1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * KP2000 SPI controller driver
4  *
5  * Copyright (C) 2014-2018 Daktronics
6  * Author: Matt Sickler <matt.sickler@daktronics.com>
7  * Very loosely based on spi-omap2-mcspi.c
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io-64-nonatomic-lo-hi.h>
14 #include <linux/module.h>
15 #include <linux/device.h>
16 #include <linux/delay.h>
17 #include <linux/platform_device.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/gcd.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/flash.h>
28 #include <linux/mtd/partitions.h>
29 
30 #include "kpc.h"
31 
32 static struct mtd_partition p2kr0_spi0_parts[] = {
33 	{ .name = "SLOT_0",	.size = 7798784,		.offset = 0,                },
34 	{ .name = "SLOT_1",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
35 	{ .name = "SLOT_2",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
36 	{ .name = "SLOT_3",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
37 	{ .name = "CS0_EXTRA",	.size = MTDPART_SIZ_FULL,	.offset = MTDPART_OFS_NXTBLK},
38 };
39 
40 static struct mtd_partition p2kr0_spi1_parts[] = {
41 	{ .name = "SLOT_4",	.size = 7798784,		.offset = 0,                },
42 	{ .name = "SLOT_5",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
43 	{ .name = "SLOT_6",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
44 	{ .name = "SLOT_7",	.size = 7798784,		.offset = MTDPART_OFS_NXTBLK},
45 	{ .name = "CS1_EXTRA",	.size = MTDPART_SIZ_FULL,	.offset = MTDPART_OFS_NXTBLK},
46 };
47 
48 static struct flash_platform_data p2kr0_spi0_pdata = {
49 	.name =		"SPI0",
50 	.nr_parts =	ARRAY_SIZE(p2kr0_spi0_parts),
51 	.parts =	p2kr0_spi0_parts,
52 };
53 
54 static struct flash_platform_data p2kr0_spi1_pdata = {
55 	.name =		"SPI1",
56 	.nr_parts =	ARRAY_SIZE(p2kr0_spi1_parts),
57 	.parts =	p2kr0_spi1_parts,
58 };
59 
60 static struct spi_board_info p2kr0_board_info[] = {
61 	{
62 		.modalias =		"n25q256a11",
63 		.bus_num =		1,
64 		.chip_select =		0,
65 		.mode =			SPI_MODE_0,
66 		.platform_data =	&p2kr0_spi0_pdata
67 	},
68 	{
69 		.modalias =		"n25q256a11",
70 		.bus_num =		1,
71 		.chip_select =		1,
72 		.mode =			SPI_MODE_0,
73 		.platform_data =	&p2kr0_spi1_pdata
74 	},
75 };
76 
77 /***************
78  * SPI Defines *
79  ***************/
80 #define KP_SPI_REG_CONFIG 0x0 /* 0x00 */
81 #define KP_SPI_REG_STATUS 0x1 /* 0x08 */
82 #define KP_SPI_REG_FFCTRL 0x2 /* 0x10 */
83 #define KP_SPI_REG_TXDATA 0x3 /* 0x18 */
84 #define KP_SPI_REG_RXDATA 0x4 /* 0x20 */
85 
86 #define KP_SPI_CLK           48000000
87 #define KP_SPI_MAX_FIFODEPTH 64
88 #define KP_SPI_MAX_FIFOWCNT  0xFFFF
89 
90 #define KP_SPI_REG_CONFIG_TRM_TXRX 0
91 #define KP_SPI_REG_CONFIG_TRM_RX   1
92 #define KP_SPI_REG_CONFIG_TRM_TX   2
93 
94 #define KP_SPI_REG_STATUS_RXS   0x01
95 #define KP_SPI_REG_STATUS_TXS   0x02
96 #define KP_SPI_REG_STATUS_EOT   0x04
97 #define KP_SPI_REG_STATUS_TXFFE 0x10
98 #define KP_SPI_REG_STATUS_TXFFF 0x20
99 #define KP_SPI_REG_STATUS_RXFFE 0x40
100 #define KP_SPI_REG_STATUS_RXFFF 0x80
101 
102 /******************
103  * SPI Structures *
104  ******************/
105 struct kp_spi {
106 	struct spi_master  *master;
107 	u64 __iomem        *base;
108 	struct device      *dev;
109 };
110 
111 struct kp_spi_controller_state {
112 	void __iomem   *base;
113 	s64             conf_cache;
114 };
115 
116 union kp_spi_config {
117 	/* use this to access individual elements */
118 	struct __packed spi_config_bitfield {
119 		unsigned int pha       : 1; /* spim_clk Phase      */
120 		unsigned int pol       : 1; /* spim_clk Polarity   */
121 		unsigned int epol      : 1; /* spim_csx Polarity   */
122 		unsigned int dpe       : 1; /* Transmission Enable */
123 		unsigned int wl        : 5; /* Word Length         */
124 		unsigned int           : 3;
125 		unsigned int trm       : 2; /* TxRx Mode           */
126 		unsigned int cs        : 4; /* Chip Select         */
127 		unsigned int wcnt      : 7; /* Word Count          */
128 		unsigned int ffen      : 1; /* FIFO Enable         */
129 		unsigned int spi_en    : 1; /* SPI Enable          */
130 		unsigned int           : 5;
131 	} bitfield;
132 	/* use this to grab the whole register */
133 	u32 reg;
134 };
135 
136 union kp_spi_status {
137 	struct __packed spi_status_bitfield {
138 		unsigned int rx    :  1; /* Rx Status       */
139 		unsigned int tx    :  1; /* Tx Status       */
140 		unsigned int eo    :  1; /* End of Transfer */
141 		unsigned int       :  1;
142 		unsigned int txffe :  1; /* Tx FIFO Empty   */
143 		unsigned int txfff :  1; /* Tx FIFO Full    */
144 		unsigned int rxffe :  1; /* Rx FIFO Empty   */
145 		unsigned int rxfff :  1; /* Rx FIFO Full    */
146 		unsigned int       : 24;
147 	} bitfield;
148 	u32 reg;
149 };
150 
151 union kp_spi_ffctrl {
152 	struct __packed spi_ffctrl_bitfield {
153 		unsigned int ffstart :  1; /* FIFO Start */
154 		unsigned int         : 31;
155 	} bitfield;
156 	u32 reg;
157 };
158 
159 /***************
160  * SPI Helpers *
161  ***************/
162 	static inline u64
kp_spi_read_reg(struct kp_spi_controller_state * cs,int idx)163 kp_spi_read_reg(struct kp_spi_controller_state *cs, int idx)
164 {
165 	u64 __iomem *addr = cs->base;
166 
167 	addr += idx;
168 	if ((idx == KP_SPI_REG_CONFIG) && (cs->conf_cache >= 0))
169 		return cs->conf_cache;
170 
171 	return readq(addr);
172 }
173 
174 	static inline void
kp_spi_write_reg(struct kp_spi_controller_state * cs,int idx,u64 val)175 kp_spi_write_reg(struct kp_spi_controller_state *cs, int idx, u64 val)
176 {
177 	u64 __iomem *addr = cs->base;
178 
179 	addr += idx;
180 	writeq(val, addr);
181 	if (idx == KP_SPI_REG_CONFIG)
182 		cs->conf_cache = val;
183 }
184 
185 	static int
kp_spi_wait_for_reg_bit(struct kp_spi_controller_state * cs,int idx,unsigned long bit)186 kp_spi_wait_for_reg_bit(struct kp_spi_controller_state *cs, int idx,
187 			unsigned long bit)
188 {
189 	unsigned long timeout;
190 
191 	timeout = jiffies + msecs_to_jiffies(1000);
192 	while (!(kp_spi_read_reg(cs, idx) & bit)) {
193 		if (time_after(jiffies, timeout)) {
194 			if (!(kp_spi_read_reg(cs, idx) & bit))
195 				return -ETIMEDOUT;
196 			else
197 				return 0;
198 		}
199 		cpu_relax();
200 	}
201 	return 0;
202 }
203 
204 	static unsigned
kp_spi_txrx_pio(struct spi_device * spidev,struct spi_transfer * transfer)205 kp_spi_txrx_pio(struct spi_device *spidev, struct spi_transfer *transfer)
206 {
207 	struct kp_spi_controller_state *cs = spidev->controller_state;
208 	unsigned int count = transfer->len;
209 	unsigned int c = count;
210 
211 	int i;
212 	int res;
213 	u8 *rx       = transfer->rx_buf;
214 	const u8 *tx = transfer->tx_buf;
215 	int processed = 0;
216 
217 	if (tx) {
218 		for (i = 0 ; i < c ; i++) {
219 			char val = *tx++;
220 
221 			res = kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
222 						      KP_SPI_REG_STATUS_TXS);
223 			if (res < 0)
224 				goto out;
225 
226 			kp_spi_write_reg(cs, KP_SPI_REG_TXDATA, val);
227 			processed++;
228 		}
229 	} else if (rx) {
230 		for (i = 0 ; i < c ; i++) {
231 			char test = 0;
232 
233 			kp_spi_write_reg(cs, KP_SPI_REG_TXDATA, 0x00);
234 			res = kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
235 						      KP_SPI_REG_STATUS_RXS);
236 			if (res < 0)
237 				goto out;
238 
239 			test = kp_spi_read_reg(cs, KP_SPI_REG_RXDATA);
240 			*rx++ = test;
241 			processed++;
242 		}
243 	}
244 
245 	if (kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
246 				    KP_SPI_REG_STATUS_EOT) < 0) {
247 		//TODO: Figure out how to abort transaction??
248 		//Ths has never happened in practice though...
249 	}
250 
251 out:
252 	return processed;
253 }
254 
255 /*****************
256  * SPI Functions *
257  *****************/
258 	static int
kp_spi_setup(struct spi_device * spidev)259 kp_spi_setup(struct spi_device *spidev)
260 {
261 	union kp_spi_config sc;
262 	struct kp_spi *kpspi = spi_master_get_devdata(spidev->master);
263 	struct kp_spi_controller_state *cs;
264 
265 	/* setup controller state */
266 	cs = spidev->controller_state;
267 	if (!cs) {
268 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
269 		if (!cs)
270 			return -ENOMEM;
271 		cs->base = kpspi->base;
272 		cs->conf_cache = -1;
273 		spidev->controller_state = cs;
274 	}
275 
276 	/* set config register */
277 	sc.bitfield.wl = spidev->bits_per_word - 1;
278 	sc.bitfield.cs = spidev->chip_select;
279 	sc.bitfield.spi_en = 0;
280 	sc.bitfield.trm = 0;
281 	sc.bitfield.ffen = 0;
282 	kp_spi_write_reg(spidev->controller_state, KP_SPI_REG_CONFIG, sc.reg);
283 	return 0;
284 }
285 
286 	static int
kp_spi_transfer_one_message(struct spi_master * master,struct spi_message * m)287 kp_spi_transfer_one_message(struct spi_master *master, struct spi_message *m)
288 {
289 	struct kp_spi_controller_state *cs;
290 	struct spi_device   *spidev;
291 	struct kp_spi       *kpspi;
292 	struct spi_transfer *transfer;
293 	union kp_spi_config sc;
294 	int status = 0;
295 
296 	spidev = m->spi;
297 	kpspi = spi_master_get_devdata(master);
298 	m->actual_length = 0;
299 	m->status = 0;
300 
301 	cs = spidev->controller_state;
302 
303 	/* reject invalid messages and transfers */
304 	if (list_empty(&m->transfers))
305 		return -EINVAL;
306 
307 	/* validate input */
308 	list_for_each_entry(transfer, &m->transfers, transfer_list) {
309 		const void *tx_buf = transfer->tx_buf;
310 		void       *rx_buf = transfer->rx_buf;
311 		unsigned int len = transfer->len;
312 
313 		if (transfer->speed_hz > KP_SPI_CLK ||
314 		    (len && !(rx_buf || tx_buf))) {
315 			dev_dbg(kpspi->dev, "  transfer: %d Hz, %d %s%s, %d bpw\n",
316 				transfer->speed_hz,
317 				len,
318 				tx_buf ? "tx" : "",
319 				rx_buf ? "rx" : "",
320 				transfer->bits_per_word);
321 			dev_dbg(kpspi->dev, "  transfer -EINVAL\n");
322 			return -EINVAL;
323 		}
324 		if (transfer->speed_hz &&
325 		    transfer->speed_hz < (KP_SPI_CLK >> 15)) {
326 			dev_dbg(kpspi->dev, "speed_hz %d below minimum %d Hz\n",
327 				transfer->speed_hz,
328 				KP_SPI_CLK >> 15);
329 			dev_dbg(kpspi->dev, "  speed_hz -EINVAL\n");
330 			return -EINVAL;
331 		}
332 	}
333 
334 	/* assert chip select to start the sequence*/
335 	sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
336 	sc.bitfield.spi_en = 1;
337 	kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
338 
339 	/* work */
340 	if (kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
341 				    KP_SPI_REG_STATUS_EOT) < 0) {
342 		dev_info(kpspi->dev, "EOT timed out\n");
343 		goto out;
344 	}
345 
346 	/* do the transfers for this message */
347 	list_for_each_entry(transfer, &m->transfers, transfer_list) {
348 		if (!transfer->tx_buf && !transfer->rx_buf &&
349 		    transfer->len) {
350 			status = -EINVAL;
351 			goto error;
352 		}
353 
354 		/* transfer */
355 		if (transfer->len) {
356 			unsigned int word_len = spidev->bits_per_word;
357 			unsigned int count;
358 
359 			/* set up the transfer... */
360 			sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
361 
362 			/* ...direction */
363 			if (transfer->tx_buf)
364 				sc.bitfield.trm = KP_SPI_REG_CONFIG_TRM_TX;
365 			else if (transfer->rx_buf)
366 				sc.bitfield.trm = KP_SPI_REG_CONFIG_TRM_RX;
367 
368 			/* ...word length */
369 			if (transfer->bits_per_word)
370 				word_len = transfer->bits_per_word;
371 			sc.bitfield.wl = word_len - 1;
372 
373 			/* ...chip select */
374 			sc.bitfield.cs = spidev->chip_select;
375 
376 			/* ...and write the new settings */
377 			kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
378 
379 			/* do the transfer */
380 			count = kp_spi_txrx_pio(spidev, transfer);
381 			m->actual_length += count;
382 
383 			if (count != transfer->len) {
384 				status = -EIO;
385 				goto error;
386 			}
387 		}
388 
389 		if (transfer->delay.value)
390 			ndelay(spi_delay_to_ns(&transfer->delay, transfer));
391 	}
392 
393 	/* de-assert chip select to end the sequence */
394 	sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
395 	sc.bitfield.spi_en = 0;
396 	kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
397 
398 out:
399 	/* done work */
400 	spi_finalize_current_message(master);
401 	return 0;
402 
403 error:
404 	m->status = status;
405 	return status;
406 }
407 
408 	static void
kp_spi_cleanup(struct spi_device * spidev)409 kp_spi_cleanup(struct spi_device *spidev)
410 {
411 	struct kp_spi_controller_state *cs = spidev->controller_state;
412 
413 	kfree(cs);
414 }
415 
416 /******************
417  * Probe / Remove *
418  ******************/
419 	static int
kp_spi_probe(struct platform_device * pldev)420 kp_spi_probe(struct platform_device *pldev)
421 {
422 	struct kpc_core_device_platdata *drvdata;
423 	struct spi_master *master;
424 	struct kp_spi *kpspi;
425 	struct resource *r;
426 	int status = 0;
427 	int i;
428 
429 	drvdata = pldev->dev.platform_data;
430 	if (!drvdata) {
431 		dev_err(&pldev->dev, "%s: platform_data is NULL\n", __func__);
432 		return -ENODEV;
433 	}
434 
435 	master = spi_alloc_master(&pldev->dev, sizeof(struct kp_spi));
436 	if (!master) {
437 		dev_err(&pldev->dev, "%s: master allocation failed\n",
438 			__func__);
439 		return -ENOMEM;
440 	}
441 
442 	/* set up the spi functions */
443 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
444 	master->bits_per_word_mask = (unsigned int)SPI_BPW_RANGE_MASK(4, 32);
445 	master->setup = kp_spi_setup;
446 	master->transfer_one_message = kp_spi_transfer_one_message;
447 	master->cleanup = kp_spi_cleanup;
448 
449 	platform_set_drvdata(pldev, master);
450 
451 	kpspi = spi_master_get_devdata(master);
452 	kpspi->master = master;
453 	kpspi->dev = &pldev->dev;
454 
455 	master->num_chipselect = 4;
456 	if (pldev->id != -1)
457 		master->bus_num = pldev->id;
458 
459 	r = platform_get_resource(pldev, IORESOURCE_MEM, 0);
460 	if (!r) {
461 		dev_err(&pldev->dev, "%s: Unable to get platform resources\n",
462 			__func__);
463 		status = -ENODEV;
464 		goto free_master;
465 	}
466 
467 	kpspi->base = devm_ioremap(&pldev->dev, r->start,
468 					   resource_size(r));
469 
470 	status = spi_register_master(master);
471 	if (status < 0) {
472 		dev_err(&pldev->dev, "Unable to register SPI device\n");
473 		goto free_master;
474 	}
475 
476 	/* register the slave boards */
477 #define NEW_SPI_DEVICE_FROM_BOARD_INFO_TABLE(table) \
478 	for (i = 0 ; i < ARRAY_SIZE(table) ; i++) { \
479 		spi_new_device(master, &table[i]); \
480 	}
481 
482 	switch ((drvdata->card_id & 0xFFFF0000) >> 16) {
483 	case PCI_DEVICE_ID_DAKTRONICS_KADOKA_P2KR0:
484 		NEW_SPI_DEVICE_FROM_BOARD_INFO_TABLE(p2kr0_board_info);
485 		break;
486 	default:
487 		dev_err(&pldev->dev, "Unknown hardware, cant know what partition table to use!\n");
488 		goto free_master;
489 	}
490 
491 	return status;
492 
493 free_master:
494 	spi_master_put(master);
495 	return status;
496 }
497 
498 	static int
kp_spi_remove(struct platform_device * pldev)499 kp_spi_remove(struct platform_device *pldev)
500 {
501 	struct spi_master *master = platform_get_drvdata(pldev);
502 
503 	spi_unregister_master(master);
504 	return 0;
505 }
506 
507 static struct platform_driver kp_spi_driver = {
508 	.driver = {
509 		.name =     KP_DRIVER_NAME_SPI,
510 	},
511 	.probe =    kp_spi_probe,
512 	.remove =   kp_spi_remove,
513 };
514 
515 module_platform_driver(kp_spi_driver);
516 MODULE_LICENSE("GPL");
517 MODULE_ALIAS("platform:kp_spi");
518