1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 nvmem_reg_read_t reg_read;
38 nvmem_reg_write_t reg_write;
39 struct gpio_desc *wp_gpio;
40 void *priv;
41 };
42
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44
45 #define FLAG_COMPAT BIT(0)
46
47 struct nvmem_cell {
48 const char *name;
49 int offset;
50 int bytes;
51 int bit_offset;
52 int nbits;
53 struct device_node *np;
54 struct nvmem_device *nvmem;
55 struct list_head node;
56 };
57
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 void *val, size_t bytes)
71 {
72 if (nvmem->reg_read)
73 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74
75 return -EINVAL;
76 }
77
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 void *val, size_t bytes)
80 {
81 int ret;
82
83 if (nvmem->reg_write) {
84 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 return ret;
88 }
89
90 return -EINVAL;
91 }
92
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 [NVMEM_TYPE_UNKNOWN] = "Unknown",
96 [NVMEM_TYPE_EEPROM] = "EEPROM",
97 [NVMEM_TYPE_OTP] = "OTP",
98 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104
type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107 {
108 struct nvmem_device *nvmem = to_nvmem_device(dev);
109
110 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112
113 static DEVICE_ATTR_RO(type);
114
115 static struct attribute *nvmem_attrs[] = {
116 &dev_attr_type.attr,
117 NULL,
118 };
119
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 struct bin_attribute *attr, char *buf,
122 loff_t pos, size_t count)
123 {
124 struct device *dev;
125 struct nvmem_device *nvmem;
126 int rc;
127
128 if (attr->private)
129 dev = attr->private;
130 else
131 dev = kobj_to_dev(kobj);
132 nvmem = to_nvmem_device(dev);
133
134 /* Stop the user from reading */
135 if (pos >= nvmem->size)
136 return 0;
137
138 if (!IS_ALIGNED(pos, nvmem->stride))
139 return -EINVAL;
140
141 if (count < nvmem->word_size)
142 return -EINVAL;
143
144 if (pos + count > nvmem->size)
145 count = nvmem->size - pos;
146
147 count = round_down(count, nvmem->word_size);
148
149 if (!nvmem->reg_read)
150 return -EPERM;
151
152 rc = nvmem_reg_read(nvmem, pos, buf, count);
153
154 if (rc)
155 return rc;
156
157 return count;
158 }
159
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 struct bin_attribute *attr, char *buf,
162 loff_t pos, size_t count)
163 {
164 struct device *dev;
165 struct nvmem_device *nvmem;
166 int rc;
167
168 if (attr->private)
169 dev = attr->private;
170 else
171 dev = kobj_to_dev(kobj);
172 nvmem = to_nvmem_device(dev);
173
174 /* Stop the user from writing */
175 if (pos >= nvmem->size)
176 return -EFBIG;
177
178 if (!IS_ALIGNED(pos, nvmem->stride))
179 return -EINVAL;
180
181 if (count < nvmem->word_size)
182 return -EINVAL;
183
184 if (pos + count > nvmem->size)
185 count = nvmem->size - pos;
186
187 count = round_down(count, nvmem->word_size);
188
189 if (!nvmem->reg_write)
190 return -EPERM;
191
192 rc = nvmem_reg_write(nvmem, pos, buf, count);
193
194 if (rc)
195 return rc;
196
197 return count;
198 }
199
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 umode_t mode = 0400;
203
204 if (!nvmem->root_only)
205 mode |= 0044;
206
207 if (!nvmem->read_only)
208 mode |= 0200;
209
210 if (!nvmem->reg_write)
211 mode &= ~0200;
212
213 if (!nvmem->reg_read)
214 mode &= ~0444;
215
216 return mode;
217 }
218
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 struct bin_attribute *attr, int i)
221 {
222 struct device *dev = kobj_to_dev(kobj);
223 struct nvmem_device *nvmem = to_nvmem_device(dev);
224
225 return nvmem_bin_attr_get_umode(nvmem);
226 }
227
228 /* default read/write permissions */
229 static struct bin_attribute bin_attr_rw_nvmem = {
230 .attr = {
231 .name = "nvmem",
232 .mode = 0644,
233 },
234 .read = bin_attr_nvmem_read,
235 .write = bin_attr_nvmem_write,
236 };
237
238 static struct bin_attribute *nvmem_bin_attributes[] = {
239 &bin_attr_rw_nvmem,
240 NULL,
241 };
242
243 static const struct attribute_group nvmem_bin_group = {
244 .bin_attrs = nvmem_bin_attributes,
245 .attrs = nvmem_attrs,
246 .is_bin_visible = nvmem_bin_attr_is_visible,
247 };
248
249 static const struct attribute_group *nvmem_dev_groups[] = {
250 &nvmem_bin_group,
251 NULL,
252 };
253
254 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
255 .attr = {
256 .name = "eeprom",
257 },
258 .read = bin_attr_nvmem_read,
259 .write = bin_attr_nvmem_write,
260 };
261
262 /*
263 * nvmem_setup_compat() - Create an additional binary entry in
264 * drivers sys directory, to be backwards compatible with the older
265 * drivers/misc/eeprom drivers.
266 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)267 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
268 const struct nvmem_config *config)
269 {
270 int rval;
271
272 if (!config->compat)
273 return 0;
274
275 if (!config->base_dev)
276 return -EINVAL;
277
278 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
279 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
280 nvmem->eeprom.size = nvmem->size;
281 #ifdef CONFIG_DEBUG_LOCK_ALLOC
282 nvmem->eeprom.attr.key = &eeprom_lock_key;
283 #endif
284 nvmem->eeprom.private = &nvmem->dev;
285 nvmem->base_dev = config->base_dev;
286
287 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
288 if (rval) {
289 dev_err(&nvmem->dev,
290 "Failed to create eeprom binary file %d\n", rval);
291 return rval;
292 }
293
294 nvmem->flags |= FLAG_COMPAT;
295
296 return 0;
297 }
298
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)299 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
300 const struct nvmem_config *config)
301 {
302 if (config->compat)
303 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
304 }
305
306 #else /* CONFIG_NVMEM_SYSFS */
307
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)308 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
309 const struct nvmem_config *config)
310 {
311 return -ENOSYS;
312 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)313 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
314 const struct nvmem_config *config)
315 {
316 }
317
318 #endif /* CONFIG_NVMEM_SYSFS */
319
nvmem_release(struct device * dev)320 static void nvmem_release(struct device *dev)
321 {
322 struct nvmem_device *nvmem = to_nvmem_device(dev);
323
324 ida_free(&nvmem_ida, nvmem->id);
325 gpiod_put(nvmem->wp_gpio);
326 kfree(nvmem);
327 }
328
329 static const struct device_type nvmem_provider_type = {
330 .release = nvmem_release,
331 };
332
333 static struct bus_type nvmem_bus_type = {
334 .name = "nvmem",
335 };
336
nvmem_cell_drop(struct nvmem_cell * cell)337 static void nvmem_cell_drop(struct nvmem_cell *cell)
338 {
339 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
340 mutex_lock(&nvmem_mutex);
341 list_del(&cell->node);
342 mutex_unlock(&nvmem_mutex);
343 of_node_put(cell->np);
344 kfree_const(cell->name);
345 kfree(cell);
346 }
347
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)348 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
349 {
350 struct nvmem_cell *cell, *p;
351
352 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
353 nvmem_cell_drop(cell);
354 }
355
nvmem_cell_add(struct nvmem_cell * cell)356 static void nvmem_cell_add(struct nvmem_cell *cell)
357 {
358 mutex_lock(&nvmem_mutex);
359 list_add_tail(&cell->node, &cell->nvmem->cells);
360 mutex_unlock(&nvmem_mutex);
361 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
362 }
363
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)364 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
365 const struct nvmem_cell_info *info,
366 struct nvmem_cell *cell)
367 {
368 cell->nvmem = nvmem;
369 cell->offset = info->offset;
370 cell->bytes = info->bytes;
371 cell->name = info->name;
372
373 cell->bit_offset = info->bit_offset;
374 cell->nbits = info->nbits;
375
376 if (cell->nbits)
377 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
378 BITS_PER_BYTE);
379
380 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
381 dev_err(&nvmem->dev,
382 "cell %s unaligned to nvmem stride %d\n",
383 cell->name ?: "<unknown>", nvmem->stride);
384 return -EINVAL;
385 }
386
387 return 0;
388 }
389
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)390 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
391 const struct nvmem_cell_info *info,
392 struct nvmem_cell *cell)
393 {
394 int err;
395
396 err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
397 if (err)
398 return err;
399
400 cell->name = kstrdup_const(info->name, GFP_KERNEL);
401 if (!cell->name)
402 return -ENOMEM;
403
404 return 0;
405 }
406
407 /**
408 * nvmem_add_cells() - Add cell information to an nvmem device
409 *
410 * @nvmem: nvmem device to add cells to.
411 * @info: nvmem cell info to add to the device
412 * @ncells: number of cells in info
413 *
414 * Return: 0 or negative error code on failure.
415 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)416 static int nvmem_add_cells(struct nvmem_device *nvmem,
417 const struct nvmem_cell_info *info,
418 int ncells)
419 {
420 struct nvmem_cell **cells;
421 int i, rval;
422
423 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
424 if (!cells)
425 return -ENOMEM;
426
427 for (i = 0; i < ncells; i++) {
428 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
429 if (!cells[i]) {
430 rval = -ENOMEM;
431 goto err;
432 }
433
434 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
435 if (rval) {
436 kfree(cells[i]);
437 goto err;
438 }
439
440 nvmem_cell_add(cells[i]);
441 }
442
443 /* remove tmp array */
444 kfree(cells);
445
446 return 0;
447 err:
448 while (i--)
449 nvmem_cell_drop(cells[i]);
450
451 kfree(cells);
452
453 return rval;
454 }
455
456 /**
457 * nvmem_register_notifier() - Register a notifier block for nvmem events.
458 *
459 * @nb: notifier block to be called on nvmem events.
460 *
461 * Return: 0 on success, negative error number on failure.
462 */
nvmem_register_notifier(struct notifier_block * nb)463 int nvmem_register_notifier(struct notifier_block *nb)
464 {
465 return blocking_notifier_chain_register(&nvmem_notifier, nb);
466 }
467 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
468
469 /**
470 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
471 *
472 * @nb: notifier block to be unregistered.
473 *
474 * Return: 0 on success, negative error number on failure.
475 */
nvmem_unregister_notifier(struct notifier_block * nb)476 int nvmem_unregister_notifier(struct notifier_block *nb)
477 {
478 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
479 }
480 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
481
nvmem_add_cells_from_table(struct nvmem_device * nvmem)482 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
483 {
484 const struct nvmem_cell_info *info;
485 struct nvmem_cell_table *table;
486 struct nvmem_cell *cell;
487 int rval = 0, i;
488
489 mutex_lock(&nvmem_cell_mutex);
490 list_for_each_entry(table, &nvmem_cell_tables, node) {
491 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
492 for (i = 0; i < table->ncells; i++) {
493 info = &table->cells[i];
494
495 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
496 if (!cell) {
497 rval = -ENOMEM;
498 goto out;
499 }
500
501 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
502 info,
503 cell);
504 if (rval) {
505 kfree(cell);
506 goto out;
507 }
508
509 nvmem_cell_add(cell);
510 }
511 }
512 }
513
514 out:
515 mutex_unlock(&nvmem_cell_mutex);
516 return rval;
517 }
518
519 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)520 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
521 {
522 struct nvmem_cell *iter, *cell = NULL;
523
524 mutex_lock(&nvmem_mutex);
525 list_for_each_entry(iter, &nvmem->cells, node) {
526 if (strcmp(cell_id, iter->name) == 0) {
527 cell = iter;
528 break;
529 }
530 }
531 mutex_unlock(&nvmem_mutex);
532
533 return cell;
534 }
535
nvmem_add_cells_from_of(struct nvmem_device * nvmem)536 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
537 {
538 struct device_node *parent, *child;
539 struct device *dev = &nvmem->dev;
540 struct nvmem_cell *cell;
541 const __be32 *addr;
542 int len;
543
544 parent = dev->of_node;
545
546 for_each_child_of_node(parent, child) {
547 addr = of_get_property(child, "reg", &len);
548 if (!addr || (len < 2 * sizeof(u32))) {
549 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
550 return -EINVAL;
551 }
552
553 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
554 if (!cell)
555 return -ENOMEM;
556
557 cell->nvmem = nvmem;
558 cell->np = of_node_get(child);
559 cell->offset = be32_to_cpup(addr++);
560 cell->bytes = be32_to_cpup(addr);
561 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
562
563 addr = of_get_property(child, "bits", &len);
564 if (addr && len == (2 * sizeof(u32))) {
565 cell->bit_offset = be32_to_cpup(addr++);
566 cell->nbits = be32_to_cpup(addr);
567 }
568
569 if (cell->nbits)
570 cell->bytes = DIV_ROUND_UP(
571 cell->nbits + cell->bit_offset,
572 BITS_PER_BYTE);
573
574 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
575 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
576 cell->name, nvmem->stride);
577 /* Cells already added will be freed later. */
578 kfree_const(cell->name);
579 kfree(cell);
580 return -EINVAL;
581 }
582
583 nvmem_cell_add(cell);
584 }
585
586 return 0;
587 }
588
589 /**
590 * nvmem_register() - Register a nvmem device for given nvmem_config.
591 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
592 *
593 * @config: nvmem device configuration with which nvmem device is created.
594 *
595 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
596 * on success.
597 */
598
nvmem_register(const struct nvmem_config * config)599 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
600 {
601 struct nvmem_device *nvmem;
602 int rval;
603
604 if (!config->dev)
605 return ERR_PTR(-EINVAL);
606
607 if (!config->reg_read && !config->reg_write)
608 return ERR_PTR(-EINVAL);
609
610 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
611 if (!nvmem)
612 return ERR_PTR(-ENOMEM);
613
614 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
615 if (rval < 0) {
616 kfree(nvmem);
617 return ERR_PTR(rval);
618 }
619
620 if (config->wp_gpio)
621 nvmem->wp_gpio = config->wp_gpio;
622 else
623 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
624 GPIOD_OUT_HIGH);
625 if (IS_ERR(nvmem->wp_gpio)) {
626 ida_free(&nvmem_ida, nvmem->id);
627 rval = PTR_ERR(nvmem->wp_gpio);
628 kfree(nvmem);
629 return ERR_PTR(rval);
630 }
631
632 kref_init(&nvmem->refcnt);
633 INIT_LIST_HEAD(&nvmem->cells);
634
635 nvmem->id = rval;
636 nvmem->owner = config->owner;
637 if (!nvmem->owner && config->dev->driver)
638 nvmem->owner = config->dev->driver->owner;
639 nvmem->stride = config->stride ?: 1;
640 nvmem->word_size = config->word_size ?: 1;
641 nvmem->size = config->size;
642 nvmem->dev.type = &nvmem_provider_type;
643 nvmem->dev.bus = &nvmem_bus_type;
644 nvmem->dev.parent = config->dev;
645 nvmem->root_only = config->root_only;
646 nvmem->priv = config->priv;
647 nvmem->type = config->type;
648 nvmem->reg_read = config->reg_read;
649 nvmem->reg_write = config->reg_write;
650 if (!config->no_of_node)
651 nvmem->dev.of_node = config->dev->of_node;
652
653 switch (config->id) {
654 case NVMEM_DEVID_NONE:
655 dev_set_name(&nvmem->dev, "%s", config->name);
656 break;
657 case NVMEM_DEVID_AUTO:
658 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
659 break;
660 default:
661 dev_set_name(&nvmem->dev, "%s%d",
662 config->name ? : "nvmem",
663 config->name ? config->id : nvmem->id);
664 break;
665 }
666
667 nvmem->read_only = device_property_present(config->dev, "read-only") ||
668 config->read_only || !nvmem->reg_write;
669
670 #ifdef CONFIG_NVMEM_SYSFS
671 nvmem->dev.groups = nvmem_dev_groups;
672 #endif
673
674 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
675
676 rval = device_register(&nvmem->dev);
677 if (rval)
678 goto err_put_device;
679
680 if (config->compat) {
681 rval = nvmem_sysfs_setup_compat(nvmem, config);
682 if (rval)
683 goto err_device_del;
684 }
685
686 if (config->cells) {
687 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
688 if (rval)
689 goto err_teardown_compat;
690 }
691
692 rval = nvmem_add_cells_from_table(nvmem);
693 if (rval)
694 goto err_remove_cells;
695
696 rval = nvmem_add_cells_from_of(nvmem);
697 if (rval)
698 goto err_remove_cells;
699
700 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
701
702 return nvmem;
703
704 err_remove_cells:
705 nvmem_device_remove_all_cells(nvmem);
706 err_teardown_compat:
707 if (config->compat)
708 nvmem_sysfs_remove_compat(nvmem, config);
709 err_device_del:
710 device_del(&nvmem->dev);
711 err_put_device:
712 put_device(&nvmem->dev);
713
714 return ERR_PTR(rval);
715 }
716 EXPORT_SYMBOL_GPL(nvmem_register);
717
nvmem_device_release(struct kref * kref)718 static void nvmem_device_release(struct kref *kref)
719 {
720 struct nvmem_device *nvmem;
721
722 nvmem = container_of(kref, struct nvmem_device, refcnt);
723
724 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
725
726 if (nvmem->flags & FLAG_COMPAT)
727 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
728
729 nvmem_device_remove_all_cells(nvmem);
730 device_unregister(&nvmem->dev);
731 }
732
733 /**
734 * nvmem_unregister() - Unregister previously registered nvmem device
735 *
736 * @nvmem: Pointer to previously registered nvmem device.
737 */
nvmem_unregister(struct nvmem_device * nvmem)738 void nvmem_unregister(struct nvmem_device *nvmem)
739 {
740 kref_put(&nvmem->refcnt, nvmem_device_release);
741 }
742 EXPORT_SYMBOL_GPL(nvmem_unregister);
743
devm_nvmem_release(struct device * dev,void * res)744 static void devm_nvmem_release(struct device *dev, void *res)
745 {
746 nvmem_unregister(*(struct nvmem_device **)res);
747 }
748
749 /**
750 * devm_nvmem_register() - Register a managed nvmem device for given
751 * nvmem_config.
752 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
753 *
754 * @dev: Device that uses the nvmem device.
755 * @config: nvmem device configuration with which nvmem device is created.
756 *
757 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
758 * on success.
759 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)760 struct nvmem_device *devm_nvmem_register(struct device *dev,
761 const struct nvmem_config *config)
762 {
763 struct nvmem_device **ptr, *nvmem;
764
765 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
766 if (!ptr)
767 return ERR_PTR(-ENOMEM);
768
769 nvmem = nvmem_register(config);
770
771 if (!IS_ERR(nvmem)) {
772 *ptr = nvmem;
773 devres_add(dev, ptr);
774 } else {
775 devres_free(ptr);
776 }
777
778 return nvmem;
779 }
780 EXPORT_SYMBOL_GPL(devm_nvmem_register);
781
devm_nvmem_match(struct device * dev,void * res,void * data)782 static int devm_nvmem_match(struct device *dev, void *res, void *data)
783 {
784 struct nvmem_device **r = res;
785
786 return *r == data;
787 }
788
789 /**
790 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
791 * device.
792 *
793 * @dev: Device that uses the nvmem device.
794 * @nvmem: Pointer to previously registered nvmem device.
795 *
796 * Return: Will be negative on error or zero on success.
797 */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)798 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
799 {
800 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
801 }
802 EXPORT_SYMBOL(devm_nvmem_unregister);
803
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))804 static struct nvmem_device *__nvmem_device_get(void *data,
805 int (*match)(struct device *dev, const void *data))
806 {
807 struct nvmem_device *nvmem = NULL;
808 struct device *dev;
809
810 mutex_lock(&nvmem_mutex);
811 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
812 if (dev)
813 nvmem = to_nvmem_device(dev);
814 mutex_unlock(&nvmem_mutex);
815 if (!nvmem)
816 return ERR_PTR(-EPROBE_DEFER);
817
818 if (!try_module_get(nvmem->owner)) {
819 dev_err(&nvmem->dev,
820 "could not increase module refcount for cell %s\n",
821 nvmem_dev_name(nvmem));
822
823 put_device(&nvmem->dev);
824 return ERR_PTR(-EINVAL);
825 }
826
827 kref_get(&nvmem->refcnt);
828
829 return nvmem;
830 }
831
__nvmem_device_put(struct nvmem_device * nvmem)832 static void __nvmem_device_put(struct nvmem_device *nvmem)
833 {
834 put_device(&nvmem->dev);
835 module_put(nvmem->owner);
836 kref_put(&nvmem->refcnt, nvmem_device_release);
837 }
838
839 #if IS_ENABLED(CONFIG_OF)
840 /**
841 * of_nvmem_device_get() - Get nvmem device from a given id
842 *
843 * @np: Device tree node that uses the nvmem device.
844 * @id: nvmem name from nvmem-names property.
845 *
846 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
847 * on success.
848 */
of_nvmem_device_get(struct device_node * np,const char * id)849 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
850 {
851
852 struct device_node *nvmem_np;
853 struct nvmem_device *nvmem;
854 int index = 0;
855
856 if (id)
857 index = of_property_match_string(np, "nvmem-names", id);
858
859 nvmem_np = of_parse_phandle(np, "nvmem", index);
860 if (!nvmem_np)
861 return ERR_PTR(-ENOENT);
862
863 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
864 of_node_put(nvmem_np);
865 return nvmem;
866 }
867 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
868 #endif
869
870 /**
871 * nvmem_device_get() - Get nvmem device from a given id
872 *
873 * @dev: Device that uses the nvmem device.
874 * @dev_name: name of the requested nvmem device.
875 *
876 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
877 * on success.
878 */
nvmem_device_get(struct device * dev,const char * dev_name)879 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
880 {
881 if (dev->of_node) { /* try dt first */
882 struct nvmem_device *nvmem;
883
884 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
885
886 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
887 return nvmem;
888
889 }
890
891 return __nvmem_device_get((void *)dev_name, device_match_name);
892 }
893 EXPORT_SYMBOL_GPL(nvmem_device_get);
894
895 /**
896 * nvmem_device_find() - Find nvmem device with matching function
897 *
898 * @data: Data to pass to match function
899 * @match: Callback function to check device
900 *
901 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
902 * on success.
903 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))904 struct nvmem_device *nvmem_device_find(void *data,
905 int (*match)(struct device *dev, const void *data))
906 {
907 return __nvmem_device_get(data, match);
908 }
909 EXPORT_SYMBOL_GPL(nvmem_device_find);
910
devm_nvmem_device_match(struct device * dev,void * res,void * data)911 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
912 {
913 struct nvmem_device **nvmem = res;
914
915 if (WARN_ON(!nvmem || !*nvmem))
916 return 0;
917
918 return *nvmem == data;
919 }
920
devm_nvmem_device_release(struct device * dev,void * res)921 static void devm_nvmem_device_release(struct device *dev, void *res)
922 {
923 nvmem_device_put(*(struct nvmem_device **)res);
924 }
925
926 /**
927 * devm_nvmem_device_put() - put alredy got nvmem device
928 *
929 * @dev: Device that uses the nvmem device.
930 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
931 * that needs to be released.
932 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)933 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
934 {
935 int ret;
936
937 ret = devres_release(dev, devm_nvmem_device_release,
938 devm_nvmem_device_match, nvmem);
939
940 WARN_ON(ret);
941 }
942 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
943
944 /**
945 * nvmem_device_put() - put alredy got nvmem device
946 *
947 * @nvmem: pointer to nvmem device that needs to be released.
948 */
nvmem_device_put(struct nvmem_device * nvmem)949 void nvmem_device_put(struct nvmem_device *nvmem)
950 {
951 __nvmem_device_put(nvmem);
952 }
953 EXPORT_SYMBOL_GPL(nvmem_device_put);
954
955 /**
956 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
957 *
958 * @dev: Device that requests the nvmem device.
959 * @id: name id for the requested nvmem device.
960 *
961 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
962 * on success. The nvmem_cell will be freed by the automatically once the
963 * device is freed.
964 */
devm_nvmem_device_get(struct device * dev,const char * id)965 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
966 {
967 struct nvmem_device **ptr, *nvmem;
968
969 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
970 if (!ptr)
971 return ERR_PTR(-ENOMEM);
972
973 nvmem = nvmem_device_get(dev, id);
974 if (!IS_ERR(nvmem)) {
975 *ptr = nvmem;
976 devres_add(dev, ptr);
977 } else {
978 devres_free(ptr);
979 }
980
981 return nvmem;
982 }
983 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
984
985 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)986 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
987 {
988 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
989 struct nvmem_cell_lookup *lookup;
990 struct nvmem_device *nvmem;
991 const char *dev_id;
992
993 if (!dev)
994 return ERR_PTR(-EINVAL);
995
996 dev_id = dev_name(dev);
997
998 mutex_lock(&nvmem_lookup_mutex);
999
1000 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1001 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1002 (strcmp(lookup->con_id, con_id) == 0)) {
1003 /* This is the right entry. */
1004 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1005 device_match_name);
1006 if (IS_ERR(nvmem)) {
1007 /* Provider may not be registered yet. */
1008 cell = ERR_CAST(nvmem);
1009 break;
1010 }
1011
1012 cell = nvmem_find_cell_by_name(nvmem,
1013 lookup->cell_name);
1014 if (!cell) {
1015 __nvmem_device_put(nvmem);
1016 cell = ERR_PTR(-ENOENT);
1017 }
1018 break;
1019 }
1020 }
1021
1022 mutex_unlock(&nvmem_lookup_mutex);
1023 return cell;
1024 }
1025
1026 #if IS_ENABLED(CONFIG_OF)
1027 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1028 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1029 {
1030 struct nvmem_cell *iter, *cell = NULL;
1031
1032 mutex_lock(&nvmem_mutex);
1033 list_for_each_entry(iter, &nvmem->cells, node) {
1034 if (np == iter->np) {
1035 cell = iter;
1036 break;
1037 }
1038 }
1039 mutex_unlock(&nvmem_mutex);
1040
1041 return cell;
1042 }
1043
1044 /**
1045 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1046 *
1047 * @np: Device tree node that uses the nvmem cell.
1048 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1049 * for the cell at index 0 (the lone cell with no accompanying
1050 * nvmem-cell-names property).
1051 *
1052 * Return: Will be an ERR_PTR() on error or a valid pointer
1053 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1054 * nvmem_cell_put().
1055 */
of_nvmem_cell_get(struct device_node * np,const char * id)1056 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1057 {
1058 struct device_node *cell_np, *nvmem_np;
1059 struct nvmem_device *nvmem;
1060 struct nvmem_cell *cell;
1061 int index = 0;
1062
1063 /* if cell name exists, find index to the name */
1064 if (id)
1065 index = of_property_match_string(np, "nvmem-cell-names", id);
1066
1067 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1068 if (!cell_np)
1069 return ERR_PTR(-ENOENT);
1070
1071 nvmem_np = of_get_next_parent(cell_np);
1072 if (!nvmem_np)
1073 return ERR_PTR(-EINVAL);
1074
1075 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1076 of_node_put(nvmem_np);
1077 if (IS_ERR(nvmem))
1078 return ERR_CAST(nvmem);
1079
1080 cell = nvmem_find_cell_by_node(nvmem, cell_np);
1081 if (!cell) {
1082 __nvmem_device_put(nvmem);
1083 return ERR_PTR(-ENOENT);
1084 }
1085
1086 return cell;
1087 }
1088 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1089 #endif
1090
1091 /**
1092 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1093 *
1094 * @dev: Device that requests the nvmem cell.
1095 * @id: nvmem cell name to get (this corresponds with the name from the
1096 * nvmem-cell-names property for DT systems and with the con_id from
1097 * the lookup entry for non-DT systems).
1098 *
1099 * Return: Will be an ERR_PTR() on error or a valid pointer
1100 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1101 * nvmem_cell_put().
1102 */
nvmem_cell_get(struct device * dev,const char * id)1103 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1104 {
1105 struct nvmem_cell *cell;
1106
1107 if (dev->of_node) { /* try dt first */
1108 cell = of_nvmem_cell_get(dev->of_node, id);
1109 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1110 return cell;
1111 }
1112
1113 /* NULL cell id only allowed for device tree; invalid otherwise */
1114 if (!id)
1115 return ERR_PTR(-EINVAL);
1116
1117 return nvmem_cell_get_from_lookup(dev, id);
1118 }
1119 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1120
devm_nvmem_cell_release(struct device * dev,void * res)1121 static void devm_nvmem_cell_release(struct device *dev, void *res)
1122 {
1123 nvmem_cell_put(*(struct nvmem_cell **)res);
1124 }
1125
1126 /**
1127 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1128 *
1129 * @dev: Device that requests the nvmem cell.
1130 * @id: nvmem cell name id to get.
1131 *
1132 * Return: Will be an ERR_PTR() on error or a valid pointer
1133 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1134 * automatically once the device is freed.
1135 */
devm_nvmem_cell_get(struct device * dev,const char * id)1136 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1137 {
1138 struct nvmem_cell **ptr, *cell;
1139
1140 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1141 if (!ptr)
1142 return ERR_PTR(-ENOMEM);
1143
1144 cell = nvmem_cell_get(dev, id);
1145 if (!IS_ERR(cell)) {
1146 *ptr = cell;
1147 devres_add(dev, ptr);
1148 } else {
1149 devres_free(ptr);
1150 }
1151
1152 return cell;
1153 }
1154 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1155
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1156 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1157 {
1158 struct nvmem_cell **c = res;
1159
1160 if (WARN_ON(!c || !*c))
1161 return 0;
1162
1163 return *c == data;
1164 }
1165
1166 /**
1167 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1168 * from devm_nvmem_cell_get.
1169 *
1170 * @dev: Device that requests the nvmem cell.
1171 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1172 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1173 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1174 {
1175 int ret;
1176
1177 ret = devres_release(dev, devm_nvmem_cell_release,
1178 devm_nvmem_cell_match, cell);
1179
1180 WARN_ON(ret);
1181 }
1182 EXPORT_SYMBOL(devm_nvmem_cell_put);
1183
1184 /**
1185 * nvmem_cell_put() - Release previously allocated nvmem cell.
1186 *
1187 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1188 */
nvmem_cell_put(struct nvmem_cell * cell)1189 void nvmem_cell_put(struct nvmem_cell *cell)
1190 {
1191 struct nvmem_device *nvmem = cell->nvmem;
1192
1193 __nvmem_device_put(nvmem);
1194 }
1195 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1196
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1197 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1198 {
1199 u8 *p, *b;
1200 int i, extra, bit_offset = cell->bit_offset;
1201
1202 p = b = buf;
1203 if (bit_offset) {
1204 /* First shift */
1205 *b++ >>= bit_offset;
1206
1207 /* setup rest of the bytes if any */
1208 for (i = 1; i < cell->bytes; i++) {
1209 /* Get bits from next byte and shift them towards msb */
1210 *p |= *b << (BITS_PER_BYTE - bit_offset);
1211
1212 p = b;
1213 *b++ >>= bit_offset;
1214 }
1215 } else {
1216 /* point to the msb */
1217 p += cell->bytes - 1;
1218 }
1219
1220 /* result fits in less bytes */
1221 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1222 while (--extra >= 0)
1223 *p-- = 0;
1224
1225 /* clear msb bits if any leftover in the last byte */
1226 *p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
1227 }
1228
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1229 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1230 struct nvmem_cell *cell,
1231 void *buf, size_t *len)
1232 {
1233 int rc;
1234
1235 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1236
1237 if (rc)
1238 return rc;
1239
1240 /* shift bits in-place */
1241 if (cell->bit_offset || cell->nbits)
1242 nvmem_shift_read_buffer_in_place(cell, buf);
1243
1244 if (len)
1245 *len = cell->bytes;
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * nvmem_cell_read() - Read a given nvmem cell
1252 *
1253 * @cell: nvmem cell to be read.
1254 * @len: pointer to length of cell which will be populated on successful read;
1255 * can be NULL.
1256 *
1257 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1258 * buffer should be freed by the consumer with a kfree().
1259 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1260 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1261 {
1262 struct nvmem_device *nvmem = cell->nvmem;
1263 u8 *buf;
1264 int rc;
1265
1266 if (!nvmem)
1267 return ERR_PTR(-EINVAL);
1268
1269 buf = kzalloc(cell->bytes, GFP_KERNEL);
1270 if (!buf)
1271 return ERR_PTR(-ENOMEM);
1272
1273 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1274 if (rc) {
1275 kfree(buf);
1276 return ERR_PTR(rc);
1277 }
1278
1279 return buf;
1280 }
1281 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1282
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1283 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1284 u8 *_buf, int len)
1285 {
1286 struct nvmem_device *nvmem = cell->nvmem;
1287 int i, rc, nbits, bit_offset = cell->bit_offset;
1288 u8 v, *p, *buf, *b, pbyte, pbits;
1289
1290 nbits = cell->nbits;
1291 buf = kzalloc(cell->bytes, GFP_KERNEL);
1292 if (!buf)
1293 return ERR_PTR(-ENOMEM);
1294
1295 memcpy(buf, _buf, len);
1296 p = b = buf;
1297
1298 if (bit_offset) {
1299 pbyte = *b;
1300 *b <<= bit_offset;
1301
1302 /* setup the first byte with lsb bits from nvmem */
1303 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1304 if (rc)
1305 goto err;
1306 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1307
1308 /* setup rest of the byte if any */
1309 for (i = 1; i < cell->bytes; i++) {
1310 /* Get last byte bits and shift them towards lsb */
1311 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1312 pbyte = *b;
1313 p = b;
1314 *b <<= bit_offset;
1315 *b++ |= pbits;
1316 }
1317 }
1318
1319 /* if it's not end on byte boundary */
1320 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1321 /* setup the last byte with msb bits from nvmem */
1322 rc = nvmem_reg_read(nvmem,
1323 cell->offset + cell->bytes - 1, &v, 1);
1324 if (rc)
1325 goto err;
1326 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1327
1328 }
1329
1330 return buf;
1331 err:
1332 kfree(buf);
1333 return ERR_PTR(rc);
1334 }
1335
1336 /**
1337 * nvmem_cell_write() - Write to a given nvmem cell
1338 *
1339 * @cell: nvmem cell to be written.
1340 * @buf: Buffer to be written.
1341 * @len: length of buffer to be written to nvmem cell.
1342 *
1343 * Return: length of bytes written or negative on failure.
1344 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1345 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1346 {
1347 struct nvmem_device *nvmem = cell->nvmem;
1348 int rc;
1349
1350 if (!nvmem || nvmem->read_only ||
1351 (cell->bit_offset == 0 && len != cell->bytes))
1352 return -EINVAL;
1353
1354 if (cell->bit_offset || cell->nbits) {
1355 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1356 if (IS_ERR(buf))
1357 return PTR_ERR(buf);
1358 }
1359
1360 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1361
1362 /* free the tmp buffer */
1363 if (cell->bit_offset || cell->nbits)
1364 kfree(buf);
1365
1366 if (rc)
1367 return rc;
1368
1369 return len;
1370 }
1371 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1372
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1373 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1374 void *val, size_t count)
1375 {
1376 struct nvmem_cell *cell;
1377 void *buf;
1378 size_t len;
1379
1380 cell = nvmem_cell_get(dev, cell_id);
1381 if (IS_ERR(cell))
1382 return PTR_ERR(cell);
1383
1384 buf = nvmem_cell_read(cell, &len);
1385 if (IS_ERR(buf)) {
1386 nvmem_cell_put(cell);
1387 return PTR_ERR(buf);
1388 }
1389 if (len != count) {
1390 kfree(buf);
1391 nvmem_cell_put(cell);
1392 return -EINVAL;
1393 }
1394 memcpy(val, buf, count);
1395 kfree(buf);
1396 nvmem_cell_put(cell);
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * nvmem_cell_read_u8() - Read a cell value as a u8
1403 *
1404 * @dev: Device that requests the nvmem cell.
1405 * @cell_id: Name of nvmem cell to read.
1406 * @val: pointer to output value.
1407 *
1408 * Return: 0 on success or negative errno.
1409 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1410 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1411 {
1412 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1413 }
1414 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1415
1416 /**
1417 * nvmem_cell_read_u16() - Read a cell value as a u16
1418 *
1419 * @dev: Device that requests the nvmem cell.
1420 * @cell_id: Name of nvmem cell to read.
1421 * @val: pointer to output value.
1422 *
1423 * Return: 0 on success or negative errno.
1424 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1425 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1426 {
1427 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1428 }
1429 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1430
1431 /**
1432 * nvmem_cell_read_u32() - Read a cell value as a u32
1433 *
1434 * @dev: Device that requests the nvmem cell.
1435 * @cell_id: Name of nvmem cell to read.
1436 * @val: pointer to output value.
1437 *
1438 * Return: 0 on success or negative errno.
1439 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1440 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1441 {
1442 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1443 }
1444 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1445
1446 /**
1447 * nvmem_cell_read_u64() - Read a cell value as a u64
1448 *
1449 * @dev: Device that requests the nvmem cell.
1450 * @cell_id: Name of nvmem cell to read.
1451 * @val: pointer to output value.
1452 *
1453 * Return: 0 on success or negative errno.
1454 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1455 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1456 {
1457 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1458 }
1459 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1460
1461 /**
1462 * nvmem_device_cell_read() - Read a given nvmem device and cell
1463 *
1464 * @nvmem: nvmem device to read from.
1465 * @info: nvmem cell info to be read.
1466 * @buf: buffer pointer which will be populated on successful read.
1467 *
1468 * Return: length of successful bytes read on success and negative
1469 * error code on error.
1470 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1471 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1472 struct nvmem_cell_info *info, void *buf)
1473 {
1474 struct nvmem_cell cell;
1475 int rc;
1476 ssize_t len;
1477
1478 if (!nvmem)
1479 return -EINVAL;
1480
1481 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1482 if (rc)
1483 return rc;
1484
1485 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1486 if (rc)
1487 return rc;
1488
1489 return len;
1490 }
1491 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1492
1493 /**
1494 * nvmem_device_cell_write() - Write cell to a given nvmem device
1495 *
1496 * @nvmem: nvmem device to be written to.
1497 * @info: nvmem cell info to be written.
1498 * @buf: buffer to be written to cell.
1499 *
1500 * Return: length of bytes written or negative error code on failure.
1501 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1502 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1503 struct nvmem_cell_info *info, void *buf)
1504 {
1505 struct nvmem_cell cell;
1506 int rc;
1507
1508 if (!nvmem)
1509 return -EINVAL;
1510
1511 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1512 if (rc)
1513 return rc;
1514
1515 return nvmem_cell_write(&cell, buf, cell.bytes);
1516 }
1517 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1518
1519 /**
1520 * nvmem_device_read() - Read from a given nvmem device
1521 *
1522 * @nvmem: nvmem device to read from.
1523 * @offset: offset in nvmem device.
1524 * @bytes: number of bytes to read.
1525 * @buf: buffer pointer which will be populated on successful read.
1526 *
1527 * Return: length of successful bytes read on success and negative
1528 * error code on error.
1529 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1530 int nvmem_device_read(struct nvmem_device *nvmem,
1531 unsigned int offset,
1532 size_t bytes, void *buf)
1533 {
1534 int rc;
1535
1536 if (!nvmem)
1537 return -EINVAL;
1538
1539 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1540
1541 if (rc)
1542 return rc;
1543
1544 return bytes;
1545 }
1546 EXPORT_SYMBOL_GPL(nvmem_device_read);
1547
1548 /**
1549 * nvmem_device_write() - Write cell to a given nvmem device
1550 *
1551 * @nvmem: nvmem device to be written to.
1552 * @offset: offset in nvmem device.
1553 * @bytes: number of bytes to write.
1554 * @buf: buffer to be written.
1555 *
1556 * Return: length of bytes written or negative error code on failure.
1557 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1558 int nvmem_device_write(struct nvmem_device *nvmem,
1559 unsigned int offset,
1560 size_t bytes, void *buf)
1561 {
1562 int rc;
1563
1564 if (!nvmem)
1565 return -EINVAL;
1566
1567 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1568
1569 if (rc)
1570 return rc;
1571
1572
1573 return bytes;
1574 }
1575 EXPORT_SYMBOL_GPL(nvmem_device_write);
1576
1577 /**
1578 * nvmem_add_cell_table() - register a table of cell info entries
1579 *
1580 * @table: table of cell info entries
1581 */
nvmem_add_cell_table(struct nvmem_cell_table * table)1582 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1583 {
1584 mutex_lock(&nvmem_cell_mutex);
1585 list_add_tail(&table->node, &nvmem_cell_tables);
1586 mutex_unlock(&nvmem_cell_mutex);
1587 }
1588 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1589
1590 /**
1591 * nvmem_del_cell_table() - remove a previously registered cell info table
1592 *
1593 * @table: table of cell info entries
1594 */
nvmem_del_cell_table(struct nvmem_cell_table * table)1595 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1596 {
1597 mutex_lock(&nvmem_cell_mutex);
1598 list_del(&table->node);
1599 mutex_unlock(&nvmem_cell_mutex);
1600 }
1601 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1602
1603 /**
1604 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1605 *
1606 * @entries: array of cell lookup entries
1607 * @nentries: number of cell lookup entries in the array
1608 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1609 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1610 {
1611 int i;
1612
1613 mutex_lock(&nvmem_lookup_mutex);
1614 for (i = 0; i < nentries; i++)
1615 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1616 mutex_unlock(&nvmem_lookup_mutex);
1617 }
1618 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1619
1620 /**
1621 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1622 * entries
1623 *
1624 * @entries: array of cell lookup entries
1625 * @nentries: number of cell lookup entries in the array
1626 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1627 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1628 {
1629 int i;
1630
1631 mutex_lock(&nvmem_lookup_mutex);
1632 for (i = 0; i < nentries; i++)
1633 list_del(&entries[i].node);
1634 mutex_unlock(&nvmem_lookup_mutex);
1635 }
1636 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1637
1638 /**
1639 * nvmem_dev_name() - Get the name of a given nvmem device.
1640 *
1641 * @nvmem: nvmem device.
1642 *
1643 * Return: name of the nvmem device.
1644 */
nvmem_dev_name(struct nvmem_device * nvmem)1645 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1646 {
1647 return dev_name(&nvmem->dev);
1648 }
1649 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1650
nvmem_init(void)1651 static int __init nvmem_init(void)
1652 {
1653 return bus_register(&nvmem_bus_type);
1654 }
1655
nvmem_exit(void)1656 static void __exit nvmem_exit(void)
1657 {
1658 bus_unregister(&nvmem_bus_type);
1659 }
1660
1661 subsys_initcall(nvmem_init);
1662 module_exit(nvmem_exit);
1663
1664 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1665 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1666 MODULE_DESCRIPTION("nvmem Driver Core");
1667 MODULE_LICENSE("GPL v2");
1668