control(usb, pipe, urb);
3221 		break;
3222 	case PIPE_BULK:
3223 		dev_dbg(dev, "Submit bulk to %d.%d\n",
3224 			usb_pipedevice(urb->pipe),
3225 			usb_pipeendpoint(urb->pipe));
3226 		transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3227 		break;
3228 	}
3229 	if (!transaction) {
3230 		usb_hcd_unlink_urb_from_ep(hcd, urb);
3231 		spin_unlock_irqrestore(&usb->lock, flags);
3232 		dev_dbg(dev, "Failed to submit\n");
3233 		return -ENOMEM;
3234 	}
3235 	urb->hcpriv = transaction;
3236 	spin_unlock_irqrestore(&usb->lock, flags);
3237 	return 0;
3238 }
3239 
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3240 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3241 				  struct urb *urb,
3242 				  int status)
3243 {
3244 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3245 	unsigned long flags;
3246 	int rc;
3247 
3248 	if (!urb->dev)
3249 		return -EINVAL;
3250 
3251 	spin_lock_irqsave(&usb->lock, flags);
3252 
3253 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3254 	if (rc)
3255 		goto out;
3256 
3257 	urb->status = status;
3258 	cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3259 
3260 out:
3261 	spin_unlock_irqrestore(&usb->lock, flags);
3262 
3263 	return rc;
3264 }
3265 
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3266 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3267 					struct usb_host_endpoint *ep)
3268 {
3269 	struct device *dev = hcd->self.controller;
3270 
3271 	if (ep->hcpriv) {
3272 		struct octeon_hcd *usb = hcd_to_octeon(hcd);
3273 		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3274 		unsigned long flags;
3275 
3276 		spin_lock_irqsave(&usb->lock, flags);
3277 		cvmx_usb_cancel_all(usb, pipe);
3278 		if (cvmx_usb_close_pipe(usb, pipe))
3279 			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3280 		spin_unlock_irqrestore(&usb->lock, flags);
3281 		ep->hcpriv = NULL;
3282 	}
3283 }
3284 
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3285 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3286 {
3287 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3288 	struct cvmx_usb_port_status port_status;
3289 	unsigned long flags;
3290 
3291 	spin_lock_irqsave(&usb->lock, flags);
3292 	port_status = cvmx_usb_get_status(usb);
3293 	spin_unlock_irqrestore(&usb->lock, flags);
3294 	buf[0] = port_status.connect_change << 1;
3295 
3296 	return buf[0] != 0;
3297 }
3298 
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3299 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3300 				  u16 wIndex, char *buf, u16 wLength)
3301 {
3302 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3303 	struct device *dev = hcd->self.controller;
3304 	struct cvmx_usb_port_status usb_port_status;
3305 	int port_status;
3306 	struct usb_hub_descriptor *desc;
3307 	unsigned long flags;
3308 
3309 	switch (typeReq) {
3310 	case ClearHubFeature:
3311 		dev_dbg(dev, "ClearHubFeature\n");
3312 		switch (wValue) {
3313 		case C_HUB_LOCAL_POWER:
3314 		case C_HUB_OVER_CURRENT:
3315 			/* Nothing required here */
3316 			break;
3317 		default:
3318 			return -EINVAL;
3319 		}
3320 		break;
3321 	case ClearPortFeature:
3322 		dev_dbg(dev, "ClearPortFeature\n");
3323 		if (wIndex != 1) {
3324 			dev_dbg(dev, " INVALID\n");
3325 			return -EINVAL;
3326 		}
3327 
3328 		switch (wValue) {
3329 		case USB_PORT_FEAT_ENABLE:
3330 			dev_dbg(dev, " ENABLE\n");
3331 			spin_lock_irqsave(&usb->lock, flags);
3332 			cvmx_usb_disable(usb);
3333 			spin_unlock_irqrestore(&usb->lock, flags);
3334 			break;
3335 		case USB_PORT_FEAT_SUSPEND:
3336 			dev_dbg(dev, " SUSPEND\n");
3337 			/* Not supported on Octeon */
3338 			break;
3339 		case USB_PORT_FEAT_POWER:
3340 			dev_dbg(dev, " POWER\n");
3341 			/* Not supported on Octeon */
3342 			break;
3343 		case USB_PORT_FEAT_INDICATOR:
3344 			dev_dbg(dev, " INDICATOR\n");
3345 			/* Port inidicator not supported */
3346 			break;
3347 		case USB_PORT_FEAT_C_CONNECTION:
3348 			dev_dbg(dev, " C_CONNECTION\n");
3349 			/* Clears drivers internal connect status change flag */
3350 			spin_lock_irqsave(&usb->lock, flags);
3351 			usb->port_status = cvmx_usb_get_status(usb);
3352 			spin_unlock_irqrestore(&usb->lock, flags);
3353 			break;
3354 		case USB_PORT_FEAT_C_RESET:
3355 			dev_dbg(dev, " C_RESET\n");
3356 			/*
3357 			 * Clears the driver's internal Port Reset Change flag.
3358 			 */
3359 			spin_lock_irqsave(&usb->lock, flags);
3360 			usb->port_status = cvmx_usb_get_status(usb);
3361 			spin_unlock_irqrestore(&usb->lock, flags);
3362 			break;
3363 		case USB_PORT_FEAT_C_ENABLE:
3364 			dev_dbg(dev, " C_ENABLE\n");
3365 			/*
3366 			 * Clears the driver's internal Port Enable/Disable
3367 			 * Change flag.
3368 			 */
3369 			spin_lock_irqsave(&usb->lock, flags);
3370 			usb->port_status = cvmx_usb_get_status(usb);
3371 			spin_unlock_irqrestore(&usb->lock, flags);
3372 			break;
3373 		case USB_PORT_FEAT_C_SUSPEND:
3374 			dev_dbg(dev, " C_SUSPEND\n");
3375 			/*
3376 			 * Clears the driver's internal Port Suspend Change
3377 			 * flag, which is set when resume signaling on the host
3378 			 * port is complete.
3379 			 */
3380 			break;
3381 		case USB_PORT_FEAT_C_OVER_CURRENT:
3382 			dev_dbg(dev, " C_OVER_CURRENT\n");
3383 			/* Clears the driver's overcurrent Change flag */
3384 			spin_lock_irqsave(&usb->lock, flags);
3385 			usb->port_status = cvmx_usb_get_status(usb);
3386 			spin_unlock_irqrestore(&usb->lock, flags);
3387 			break;
3388 		default:
3389 			dev_dbg(dev, " UNKNOWN\n");
3390 			return -EINVAL;
3391 		}
3392 		break;
3393 	case GetHubDescriptor:
3394 		dev_dbg(dev, "GetHubDescriptor\n");
3395 		desc = (struct usb_hub_descriptor *)buf;
3396 		desc->bDescLength = 9;
3397 		desc->bDescriptorType = 0x29;
3398 		desc->bNbrPorts = 1;
3399 		desc->wHubCharacteristics = cpu_to_le16(0x08);
3400 		desc->bPwrOn2PwrGood = 1;
3401 		desc->bHubContrCurrent = 0;
3402 		desc->u.hs.DeviceRemovable[0] = 0;
3403 		desc->u.hs.DeviceRemovable[1] = 0xff;
3404 		break;
3405 	case GetHubStatus:
3406 		dev_dbg(dev, "GetHubStatus\n");
3407 		*(__le32 *)buf = 0;
3408 		break;
3409 	case GetPortStatus:
3410 		dev_dbg(dev, "GetPortStatus\n");
3411 		if (wIndex != 1) {
3412 			dev_dbg(dev, " INVALID\n");
3413 			return -EINVAL;
3414 		}
3415 
3416 		spin_lock_irqsave(&usb->lock, flags);
3417 		usb_port_status = cvmx_usb_get_status(usb);
3418 		spin_unlock_irqrestore(&usb->lock, flags);
3419 		port_status = 0;
3420 
3421 		if (usb_port_status.connect_change) {
3422 			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3423 			dev_dbg(dev, " C_CONNECTION\n");
3424 		}
3425 
3426 		if (usb_port_status.port_enabled) {
3427 			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3428 			dev_dbg(dev, " C_ENABLE\n");
3429 		}
3430 
3431 		if (usb_port_status.connected) {
3432 			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3433 			dev_dbg(dev, " CONNECTION\n");
3434 		}
3435 
3436 		if (usb_port_status.port_enabled) {
3437 			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3438 			dev_dbg(dev, " ENABLE\n");
3439 		}
3440 
3441 		if (usb_port_status.port_over_current) {
3442 			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3443 			dev_dbg(dev, " OVER_CURRENT\n");
3444 		}
3445 
3446 		if (usb_port_status.port_powered) {
3447 			port_status |= (1 << USB_PORT_FEAT_POWER);
3448 			dev_dbg(dev, " POWER\n");
3449 		}
3450 
3451 		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3452 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3453 			dev_dbg(dev, " HIGHSPEED\n");
3454 		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3455 			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3456 			dev_dbg(dev, " LOWSPEED\n");
3457 		}
3458 
3459 		*((__le32 *)buf) = cpu_to_le32(port_status);
3460 		break;
3461 	case SetHubFeature:
3462 		dev_dbg(dev, "SetHubFeature\n");
3463 		/* No HUB features supported */
3464 		break;
3465 	case SetPortFeature:
3466 		dev_dbg(dev, "SetPortFeature\n");
3467 		if (wIndex != 1) {
3468 			dev_dbg(dev, " INVALID\n");
3469 			return -EINVAL;
3470 		}
3471 
3472 		switch (wValue) {
3473 		case USB_PORT_FEAT_SUSPEND:
3474 			dev_dbg(dev, " SUSPEND\n");
3475 			return -EINVAL;
3476 		case USB_PORT_FEAT_POWER:
3477 			dev_dbg(dev, " POWER\n");
3478 			/*
3479 			 * Program the port power bit to drive VBUS on the USB.
3480 			 */
3481 			spin_lock_irqsave(&usb->lock, flags);
3482 			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3483 					cvmx_usbcx_hprt, prtpwr, 1);
3484 			spin_unlock_irqrestore(&usb->lock, flags);
3485 			return 0;
3486 		case USB_PORT_FEAT_RESET:
3487 			dev_dbg(dev, " RESET\n");
3488 			spin_lock_irqsave(&usb->lock, flags);
3489 			cvmx_usb_reset_port(usb);
3490 			spin_unlock_irqrestore(&usb->lock, flags);
3491 			return 0;
3492 		case USB_PORT_FEAT_INDICATOR:
3493 			dev_dbg(dev, " INDICATOR\n");
3494 			/* Not supported */
3495 			break;
3496 		default:
3497 			dev_dbg(dev, " UNKNOWN\n");
3498 			return -EINVAL;
3499 		}
3500 		break;
3501 	default:
3502 		dev_dbg(dev, "Unknown root hub request\n");
3503 		return -EINVAL;
3504 	}
3505 	return 0;
3506 }
3507 
3508 static const struct hc_driver octeon_hc_driver = {
3509 	.description		= "Octeon USB",
3510 	.product_desc		= "Octeon Host Controller",
3511 	.hcd_priv_size		= sizeof(struct octeon_hcd),
3512 	.irq			= octeon_usb_irq,
3513 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
3514 	.start			= octeon_usb_start,
3515 	.stop			= octeon_usb_stop,
3516 	.urb_enqueue		= octeon_usb_urb_enqueue,
3517 	.urb_dequeue		= octeon_usb_urb_dequeue,
3518 	.endpoint_disable	= octeon_usb_endpoint_disable,
3519 	.get_frame_number	= octeon_usb_get_frame_number,
3520 	.hub_status_data	= octeon_usb_hub_status_data,
3521 	.hub_control		= octeon_usb_hub_control,
3522 	.map_urb_for_dma	= octeon_map_urb_for_dma,
3523 	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3524 };
3525 
octeon_usb_probe(struct platform_device * pdev)3526 static int octeon_usb_probe(struct platform_device *pdev)
3527 {
3528 	int status;
3529 	int initialize_flags;
3530 	int usb_num;
3531 	struct resource *res_mem;
3532 	struct device_node *usbn_node;
3533 	int irq = platform_get_irq(pdev, 0);
3534 	struct device *dev = &pdev->dev;
3535 	struct octeon_hcd *usb;
3536 	struct usb_hcd *hcd;
3537 	u32 clock_rate = 48000000;
3538 	bool is_crystal_clock = false;
3539 	const char *clock_type;
3540 	int i;
3541 
3542 	if (!dev->of_node) {
3543 		dev_err(dev, "Error: empty of_node\n");
3544 		return -ENXIO;
3545 	}
3546 	usbn_node = dev->of_node->parent;
3547 
3548 	i = of_property_read_u32(usbn_node,
3549 				 "clock-frequency", &clock_rate);
3550 	if (i)
3551 		i = of_property_read_u32(usbn_node,
3552 					 "refclk-frequency", &clock_rate);
3553 	if (i) {
3554 		dev_err(dev, "No USBN \"clock-frequency\"\n");
3555 		return -ENXIO;
3556 	}
3557 	switch (clock_rate) {
3558 	case 12000000:
3559 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3560 		break;
3561 	case 24000000:
3562 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3563 		break;
3564 	case 48000000:
3565 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3566 		break;
3567 	default:
3568 		dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3569 			clock_rate);
3570 		return -ENXIO;
3571 	}
3572 
3573 	i = of_property_read_string(usbn_node,
3574 				    "cavium,refclk-type", &clock_type);
3575 	if (i)
3576 		i = of_property_read_string(usbn_node,
3577 					    "refclk-type", &clock_type);
3578 
3579 	if (!i && strcmp("crystal", clock_type) == 0)
3580 		is_crystal_clock = true;
3581 
3582 	if (is_crystal_clock)
3583 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3584 	else
3585 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3586 
3587 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3588 	if (!res_mem) {
3589 		dev_err(dev, "found no memory resource\n");
3590 		return -ENXIO;
3591 	}
3592 	usb_num = (res_mem->start >> 44) & 1;
3593 
3594 	if (irq < 0) {
3595 		/* Defective device tree, but we know how to fix it. */
3596 		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3597 
3598 		irq = irq_create_mapping(NULL, hwirq);
3599 	}
3600 
3601 	/*
3602 	 * Set the DMA mask to 64bits so we get buffers already translated for
3603 	 * DMA.
3604 	 */
3605 	i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3606 	if (i)
3607 		return i;
3608 
3609 	/*
3610 	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3611 	 * IOB priority registers.  Under heavy network load USB
3612 	 * hardware can be starved by the IOB causing a crash.  Give
3613 	 * it a priority boost if it has been waiting more than 400
3614 	 * cycles to avoid this situation.
3615 	 *
3616 	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3617 	 * but no failures are seen with 4096.  We choose a value of
3618 	 * 400 to give a safety factor of 10.
3619 	 */
3620 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3621 		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3622 
3623 		pri_cnt.u64 = 0;
3624 		pri_cnt.s.cnt_enb = 1;
3625 		pri_cnt.s.cnt_val = 400;
3626 		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3627 	}
3628 
3629 	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3630 	if (!hcd) {
3631 		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3632 		return -1;
3633 	}
3634 	hcd->uses_new_polling = 1;
3635 	usb = (struct octeon_hcd *)hcd->hcd_priv;
3636 
3637 	spin_lock_init(&usb->lock);
3638 
3639 	usb->init_flags = initialize_flags;
3640 
3641 	/* Initialize the USB state structure */
3642 	usb->index = usb_num;
3643 	INIT_LIST_HEAD(&usb->idle_pipes);
3644 	for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3645 		INIT_LIST_HEAD(&usb->active_pipes[i]);
3646 
3647 	/* Due to an errata, CN31XX doesn't support DMA */
3648 	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3649 		usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3650 		/* Only use one channel with non DMA */
3651 		usb->idle_hardware_channels = 0x1;
3652 	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3653 		/* CN5XXX have an errata with channel 3 */
3654 		usb->idle_hardware_channels = 0xf7;
3655 	} else {
3656 		usb->idle_hardware_channels = 0xff;
3657 	}
3658 
3659 	status = cvmx_usb_initialize(dev, usb);
3660 	if (status) {
3661 		dev_dbg(dev, "USB initialization failed with %d\n", status);
3662 		usb_put_hcd(hcd);
3663 		return -1;
3664 	}
3665 
3666 	status = usb_add_hcd(hcd, irq, 0);
3667 	if (status) {
3668 		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3669 		usb_put_hcd(hcd);
3670 		return -1;
3671 	}
3672 	device_wakeup_enable(hcd->self.controller);
3673 
3674 	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3675 
3676 	return 0;
3677 }
3678 
octeon_usb_remove(struct platform_device * pdev)3679 static int octeon_usb_remove(struct platform_device *pdev)
3680 {
3681 	int status;
3682 	struct device *dev = &pdev->dev;
3683 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3684 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3685 	unsigned long flags;
3686 
3687 	usb_remove_hcd(hcd);
3688 	spin_lock_irqsave(&usb->lock, flags);
3689 	status = cvmx_usb_shutdown(usb);
3690 	spin_unlock_irqrestore(&usb->lock, flags);
3691 	if (status)
3692 		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3693 
3694 	usb_put_hcd(hcd);
3695 
3696 	return 0;
3697 }
3698 
3699 static const struct of_device_id octeon_usb_match[] = {
3700 	{
3701 		.compatible = "cavium,octeon-5750-usbc",
3702 	},
3703 	{},
3704 };
3705 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3706 
3707 static struct platform_driver octeon_usb_driver = {
3708 	.driver = {
3709 		.name		= "octeon-hcd",
3710 		.of_match_table = octeon_usb_match,
3711 	},
3712 	.probe      = octeon_usb_probe,
3713 	.remove     = octeon_usb_remove,
3714 };
3715 
octeon_usb_driver_init(void)3716 static int __init octeon_usb_driver_init(void)
3717 {
3718 	if (usb_disabled())
3719 		return 0;
3720 
3721 	return platform_driver_register(&octeon_usb_driver);
3722 }
3723 module_init(octeon_usb_driver_init);
3724 
octeon_usb_driver_exit(void)3725 static void __exit octeon_usb_driver_exit(void)
3726 {
3727 	if (usb_disabled())
3728 		return;
3729 
3730 	platform_driver_unregister(&octeon_usb_driver);
3731 }
3732 module_exit(octeon_usb_driver_exit);
3733 
3734 MODULE_LICENSE("GPL");
3735 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3736 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3737