1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Support for mt9m114 Camera Sensor.
4 *
5 * Copyright (c) 2010 Intel Corporation. All Rights Reserved.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/string.h>
24 #include <linux/errno.h>
25 #include <linux/init.h>
26 #include <linux/kmod.h>
27 #include <linux/device.h>
28 #include <linux/fs.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/i2c.h>
32 #include <linux/acpi.h>
33 #include "../include/linux/atomisp_gmin_platform.h"
34 #include <media/v4l2-device.h>
35
36 #include "mt9m114.h"
37
38 #define to_mt9m114_sensor(sd) container_of(sd, struct mt9m114_device, sd)
39
40 /*
41 * TODO: use debug parameter to actually define when debug messages should
42 * be printed.
43 */
44 static int debug;
45 static int aaalock;
46 module_param(debug, int, 0644);
47 MODULE_PARM_DESC(debug, "Debug level (0-1)");
48
49 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value);
50 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value);
51 static int mt9m114_wait_state(struct i2c_client *client, int timeout);
52
53 static int
mt9m114_read_reg(struct i2c_client * client,u16 data_length,u32 reg,u32 * val)54 mt9m114_read_reg(struct i2c_client *client, u16 data_length, u32 reg, u32 *val)
55 {
56 int err;
57 struct i2c_msg msg[2];
58 unsigned char data[4];
59
60 if (!client->adapter) {
61 v4l2_err(client, "%s error, no client->adapter\n", __func__);
62 return -ENODEV;
63 }
64
65 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
66 && data_length != MISENSOR_32BIT) {
67 v4l2_err(client, "%s error, invalid data length\n", __func__);
68 return -EINVAL;
69 }
70
71 msg[0].addr = client->addr;
72 msg[0].flags = 0;
73 msg[0].len = MSG_LEN_OFFSET;
74 msg[0].buf = data;
75
76 /* high byte goes out first */
77 data[0] = (u16)(reg >> 8);
78 data[1] = (u16)(reg & 0xff);
79
80 msg[1].addr = client->addr;
81 msg[1].len = data_length;
82 msg[1].flags = I2C_M_RD;
83 msg[1].buf = data;
84
85 err = i2c_transfer(client->adapter, msg, 2);
86
87 if (err >= 0) {
88 *val = 0;
89 /* high byte comes first */
90 if (data_length == MISENSOR_8BIT)
91 *val = data[0];
92 else if (data_length == MISENSOR_16BIT)
93 *val = data[1] + (data[0] << 8);
94 else
95 *val = data[3] + (data[2] << 8) +
96 (data[1] << 16) + (data[0] << 24);
97
98 return 0;
99 }
100
101 dev_err(&client->dev, "read from offset 0x%x error %d", reg, err);
102 return err;
103 }
104
105 static int
mt9m114_write_reg(struct i2c_client * client,u16 data_length,u16 reg,u32 val)106 mt9m114_write_reg(struct i2c_client *client, u16 data_length, u16 reg, u32 val)
107 {
108 int num_msg;
109 struct i2c_msg msg;
110 unsigned char data[6] = {0};
111 __be16 *wreg;
112 int retry = 0;
113
114 if (!client->adapter) {
115 v4l2_err(client, "%s error, no client->adapter\n", __func__);
116 return -ENODEV;
117 }
118
119 if (data_length != MISENSOR_8BIT && data_length != MISENSOR_16BIT
120 && data_length != MISENSOR_32BIT) {
121 v4l2_err(client, "%s error, invalid data_length\n", __func__);
122 return -EINVAL;
123 }
124
125 memset(&msg, 0, sizeof(msg));
126
127 again:
128 msg.addr = client->addr;
129 msg.flags = 0;
130 msg.len = 2 + data_length;
131 msg.buf = data;
132
133 /* high byte goes out first */
134 wreg = (void *)data;
135 *wreg = cpu_to_be16(reg);
136
137 if (data_length == MISENSOR_8BIT) {
138 data[2] = (u8)(val);
139 } else if (data_length == MISENSOR_16BIT) {
140 u16 *wdata = (void *)&data[2];
141
142 *wdata = be16_to_cpu(*(__be16 *)&data[2]);
143 } else {
144 /* MISENSOR_32BIT */
145 u32 *wdata = (void *)&data[2];
146
147 *wdata = be32_to_cpu(*(__be32 *)&data[2]);
148 }
149
150 num_msg = i2c_transfer(client->adapter, &msg, 1);
151
152 /*
153 * HACK: Need some delay here for Rev 2 sensors otherwise some
154 * registers do not seem to load correctly.
155 */
156 mdelay(1);
157
158 if (num_msg >= 0)
159 return 0;
160
161 dev_err(&client->dev, "write error: wrote 0x%x to offset 0x%x error %d",
162 val, reg, num_msg);
163 if (retry <= I2C_RETRY_COUNT) {
164 dev_dbg(&client->dev, "retrying... %d", retry);
165 retry++;
166 msleep(20);
167 goto again;
168 }
169
170 return num_msg;
171 }
172
173 /**
174 * misensor_rmw_reg - Read/Modify/Write a value to a register in the sensor
175 * device
176 * @client: i2c driver client structure
177 * @data_length: 8/16/32-bits length
178 * @reg: register address
179 * @mask: masked out bits
180 * @set: bits set
181 *
182 * Read/modify/write a value to a register in the sensor device.
183 * Returns zero if successful, or non-zero otherwise.
184 */
185 static int
misensor_rmw_reg(struct i2c_client * client,u16 data_length,u16 reg,u32 mask,u32 set)186 misensor_rmw_reg(struct i2c_client *client, u16 data_length, u16 reg,
187 u32 mask, u32 set)
188 {
189 int err;
190 u32 val;
191
192 /* Exit when no mask */
193 if (mask == 0)
194 return 0;
195
196 /* @mask must not exceed data length */
197 switch (data_length) {
198 case MISENSOR_8BIT:
199 if (mask & ~0xff)
200 return -EINVAL;
201 break;
202 case MISENSOR_16BIT:
203 if (mask & ~0xffff)
204 return -EINVAL;
205 break;
206 case MISENSOR_32BIT:
207 break;
208 default:
209 /* Wrong @data_length */
210 return -EINVAL;
211 }
212
213 err = mt9m114_read_reg(client, data_length, reg, &val);
214 if (err) {
215 v4l2_err(client, "%s error exit, read failed\n", __func__);
216 return -EINVAL;
217 }
218
219 val &= ~mask;
220
221 /*
222 * Perform the OR function if the @set exists.
223 * Shift @set value to target bit location. @set should set only
224 * bits included in @mask.
225 *
226 * REVISIT: This function expects @set to be non-shifted. Its shift
227 * value is then defined to be equal to mask's LSB position.
228 * How about to inform values in their right offset position and avoid
229 * this unneeded shift operation?
230 */
231 set <<= ffs(mask) - 1;
232 val |= set & mask;
233
234 err = mt9m114_write_reg(client, data_length, reg, val);
235 if (err) {
236 v4l2_err(client, "%s error exit, write failed\n", __func__);
237 return -EINVAL;
238 }
239
240 return 0;
241 }
242
__mt9m114_flush_reg_array(struct i2c_client * client,struct mt9m114_write_ctrl * ctrl)243 static int __mt9m114_flush_reg_array(struct i2c_client *client,
244 struct mt9m114_write_ctrl *ctrl)
245 {
246 struct i2c_msg msg;
247 const int num_msg = 1;
248 int ret;
249 int retry = 0;
250 __be16 *data16 = (void *)&ctrl->buffer.addr;
251
252 if (ctrl->index == 0)
253 return 0;
254
255 again:
256 msg.addr = client->addr;
257 msg.flags = 0;
258 msg.len = 2 + ctrl->index;
259 *data16 = cpu_to_be16(ctrl->buffer.addr);
260 msg.buf = (u8 *)&ctrl->buffer;
261
262 ret = i2c_transfer(client->adapter, &msg, num_msg);
263 if (ret != num_msg) {
264 if (++retry <= I2C_RETRY_COUNT) {
265 dev_dbg(&client->dev, "retrying... %d\n", retry);
266 msleep(20);
267 goto again;
268 }
269 dev_err(&client->dev, "%s: i2c transfer error\n", __func__);
270 return -EIO;
271 }
272
273 ctrl->index = 0;
274
275 /*
276 * REVISIT: Previously we had a delay after writing data to sensor.
277 * But it was removed as our tests have shown it is not necessary
278 * anymore.
279 */
280
281 return 0;
282 }
283
__mt9m114_buf_reg_array(struct i2c_client * client,struct mt9m114_write_ctrl * ctrl,const struct misensor_reg * next)284 static int __mt9m114_buf_reg_array(struct i2c_client *client,
285 struct mt9m114_write_ctrl *ctrl,
286 const struct misensor_reg *next)
287 {
288 __be16 *data16;
289 __be32 *data32;
290 int err;
291
292 /* Insufficient buffer? Let's flush and get more free space. */
293 if (ctrl->index + next->length >= MT9M114_MAX_WRITE_BUF_SIZE) {
294 err = __mt9m114_flush_reg_array(client, ctrl);
295 if (err)
296 return err;
297 }
298
299 switch (next->length) {
300 case MISENSOR_8BIT:
301 ctrl->buffer.data[ctrl->index] = (u8)next->val;
302 break;
303 case MISENSOR_16BIT:
304 data16 = (__be16 *)&ctrl->buffer.data[ctrl->index];
305 *data16 = cpu_to_be16((u16)next->val);
306 break;
307 case MISENSOR_32BIT:
308 data32 = (__be32 *)&ctrl->buffer.data[ctrl->index];
309 *data32 = cpu_to_be32(next->val);
310 break;
311 default:
312 return -EINVAL;
313 }
314
315 /* When first item is added, we need to store its starting address */
316 if (ctrl->index == 0)
317 ctrl->buffer.addr = next->reg;
318
319 ctrl->index += next->length;
320
321 return 0;
322 }
323
324 static int
__mt9m114_write_reg_is_consecutive(struct i2c_client * client,struct mt9m114_write_ctrl * ctrl,const struct misensor_reg * next)325 __mt9m114_write_reg_is_consecutive(struct i2c_client *client,
326 struct mt9m114_write_ctrl *ctrl,
327 const struct misensor_reg *next)
328 {
329 if (ctrl->index == 0)
330 return 1;
331
332 return ctrl->buffer.addr + ctrl->index == next->reg;
333 }
334
335 /*
336 * mt9m114_write_reg_array - Initializes a list of mt9m114 registers
337 * @client: i2c driver client structure
338 * @reglist: list of registers to be written
339 * @poll: completion polling requirement
340 * This function initializes a list of registers. When consecutive addresses
341 * are found in a row on the list, this function creates a buffer and sends
342 * consecutive data in a single i2c_transfer().
343 *
344 * __mt9m114_flush_reg_array, __mt9m114_buf_reg_array() and
345 * __mt9m114_write_reg_is_consecutive() are internal functions to
346 * mt9m114_write_reg_array() and should be not used anywhere else.
347 *
348 */
mt9m114_write_reg_array(struct i2c_client * client,const struct misensor_reg * reglist,int poll)349 static int mt9m114_write_reg_array(struct i2c_client *client,
350 const struct misensor_reg *reglist,
351 int poll)
352 {
353 const struct misensor_reg *next = reglist;
354 struct mt9m114_write_ctrl ctrl;
355 int err;
356
357 if (poll == PRE_POLLING) {
358 err = mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
359 if (err)
360 return err;
361 }
362
363 ctrl.index = 0;
364 for (; next->length != MISENSOR_TOK_TERM; next++) {
365 switch (next->length & MISENSOR_TOK_MASK) {
366 case MISENSOR_TOK_DELAY:
367 err = __mt9m114_flush_reg_array(client, &ctrl);
368 if (err)
369 return err;
370 msleep(next->val);
371 break;
372 case MISENSOR_TOK_RMW:
373 err = __mt9m114_flush_reg_array(client, &ctrl);
374 err |= misensor_rmw_reg(client,
375 next->length &
376 ~MISENSOR_TOK_RMW,
377 next->reg, next->val,
378 next->val2);
379 if (err) {
380 dev_err(&client->dev, "%s read err. aborted\n",
381 __func__);
382 return -EINVAL;
383 }
384 break;
385 default:
386 /*
387 * If next address is not consecutive, data needs to be
388 * flushed before proceed.
389 */
390 if (!__mt9m114_write_reg_is_consecutive(client, &ctrl,
391 next)) {
392 err = __mt9m114_flush_reg_array(client, &ctrl);
393 if (err)
394 return err;
395 }
396 err = __mt9m114_buf_reg_array(client, &ctrl, next);
397 if (err) {
398 v4l2_err(client, "%s: write error, aborted\n",
399 __func__);
400 return err;
401 }
402 break;
403 }
404 }
405
406 err = __mt9m114_flush_reg_array(client, &ctrl);
407 if (err)
408 return err;
409
410 if (poll == POST_POLLING)
411 return mt9m114_wait_state(client, MT9M114_WAIT_STAT_TIMEOUT);
412
413 return 0;
414 }
415
mt9m114_wait_state(struct i2c_client * client,int timeout)416 static int mt9m114_wait_state(struct i2c_client *client, int timeout)
417 {
418 int ret;
419 unsigned int val;
420
421 while (timeout-- > 0) {
422 ret = mt9m114_read_reg(client, MISENSOR_16BIT, 0x0080, &val);
423 if (ret)
424 return ret;
425 if ((val & 0x2) == 0)
426 return 0;
427 msleep(20);
428 }
429
430 return -EINVAL;
431 }
432
mt9m114_set_suspend(struct v4l2_subdev * sd)433 static int mt9m114_set_suspend(struct v4l2_subdev *sd)
434 {
435 struct i2c_client *client = v4l2_get_subdevdata(sd);
436
437 return mt9m114_write_reg_array(client,
438 mt9m114_standby_reg, POST_POLLING);
439 }
440
mt9m114_init_common(struct v4l2_subdev * sd)441 static int mt9m114_init_common(struct v4l2_subdev *sd)
442 {
443 struct i2c_client *client = v4l2_get_subdevdata(sd);
444
445 return mt9m114_write_reg_array(client, mt9m114_common, PRE_POLLING);
446 }
447
power_ctrl(struct v4l2_subdev * sd,bool flag)448 static int power_ctrl(struct v4l2_subdev *sd, bool flag)
449 {
450 int ret;
451 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
452
453 if (!dev || !dev->platform_data)
454 return -ENODEV;
455
456 if (flag) {
457 ret = dev->platform_data->v2p8_ctrl(sd, 1);
458 if (ret == 0) {
459 ret = dev->platform_data->v1p8_ctrl(sd, 1);
460 if (ret)
461 ret = dev->platform_data->v2p8_ctrl(sd, 0);
462 }
463 } else {
464 ret = dev->platform_data->v2p8_ctrl(sd, 0);
465 ret = dev->platform_data->v1p8_ctrl(sd, 0);
466 }
467 return ret;
468 }
469
gpio_ctrl(struct v4l2_subdev * sd,bool flag)470 static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
471 {
472 int ret;
473 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
474
475 if (!dev || !dev->platform_data)
476 return -ENODEV;
477
478 /* Note: current modules wire only one GPIO signal (RESET#),
479 * but the schematic wires up two to the connector. BIOS
480 * versions have been unfortunately inconsistent with which
481 * ACPI index RESET# is on, so hit both */
482
483 if (flag) {
484 ret = dev->platform_data->gpio0_ctrl(sd, 0);
485 ret = dev->platform_data->gpio1_ctrl(sd, 0);
486 msleep(60);
487 ret |= dev->platform_data->gpio0_ctrl(sd, 1);
488 ret |= dev->platform_data->gpio1_ctrl(sd, 1);
489 } else {
490 ret = dev->platform_data->gpio0_ctrl(sd, 0);
491 ret = dev->platform_data->gpio1_ctrl(sd, 0);
492 }
493 return ret;
494 }
495
power_up(struct v4l2_subdev * sd)496 static int power_up(struct v4l2_subdev *sd)
497 {
498 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
499 struct i2c_client *client = v4l2_get_subdevdata(sd);
500 int ret;
501
502 if (!dev->platform_data) {
503 dev_err(&client->dev, "no camera_sensor_platform_data");
504 return -ENODEV;
505 }
506
507 /* power control */
508 ret = power_ctrl(sd, 1);
509 if (ret)
510 goto fail_power;
511
512 /* flis clock control */
513 ret = dev->platform_data->flisclk_ctrl(sd, 1);
514 if (ret)
515 goto fail_clk;
516
517 /* gpio ctrl */
518 ret = gpio_ctrl(sd, 1);
519 if (ret)
520 dev_err(&client->dev, "gpio failed 1\n");
521 /*
522 * according to DS, 44ms is needed between power up and first i2c
523 * commend
524 */
525 msleep(50);
526
527 return 0;
528
529 fail_clk:
530 dev->platform_data->flisclk_ctrl(sd, 0);
531 fail_power:
532 power_ctrl(sd, 0);
533 dev_err(&client->dev, "sensor power-up failed\n");
534
535 return ret;
536 }
537
power_down(struct v4l2_subdev * sd)538 static int power_down(struct v4l2_subdev *sd)
539 {
540 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
541 struct i2c_client *client = v4l2_get_subdevdata(sd);
542 int ret;
543
544 if (!dev->platform_data) {
545 dev_err(&client->dev, "no camera_sensor_platform_data");
546 return -ENODEV;
547 }
548
549 ret = dev->platform_data->flisclk_ctrl(sd, 0);
550 if (ret)
551 dev_err(&client->dev, "flisclk failed\n");
552
553 /* gpio ctrl */
554 ret = gpio_ctrl(sd, 0);
555 if (ret)
556 dev_err(&client->dev, "gpio failed 1\n");
557
558 /* power control */
559 ret = power_ctrl(sd, 0);
560 if (ret)
561 dev_err(&client->dev, "vprog failed.\n");
562
563 /*according to DS, 20ms is needed after power down*/
564 msleep(20);
565
566 return ret;
567 }
568
mt9m114_s_power(struct v4l2_subdev * sd,int power)569 static int mt9m114_s_power(struct v4l2_subdev *sd, int power)
570 {
571 if (power == 0)
572 return power_down(sd);
573 else {
574 if (power_up(sd))
575 return -EINVAL;
576
577 return mt9m114_init_common(sd);
578 }
579 }
580
581 /*
582 * distance - calculate the distance
583 * @res: resolution
584 * @w: width
585 * @h: height
586 *
587 * Get the gap between resolution and w/h.
588 * res->width/height smaller than w/h wouldn't be considered.
589 * Returns the value of gap or -1 if fail.
590 */
591 #define LARGEST_ALLOWED_RATIO_MISMATCH 600
distance(struct mt9m114_res_struct const * res,u32 w,u32 h)592 static int distance(struct mt9m114_res_struct const *res, u32 w, u32 h)
593 {
594 unsigned int w_ratio;
595 unsigned int h_ratio;
596 int match;
597
598 if (w == 0)
599 return -1;
600 w_ratio = (res->width << 13) / w;
601 if (h == 0)
602 return -1;
603 h_ratio = (res->height << 13) / h;
604 if (h_ratio == 0)
605 return -1;
606 match = abs(((w_ratio << 13) / h_ratio) - 8192);
607
608 if ((w_ratio < 8192) || (h_ratio < 8192) ||
609 (match > LARGEST_ALLOWED_RATIO_MISMATCH))
610 return -1;
611
612 return w_ratio + h_ratio;
613 }
614
615 /* Return the nearest higher resolution index */
nearest_resolution_index(int w,int h)616 static int nearest_resolution_index(int w, int h)
617 {
618 int i;
619 int idx = -1;
620 int dist;
621 int min_dist = INT_MAX;
622 const struct mt9m114_res_struct *tmp_res = NULL;
623
624 for (i = 0; i < ARRAY_SIZE(mt9m114_res); i++) {
625 tmp_res = &mt9m114_res[i];
626 dist = distance(tmp_res, w, h);
627 if (dist == -1)
628 continue;
629 if (dist < min_dist) {
630 min_dist = dist;
631 idx = i;
632 }
633 }
634
635 return idx;
636 }
637
mt9m114_try_res(u32 * w,u32 * h)638 static int mt9m114_try_res(u32 *w, u32 *h)
639 {
640 int idx = 0;
641
642 if ((*w > MT9M114_RES_960P_SIZE_H)
643 || (*h > MT9M114_RES_960P_SIZE_V)) {
644 *w = MT9M114_RES_960P_SIZE_H;
645 *h = MT9M114_RES_960P_SIZE_V;
646 } else {
647 idx = nearest_resolution_index(*w, *h);
648
649 /*
650 * nearest_resolution_index() doesn't return smaller
651 * resolutions. If it fails, it means the requested
652 * resolution is higher than wecan support. Fallback
653 * to highest possible resolution in this case.
654 */
655 if (idx == -1)
656 idx = ARRAY_SIZE(mt9m114_res) - 1;
657
658 *w = mt9m114_res[idx].width;
659 *h = mt9m114_res[idx].height;
660 }
661
662 return 0;
663 }
664
mt9m114_to_res(u32 w,u32 h)665 static struct mt9m114_res_struct *mt9m114_to_res(u32 w, u32 h)
666 {
667 int index;
668
669 for (index = 0; index < N_RES; index++) {
670 if ((mt9m114_res[index].width == w) &&
671 (mt9m114_res[index].height == h))
672 break;
673 }
674
675 /* No mode found */
676 if (index >= N_RES)
677 return NULL;
678
679 return &mt9m114_res[index];
680 }
681
mt9m114_res2size(struct v4l2_subdev * sd,int * h_size,int * v_size)682 static int mt9m114_res2size(struct v4l2_subdev *sd, int *h_size, int *v_size)
683 {
684 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
685 unsigned short hsize;
686 unsigned short vsize;
687
688 switch (dev->res) {
689 case MT9M114_RES_736P:
690 hsize = MT9M114_RES_736P_SIZE_H;
691 vsize = MT9M114_RES_736P_SIZE_V;
692 break;
693 case MT9M114_RES_864P:
694 hsize = MT9M114_RES_864P_SIZE_H;
695 vsize = MT9M114_RES_864P_SIZE_V;
696 break;
697 case MT9M114_RES_960P:
698 hsize = MT9M114_RES_960P_SIZE_H;
699 vsize = MT9M114_RES_960P_SIZE_V;
700 break;
701 default:
702 v4l2_err(sd, "%s: Resolution 0x%08x unknown\n", __func__,
703 dev->res);
704 return -EINVAL;
705 }
706
707 if (h_size)
708 *h_size = hsize;
709 if (v_size)
710 *v_size = vsize;
711
712 return 0;
713 }
714
mt9m114_get_intg_factor(struct i2c_client * client,struct camera_mipi_info * info,const struct mt9m114_res_struct * res)715 static int mt9m114_get_intg_factor(struct i2c_client *client,
716 struct camera_mipi_info *info,
717 const struct mt9m114_res_struct *res)
718 {
719 struct atomisp_sensor_mode_data *buf = &info->data;
720 u32 reg_val;
721 int ret;
722
723 if (!info)
724 return -EINVAL;
725
726 ret = mt9m114_read_reg(client, MISENSOR_32BIT,
727 REG_PIXEL_CLK, ®_val);
728 if (ret)
729 return ret;
730 buf->vt_pix_clk_freq_mhz = reg_val;
731
732 /* get integration time */
733 buf->coarse_integration_time_min = MT9M114_COARSE_INTG_TIME_MIN;
734 buf->coarse_integration_time_max_margin =
735 MT9M114_COARSE_INTG_TIME_MAX_MARGIN;
736
737 buf->fine_integration_time_min = MT9M114_FINE_INTG_TIME_MIN;
738 buf->fine_integration_time_max_margin =
739 MT9M114_FINE_INTG_TIME_MAX_MARGIN;
740
741 buf->fine_integration_time_def = MT9M114_FINE_INTG_TIME_MIN;
742
743 buf->frame_length_lines = res->lines_per_frame;
744 buf->line_length_pck = res->pixels_per_line;
745 buf->read_mode = res->bin_mode;
746
747 /* get the cropping and output resolution to ISP for this mode. */
748 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
749 REG_H_START, ®_val);
750 if (ret)
751 return ret;
752 buf->crop_horizontal_start = reg_val;
753
754 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
755 REG_V_START, ®_val);
756 if (ret)
757 return ret;
758 buf->crop_vertical_start = reg_val;
759
760 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
761 REG_H_END, ®_val);
762 if (ret)
763 return ret;
764 buf->crop_horizontal_end = reg_val;
765
766 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
767 REG_V_END, ®_val);
768 if (ret)
769 return ret;
770 buf->crop_vertical_end = reg_val;
771
772 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
773 REG_WIDTH, ®_val);
774 if (ret)
775 return ret;
776 buf->output_width = reg_val;
777
778 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
779 REG_HEIGHT, ®_val);
780 if (ret)
781 return ret;
782 buf->output_height = reg_val;
783
784 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
785 REG_TIMING_HTS, ®_val);
786 if (ret)
787 return ret;
788 buf->line_length_pck = reg_val;
789
790 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
791 REG_TIMING_VTS, ®_val);
792 if (ret)
793 return ret;
794 buf->frame_length_lines = reg_val;
795
796 buf->binning_factor_x = res->bin_factor_x ?
797 res->bin_factor_x : 1;
798 buf->binning_factor_y = res->bin_factor_y ?
799 res->bin_factor_y : 1;
800 return 0;
801 }
802
mt9m114_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)803 static int mt9m114_get_fmt(struct v4l2_subdev *sd,
804 struct v4l2_subdev_pad_config *cfg,
805 struct v4l2_subdev_format *format)
806 {
807 struct v4l2_mbus_framefmt *fmt = &format->format;
808 int width, height;
809 int ret;
810
811 if (format->pad)
812 return -EINVAL;
813 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
814
815 ret = mt9m114_res2size(sd, &width, &height);
816 if (ret)
817 return ret;
818 fmt->width = width;
819 fmt->height = height;
820
821 return 0;
822 }
823
mt9m114_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * format)824 static int mt9m114_set_fmt(struct v4l2_subdev *sd,
825 struct v4l2_subdev_pad_config *cfg,
826 struct v4l2_subdev_format *format)
827 {
828 struct v4l2_mbus_framefmt *fmt = &format->format;
829 struct i2c_client *c = v4l2_get_subdevdata(sd);
830 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
831 struct mt9m114_res_struct *res_index;
832 u32 width = fmt->width;
833 u32 height = fmt->height;
834 struct camera_mipi_info *mt9m114_info = NULL;
835
836 int ret;
837
838 if (format->pad)
839 return -EINVAL;
840 dev->streamon = 0;
841 dev->first_exp = MT9M114_DEFAULT_FIRST_EXP;
842
843 mt9m114_info = v4l2_get_subdev_hostdata(sd);
844 if (!mt9m114_info)
845 return -EINVAL;
846
847 mt9m114_try_res(&width, &height);
848 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
849 cfg->try_fmt = *fmt;
850 return 0;
851 }
852 res_index = mt9m114_to_res(width, height);
853
854 /* Sanity check */
855 if (unlikely(!res_index)) {
856 WARN_ON(1);
857 return -EINVAL;
858 }
859
860 switch (res_index->res) {
861 case MT9M114_RES_736P:
862 ret = mt9m114_write_reg_array(c, mt9m114_736P_init, NO_POLLING);
863 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
864 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
865 break;
866 case MT9M114_RES_864P:
867 ret = mt9m114_write_reg_array(c, mt9m114_864P_init, NO_POLLING);
868 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
869 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
870 break;
871 case MT9M114_RES_960P:
872 ret = mt9m114_write_reg_array(c, mt9m114_976P_init, NO_POLLING);
873 /* set sensor read_mode to Normal */
874 ret += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
875 MISENSOR_R_MODE_MASK, MISENSOR_NORMAL_SET);
876 break;
877 default:
878 v4l2_err(sd, "set resolution: %d failed!\n", res_index->res);
879 return -EINVAL;
880 }
881
882 if (ret)
883 return -EINVAL;
884
885 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg, POST_POLLING);
886 if (ret < 0)
887 return ret;
888
889 if (mt9m114_set_suspend(sd))
890 return -EINVAL;
891
892 if (dev->res != res_index->res) {
893 int index;
894
895 /* Switch to different size */
896 if (width <= 640) {
897 dev->nctx = 0x00; /* Set for context A */
898 } else {
899 /*
900 * Context B is used for resolutions larger than 640x480
901 * Using YUV for Context B.
902 */
903 dev->nctx = 0x01; /* set for context B */
904 }
905
906 /*
907 * Marked current sensor res as being "used"
908 *
909 * REVISIT: We don't need to use an "used" field on each mode
910 * list entry to know which mode is selected. If this
911 * information is really necessary, how about to use a single
912 * variable on sensor dev struct?
913 */
914 for (index = 0; index < N_RES; index++) {
915 if ((width == mt9m114_res[index].width) &&
916 (height == mt9m114_res[index].height)) {
917 mt9m114_res[index].used = true;
918 continue;
919 }
920 mt9m114_res[index].used = false;
921 }
922 }
923 ret = mt9m114_get_intg_factor(c, mt9m114_info,
924 &mt9m114_res[res_index->res]);
925 if (ret) {
926 dev_err(&c->dev, "failed to get integration_factor\n");
927 return -EINVAL;
928 }
929 /*
930 * mt9m114 - we don't poll for context switch
931 * because it does not happen with streaming disabled.
932 */
933 dev->res = res_index->res;
934
935 fmt->width = width;
936 fmt->height = height;
937 fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
938 return 0;
939 }
940
941 /* TODO: Update to SOC functions, remove exposure and gain */
mt9m114_g_focal(struct v4l2_subdev * sd,s32 * val)942 static int mt9m114_g_focal(struct v4l2_subdev *sd, s32 *val)
943 {
944 *val = (MT9M114_FOCAL_LENGTH_NUM << 16) | MT9M114_FOCAL_LENGTH_DEM;
945 return 0;
946 }
947
mt9m114_g_fnumber(struct v4l2_subdev * sd,s32 * val)948 static int mt9m114_g_fnumber(struct v4l2_subdev *sd, s32 *val)
949 {
950 /*const f number for mt9m114*/
951 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 16) | MT9M114_F_NUMBER_DEM;
952 return 0;
953 }
954
mt9m114_g_fnumber_range(struct v4l2_subdev * sd,s32 * val)955 static int mt9m114_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
956 {
957 *val = (MT9M114_F_NUMBER_DEFAULT_NUM << 24) |
958 (MT9M114_F_NUMBER_DEM << 16) |
959 (MT9M114_F_NUMBER_DEFAULT_NUM << 8) | MT9M114_F_NUMBER_DEM;
960 return 0;
961 }
962
963 /* Horizontal flip the image. */
mt9m114_g_hflip(struct v4l2_subdev * sd,s32 * val)964 static int mt9m114_g_hflip(struct v4l2_subdev *sd, s32 *val)
965 {
966 struct i2c_client *c = v4l2_get_subdevdata(sd);
967 int ret;
968 u32 data;
969
970 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
971 (u32)MISENSOR_READ_MODE, &data);
972 if (ret)
973 return ret;
974 *val = !!(data & MISENSOR_HFLIP_MASK);
975
976 return 0;
977 }
978
mt9m114_g_vflip(struct v4l2_subdev * sd,s32 * val)979 static int mt9m114_g_vflip(struct v4l2_subdev *sd, s32 *val)
980 {
981 struct i2c_client *c = v4l2_get_subdevdata(sd);
982 int ret;
983 u32 data;
984
985 ret = mt9m114_read_reg(c, MISENSOR_16BIT,
986 (u32)MISENSOR_READ_MODE, &data);
987 if (ret)
988 return ret;
989 *val = !!(data & MISENSOR_VFLIP_MASK);
990
991 return 0;
992 }
993
mt9m114_s_exposure(struct v4l2_subdev * sd,struct atomisp_exposure * exposure)994 static long mt9m114_s_exposure(struct v4l2_subdev *sd,
995 struct atomisp_exposure *exposure)
996 {
997 struct i2c_client *client = v4l2_get_subdevdata(sd);
998 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
999 int ret = 0;
1000 unsigned int coarse_integration = 0;
1001 unsigned int FLines = 0;
1002 unsigned int FrameLengthLines = 0; /* ExposureTime.FrameLengthLines; */
1003 unsigned int AnalogGain, DigitalGain;
1004 u32 AnalogGainToWrite = 0;
1005
1006 dev_dbg(&client->dev, "%s(0x%X 0x%X 0x%X)\n", __func__,
1007 exposure->integration_time[0], exposure->gain[0],
1008 exposure->gain[1]);
1009
1010 coarse_integration = exposure->integration_time[0];
1011 /* fine_integration = ExposureTime.FineIntegrationTime; */
1012 /* FrameLengthLines = ExposureTime.FrameLengthLines; */
1013 FLines = mt9m114_res[dev->res].lines_per_frame;
1014 AnalogGain = exposure->gain[0];
1015 DigitalGain = exposure->gain[1];
1016 if (!dev->streamon) {
1017 /*Save the first exposure values while stream is off*/
1018 dev->first_exp = coarse_integration;
1019 dev->first_gain = AnalogGain;
1020 dev->first_diggain = DigitalGain;
1021 }
1022 /* DigitalGain = 0x400 * (((u16) DigitalGain) >> 8) +
1023 ((unsigned int)(0x400 * (((u16) DigitalGain) & 0xFF)) >>8); */
1024
1025 /* set frame length */
1026 if (FLines < coarse_integration + 6)
1027 FLines = coarse_integration + 6;
1028 if (FLines < FrameLengthLines)
1029 FLines = FrameLengthLines;
1030 ret = mt9m114_write_reg(client, MISENSOR_16BIT, 0x300A, FLines);
1031 if (ret) {
1032 v4l2_err(client, "%s: fail to set FLines\n", __func__);
1033 return -EINVAL;
1034 }
1035
1036 /* set coarse integration */
1037 /* 3A provide real exposure time.
1038 should not translate to any value here. */
1039 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1040 REG_EXPO_COARSE, (u16)(coarse_integration));
1041 if (ret) {
1042 v4l2_err(client, "%s: fail to set exposure time\n", __func__);
1043 return -EINVAL;
1044 }
1045
1046 /*
1047 // set analog/digital gain
1048 switch(AnalogGain)
1049 {
1050 case 0:
1051 AnalogGainToWrite = 0x0;
1052 break;
1053 case 1:
1054 AnalogGainToWrite = 0x20;
1055 break;
1056 case 2:
1057 AnalogGainToWrite = 0x60;
1058 break;
1059 case 4:
1060 AnalogGainToWrite = 0xA0;
1061 break;
1062 case 8:
1063 AnalogGainToWrite = 0xE0;
1064 break;
1065 default:
1066 AnalogGainToWrite = 0x20;
1067 break;
1068 }
1069 */
1070 if (DigitalGain >= 16 || DigitalGain <= 1)
1071 DigitalGain = 1;
1072 /* AnalogGainToWrite =
1073 (u16)((DigitalGain << 12) | AnalogGainToWrite); */
1074 AnalogGainToWrite = (u16)((DigitalGain << 12) | (u16)AnalogGain);
1075 ret = mt9m114_write_reg(client, MISENSOR_16BIT,
1076 REG_GAIN, AnalogGainToWrite);
1077 if (ret) {
1078 v4l2_err(client, "%s: fail to set AnalogGainToWrite\n",
1079 __func__);
1080 return -EINVAL;
1081 }
1082
1083 return ret;
1084 }
1085
mt9m114_ioctl(struct v4l2_subdev * sd,unsigned int cmd,void * arg)1086 static long mt9m114_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
1087 {
1088 switch (cmd) {
1089 case ATOMISP_IOC_S_EXPOSURE:
1090 return mt9m114_s_exposure(sd, arg);
1091 default:
1092 return -EINVAL;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* This returns the exposure time being used. This should only be used
1099 for filling in EXIF data, not for actual image processing. */
mt9m114_g_exposure(struct v4l2_subdev * sd,s32 * value)1100 static int mt9m114_g_exposure(struct v4l2_subdev *sd, s32 *value)
1101 {
1102 struct i2c_client *client = v4l2_get_subdevdata(sd);
1103 u32 coarse;
1104 int ret;
1105
1106 /* the fine integration time is currently not calculated */
1107 ret = mt9m114_read_reg(client, MISENSOR_16BIT,
1108 REG_EXPO_COARSE, &coarse);
1109 if (ret)
1110 return ret;
1111
1112 *value = coarse;
1113 return 0;
1114 }
1115
1116 /*
1117 * This function will return the sensor supported max exposure zone number.
1118 * the sensor which supports max exposure zone number is 1.
1119 */
mt9m114_g_exposure_zone_num(struct v4l2_subdev * sd,s32 * val)1120 static int mt9m114_g_exposure_zone_num(struct v4l2_subdev *sd, s32 *val)
1121 {
1122 *val = 1;
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * set exposure metering, average/center_weighted/spot/matrix.
1129 */
mt9m114_s_exposure_metering(struct v4l2_subdev * sd,s32 val)1130 static int mt9m114_s_exposure_metering(struct v4l2_subdev *sd, s32 val)
1131 {
1132 struct i2c_client *client = v4l2_get_subdevdata(sd);
1133 int ret;
1134
1135 switch (val) {
1136 case V4L2_EXPOSURE_METERING_SPOT:
1137 ret = mt9m114_write_reg_array(client, mt9m114_exp_average,
1138 NO_POLLING);
1139 if (ret) {
1140 dev_err(&client->dev, "write exp_average reg err.\n");
1141 return ret;
1142 }
1143 break;
1144 case V4L2_EXPOSURE_METERING_CENTER_WEIGHTED:
1145 default:
1146 ret = mt9m114_write_reg_array(client, mt9m114_exp_center,
1147 NO_POLLING);
1148 if (ret) {
1149 dev_err(&client->dev, "write exp_default reg err");
1150 return ret;
1151 }
1152 }
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * This function is for touch exposure feature.
1159 */
mt9m114_s_exposure_selection(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)1160 static int mt9m114_s_exposure_selection(struct v4l2_subdev *sd,
1161 struct v4l2_subdev_pad_config *cfg,
1162 struct v4l2_subdev_selection *sel)
1163 {
1164 struct i2c_client *client = v4l2_get_subdevdata(sd);
1165 struct misensor_reg exp_reg;
1166 int width, height;
1167 int grid_width, grid_height;
1168 int grid_left, grid_top, grid_right, grid_bottom;
1169 int win_left, win_top, win_right, win_bottom;
1170 int i, j;
1171 int ret;
1172
1173 if (sel->which != V4L2_SUBDEV_FORMAT_TRY &&
1174 sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1175 return -EINVAL;
1176
1177 grid_left = sel->r.left;
1178 grid_top = sel->r.top;
1179 grid_right = sel->r.left + sel->r.width - 1;
1180 grid_bottom = sel->r.top + sel->r.height - 1;
1181
1182 ret = mt9m114_res2size(sd, &width, &height);
1183 if (ret)
1184 return ret;
1185
1186 grid_width = width / 5;
1187 grid_height = height / 5;
1188
1189 if (grid_width && grid_height) {
1190 win_left = grid_left / grid_width;
1191 win_top = grid_top / grid_height;
1192 win_right = grid_right / grid_width;
1193 win_bottom = grid_bottom / grid_height;
1194 } else {
1195 dev_err(&client->dev, "Incorrect exp grid.\n");
1196 return -EINVAL;
1197 }
1198
1199 win_left = clamp_t(int, win_left, 0, 4);
1200 win_top = clamp_t(int, win_top, 0, 4);
1201 win_right = clamp_t(int, win_right, 0, 4);
1202 win_bottom = clamp_t(int, win_bottom, 0, 4);
1203
1204 ret = mt9m114_write_reg_array(client, mt9m114_exp_average, NO_POLLING);
1205 if (ret) {
1206 dev_err(&client->dev, "write exp_average reg err.\n");
1207 return ret;
1208 }
1209
1210 for (i = win_top; i <= win_bottom; i++) {
1211 for (j = win_left; j <= win_right; j++) {
1212 exp_reg = mt9m114_exp_win[i][j];
1213
1214 ret = mt9m114_write_reg(client, exp_reg.length,
1215 exp_reg.reg, exp_reg.val);
1216 if (ret) {
1217 dev_err(&client->dev, "write exp_reg err.\n");
1218 return ret;
1219 }
1220 }
1221 }
1222
1223 return 0;
1224 }
1225
mt9m114_g_bin_factor_x(struct v4l2_subdev * sd,s32 * val)1226 static int mt9m114_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
1227 {
1228 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1229
1230 *val = mt9m114_res[dev->res].bin_factor_x;
1231
1232 return 0;
1233 }
1234
mt9m114_g_bin_factor_y(struct v4l2_subdev * sd,s32 * val)1235 static int mt9m114_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
1236 {
1237 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1238
1239 *val = mt9m114_res[dev->res].bin_factor_y;
1240
1241 return 0;
1242 }
1243
mt9m114_s_ev(struct v4l2_subdev * sd,s32 val)1244 static int mt9m114_s_ev(struct v4l2_subdev *sd, s32 val)
1245 {
1246 struct i2c_client *c = v4l2_get_subdevdata(sd);
1247 s32 luma = 0x37;
1248 int err;
1249
1250 /* EV value only support -2 to 2
1251 * 0: 0x37, 1:0x47, 2:0x57, -1:0x27, -2:0x17
1252 */
1253 if (val < -2 || val > 2)
1254 return -EINVAL;
1255 luma += 0x10 * val;
1256 dev_dbg(&c->dev, "%s val:%d luma:0x%x\n", __func__, val, luma);
1257 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1258 if (err) {
1259 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1260 return err;
1261 }
1262 err = mt9m114_write_reg(c, MISENSOR_8BIT, 0xC87A, (u32)luma);
1263 if (err) {
1264 dev_err(&c->dev, "%s write target_average_luma failed\n",
1265 __func__);
1266 return err;
1267 }
1268 udelay(10);
1269
1270 return 0;
1271 }
1272
mt9m114_g_ev(struct v4l2_subdev * sd,s32 * val)1273 static int mt9m114_g_ev(struct v4l2_subdev *sd, s32 *val)
1274 {
1275 struct i2c_client *c = v4l2_get_subdevdata(sd);
1276 int err;
1277 u32 luma;
1278
1279 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC87A);
1280 if (err) {
1281 dev_err(&c->dev, "%s logic addr access error\n", __func__);
1282 return err;
1283 }
1284 err = mt9m114_read_reg(c, MISENSOR_8BIT, 0xC87A, &luma);
1285 if (err) {
1286 dev_err(&c->dev, "%s read target_average_luma failed\n",
1287 __func__);
1288 return err;
1289 }
1290 luma -= 0x17;
1291 luma /= 0x10;
1292 *val = (s32)luma - 2;
1293 dev_dbg(&c->dev, "%s val:%d\n", __func__, *val);
1294
1295 return 0;
1296 }
1297
1298 /* Fake interface
1299 * mt9m114 now can not support 3a_lock
1300 */
mt9m114_s_3a_lock(struct v4l2_subdev * sd,s32 val)1301 static int mt9m114_s_3a_lock(struct v4l2_subdev *sd, s32 val)
1302 {
1303 aaalock = val;
1304 return 0;
1305 }
1306
mt9m114_g_3a_lock(struct v4l2_subdev * sd,s32 * val)1307 static int mt9m114_g_3a_lock(struct v4l2_subdev *sd, s32 *val)
1308 {
1309 if (aaalock)
1310 return V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE
1311 | V4L2_LOCK_FOCUS;
1312 return 0;
1313 }
1314
mt9m114_s_ctrl(struct v4l2_ctrl * ctrl)1315 static int mt9m114_s_ctrl(struct v4l2_ctrl *ctrl)
1316 {
1317 struct mt9m114_device *dev =
1318 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1319 struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
1320 int ret = 0;
1321
1322 switch (ctrl->id) {
1323 case V4L2_CID_VFLIP:
1324 dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
1325 __func__, ctrl->val);
1326 ret = mt9m114_t_vflip(&dev->sd, ctrl->val);
1327 break;
1328 case V4L2_CID_HFLIP:
1329 dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
1330 __func__, ctrl->val);
1331 ret = mt9m114_t_hflip(&dev->sd, ctrl->val);
1332 break;
1333 case V4L2_CID_EXPOSURE_METERING:
1334 ret = mt9m114_s_exposure_metering(&dev->sd, ctrl->val);
1335 break;
1336 case V4L2_CID_EXPOSURE:
1337 ret = mt9m114_s_ev(&dev->sd, ctrl->val);
1338 break;
1339 case V4L2_CID_3A_LOCK:
1340 ret = mt9m114_s_3a_lock(&dev->sd, ctrl->val);
1341 break;
1342 default:
1343 ret = -EINVAL;
1344 }
1345 return ret;
1346 }
1347
mt9m114_g_volatile_ctrl(struct v4l2_ctrl * ctrl)1348 static int mt9m114_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1349 {
1350 struct mt9m114_device *dev =
1351 container_of(ctrl->handler, struct mt9m114_device, ctrl_handler);
1352 int ret = 0;
1353
1354 switch (ctrl->id) {
1355 case V4L2_CID_VFLIP:
1356 ret = mt9m114_g_vflip(&dev->sd, &ctrl->val);
1357 break;
1358 case V4L2_CID_HFLIP:
1359 ret = mt9m114_g_hflip(&dev->sd, &ctrl->val);
1360 break;
1361 case V4L2_CID_FOCAL_ABSOLUTE:
1362 ret = mt9m114_g_focal(&dev->sd, &ctrl->val);
1363 break;
1364 case V4L2_CID_FNUMBER_ABSOLUTE:
1365 ret = mt9m114_g_fnumber(&dev->sd, &ctrl->val);
1366 break;
1367 case V4L2_CID_FNUMBER_RANGE:
1368 ret = mt9m114_g_fnumber_range(&dev->sd, &ctrl->val);
1369 break;
1370 case V4L2_CID_EXPOSURE_ABSOLUTE:
1371 ret = mt9m114_g_exposure(&dev->sd, &ctrl->val);
1372 break;
1373 case V4L2_CID_EXPOSURE_ZONE_NUM:
1374 ret = mt9m114_g_exposure_zone_num(&dev->sd, &ctrl->val);
1375 break;
1376 case V4L2_CID_BIN_FACTOR_HORZ:
1377 ret = mt9m114_g_bin_factor_x(&dev->sd, &ctrl->val);
1378 break;
1379 case V4L2_CID_BIN_FACTOR_VERT:
1380 ret = mt9m114_g_bin_factor_y(&dev->sd, &ctrl->val);
1381 break;
1382 case V4L2_CID_EXPOSURE:
1383 ret = mt9m114_g_ev(&dev->sd, &ctrl->val);
1384 break;
1385 case V4L2_CID_3A_LOCK:
1386 ret = mt9m114_g_3a_lock(&dev->sd, &ctrl->val);
1387 break;
1388 default:
1389 ret = -EINVAL;
1390 }
1391
1392 return ret;
1393 }
1394
1395 static const struct v4l2_ctrl_ops ctrl_ops = {
1396 .s_ctrl = mt9m114_s_ctrl,
1397 .g_volatile_ctrl = mt9m114_g_volatile_ctrl
1398 };
1399
1400 static struct v4l2_ctrl_config mt9m114_controls[] = {
1401 {
1402 .ops = &ctrl_ops,
1403 .id = V4L2_CID_VFLIP,
1404 .name = "Image v-Flip",
1405 .type = V4L2_CTRL_TYPE_INTEGER,
1406 .min = 0,
1407 .max = 1,
1408 .step = 1,
1409 .def = 0,
1410 },
1411 {
1412 .ops = &ctrl_ops,
1413 .id = V4L2_CID_HFLIP,
1414 .name = "Image h-Flip",
1415 .type = V4L2_CTRL_TYPE_INTEGER,
1416 .min = 0,
1417 .max = 1,
1418 .step = 1,
1419 .def = 0,
1420 },
1421 {
1422 .ops = &ctrl_ops,
1423 .id = V4L2_CID_FOCAL_ABSOLUTE,
1424 .name = "focal length",
1425 .type = V4L2_CTRL_TYPE_INTEGER,
1426 .min = MT9M114_FOCAL_LENGTH_DEFAULT,
1427 .max = MT9M114_FOCAL_LENGTH_DEFAULT,
1428 .step = 1,
1429 .def = MT9M114_FOCAL_LENGTH_DEFAULT,
1430 .flags = 0,
1431 },
1432 {
1433 .ops = &ctrl_ops,
1434 .id = V4L2_CID_FNUMBER_ABSOLUTE,
1435 .name = "f-number",
1436 .type = V4L2_CTRL_TYPE_INTEGER,
1437 .min = MT9M114_F_NUMBER_DEFAULT,
1438 .max = MT9M114_F_NUMBER_DEFAULT,
1439 .step = 1,
1440 .def = MT9M114_F_NUMBER_DEFAULT,
1441 .flags = 0,
1442 },
1443 {
1444 .ops = &ctrl_ops,
1445 .id = V4L2_CID_FNUMBER_RANGE,
1446 .name = "f-number range",
1447 .type = V4L2_CTRL_TYPE_INTEGER,
1448 .min = MT9M114_F_NUMBER_RANGE,
1449 .max = MT9M114_F_NUMBER_RANGE,
1450 .step = 1,
1451 .def = MT9M114_F_NUMBER_RANGE,
1452 .flags = 0,
1453 },
1454 {
1455 .ops = &ctrl_ops,
1456 .id = V4L2_CID_EXPOSURE_ABSOLUTE,
1457 .name = "exposure",
1458 .type = V4L2_CTRL_TYPE_INTEGER,
1459 .min = 0,
1460 .max = 0xffff,
1461 .step = 1,
1462 .def = 0,
1463 .flags = 0,
1464 },
1465 {
1466 .ops = &ctrl_ops,
1467 .id = V4L2_CID_EXPOSURE_ZONE_NUM,
1468 .name = "one-time exposure zone number",
1469 .type = V4L2_CTRL_TYPE_INTEGER,
1470 .min = 0,
1471 .max = 0xffff,
1472 .step = 1,
1473 .def = 0,
1474 .flags = 0,
1475 },
1476 {
1477 .ops = &ctrl_ops,
1478 .id = V4L2_CID_EXPOSURE_METERING,
1479 .name = "metering",
1480 .type = V4L2_CTRL_TYPE_MENU,
1481 .min = 0,
1482 .max = 3,
1483 .step = 0,
1484 .def = 1,
1485 .flags = 0,
1486 },
1487 {
1488 .ops = &ctrl_ops,
1489 .id = V4L2_CID_BIN_FACTOR_HORZ,
1490 .name = "horizontal binning factor",
1491 .type = V4L2_CTRL_TYPE_INTEGER,
1492 .min = 0,
1493 .max = MT9M114_BIN_FACTOR_MAX,
1494 .step = 1,
1495 .def = 0,
1496 .flags = 0,
1497 },
1498 {
1499 .ops = &ctrl_ops,
1500 .id = V4L2_CID_BIN_FACTOR_VERT,
1501 .name = "vertical binning factor",
1502 .type = V4L2_CTRL_TYPE_INTEGER,
1503 .min = 0,
1504 .max = MT9M114_BIN_FACTOR_MAX,
1505 .step = 1,
1506 .def = 0,
1507 .flags = 0,
1508 },
1509 {
1510 .ops = &ctrl_ops,
1511 .id = V4L2_CID_EXPOSURE,
1512 .name = "exposure biasx",
1513 .type = V4L2_CTRL_TYPE_INTEGER,
1514 .min = -2,
1515 .max = 2,
1516 .step = 1,
1517 .def = 0,
1518 .flags = 0,
1519 },
1520 {
1521 .ops = &ctrl_ops,
1522 .id = V4L2_CID_3A_LOCK,
1523 .name = "3a lock",
1524 .type = V4L2_CTRL_TYPE_BITMASK,
1525 .min = 0,
1526 .max = V4L2_LOCK_EXPOSURE | V4L2_LOCK_WHITE_BALANCE | V4L2_LOCK_FOCUS,
1527 .step = 1,
1528 .def = 0,
1529 .flags = 0,
1530 },
1531 };
1532
mt9m114_detect(struct mt9m114_device * dev,struct i2c_client * client)1533 static int mt9m114_detect(struct mt9m114_device *dev, struct i2c_client *client)
1534 {
1535 struct i2c_adapter *adapter = client->adapter;
1536 u32 retvalue;
1537
1538 if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
1539 dev_err(&client->dev, "%s: i2c error", __func__);
1540 return -ENODEV;
1541 }
1542 mt9m114_read_reg(client, MISENSOR_16BIT, (u32)MT9M114_PID, &retvalue);
1543 dev->real_model_id = retvalue;
1544
1545 if (retvalue != MT9M114_MOD_ID) {
1546 dev_err(&client->dev, "%s: failed: client->addr = %x\n",
1547 __func__, client->addr);
1548 return -ENODEV;
1549 }
1550
1551 return 0;
1552 }
1553
1554 static int
mt9m114_s_config(struct v4l2_subdev * sd,int irq,void * platform_data)1555 mt9m114_s_config(struct v4l2_subdev *sd, int irq, void *platform_data)
1556 {
1557 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1558 struct i2c_client *client = v4l2_get_subdevdata(sd);
1559 int ret;
1560
1561 if (!platform_data)
1562 return -ENODEV;
1563
1564 dev->platform_data =
1565 (struct camera_sensor_platform_data *)platform_data;
1566
1567 ret = power_up(sd);
1568 if (ret) {
1569 v4l2_err(client, "mt9m114 power-up err");
1570 return ret;
1571 }
1572
1573 /* config & detect sensor */
1574 ret = mt9m114_detect(dev, client);
1575 if (ret) {
1576 v4l2_err(client, "mt9m114_detect err s_config.\n");
1577 goto fail_detect;
1578 }
1579
1580 ret = dev->platform_data->csi_cfg(sd, 1);
1581 if (ret)
1582 goto fail_csi_cfg;
1583
1584 ret = mt9m114_set_suspend(sd);
1585 if (ret) {
1586 v4l2_err(client, "mt9m114 suspend err");
1587 return ret;
1588 }
1589
1590 ret = power_down(sd);
1591 if (ret) {
1592 v4l2_err(client, "mt9m114 power down err");
1593 return ret;
1594 }
1595
1596 return ret;
1597
1598 fail_csi_cfg:
1599 dev->platform_data->csi_cfg(sd, 0);
1600 fail_detect:
1601 power_down(sd);
1602 dev_err(&client->dev, "sensor power-gating failed\n");
1603 return ret;
1604 }
1605
1606 /* Horizontal flip the image. */
mt9m114_t_hflip(struct v4l2_subdev * sd,int value)1607 static int mt9m114_t_hflip(struct v4l2_subdev *sd, int value)
1608 {
1609 struct i2c_client *c = v4l2_get_subdevdata(sd);
1610 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1611 int err;
1612 /* set for direct mode */
1613 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1614 if (value) {
1615 /* enable H flip ctx A */
1616 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x01);
1617 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x01);
1618 /* ctx B */
1619 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x01);
1620 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x01);
1621
1622 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1623 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_EN);
1624
1625 dev->bpat = MT9M114_BPAT_GRGRBGBG;
1626 } else {
1627 /* disable H flip ctx A */
1628 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x01, 0x00);
1629 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x01, 0x00);
1630 /* ctx B */
1631 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x01, 0x00);
1632 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x01, 0x00);
1633
1634 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1635 MISENSOR_HFLIP_MASK, MISENSOR_FLIP_DIS);
1636
1637 dev->bpat = MT9M114_BPAT_BGBGGRGR;
1638 }
1639
1640 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1641 udelay(10);
1642
1643 return !!err;
1644 }
1645
1646 /* Vertically flip the image */
mt9m114_t_vflip(struct v4l2_subdev * sd,int value)1647 static int mt9m114_t_vflip(struct v4l2_subdev *sd, int value)
1648 {
1649 struct i2c_client *c = v4l2_get_subdevdata(sd);
1650 int err;
1651 /* set for direct mode */
1652 err = mt9m114_write_reg(c, MISENSOR_16BIT, 0x098E, 0xC850);
1653 if (value >= 1) {
1654 /* enable H flip - ctx A */
1655 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x01);
1656 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x01);
1657 /* ctx B */
1658 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x01);
1659 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x01);
1660
1661 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1662 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_EN);
1663 } else {
1664 /* disable H flip - ctx A */
1665 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC850, 0x02, 0x00);
1666 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC851, 0x02, 0x00);
1667 /* ctx B */
1668 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC888, 0x02, 0x00);
1669 err += misensor_rmw_reg(c, MISENSOR_8BIT, 0xC889, 0x02, 0x00);
1670
1671 err += misensor_rmw_reg(c, MISENSOR_16BIT, MISENSOR_READ_MODE,
1672 MISENSOR_VFLIP_MASK, MISENSOR_FLIP_DIS);
1673 }
1674
1675 err += mt9m114_write_reg(c, MISENSOR_8BIT, 0x8404, 0x06);
1676 udelay(10);
1677
1678 return !!err;
1679 }
1680
mt9m114_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * interval)1681 static int mt9m114_g_frame_interval(struct v4l2_subdev *sd,
1682 struct v4l2_subdev_frame_interval *interval)
1683 {
1684 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1685
1686 interval->interval.numerator = 1;
1687 interval->interval.denominator = mt9m114_res[dev->res].fps;
1688
1689 return 0;
1690 }
1691
mt9m114_s_stream(struct v4l2_subdev * sd,int enable)1692 static int mt9m114_s_stream(struct v4l2_subdev *sd, int enable)
1693 {
1694 int ret;
1695 struct i2c_client *c = v4l2_get_subdevdata(sd);
1696 struct mt9m114_device *dev = to_mt9m114_sensor(sd);
1697 struct atomisp_exposure exposure;
1698
1699 if (enable) {
1700 ret = mt9m114_write_reg_array(c, mt9m114_chgstat_reg,
1701 POST_POLLING);
1702 if (ret < 0)
1703 return ret;
1704
1705 if (dev->first_exp > MT9M114_MAX_FIRST_EXP) {
1706 exposure.integration_time[0] = dev->first_exp;
1707 exposure.gain[0] = dev->first_gain;
1708 exposure.gain[1] = dev->first_diggain;
1709 mt9m114_s_exposure(sd, &exposure);
1710 }
1711 dev->streamon = 1;
1712
1713 } else {
1714 dev->streamon = 0;
1715 ret = mt9m114_set_suspend(sd);
1716 }
1717
1718 return ret;
1719 }
1720
mt9m114_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)1721 static int mt9m114_enum_mbus_code(struct v4l2_subdev *sd,
1722 struct v4l2_subdev_pad_config *cfg,
1723 struct v4l2_subdev_mbus_code_enum *code)
1724 {
1725 if (code->index)
1726 return -EINVAL;
1727 code->code = MEDIA_BUS_FMT_SGRBG10_1X10;
1728
1729 return 0;
1730 }
1731
mt9m114_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_size_enum * fse)1732 static int mt9m114_enum_frame_size(struct v4l2_subdev *sd,
1733 struct v4l2_subdev_pad_config *cfg,
1734 struct v4l2_subdev_frame_size_enum *fse)
1735 {
1736 unsigned int index = fse->index;
1737
1738 if (index >= N_RES)
1739 return -EINVAL;
1740
1741 fse->min_width = mt9m114_res[index].width;
1742 fse->min_height = mt9m114_res[index].height;
1743 fse->max_width = mt9m114_res[index].width;
1744 fse->max_height = mt9m114_res[index].height;
1745
1746 return 0;
1747 }
1748
mt9m114_g_skip_frames(struct v4l2_subdev * sd,u32 * frames)1749 static int mt9m114_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
1750 {
1751 int index;
1752 struct mt9m114_device *snr = to_mt9m114_sensor(sd);
1753
1754 if (!frames)
1755 return -EINVAL;
1756
1757 for (index = 0; index < N_RES; index++) {
1758 if (mt9m114_res[index].res == snr->res)
1759 break;
1760 }
1761
1762 if (index >= N_RES)
1763 return -EINVAL;
1764
1765 *frames = mt9m114_res[index].skip_frames;
1766
1767 return 0;
1768 }
1769
1770 static const struct v4l2_subdev_video_ops mt9m114_video_ops = {
1771 .s_stream = mt9m114_s_stream,
1772 .g_frame_interval = mt9m114_g_frame_interval,
1773 };
1774
1775 static const struct v4l2_subdev_sensor_ops mt9m114_sensor_ops = {
1776 .g_skip_frames = mt9m114_g_skip_frames,
1777 };
1778
1779 static const struct v4l2_subdev_core_ops mt9m114_core_ops = {
1780 .s_power = mt9m114_s_power,
1781 .ioctl = mt9m114_ioctl,
1782 };
1783
1784 /* REVISIT: Do we need pad operations? */
1785 static const struct v4l2_subdev_pad_ops mt9m114_pad_ops = {
1786 .enum_mbus_code = mt9m114_enum_mbus_code,
1787 .enum_frame_size = mt9m114_enum_frame_size,
1788 .get_fmt = mt9m114_get_fmt,
1789 .set_fmt = mt9m114_set_fmt,
1790 .set_selection = mt9m114_s_exposure_selection,
1791 };
1792
1793 static const struct v4l2_subdev_ops mt9m114_ops = {
1794 .core = &mt9m114_core_ops,
1795 .video = &mt9m114_video_ops,
1796 .pad = &mt9m114_pad_ops,
1797 .sensor = &mt9m114_sensor_ops,
1798 };
1799
mt9m114_remove(struct i2c_client * client)1800 static int mt9m114_remove(struct i2c_client *client)
1801 {
1802 struct mt9m114_device *dev;
1803 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1804
1805 dev = container_of(sd, struct mt9m114_device, sd);
1806 dev->platform_data->csi_cfg(sd, 0);
1807 v4l2_device_unregister_subdev(sd);
1808 media_entity_cleanup(&dev->sd.entity);
1809 v4l2_ctrl_handler_free(&dev->ctrl_handler);
1810 kfree(dev);
1811 return 0;
1812 }
1813
mt9m114_probe(struct i2c_client * client)1814 static int mt9m114_probe(struct i2c_client *client)
1815 {
1816 struct mt9m114_device *dev;
1817 int ret = 0;
1818 unsigned int i;
1819 void *pdata;
1820
1821 /* Setup sensor configuration structure */
1822 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1823 if (!dev)
1824 return -ENOMEM;
1825
1826 v4l2_i2c_subdev_init(&dev->sd, client, &mt9m114_ops);
1827 pdata = gmin_camera_platform_data(&dev->sd,
1828 ATOMISP_INPUT_FORMAT_RAW_10,
1829 atomisp_bayer_order_grbg);
1830 if (pdata)
1831 ret = mt9m114_s_config(&dev->sd, client->irq, pdata);
1832 if (!pdata || ret) {
1833 v4l2_device_unregister_subdev(&dev->sd);
1834 kfree(dev);
1835 return ret;
1836 }
1837
1838 ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
1839 if (ret) {
1840 v4l2_device_unregister_subdev(&dev->sd);
1841 kfree(dev);
1842 /* Coverity CID 298095 - return on error */
1843 return ret;
1844 }
1845
1846 /*TODO add format code here*/
1847 dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1848 dev->pad.flags = MEDIA_PAD_FL_SOURCE;
1849 dev->format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
1850 dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1851
1852 ret =
1853 v4l2_ctrl_handler_init(&dev->ctrl_handler,
1854 ARRAY_SIZE(mt9m114_controls));
1855 if (ret) {
1856 mt9m114_remove(client);
1857 return ret;
1858 }
1859
1860 for (i = 0; i < ARRAY_SIZE(mt9m114_controls); i++)
1861 v4l2_ctrl_new_custom(&dev->ctrl_handler, &mt9m114_controls[i],
1862 NULL);
1863
1864 if (dev->ctrl_handler.error) {
1865 mt9m114_remove(client);
1866 return dev->ctrl_handler.error;
1867 }
1868
1869 /* Use same lock for controls as for everything else. */
1870 dev->ctrl_handler.lock = &dev->input_lock;
1871 dev->sd.ctrl_handler = &dev->ctrl_handler;
1872
1873 /* REVISIT: Do we need media controller? */
1874 ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
1875 if (ret) {
1876 mt9m114_remove(client);
1877 return ret;
1878 }
1879 return 0;
1880 }
1881
1882 static const struct acpi_device_id mt9m114_acpi_match[] = {
1883 { "INT33F0" },
1884 { "CRMT1040" },
1885 {},
1886 };
1887 MODULE_DEVICE_TABLE(acpi, mt9m114_acpi_match);
1888
1889 static struct i2c_driver mt9m114_driver = {
1890 .driver = {
1891 .name = "mt9m114",
1892 .acpi_match_table = mt9m114_acpi_match,
1893 },
1894 .probe_new = mt9m114_probe,
1895 .remove = mt9m114_remove,
1896 };
1897 module_i2c_driver(mt9m114_driver);
1898
1899 MODULE_AUTHOR("Shuguang Gong <Shuguang.gong@intel.com>");
1900 MODULE_LICENSE("GPL");
1901